linux_dsm_epyc7002/arch/x86/kernel/head_64.S

443 lines
12 KiB
ArmAsm
Raw Normal View History

/*
* linux/arch/x86/kernel/head_64.S -- start in 32bit and switch to 64bit
*
* Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
* Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
* Copyright (C) 2000 Karsten Keil <kkeil@suse.de>
* Copyright (C) 2001,2002 Andi Kleen <ak@suse.de>
* Copyright (C) 2005 Eric Biederman <ebiederm@xmission.com>
*/
#include <linux/linkage.h>
#include <linux/threads.h>
#include <linux/init.h>
#include <asm/segment.h>
#include <asm/pgtable.h>
#include <asm/page.h>
#include <asm/msr.h>
#include <asm/cache.h>
#include <asm/processor-flags.h>
#include <asm/percpu.h>
#include <asm/nops.h>
#include "../entry/calling.h"
#include <asm/export.h>
#ifdef CONFIG_PARAVIRT
#include <asm/asm-offsets.h>
#include <asm/paravirt.h>
#define GET_CR2_INTO(reg) GET_CR2_INTO_RAX ; movq %rax, reg
#else
#define GET_CR2_INTO(reg) movq %cr2, reg
#define INTERRUPT_RETURN iretq
#endif
/* we are not able to switch in one step to the final KERNEL ADDRESS SPACE
* because we need identity-mapped pages.
*
*/
#define p4d_index(x) (((x) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
#define pud_index(x) (((x) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
PGD_PAGE_OFFSET = pgd_index(__PAGE_OFFSET_BASE)
PGD_START_KERNEL = pgd_index(__START_KERNEL_map)
L3_START_KERNEL = pud_index(__START_KERNEL_map)
.text
__HEAD
.code64
.globl startup_64
startup_64:
/*
* At this point the CPU runs in 64bit mode CS.L = 1 CS.D = 0,
* and someone has loaded an identity mapped page table
* for us. These identity mapped page tables map all of the
* kernel pages and possibly all of memory.
*
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 03:19:52 +07:00
* %rsi holds a physical pointer to real_mode_data.
*
* We come here either directly from a 64bit bootloader, or from
* arch/x86/boot/compressed/head_64.S.
*
* We only come here initially at boot nothing else comes here.
*
* Since we may be loaded at an address different from what we were
* compiled to run at we first fixup the physical addresses in our page
* tables and then reload them.
*/
/* Set up the stack for verify_cpu(), similar to initial_stack below */
leaq (__end_init_task - SIZEOF_PTREGS)(%rip), %rsp
/* Sanitize CPU configuration */
call verify_cpu
x86/mm: Add support to enable SME in early boot processing Add support to the early boot code to use Secure Memory Encryption (SME). Since the kernel has been loaded into memory in a decrypted state, encrypt the kernel in place and update the early pagetables with the memory encryption mask so that new pagetable entries will use memory encryption. The routines to set the encryption mask and perform the encryption are stub routines for now with functionality to be added in a later patch. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Brijesh Singh <brijesh.singh@amd.com> Cc: Dave Young <dyoung@redhat.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Toshimitsu Kani <toshi.kani@hpe.com> Cc: kasan-dev@googlegroups.com Cc: kvm@vger.kernel.org Cc: linux-arch@vger.kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-efi@vger.kernel.org Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/e52ad781f085224bf835b3caff9aa3aee6febccb.1500319216.git.thomas.lendacky@amd.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-07-18 04:10:05 +07:00
/*
* Perform pagetable fixups. Additionally, if SME is active, encrypt
* the kernel and retrieve the modifier (SME encryption mask if SME
* is active) to be added to the initial pgdir entry that will be
* programmed into CR3.
*/
leaq _text(%rip), %rdi
pushq %rsi
call __startup_64
popq %rsi
x86/mm: Add support to enable SME in early boot processing Add support to the early boot code to use Secure Memory Encryption (SME). Since the kernel has been loaded into memory in a decrypted state, encrypt the kernel in place and update the early pagetables with the memory encryption mask so that new pagetable entries will use memory encryption. The routines to set the encryption mask and perform the encryption are stub routines for now with functionality to be added in a later patch. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Brijesh Singh <brijesh.singh@amd.com> Cc: Dave Young <dyoung@redhat.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Toshimitsu Kani <toshi.kani@hpe.com> Cc: kasan-dev@googlegroups.com Cc: kvm@vger.kernel.org Cc: linux-arch@vger.kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-efi@vger.kernel.org Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/e52ad781f085224bf835b3caff9aa3aee6febccb.1500319216.git.thomas.lendacky@amd.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-07-18 04:10:05 +07:00
/* Form the CR3 value being sure to include the CR3 modifier */
addq $(early_top_pgt - __START_KERNEL_map), %rax
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 03:19:52 +07:00
jmp 1f
ENTRY(secondary_startup_64)
/*
* At this point the CPU runs in 64bit mode CS.L = 1 CS.D = 0,
* and someone has loaded a mapped page table.
*
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 03:19:52 +07:00
* %rsi holds a physical pointer to real_mode_data.
*
* We come here either from startup_64 (using physical addresses)
* or from trampoline.S (using virtual addresses).
*
* Using virtual addresses from trampoline.S removes the need
* to have any identity mapped pages in the kernel page table
* after the boot processor executes this code.
*/
/* Sanitize CPU configuration */
call verify_cpu
x86/mm: Add support to enable SME in early boot processing Add support to the early boot code to use Secure Memory Encryption (SME). Since the kernel has been loaded into memory in a decrypted state, encrypt the kernel in place and update the early pagetables with the memory encryption mask so that new pagetable entries will use memory encryption. The routines to set the encryption mask and perform the encryption are stub routines for now with functionality to be added in a later patch. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Brijesh Singh <brijesh.singh@amd.com> Cc: Dave Young <dyoung@redhat.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Toshimitsu Kani <toshi.kani@hpe.com> Cc: kasan-dev@googlegroups.com Cc: kvm@vger.kernel.org Cc: linux-arch@vger.kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-efi@vger.kernel.org Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/e52ad781f085224bf835b3caff9aa3aee6febccb.1500319216.git.thomas.lendacky@amd.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-07-18 04:10:05 +07:00
/*
* Retrieve the modifier (SME encryption mask if SME is active) to be
* added to the initial pgdir entry that will be programmed into CR3.
*/
pushq %rsi
call __startup_secondary_64
popq %rsi
/* Form the CR3 value being sure to include the CR3 modifier */
addq $(init_top_pgt - __START_KERNEL_map), %rax
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 03:19:52 +07:00
1:
/* Enable PAE mode, PGE and LA57 */
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 03:19:52 +07:00
movl $(X86_CR4_PAE | X86_CR4_PGE), %ecx
#ifdef CONFIG_X86_5LEVEL
orl $X86_CR4_LA57, %ecx
#endif
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 03:19:52 +07:00
movq %rcx, %cr4
/* Setup early boot stage 4-/5-level pagetables. */
addq phys_base(%rip), %rax
movq %rax, %cr3
/* Ensure I am executing from virtual addresses */
movq $1f, %rax
jmp *%rax
1:
/* Check if nx is implemented */
movl $0x80000001, %eax
cpuid
movl %edx,%edi
/* Setup EFER (Extended Feature Enable Register) */
movl $MSR_EFER, %ecx
rdmsr
btsl $_EFER_SCE, %eax /* Enable System Call */
btl $20,%edi /* No Execute supported? */
jnc 1f
btsl $_EFER_NX, %eax
btsq $_PAGE_BIT_NX,early_pmd_flags(%rip)
1: wrmsr /* Make changes effective */
/* Setup cr0 */
#define CR0_STATE (X86_CR0_PE | X86_CR0_MP | X86_CR0_ET | \
X86_CR0_NE | X86_CR0_WP | X86_CR0_AM | \
X86_CR0_PG)
movl $CR0_STATE, %eax
/* Make changes effective */
movq %rax, %cr0
/* Setup a boot time stack */
movq initial_stack(%rip), %rsp
/* zero EFLAGS after setting rsp */
pushq $0
popfq
/*
* We must switch to a new descriptor in kernel space for the GDT
* because soon the kernel won't have access anymore to the userspace
* addresses where we're currently running on. We have to do that here
* because in 32bit we couldn't load a 64bit linear address.
*/
lgdt early_gdt_descr(%rip)
/* set up data segments */
xorl %eax,%eax
movl %eax,%ds
movl %eax,%ss
movl %eax,%es
/*
* We don't really need to load %fs or %gs, but load them anyway
* to kill any stale realmode selectors. This allows execution
* under VT hardware.
*/
movl %eax,%fs
movl %eax,%gs
/* Set up %gs.
*
* The base of %gs always points to the bottom of the irqstack
* union. If the stack protector canary is enabled, it is
* located at %gs:40. Note that, on SMP, the boot cpu uses
* init data section till per cpu areas are set up.
*/
movl $MSR_GS_BASE,%ecx
movl initial_gs(%rip),%eax
movl initial_gs+4(%rip),%edx
wrmsr
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 03:19:52 +07:00
/* rsi is pointer to real mode structure with interesting info.
pass it to C */
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 03:19:52 +07:00
movq %rsi, %rdi
.Ljump_to_C_code:
/*
* Jump to run C code and to be on a real kernel address.
* Since we are running on identity-mapped space we have to jump
* to the full 64bit address, this is only possible as indirect
* jump. In addition we need to ensure %cs is set so we make this
* a far return.
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 03:19:52 +07:00
*
* Note: do not change to far jump indirect with 64bit offset.
*
* AMD does not support far jump indirect with 64bit offset.
* AMD64 Architecture Programmer's Manual, Volume 3: states only
* JMP FAR mem16:16 FF /5 Far jump indirect,
* with the target specified by a far pointer in memory.
* JMP FAR mem16:32 FF /5 Far jump indirect,
* with the target specified by a far pointer in memory.
*
* Intel64 does support 64bit offset.
* Software Developer Manual Vol 2: states:
* FF /5 JMP m16:16 Jump far, absolute indirect,
* address given in m16:16
* FF /5 JMP m16:32 Jump far, absolute indirect,
* address given in m16:32.
* REX.W + FF /5 JMP m16:64 Jump far, absolute indirect,
* address given in m16:64.
*/
pushq $.Lafter_lret # put return address on stack for unwinder
xorq %rbp, %rbp # clear frame pointer
movq initial_code(%rip), %rax
pushq $__KERNEL_CS # set correct cs
pushq %rax # target address in negative space
lretq
.Lafter_lret:
ENDPROC(secondary_startup_64)
#include "verify_cpu.S"
#ifdef CONFIG_HOTPLUG_CPU
/*
* Boot CPU0 entry point. It's called from play_dead(). Everything has been set
* up already except stack. We just set up stack here. Then call
* start_secondary() via .Ljump_to_C_code.
*/
ENTRY(start_cpu0)
movq initial_stack(%rip), %rsp
jmp .Ljump_to_C_code
ENDPROC(start_cpu0)
#endif
/* Both SMP bootup and ACPI suspend change these variables */
__REFDATA
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 03:19:52 +07:00
.balign 8
GLOBAL(initial_code)
.quad x86_64_start_kernel
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 03:19:52 +07:00
GLOBAL(initial_gs)
.quad INIT_PER_CPU_VAR(irq_stack_union)
GLOBAL(initial_stack)
/*
* The SIZEOF_PTREGS gap is a convention which helps the in-kernel
* unwinder reliably detect the end of the stack.
*/
.quad init_thread_union + THREAD_SIZE - SIZEOF_PTREGS
__FINITDATA
bad_address:
jmp bad_address
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 03:19:52 +07:00
__INIT
x86/asm/irq: Stop relying on magic JMP behavior for early_idt_handlers The early_idt_handlers asm code generates an array of entry points spaced nine bytes apart. It's not really clear from that code or from the places that reference it what's going on, and the code only works in the first place because GAS never generates two-byte JMP instructions when jumping to global labels. Clean up the code to generate the correct array stride (member size) explicitly. This should be considerably more robust against screw-ups, as GAS will warn if a .fill directive has a negative count. Using '. =' to advance would have been even more robust (it would generate an actual error if it tried to move backwards), but it would pad with nulls, confusing anyone who tries to disassemble the code. The new scheme should be much clearer to future readers. While we're at it, improve the comments and rename the array and common code. Binutils may start relaxing jumps to non-weak labels. If so, this change will fix our build, and we may need to backport this change. Before, on x86_64: 0000000000000000 <early_idt_handlers>: 0: 6a 00 pushq $0x0 2: 6a 00 pushq $0x0 4: e9 00 00 00 00 jmpq 9 <early_idt_handlers+0x9> 5: R_X86_64_PC32 early_idt_handler-0x4 ... 48: 66 90 xchg %ax,%ax 4a: 6a 08 pushq $0x8 4c: e9 00 00 00 00 jmpq 51 <early_idt_handlers+0x51> 4d: R_X86_64_PC32 early_idt_handler-0x4 ... 117: 6a 00 pushq $0x0 119: 6a 1f pushq $0x1f 11b: e9 00 00 00 00 jmpq 120 <early_idt_handler> 11c: R_X86_64_PC32 early_idt_handler-0x4 After: 0000000000000000 <early_idt_handler_array>: 0: 6a 00 pushq $0x0 2: 6a 00 pushq $0x0 4: e9 14 01 00 00 jmpq 11d <early_idt_handler_common> ... 48: 6a 08 pushq $0x8 4a: e9 d1 00 00 00 jmpq 120 <early_idt_handler_common> 4f: cc int3 50: cc int3 ... 117: 6a 00 pushq $0x0 119: 6a 1f pushq $0x1f 11b: eb 03 jmp 120 <early_idt_handler_common> 11d: cc int3 11e: cc int3 11f: cc int3 Signed-off-by: Andy Lutomirski <luto@kernel.org> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Cc: Binutils <binutils@sourceware.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H.J. Lu <hjl.tools@gmail.com> Cc: Jan Beulich <JBeulich@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/ac027962af343b0c599cbfcf50b945ad2ef3d7a8.1432336324.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-23 06:15:47 +07:00
ENTRY(early_idt_handler_array)
# 104(%rsp) %rflags
# 96(%rsp) %cs
# 88(%rsp) %rip
# 80(%rsp) error code
i = 0
.rept NUM_EXCEPTION_VECTORS
x86/asm/irq: Stop relying on magic JMP behavior for early_idt_handlers The early_idt_handlers asm code generates an array of entry points spaced nine bytes apart. It's not really clear from that code or from the places that reference it what's going on, and the code only works in the first place because GAS never generates two-byte JMP instructions when jumping to global labels. Clean up the code to generate the correct array stride (member size) explicitly. This should be considerably more robust against screw-ups, as GAS will warn if a .fill directive has a negative count. Using '. =' to advance would have been even more robust (it would generate an actual error if it tried to move backwards), but it would pad with nulls, confusing anyone who tries to disassemble the code. The new scheme should be much clearer to future readers. While we're at it, improve the comments and rename the array and common code. Binutils may start relaxing jumps to non-weak labels. If so, this change will fix our build, and we may need to backport this change. Before, on x86_64: 0000000000000000 <early_idt_handlers>: 0: 6a 00 pushq $0x0 2: 6a 00 pushq $0x0 4: e9 00 00 00 00 jmpq 9 <early_idt_handlers+0x9> 5: R_X86_64_PC32 early_idt_handler-0x4 ... 48: 66 90 xchg %ax,%ax 4a: 6a 08 pushq $0x8 4c: e9 00 00 00 00 jmpq 51 <early_idt_handlers+0x51> 4d: R_X86_64_PC32 early_idt_handler-0x4 ... 117: 6a 00 pushq $0x0 119: 6a 1f pushq $0x1f 11b: e9 00 00 00 00 jmpq 120 <early_idt_handler> 11c: R_X86_64_PC32 early_idt_handler-0x4 After: 0000000000000000 <early_idt_handler_array>: 0: 6a 00 pushq $0x0 2: 6a 00 pushq $0x0 4: e9 14 01 00 00 jmpq 11d <early_idt_handler_common> ... 48: 6a 08 pushq $0x8 4a: e9 d1 00 00 00 jmpq 120 <early_idt_handler_common> 4f: cc int3 50: cc int3 ... 117: 6a 00 pushq $0x0 119: 6a 1f pushq $0x1f 11b: eb 03 jmp 120 <early_idt_handler_common> 11d: cc int3 11e: cc int3 11f: cc int3 Signed-off-by: Andy Lutomirski <luto@kernel.org> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Cc: Binutils <binutils@sourceware.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H.J. Lu <hjl.tools@gmail.com> Cc: Jan Beulich <JBeulich@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/ac027962af343b0c599cbfcf50b945ad2ef3d7a8.1432336324.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-23 06:15:47 +07:00
.ifeq (EXCEPTION_ERRCODE_MASK >> i) & 1
pushq $0 # Dummy error code, to make stack frame uniform
.endif
pushq $i # 72(%rsp) Vector number
x86/asm/irq: Stop relying on magic JMP behavior for early_idt_handlers The early_idt_handlers asm code generates an array of entry points spaced nine bytes apart. It's not really clear from that code or from the places that reference it what's going on, and the code only works in the first place because GAS never generates two-byte JMP instructions when jumping to global labels. Clean up the code to generate the correct array stride (member size) explicitly. This should be considerably more robust against screw-ups, as GAS will warn if a .fill directive has a negative count. Using '. =' to advance would have been even more robust (it would generate an actual error if it tried to move backwards), but it would pad with nulls, confusing anyone who tries to disassemble the code. The new scheme should be much clearer to future readers. While we're at it, improve the comments and rename the array and common code. Binutils may start relaxing jumps to non-weak labels. If so, this change will fix our build, and we may need to backport this change. Before, on x86_64: 0000000000000000 <early_idt_handlers>: 0: 6a 00 pushq $0x0 2: 6a 00 pushq $0x0 4: e9 00 00 00 00 jmpq 9 <early_idt_handlers+0x9> 5: R_X86_64_PC32 early_idt_handler-0x4 ... 48: 66 90 xchg %ax,%ax 4a: 6a 08 pushq $0x8 4c: e9 00 00 00 00 jmpq 51 <early_idt_handlers+0x51> 4d: R_X86_64_PC32 early_idt_handler-0x4 ... 117: 6a 00 pushq $0x0 119: 6a 1f pushq $0x1f 11b: e9 00 00 00 00 jmpq 120 <early_idt_handler> 11c: R_X86_64_PC32 early_idt_handler-0x4 After: 0000000000000000 <early_idt_handler_array>: 0: 6a 00 pushq $0x0 2: 6a 00 pushq $0x0 4: e9 14 01 00 00 jmpq 11d <early_idt_handler_common> ... 48: 6a 08 pushq $0x8 4a: e9 d1 00 00 00 jmpq 120 <early_idt_handler_common> 4f: cc int3 50: cc int3 ... 117: 6a 00 pushq $0x0 119: 6a 1f pushq $0x1f 11b: eb 03 jmp 120 <early_idt_handler_common> 11d: cc int3 11e: cc int3 11f: cc int3 Signed-off-by: Andy Lutomirski <luto@kernel.org> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Cc: Binutils <binutils@sourceware.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H.J. Lu <hjl.tools@gmail.com> Cc: Jan Beulich <JBeulich@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/ac027962af343b0c599cbfcf50b945ad2ef3d7a8.1432336324.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-23 06:15:47 +07:00
jmp early_idt_handler_common
i = i + 1
x86/asm/irq: Stop relying on magic JMP behavior for early_idt_handlers The early_idt_handlers asm code generates an array of entry points spaced nine bytes apart. It's not really clear from that code or from the places that reference it what's going on, and the code only works in the first place because GAS never generates two-byte JMP instructions when jumping to global labels. Clean up the code to generate the correct array stride (member size) explicitly. This should be considerably more robust against screw-ups, as GAS will warn if a .fill directive has a negative count. Using '. =' to advance would have been even more robust (it would generate an actual error if it tried to move backwards), but it would pad with nulls, confusing anyone who tries to disassemble the code. The new scheme should be much clearer to future readers. While we're at it, improve the comments and rename the array and common code. Binutils may start relaxing jumps to non-weak labels. If so, this change will fix our build, and we may need to backport this change. Before, on x86_64: 0000000000000000 <early_idt_handlers>: 0: 6a 00 pushq $0x0 2: 6a 00 pushq $0x0 4: e9 00 00 00 00 jmpq 9 <early_idt_handlers+0x9> 5: R_X86_64_PC32 early_idt_handler-0x4 ... 48: 66 90 xchg %ax,%ax 4a: 6a 08 pushq $0x8 4c: e9 00 00 00 00 jmpq 51 <early_idt_handlers+0x51> 4d: R_X86_64_PC32 early_idt_handler-0x4 ... 117: 6a 00 pushq $0x0 119: 6a 1f pushq $0x1f 11b: e9 00 00 00 00 jmpq 120 <early_idt_handler> 11c: R_X86_64_PC32 early_idt_handler-0x4 After: 0000000000000000 <early_idt_handler_array>: 0: 6a 00 pushq $0x0 2: 6a 00 pushq $0x0 4: e9 14 01 00 00 jmpq 11d <early_idt_handler_common> ... 48: 6a 08 pushq $0x8 4a: e9 d1 00 00 00 jmpq 120 <early_idt_handler_common> 4f: cc int3 50: cc int3 ... 117: 6a 00 pushq $0x0 119: 6a 1f pushq $0x1f 11b: eb 03 jmp 120 <early_idt_handler_common> 11d: cc int3 11e: cc int3 11f: cc int3 Signed-off-by: Andy Lutomirski <luto@kernel.org> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Cc: Binutils <binutils@sourceware.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H.J. Lu <hjl.tools@gmail.com> Cc: Jan Beulich <JBeulich@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/ac027962af343b0c599cbfcf50b945ad2ef3d7a8.1432336324.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-23 06:15:47 +07:00
.fill early_idt_handler_array + i*EARLY_IDT_HANDLER_SIZE - ., 1, 0xcc
.endr
x86/asm/irq: Stop relying on magic JMP behavior for early_idt_handlers The early_idt_handlers asm code generates an array of entry points spaced nine bytes apart. It's not really clear from that code or from the places that reference it what's going on, and the code only works in the first place because GAS never generates two-byte JMP instructions when jumping to global labels. Clean up the code to generate the correct array stride (member size) explicitly. This should be considerably more robust against screw-ups, as GAS will warn if a .fill directive has a negative count. Using '. =' to advance would have been even more robust (it would generate an actual error if it tried to move backwards), but it would pad with nulls, confusing anyone who tries to disassemble the code. The new scheme should be much clearer to future readers. While we're at it, improve the comments and rename the array and common code. Binutils may start relaxing jumps to non-weak labels. If so, this change will fix our build, and we may need to backport this change. Before, on x86_64: 0000000000000000 <early_idt_handlers>: 0: 6a 00 pushq $0x0 2: 6a 00 pushq $0x0 4: e9 00 00 00 00 jmpq 9 <early_idt_handlers+0x9> 5: R_X86_64_PC32 early_idt_handler-0x4 ... 48: 66 90 xchg %ax,%ax 4a: 6a 08 pushq $0x8 4c: e9 00 00 00 00 jmpq 51 <early_idt_handlers+0x51> 4d: R_X86_64_PC32 early_idt_handler-0x4 ... 117: 6a 00 pushq $0x0 119: 6a 1f pushq $0x1f 11b: e9 00 00 00 00 jmpq 120 <early_idt_handler> 11c: R_X86_64_PC32 early_idt_handler-0x4 After: 0000000000000000 <early_idt_handler_array>: 0: 6a 00 pushq $0x0 2: 6a 00 pushq $0x0 4: e9 14 01 00 00 jmpq 11d <early_idt_handler_common> ... 48: 6a 08 pushq $0x8 4a: e9 d1 00 00 00 jmpq 120 <early_idt_handler_common> 4f: cc int3 50: cc int3 ... 117: 6a 00 pushq $0x0 119: 6a 1f pushq $0x1f 11b: eb 03 jmp 120 <early_idt_handler_common> 11d: cc int3 11e: cc int3 11f: cc int3 Signed-off-by: Andy Lutomirski <luto@kernel.org> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Cc: Binutils <binutils@sourceware.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H.J. Lu <hjl.tools@gmail.com> Cc: Jan Beulich <JBeulich@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/ac027962af343b0c599cbfcf50b945ad2ef3d7a8.1432336324.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-23 06:15:47 +07:00
ENDPROC(early_idt_handler_array)
x86/asm/irq: Stop relying on magic JMP behavior for early_idt_handlers The early_idt_handlers asm code generates an array of entry points spaced nine bytes apart. It's not really clear from that code or from the places that reference it what's going on, and the code only works in the first place because GAS never generates two-byte JMP instructions when jumping to global labels. Clean up the code to generate the correct array stride (member size) explicitly. This should be considerably more robust against screw-ups, as GAS will warn if a .fill directive has a negative count. Using '. =' to advance would have been even more robust (it would generate an actual error if it tried to move backwards), but it would pad with nulls, confusing anyone who tries to disassemble the code. The new scheme should be much clearer to future readers. While we're at it, improve the comments and rename the array and common code. Binutils may start relaxing jumps to non-weak labels. If so, this change will fix our build, and we may need to backport this change. Before, on x86_64: 0000000000000000 <early_idt_handlers>: 0: 6a 00 pushq $0x0 2: 6a 00 pushq $0x0 4: e9 00 00 00 00 jmpq 9 <early_idt_handlers+0x9> 5: R_X86_64_PC32 early_idt_handler-0x4 ... 48: 66 90 xchg %ax,%ax 4a: 6a 08 pushq $0x8 4c: e9 00 00 00 00 jmpq 51 <early_idt_handlers+0x51> 4d: R_X86_64_PC32 early_idt_handler-0x4 ... 117: 6a 00 pushq $0x0 119: 6a 1f pushq $0x1f 11b: e9 00 00 00 00 jmpq 120 <early_idt_handler> 11c: R_X86_64_PC32 early_idt_handler-0x4 After: 0000000000000000 <early_idt_handler_array>: 0: 6a 00 pushq $0x0 2: 6a 00 pushq $0x0 4: e9 14 01 00 00 jmpq 11d <early_idt_handler_common> ... 48: 6a 08 pushq $0x8 4a: e9 d1 00 00 00 jmpq 120 <early_idt_handler_common> 4f: cc int3 50: cc int3 ... 117: 6a 00 pushq $0x0 119: 6a 1f pushq $0x1f 11b: eb 03 jmp 120 <early_idt_handler_common> 11d: cc int3 11e: cc int3 11f: cc int3 Signed-off-by: Andy Lutomirski <luto@kernel.org> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Cc: Binutils <binutils@sourceware.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H.J. Lu <hjl.tools@gmail.com> Cc: Jan Beulich <JBeulich@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/ac027962af343b0c599cbfcf50b945ad2ef3d7a8.1432336324.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-23 06:15:47 +07:00
early_idt_handler_common:
/*
* The stack is the hardware frame, an error code or zero, and the
* vector number.
*/
cld
incl early_recursion_flag(%rip)
/* The vector number is currently in the pt_regs->di slot. */
pushq %rsi /* pt_regs->si */
movq 8(%rsp), %rsi /* RSI = vector number */
movq %rdi, 8(%rsp) /* pt_regs->di = RDI */
pushq %rdx /* pt_regs->dx */
pushq %rcx /* pt_regs->cx */
pushq %rax /* pt_regs->ax */
pushq %r8 /* pt_regs->r8 */
pushq %r9 /* pt_regs->r9 */
pushq %r10 /* pt_regs->r10 */
pushq %r11 /* pt_regs->r11 */
pushq %rbx /* pt_regs->bx */
pushq %rbp /* pt_regs->bp */
pushq %r12 /* pt_regs->r12 */
pushq %r13 /* pt_regs->r13 */
pushq %r14 /* pt_regs->r14 */
pushq %r15 /* pt_regs->r15 */
cmpq $14,%rsi /* Page fault? */
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 03:19:52 +07:00
jnz 10f
GET_CR2_INTO(%rdi) /* Can clobber any volatile register if pv */
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 03:19:52 +07:00
call early_make_pgtable
andl %eax,%eax
jz 20f /* All good */
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 03:19:52 +07:00
10:
movq %rsp,%rdi /* RDI = pt_regs; RSI is already trapnr */
call early_fixup_exception
20:
decl early_recursion_flag(%rip)
jmp restore_regs_and_iret
x86/asm/irq: Stop relying on magic JMP behavior for early_idt_handlers The early_idt_handlers asm code generates an array of entry points spaced nine bytes apart. It's not really clear from that code or from the places that reference it what's going on, and the code only works in the first place because GAS never generates two-byte JMP instructions when jumping to global labels. Clean up the code to generate the correct array stride (member size) explicitly. This should be considerably more robust against screw-ups, as GAS will warn if a .fill directive has a negative count. Using '. =' to advance would have been even more robust (it would generate an actual error if it tried to move backwards), but it would pad with nulls, confusing anyone who tries to disassemble the code. The new scheme should be much clearer to future readers. While we're at it, improve the comments and rename the array and common code. Binutils may start relaxing jumps to non-weak labels. If so, this change will fix our build, and we may need to backport this change. Before, on x86_64: 0000000000000000 <early_idt_handlers>: 0: 6a 00 pushq $0x0 2: 6a 00 pushq $0x0 4: e9 00 00 00 00 jmpq 9 <early_idt_handlers+0x9> 5: R_X86_64_PC32 early_idt_handler-0x4 ... 48: 66 90 xchg %ax,%ax 4a: 6a 08 pushq $0x8 4c: e9 00 00 00 00 jmpq 51 <early_idt_handlers+0x51> 4d: R_X86_64_PC32 early_idt_handler-0x4 ... 117: 6a 00 pushq $0x0 119: 6a 1f pushq $0x1f 11b: e9 00 00 00 00 jmpq 120 <early_idt_handler> 11c: R_X86_64_PC32 early_idt_handler-0x4 After: 0000000000000000 <early_idt_handler_array>: 0: 6a 00 pushq $0x0 2: 6a 00 pushq $0x0 4: e9 14 01 00 00 jmpq 11d <early_idt_handler_common> ... 48: 6a 08 pushq $0x8 4a: e9 d1 00 00 00 jmpq 120 <early_idt_handler_common> 4f: cc int3 50: cc int3 ... 117: 6a 00 pushq $0x0 119: 6a 1f pushq $0x1f 11b: eb 03 jmp 120 <early_idt_handler_common> 11d: cc int3 11e: cc int3 11f: cc int3 Signed-off-by: Andy Lutomirski <luto@kernel.org> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Cc: Binutils <binutils@sourceware.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H.J. Lu <hjl.tools@gmail.com> Cc: Jan Beulich <JBeulich@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/ac027962af343b0c599cbfcf50b945ad2ef3d7a8.1432336324.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-23 06:15:47 +07:00
ENDPROC(early_idt_handler_common)
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 03:19:52 +07:00
__INITDATA
.balign 4
GLOBAL(early_recursion_flag)
.long 0
#define NEXT_PAGE(name) \
.balign PAGE_SIZE; \
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 03:19:52 +07:00
GLOBAL(name)
/* Automate the creation of 1 to 1 mapping pmd entries */
#define PMDS(START, PERM, COUNT) \
i = 0 ; \
.rept (COUNT) ; \
.quad (START) + (i << PMD_SHIFT) + (PERM) ; \
i = i + 1 ; \
.endr
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 03:19:52 +07:00
__INITDATA
NEXT_PAGE(early_top_pgt)
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 03:19:52 +07:00
.fill 511,8,0
#ifdef CONFIG_X86_5LEVEL
x86/mm: Provide general kernel support for memory encryption Changes to the existing page table macros will allow the SME support to be enabled in a simple fashion with minimal changes to files that use these macros. Since the memory encryption mask will now be part of the regular pagetable macros, we introduce two new macros (_PAGE_TABLE_NOENC and _KERNPG_TABLE_NOENC) to allow for early pagetable creation/initialization without the encryption mask before SME becomes active. Two new pgprot() macros are defined to allow setting or clearing the page encryption mask. The FIXMAP_PAGE_NOCACHE define is introduced for use with MMIO. SME does not support encryption for MMIO areas so this define removes the encryption mask from the page attribute. Two new macros are introduced (__sme_pa() / __sme_pa_nodebug()) to allow creating a physical address with the encryption mask. These are used when working with the cr3 register so that the PGD can be encrypted. The current __va() macro is updated so that the virtual address is generated based off of the physical address without the encryption mask thus allowing the same virtual address to be generated regardless of whether encryption is enabled for that physical location or not. Also, an early initialization function is added for SME. If SME is active, this function: - Updates the early_pmd_flags so that early page faults create mappings with the encryption mask. - Updates the __supported_pte_mask to include the encryption mask. - Updates the protection_map entries to include the encryption mask so that user-space allocations will automatically have the encryption mask applied. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Brijesh Singh <brijesh.singh@amd.com> Cc: Dave Young <dyoung@redhat.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Toshimitsu Kani <toshi.kani@hpe.com> Cc: kasan-dev@googlegroups.com Cc: kvm@vger.kernel.org Cc: linux-arch@vger.kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-efi@vger.kernel.org Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/b36e952c4c39767ae7f0a41cf5345adf27438480.1500319216.git.thomas.lendacky@amd.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-07-18 04:10:07 +07:00
.quad level4_kernel_pgt - __START_KERNEL_map + _PAGE_TABLE_NOENC
#else
x86/mm: Provide general kernel support for memory encryption Changes to the existing page table macros will allow the SME support to be enabled in a simple fashion with minimal changes to files that use these macros. Since the memory encryption mask will now be part of the regular pagetable macros, we introduce two new macros (_PAGE_TABLE_NOENC and _KERNPG_TABLE_NOENC) to allow for early pagetable creation/initialization without the encryption mask before SME becomes active. Two new pgprot() macros are defined to allow setting or clearing the page encryption mask. The FIXMAP_PAGE_NOCACHE define is introduced for use with MMIO. SME does not support encryption for MMIO areas so this define removes the encryption mask from the page attribute. Two new macros are introduced (__sme_pa() / __sme_pa_nodebug()) to allow creating a physical address with the encryption mask. These are used when working with the cr3 register so that the PGD can be encrypted. The current __va() macro is updated so that the virtual address is generated based off of the physical address without the encryption mask thus allowing the same virtual address to be generated regardless of whether encryption is enabled for that physical location or not. Also, an early initialization function is added for SME. If SME is active, this function: - Updates the early_pmd_flags so that early page faults create mappings with the encryption mask. - Updates the __supported_pte_mask to include the encryption mask. - Updates the protection_map entries to include the encryption mask so that user-space allocations will automatically have the encryption mask applied. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Brijesh Singh <brijesh.singh@amd.com> Cc: Dave Young <dyoung@redhat.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Toshimitsu Kani <toshi.kani@hpe.com> Cc: kasan-dev@googlegroups.com Cc: kvm@vger.kernel.org Cc: linux-arch@vger.kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-efi@vger.kernel.org Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/b36e952c4c39767ae7f0a41cf5345adf27438480.1500319216.git.thomas.lendacky@amd.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-07-18 04:10:07 +07:00
.quad level3_kernel_pgt - __START_KERNEL_map + _PAGE_TABLE_NOENC
#endif
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 03:19:52 +07:00
NEXT_PAGE(early_dynamic_pgts)
.fill 512*EARLY_DYNAMIC_PAGE_TABLES,8,0
.data
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 03:19:52 +07:00
#ifndef CONFIG_XEN
NEXT_PAGE(init_top_pgt)
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 03:19:52 +07:00
.fill 512,8,0
#else
NEXT_PAGE(init_top_pgt)
x86/mm: Provide general kernel support for memory encryption Changes to the existing page table macros will allow the SME support to be enabled in a simple fashion with minimal changes to files that use these macros. Since the memory encryption mask will now be part of the regular pagetable macros, we introduce two new macros (_PAGE_TABLE_NOENC and _KERNPG_TABLE_NOENC) to allow for early pagetable creation/initialization without the encryption mask before SME becomes active. Two new pgprot() macros are defined to allow setting or clearing the page encryption mask. The FIXMAP_PAGE_NOCACHE define is introduced for use with MMIO. SME does not support encryption for MMIO areas so this define removes the encryption mask from the page attribute. Two new macros are introduced (__sme_pa() / __sme_pa_nodebug()) to allow creating a physical address with the encryption mask. These are used when working with the cr3 register so that the PGD can be encrypted. The current __va() macro is updated so that the virtual address is generated based off of the physical address without the encryption mask thus allowing the same virtual address to be generated regardless of whether encryption is enabled for that physical location or not. Also, an early initialization function is added for SME. If SME is active, this function: - Updates the early_pmd_flags so that early page faults create mappings with the encryption mask. - Updates the __supported_pte_mask to include the encryption mask. - Updates the protection_map entries to include the encryption mask so that user-space allocations will automatically have the encryption mask applied. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Brijesh Singh <brijesh.singh@amd.com> Cc: Dave Young <dyoung@redhat.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Toshimitsu Kani <toshi.kani@hpe.com> Cc: kasan-dev@googlegroups.com Cc: kvm@vger.kernel.org Cc: linux-arch@vger.kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-efi@vger.kernel.org Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/b36e952c4c39767ae7f0a41cf5345adf27438480.1500319216.git.thomas.lendacky@amd.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-07-18 04:10:07 +07:00
.quad level3_ident_pgt - __START_KERNEL_map + _KERNPG_TABLE_NOENC
.org init_top_pgt + PGD_PAGE_OFFSET*8, 0
x86/mm: Provide general kernel support for memory encryption Changes to the existing page table macros will allow the SME support to be enabled in a simple fashion with minimal changes to files that use these macros. Since the memory encryption mask will now be part of the regular pagetable macros, we introduce two new macros (_PAGE_TABLE_NOENC and _KERNPG_TABLE_NOENC) to allow for early pagetable creation/initialization without the encryption mask before SME becomes active. Two new pgprot() macros are defined to allow setting or clearing the page encryption mask. The FIXMAP_PAGE_NOCACHE define is introduced for use with MMIO. SME does not support encryption for MMIO areas so this define removes the encryption mask from the page attribute. Two new macros are introduced (__sme_pa() / __sme_pa_nodebug()) to allow creating a physical address with the encryption mask. These are used when working with the cr3 register so that the PGD can be encrypted. The current __va() macro is updated so that the virtual address is generated based off of the physical address without the encryption mask thus allowing the same virtual address to be generated regardless of whether encryption is enabled for that physical location or not. Also, an early initialization function is added for SME. If SME is active, this function: - Updates the early_pmd_flags so that early page faults create mappings with the encryption mask. - Updates the __supported_pte_mask to include the encryption mask. - Updates the protection_map entries to include the encryption mask so that user-space allocations will automatically have the encryption mask applied. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Brijesh Singh <brijesh.singh@amd.com> Cc: Dave Young <dyoung@redhat.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Toshimitsu Kani <toshi.kani@hpe.com> Cc: kasan-dev@googlegroups.com Cc: kvm@vger.kernel.org Cc: linux-arch@vger.kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-efi@vger.kernel.org Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/b36e952c4c39767ae7f0a41cf5345adf27438480.1500319216.git.thomas.lendacky@amd.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-07-18 04:10:07 +07:00
.quad level3_ident_pgt - __START_KERNEL_map + _KERNPG_TABLE_NOENC
.org init_top_pgt + PGD_START_KERNEL*8, 0
/* (2^48-(2*1024*1024*1024))/(2^39) = 511 */
x86/mm: Provide general kernel support for memory encryption Changes to the existing page table macros will allow the SME support to be enabled in a simple fashion with minimal changes to files that use these macros. Since the memory encryption mask will now be part of the regular pagetable macros, we introduce two new macros (_PAGE_TABLE_NOENC and _KERNPG_TABLE_NOENC) to allow for early pagetable creation/initialization without the encryption mask before SME becomes active. Two new pgprot() macros are defined to allow setting or clearing the page encryption mask. The FIXMAP_PAGE_NOCACHE define is introduced for use with MMIO. SME does not support encryption for MMIO areas so this define removes the encryption mask from the page attribute. Two new macros are introduced (__sme_pa() / __sme_pa_nodebug()) to allow creating a physical address with the encryption mask. These are used when working with the cr3 register so that the PGD can be encrypted. The current __va() macro is updated so that the virtual address is generated based off of the physical address without the encryption mask thus allowing the same virtual address to be generated regardless of whether encryption is enabled for that physical location or not. Also, an early initialization function is added for SME. If SME is active, this function: - Updates the early_pmd_flags so that early page faults create mappings with the encryption mask. - Updates the __supported_pte_mask to include the encryption mask. - Updates the protection_map entries to include the encryption mask so that user-space allocations will automatically have the encryption mask applied. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Brijesh Singh <brijesh.singh@amd.com> Cc: Dave Young <dyoung@redhat.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Toshimitsu Kani <toshi.kani@hpe.com> Cc: kasan-dev@googlegroups.com Cc: kvm@vger.kernel.org Cc: linux-arch@vger.kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-efi@vger.kernel.org Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/b36e952c4c39767ae7f0a41cf5345adf27438480.1500319216.git.thomas.lendacky@amd.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-07-18 04:10:07 +07:00
.quad level3_kernel_pgt - __START_KERNEL_map + _PAGE_TABLE_NOENC
NEXT_PAGE(level3_ident_pgt)
x86/mm: Provide general kernel support for memory encryption Changes to the existing page table macros will allow the SME support to be enabled in a simple fashion with minimal changes to files that use these macros. Since the memory encryption mask will now be part of the regular pagetable macros, we introduce two new macros (_PAGE_TABLE_NOENC and _KERNPG_TABLE_NOENC) to allow for early pagetable creation/initialization without the encryption mask before SME becomes active. Two new pgprot() macros are defined to allow setting or clearing the page encryption mask. The FIXMAP_PAGE_NOCACHE define is introduced for use with MMIO. SME does not support encryption for MMIO areas so this define removes the encryption mask from the page attribute. Two new macros are introduced (__sme_pa() / __sme_pa_nodebug()) to allow creating a physical address with the encryption mask. These are used when working with the cr3 register so that the PGD can be encrypted. The current __va() macro is updated so that the virtual address is generated based off of the physical address without the encryption mask thus allowing the same virtual address to be generated regardless of whether encryption is enabled for that physical location or not. Also, an early initialization function is added for SME. If SME is active, this function: - Updates the early_pmd_flags so that early page faults create mappings with the encryption mask. - Updates the __supported_pte_mask to include the encryption mask. - Updates the protection_map entries to include the encryption mask so that user-space allocations will automatically have the encryption mask applied. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Brijesh Singh <brijesh.singh@amd.com> Cc: Dave Young <dyoung@redhat.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Toshimitsu Kani <toshi.kani@hpe.com> Cc: kasan-dev@googlegroups.com Cc: kvm@vger.kernel.org Cc: linux-arch@vger.kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-efi@vger.kernel.org Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/b36e952c4c39767ae7f0a41cf5345adf27438480.1500319216.git.thomas.lendacky@amd.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-07-18 04:10:07 +07:00
.quad level2_ident_pgt - __START_KERNEL_map + _KERNPG_TABLE_NOENC
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 03:19:52 +07:00
.fill 511, 8, 0
NEXT_PAGE(level2_ident_pgt)
/* Since I easily can, map the first 1G.
* Don't set NX because code runs from these pages.
*/
PMDS(0, __PAGE_KERNEL_IDENT_LARGE_EXEC, PTRS_PER_PMD)
#endif
#ifdef CONFIG_X86_5LEVEL
NEXT_PAGE(level4_kernel_pgt)
.fill 511,8,0
x86/mm: Provide general kernel support for memory encryption Changes to the existing page table macros will allow the SME support to be enabled in a simple fashion with minimal changes to files that use these macros. Since the memory encryption mask will now be part of the regular pagetable macros, we introduce two new macros (_PAGE_TABLE_NOENC and _KERNPG_TABLE_NOENC) to allow for early pagetable creation/initialization without the encryption mask before SME becomes active. Two new pgprot() macros are defined to allow setting or clearing the page encryption mask. The FIXMAP_PAGE_NOCACHE define is introduced for use with MMIO. SME does not support encryption for MMIO areas so this define removes the encryption mask from the page attribute. Two new macros are introduced (__sme_pa() / __sme_pa_nodebug()) to allow creating a physical address with the encryption mask. These are used when working with the cr3 register so that the PGD can be encrypted. The current __va() macro is updated so that the virtual address is generated based off of the physical address without the encryption mask thus allowing the same virtual address to be generated regardless of whether encryption is enabled for that physical location or not. Also, an early initialization function is added for SME. If SME is active, this function: - Updates the early_pmd_flags so that early page faults create mappings with the encryption mask. - Updates the __supported_pte_mask to include the encryption mask. - Updates the protection_map entries to include the encryption mask so that user-space allocations will automatically have the encryption mask applied. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Brijesh Singh <brijesh.singh@amd.com> Cc: Dave Young <dyoung@redhat.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Toshimitsu Kani <toshi.kani@hpe.com> Cc: kasan-dev@googlegroups.com Cc: kvm@vger.kernel.org Cc: linux-arch@vger.kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-efi@vger.kernel.org Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/b36e952c4c39767ae7f0a41cf5345adf27438480.1500319216.git.thomas.lendacky@amd.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-07-18 04:10:07 +07:00
.quad level3_kernel_pgt - __START_KERNEL_map + _PAGE_TABLE_NOENC
#endif
NEXT_PAGE(level3_kernel_pgt)
.fill L3_START_KERNEL,8,0
/* (2^48-(2*1024*1024*1024)-((2^39)*511))/(2^30) = 510 */
x86/mm: Provide general kernel support for memory encryption Changes to the existing page table macros will allow the SME support to be enabled in a simple fashion with minimal changes to files that use these macros. Since the memory encryption mask will now be part of the regular pagetable macros, we introduce two new macros (_PAGE_TABLE_NOENC and _KERNPG_TABLE_NOENC) to allow for early pagetable creation/initialization without the encryption mask before SME becomes active. Two new pgprot() macros are defined to allow setting or clearing the page encryption mask. The FIXMAP_PAGE_NOCACHE define is introduced for use with MMIO. SME does not support encryption for MMIO areas so this define removes the encryption mask from the page attribute. Two new macros are introduced (__sme_pa() / __sme_pa_nodebug()) to allow creating a physical address with the encryption mask. These are used when working with the cr3 register so that the PGD can be encrypted. The current __va() macro is updated so that the virtual address is generated based off of the physical address without the encryption mask thus allowing the same virtual address to be generated regardless of whether encryption is enabled for that physical location or not. Also, an early initialization function is added for SME. If SME is active, this function: - Updates the early_pmd_flags so that early page faults create mappings with the encryption mask. - Updates the __supported_pte_mask to include the encryption mask. - Updates the protection_map entries to include the encryption mask so that user-space allocations will automatically have the encryption mask applied. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Brijesh Singh <brijesh.singh@amd.com> Cc: Dave Young <dyoung@redhat.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Toshimitsu Kani <toshi.kani@hpe.com> Cc: kasan-dev@googlegroups.com Cc: kvm@vger.kernel.org Cc: linux-arch@vger.kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-efi@vger.kernel.org Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/b36e952c4c39767ae7f0a41cf5345adf27438480.1500319216.git.thomas.lendacky@amd.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-07-18 04:10:07 +07:00
.quad level2_kernel_pgt - __START_KERNEL_map + _KERNPG_TABLE_NOENC
.quad level2_fixmap_pgt - __START_KERNEL_map + _PAGE_TABLE_NOENC
NEXT_PAGE(level2_kernel_pgt)
/*
* 512 MB kernel mapping. We spend a full page on this pagetable
* anyway.
*
* The kernel code+data+bss must not be bigger than that.
*
* (NOTE: at +512MB starts the module area, see MODULES_VADDR.
* If you want to increase this then increase MODULES_VADDR
* too.)
*/
PMDS(0, __PAGE_KERNEL_LARGE_EXEC,
KERNEL_IMAGE_SIZE/PMD_SIZE)
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 03:19:52 +07:00
NEXT_PAGE(level2_fixmap_pgt)
.fill 506,8,0
x86/mm: Provide general kernel support for memory encryption Changes to the existing page table macros will allow the SME support to be enabled in a simple fashion with minimal changes to files that use these macros. Since the memory encryption mask will now be part of the regular pagetable macros, we introduce two new macros (_PAGE_TABLE_NOENC and _KERNPG_TABLE_NOENC) to allow for early pagetable creation/initialization without the encryption mask before SME becomes active. Two new pgprot() macros are defined to allow setting or clearing the page encryption mask. The FIXMAP_PAGE_NOCACHE define is introduced for use with MMIO. SME does not support encryption for MMIO areas so this define removes the encryption mask from the page attribute. Two new macros are introduced (__sme_pa() / __sme_pa_nodebug()) to allow creating a physical address with the encryption mask. These are used when working with the cr3 register so that the PGD can be encrypted. The current __va() macro is updated so that the virtual address is generated based off of the physical address without the encryption mask thus allowing the same virtual address to be generated regardless of whether encryption is enabled for that physical location or not. Also, an early initialization function is added for SME. If SME is active, this function: - Updates the early_pmd_flags so that early page faults create mappings with the encryption mask. - Updates the __supported_pte_mask to include the encryption mask. - Updates the protection_map entries to include the encryption mask so that user-space allocations will automatically have the encryption mask applied. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Brijesh Singh <brijesh.singh@amd.com> Cc: Dave Young <dyoung@redhat.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Toshimitsu Kani <toshi.kani@hpe.com> Cc: kasan-dev@googlegroups.com Cc: kvm@vger.kernel.org Cc: linux-arch@vger.kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-efi@vger.kernel.org Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/b36e952c4c39767ae7f0a41cf5345adf27438480.1500319216.git.thomas.lendacky@amd.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-07-18 04:10:07 +07:00
.quad level1_fixmap_pgt - __START_KERNEL_map + _PAGE_TABLE_NOENC
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 03:19:52 +07:00
/* 8MB reserved for vsyscalls + a 2MB hole = 4 + 1 entries */
.fill 5,8,0
NEXT_PAGE(level1_fixmap_pgt)
.fill 512,8,0
#undef PMDS
.data
.align 16
.globl early_gdt_descr
early_gdt_descr:
.word GDT_ENTRIES*8-1
early_gdt_descr_base:
.quad INIT_PER_CPU_VAR(gdt_page)
ENTRY(phys_base)
/* This must match the first entry in level2_kernel_pgt */
.quad 0x0000000000000000
EXPORT_SYMBOL(phys_base)
#include "../../x86/xen/xen-head.S"
__PAGE_ALIGNED_BSS
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 03:19:52 +07:00
NEXT_PAGE(empty_zero_page)
.skip PAGE_SIZE
EXPORT_SYMBOL(empty_zero_page)
x86_64: add KASan support This patch adds arch specific code for kernel address sanitizer. 16TB of virtual addressed used for shadow memory. It's located in range [ffffec0000000000 - fffffc0000000000] between vmemmap and %esp fixup stacks. At early stage we map whole shadow region with zero page. Latter, after pages mapped to direct mapping address range we unmap zero pages from corresponding shadow (see kasan_map_shadow()) and allocate and map a real shadow memory reusing vmemmap_populate() function. Also replace __pa with __pa_nodebug before shadow initialized. __pa with CONFIG_DEBUG_VIRTUAL=y make external function call (__phys_addr) __phys_addr is instrumented, so __asan_load could be called before shadow area initialized. Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Konstantin Serebryany <kcc@google.com> Cc: Dmitry Chernenkov <dmitryc@google.com> Signed-off-by: Andrey Konovalov <adech.fo@gmail.com> Cc: Yuri Gribov <tetra2005@gmail.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Christoph Lameter <cl@linux.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Jim Davis <jim.epost@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-14 05:39:25 +07:00