linux_dsm_epyc7002/include/linux/kexec.h

381 lines
10 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 21:07:57 +07:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef LINUX_KEXEC_H
#define LINUX_KEXEC_H
#define IND_DESTINATION_BIT 0
#define IND_INDIRECTION_BIT 1
#define IND_DONE_BIT 2
#define IND_SOURCE_BIT 3
#define IND_DESTINATION (1 << IND_DESTINATION_BIT)
#define IND_INDIRECTION (1 << IND_INDIRECTION_BIT)
#define IND_DONE (1 << IND_DONE_BIT)
#define IND_SOURCE (1 << IND_SOURCE_BIT)
#define IND_FLAGS (IND_DESTINATION | IND_INDIRECTION | IND_DONE | IND_SOURCE)
#if !defined(__ASSEMBLY__)
crash: move crashkernel parsing and vmcore related code under CONFIG_CRASH_CORE Patch series "kexec/fadump: remove dependency with CONFIG_KEXEC and reuse crashkernel parameter for fadump", v4. Traditionally, kdump is used to save vmcore in case of a crash. Some architectures like powerpc can save vmcore using architecture specific support instead of kexec/kdump mechanism. Such architecture specific support also needs to reserve memory, to be used by dump capture kernel. crashkernel parameter can be a reused, for memory reservation, by such architecture specific infrastructure. This patchset removes dependency with CONFIG_KEXEC for crashkernel parameter and vmcoreinfo related code as it can be reused without kexec support. Also, crashkernel parameter is reused instead of fadump_reserve_mem to reserve memory for fadump. The first patch moves crashkernel parameter parsing and vmcoreinfo related code under CONFIG_CRASH_CORE instead of CONFIG_KEXEC_CORE. The second patch reuses the definitions of append_elf_note() & final_note() functions under CONFIG_CRASH_CORE in IA64 arch code. The third patch removes dependency on CONFIG_KEXEC for firmware-assisted dump (fadump) in powerpc. The next patch reuses crashkernel parameter for reserving memory for fadump, instead of the fadump_reserve_mem parameter. This has the advantage of using all syntaxes crashkernel parameter supports, for fadump as well. The last patch updates fadump kernel documentation about use of crashkernel parameter. This patch (of 5): Traditionally, kdump is used to save vmcore in case of a crash. Some architectures like powerpc can save vmcore using architecture specific support instead of kexec/kdump mechanism. Such architecture specific support also needs to reserve memory, to be used by dump capture kernel. crashkernel parameter can be a reused, for memory reservation, by such architecture specific infrastructure. But currently, code related to vmcoreinfo and parsing of crashkernel parameter is built under CONFIG_KEXEC_CORE. This patch introduces CONFIG_CRASH_CORE and moves the above mentioned code under this config, allowing code reuse without dependency on CONFIG_KEXEC. There is no functional change with this patch. Link: http://lkml.kernel.org/r/149035338104.6881.4550894432615189948.stgit@hbathini.in.ibm.com Signed-off-by: Hari Bathini <hbathini@linux.vnet.ibm.com> Acked-by: Dave Young <dyoung@redhat.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Eric Biederman <ebiederm@xmission.com> Cc: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-09 05:56:18 +07:00
#include <linux/crash_core.h>
#include <asm/io.h>
#include <uapi/linux/kexec.h>
2015-09-10 05:38:55 +07:00
#ifdef CONFIG_KEXEC_CORE
#include <linux/list.h>
#include <linux/compat.h>
#include <linux/ioport.h>
#include <linux/module.h>
#include <asm/kexec.h>
/* Verify architecture specific macros are defined */
#ifndef KEXEC_SOURCE_MEMORY_LIMIT
#error KEXEC_SOURCE_MEMORY_LIMIT not defined
#endif
#ifndef KEXEC_DESTINATION_MEMORY_LIMIT
#error KEXEC_DESTINATION_MEMORY_LIMIT not defined
#endif
#ifndef KEXEC_CONTROL_MEMORY_LIMIT
#error KEXEC_CONTROL_MEMORY_LIMIT not defined
#endif
#ifndef KEXEC_CONTROL_MEMORY_GFP
#define KEXEC_CONTROL_MEMORY_GFP (GFP_KERNEL | __GFP_NORETRY)
#endif
#ifndef KEXEC_CONTROL_PAGE_SIZE
#error KEXEC_CONTROL_PAGE_SIZE not defined
#endif
#ifndef KEXEC_ARCH
#error KEXEC_ARCH not defined
#endif
#ifndef KEXEC_CRASH_CONTROL_MEMORY_LIMIT
#define KEXEC_CRASH_CONTROL_MEMORY_LIMIT KEXEC_CONTROL_MEMORY_LIMIT
#endif
#ifndef KEXEC_CRASH_MEM_ALIGN
#define KEXEC_CRASH_MEM_ALIGN PAGE_SIZE
#endif
crash: move crashkernel parsing and vmcore related code under CONFIG_CRASH_CORE Patch series "kexec/fadump: remove dependency with CONFIG_KEXEC and reuse crashkernel parameter for fadump", v4. Traditionally, kdump is used to save vmcore in case of a crash. Some architectures like powerpc can save vmcore using architecture specific support instead of kexec/kdump mechanism. Such architecture specific support also needs to reserve memory, to be used by dump capture kernel. crashkernel parameter can be a reused, for memory reservation, by such architecture specific infrastructure. This patchset removes dependency with CONFIG_KEXEC for crashkernel parameter and vmcoreinfo related code as it can be reused without kexec support. Also, crashkernel parameter is reused instead of fadump_reserve_mem to reserve memory for fadump. The first patch moves crashkernel parameter parsing and vmcoreinfo related code under CONFIG_CRASH_CORE instead of CONFIG_KEXEC_CORE. The second patch reuses the definitions of append_elf_note() & final_note() functions under CONFIG_CRASH_CORE in IA64 arch code. The third patch removes dependency on CONFIG_KEXEC for firmware-assisted dump (fadump) in powerpc. The next patch reuses crashkernel parameter for reserving memory for fadump, instead of the fadump_reserve_mem parameter. This has the advantage of using all syntaxes crashkernel parameter supports, for fadump as well. The last patch updates fadump kernel documentation about use of crashkernel parameter. This patch (of 5): Traditionally, kdump is used to save vmcore in case of a crash. Some architectures like powerpc can save vmcore using architecture specific support instead of kexec/kdump mechanism. Such architecture specific support also needs to reserve memory, to be used by dump capture kernel. crashkernel parameter can be a reused, for memory reservation, by such architecture specific infrastructure. But currently, code related to vmcoreinfo and parsing of crashkernel parameter is built under CONFIG_KEXEC_CORE. This patch introduces CONFIG_CRASH_CORE and moves the above mentioned code under this config, allowing code reuse without dependency on CONFIG_KEXEC. There is no functional change with this patch. Link: http://lkml.kernel.org/r/149035338104.6881.4550894432615189948.stgit@hbathini.in.ibm.com Signed-off-by: Hari Bathini <hbathini@linux.vnet.ibm.com> Acked-by: Dave Young <dyoung@redhat.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Eric Biederman <ebiederm@xmission.com> Cc: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-09 05:56:18 +07:00
#define KEXEC_CORE_NOTE_NAME CRASH_CORE_NOTE_NAME
/*
* This structure is used to hold the arguments that are used when loading
* kernel binaries.
*/
typedef unsigned long kimage_entry_t;
struct kexec_segment {
/*
* This pointer can point to user memory if kexec_load() system
* call is used or will point to kernel memory if
* kexec_file_load() system call is used.
*
* Use ->buf when expecting to deal with user memory and use ->kbuf
* when expecting to deal with kernel memory.
*/
union {
void __user *buf;
void *kbuf;
};
size_t bufsz;
unsigned long mem;
size_t memsz;
};
#ifdef CONFIG_COMPAT
struct compat_kexec_segment {
compat_uptr_t buf;
compat_size_t bufsz;
compat_ulong_t mem; /* User space sees this as a (void *) ... */
compat_size_t memsz;
};
#endif
#ifdef CONFIG_KEXEC_FILE
struct purgatory_info {
/*
* Pointer to elf header at the beginning of kexec_purgatory.
* Note: kexec_purgatory is read only
*/
const Elf_Ehdr *ehdr;
/*
* Temporary, modifiable buffer for sechdrs used for relocation.
* This memory can be freed post image load.
*/
Elf_Shdr *sechdrs;
/*
* Temporary, modifiable buffer for stripped purgatory used for
* relocation. This memory can be freed post image load.
*/
void *purgatory_buf;
};
include/linux/kexec.h: silence compile warnings Patch series "kexec_file: Clean up purgatory load", v2. Following the discussion with Dave and AKASHI, here are the common code patches extracted from my recent patch set (Add kexec_file_load support to s390) [1]. The patches were extracted to allow upstream integration together with AKASHI's common code patches before the arch code gets adjusted to the new base. The reason for this series is to prepare common code for adding kexec_file_load to s390 as well as cleaning up the mis-use of the sh_offset field during purgatory load. In detail this series contains: Patch #1&2: Minor cleanups/fixes. Patch #3-9: Clean up the purgatory load/relocation code. Especially remove the mis-use of the purgatory_info->sechdrs->sh_offset field, currently holding a pointer into either kexec_purgatory (ro) or purgatory_buf (rw) depending on the section. With these patches the section address will be calculated verbosely and sh_offset will contain the offset of the section in the stripped purgatory binary (purgatory_buf). Patch #10: Allows architectures to set the purgatory load address. This patch is important for s390 as the kernel and purgatory have to be loaded to fixed addresses. In current code this is impossible as the purgatory load is opaque to the architecture. Patch #11: Moves x86 purgatories sha implementation to common lib/ directory to allow reuse in other architectures. This patch (of 11) When building the kernel with CONFIG_KEXEC_FILE enabled gcc prints a compile warning multiple times. In file included from <path>/linux/init/initramfs.c:526:0: <path>/include/linux/kexec.h:120:9: warning: `struct kimage' declared inside parameter list [enabled by default] unsigned long cmdline_len); ^ This is because the typedefs for kexec_file_load uses struct kimage before it is declared. Fix this by simply forward declaring struct kimage. Link: http://lkml.kernel.org/r/20180321112751.22196-2-prudo@linux.vnet.ibm.com Signed-off-by: Philipp Rudo <prudo@linux.vnet.ibm.com> Acked-by: Dave Young <dyoung@redhat.com> Cc: Eric Biederman <ebiederm@xmission.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: AKASHI Takahiro <takahiro.akashi@linaro.org> Cc: Ingo Molnar <mingo@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-14 05:36:10 +07:00
struct kimage;
typedef int (kexec_probe_t)(const char *kernel_buf, unsigned long kernel_size);
typedef void *(kexec_load_t)(struct kimage *image, char *kernel_buf,
unsigned long kernel_len, char *initrd,
unsigned long initrd_len, char *cmdline,
unsigned long cmdline_len);
typedef int (kexec_cleanup_t)(void *loader_data);
#ifdef CONFIG_KEXEC_VERIFY_SIG
typedef int (kexec_verify_sig_t)(const char *kernel_buf,
unsigned long kernel_len);
#endif
struct kexec_file_ops {
kexec_probe_t *probe;
kexec_load_t *load;
kexec_cleanup_t *cleanup;
#ifdef CONFIG_KEXEC_VERIFY_SIG
kexec_verify_sig_t *verify_sig;
#endif
};
extern const struct kexec_file_ops * const kexec_file_loaders[];
int kexec_image_probe_default(struct kimage *image, void *buf,
unsigned long buf_len);
int kexec_image_post_load_cleanup_default(struct kimage *image);
/*
* If kexec_buf.mem is set to this value, kexec_locate_mem_hole()
* will try to allocate free memory. Arch may overwrite it.
*/
#ifndef KEXEC_BUF_MEM_UNKNOWN
#define KEXEC_BUF_MEM_UNKNOWN 0
#endif
/**
* struct kexec_buf - parameters for finding a place for a buffer in memory
* @image: kexec image in which memory to search.
* @buffer: Contents which will be copied to the allocated memory.
* @bufsz: Size of @buffer.
* @mem: On return will have address of the buffer in memory.
* @memsz: Size for the buffer in memory.
* @buf_align: Minimum alignment needed.
* @buf_min: The buffer can't be placed below this address.
* @buf_max: The buffer can't be placed above this address.
* @top_down: Allocate from top of memory.
*/
struct kexec_buf {
struct kimage *image;
void *buffer;
unsigned long bufsz;
unsigned long mem;
unsigned long memsz;
unsigned long buf_align;
unsigned long buf_min;
unsigned long buf_max;
bool top_down;
};
kernel/kexec_file.c: allow archs to set purgatory load address For s390 new kernels are loaded to fixed addresses in memory before they are booted. With the current code this is a problem as it assumes the kernel will be loaded to an 'arbitrary' address. In particular, kexec_locate_mem_hole searches for a large enough memory region and sets the load address (kexec_bufer->mem) to it. Luckily there is a simple workaround for this problem. By returning 1 in arch_kexec_walk_mem, kexec_locate_mem_hole is turned off. This allows the architecture to set kbuf->mem by hand. While the trick works fine for the kernel it does not for the purgatory as here the architectures don't have access to its kexec_buffer. Give architectures access to the purgatories kexec_buffer by changing kexec_load_purgatory to take a pointer to it. With this change architectures have access to the buffer and can edit it as they need. A nice side effect of this change is that we can get rid of the purgatory_info->purgatory_load_address field. As now the information stored there can directly be accessed from kbuf->mem. Link: http://lkml.kernel.org/r/20180321112751.22196-11-prudo@linux.vnet.ibm.com Signed-off-by: Philipp Rudo <prudo@linux.vnet.ibm.com> Reviewed-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Acked-by: Dave Young <dyoung@redhat.com> Cc: AKASHI Takahiro <takahiro.akashi@linaro.org> Cc: Eric Biederman <ebiederm@xmission.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com> Cc: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-14 05:36:43 +07:00
int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf);
int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
void *buf, unsigned int size,
bool get_value);
void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name);
x86/headers: Fix -Wmissing-prototypes warning When building the kernel with W=1 we get a lot of -Wmissing-prototypes warnings, which are trivial in nature and easy to fix - and which may mask some real future bugs if the prototypes get out of sync with the function definition. This patch fixes most of -Wmissing-prototypes warnings which are in the root directory of arch/x86/kernel, not including the subdirectories. These are the warnings fixed in this patch: arch/x86/kernel/signal.c:865:17: warning: no previous prototype for ‘sys32_x32_rt_sigreturn’ [-Wmissing-prototypes] arch/x86/kernel/signal_compat.c:164:6: warning: no previous prototype for ‘sigaction_compat_abi’ [-Wmissing-prototypes] arch/x86/kernel/traps.c:625:46: warning: no previous prototype for ‘sync_regs’ [-Wmissing-prototypes] arch/x86/kernel/traps.c:640:24: warning: no previous prototype for ‘fixup_bad_iret’ [-Wmissing-prototypes] arch/x86/kernel/traps.c:929:13: warning: no previous prototype for ‘trap_init’ [-Wmissing-prototypes] arch/x86/kernel/irq.c:270:28: warning: no previous prototype for ‘smp_x86_platform_ipi’ [-Wmissing-prototypes] arch/x86/kernel/irq.c:301:16: warning: no previous prototype for ‘smp_kvm_posted_intr_ipi’ [-Wmissing-prototypes] arch/x86/kernel/irq.c:314:16: warning: no previous prototype for ‘smp_kvm_posted_intr_wakeup_ipi’ [-Wmissing-prototypes] arch/x86/kernel/irq.c:328:16: warning: no previous prototype for ‘smp_kvm_posted_intr_nested_ipi’ [-Wmissing-prototypes] arch/x86/kernel/irq_work.c:16:28: warning: no previous prototype for ‘smp_irq_work_interrupt’ [-Wmissing-prototypes] arch/x86/kernel/irqinit.c:79:13: warning: no previous prototype for ‘init_IRQ’ [-Wmissing-prototypes] arch/x86/kernel/quirks.c:672:13: warning: no previous prototype for ‘early_platform_quirks’ [-Wmissing-prototypes] arch/x86/kernel/tsc.c:1499:15: warning: no previous prototype for ‘calibrate_delay_is_known’ [-Wmissing-prototypes] arch/x86/kernel/process.c:653:13: warning: no previous prototype for ‘arch_post_acpi_subsys_init’ [-Wmissing-prototypes] arch/x86/kernel/process.c:717:15: warning: no previous prototype for ‘arch_randomize_brk’ [-Wmissing-prototypes] arch/x86/kernel/process.c:784:6: warning: no previous prototype for ‘do_arch_prctl_common’ [-Wmissing-prototypes] arch/x86/kernel/reboot.c:869:6: warning: no previous prototype for ‘nmi_panic_self_stop’ [-Wmissing-prototypes] arch/x86/kernel/smp.c:176:27: warning: no previous prototype for ‘smp_reboot_interrupt’ [-Wmissing-prototypes] arch/x86/kernel/smp.c:260:28: warning: no previous prototype for ‘smp_reschedule_interrupt’ [-Wmissing-prototypes] arch/x86/kernel/smp.c:281:28: warning: no previous prototype for ‘smp_call_function_interrupt’ [-Wmissing-prototypes] arch/x86/kernel/smp.c:291:28: warning: no previous prototype for ‘smp_call_function_single_interrupt’ [-Wmissing-prototypes] arch/x86/kernel/ftrace.c:840:6: warning: no previous prototype for ‘arch_ftrace_update_trampoline’ [-Wmissing-prototypes] arch/x86/kernel/ftrace.c:934:7: warning: no previous prototype for ‘arch_ftrace_trampoline_func’ [-Wmissing-prototypes] arch/x86/kernel/ftrace.c:946:6: warning: no previous prototype for ‘arch_ftrace_trampoline_free’ [-Wmissing-prototypes] arch/x86/kernel/crash.c:114:6: warning: no previous prototype for ‘crash_smp_send_stop’ [-Wmissing-prototypes] arch/x86/kernel/crash.c:351:5: warning: no previous prototype for ‘crash_setup_memmap_entries’ [-Wmissing-prototypes] arch/x86/kernel/crash.c:424:5: warning: no previous prototype for ‘crash_load_segments’ [-Wmissing-prototypes] arch/x86/kernel/machine_kexec_64.c:372:7: warning: no previous prototype for ‘arch_kexec_kernel_image_load’ [-Wmissing-prototypes] arch/x86/kernel/paravirt-spinlocks.c:12:16: warning: no previous prototype for ‘__native_queued_spin_unlock’ [-Wmissing-prototypes] arch/x86/kernel/paravirt-spinlocks.c:18:6: warning: no previous prototype for ‘pv_is_native_spin_unlock’ [-Wmissing-prototypes] arch/x86/kernel/paravirt-spinlocks.c:24:16: warning: no previous prototype for ‘__native_vcpu_is_preempted’ [-Wmissing-prototypes] arch/x86/kernel/paravirt-spinlocks.c:30:6: warning: no previous prototype for ‘pv_is_native_vcpu_is_preempted’ [-Wmissing-prototypes] arch/x86/kernel/kvm.c:258:1: warning: no previous prototype for ‘do_async_page_fault’ [-Wmissing-prototypes] arch/x86/kernel/jailhouse.c:200:6: warning: no previous prototype for ‘jailhouse_paravirt’ [-Wmissing-prototypes] arch/x86/kernel/check.c:91:13: warning: no previous prototype for ‘setup_bios_corruption_check’ [-Wmissing-prototypes] arch/x86/kernel/check.c:139:6: warning: no previous prototype for ‘check_for_bios_corruption’ [-Wmissing-prototypes] arch/x86/kernel/devicetree.c:32:13: warning: no previous prototype for ‘early_init_dt_scan_chosen_arch’ [-Wmissing-prototypes] arch/x86/kernel/devicetree.c:42:13: warning: no previous prototype for ‘add_dtb’ [-Wmissing-prototypes] arch/x86/kernel/devicetree.c:108:6: warning: no previous prototype for ‘x86_of_pci_init’ [-Wmissing-prototypes] arch/x86/kernel/devicetree.c:314:13: warning: no previous prototype for ‘x86_dtb_init’ [-Wmissing-prototypes] arch/x86/kernel/tracepoint.c:16:5: warning: no previous prototype for ‘trace_pagefault_reg’ [-Wmissing-prototypes] arch/x86/kernel/tracepoint.c:22:6: warning: no previous prototype for ‘trace_pagefault_unreg’ [-Wmissing-prototypes] arch/x86/kernel/head64.c:113:22: warning: no previous prototype for ‘__startup_64’ [-Wmissing-prototypes] arch/x86/kernel/head64.c:262:15: warning: no previous prototype for ‘__startup_secondary_64’ [-Wmissing-prototypes] arch/x86/kernel/head64.c:350:12: warning: no previous prototype for ‘early_make_pgtable’ [-Wmissing-prototypes] [ mingo: rewrote the changelog, fixed build errors. ] Signed-off-by: Yi Wang <wang.yi59@zte.com.cn> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: akataria@vmware.com Cc: akpm@linux-foundation.org Cc: andy.shevchenko@gmail.com Cc: anton@enomsg.org Cc: ard.biesheuvel@linaro.org Cc: bhe@redhat.com Cc: bhelgaas@google.com Cc: bp@alien8.de Cc: ccross@android.com Cc: devicetree@vger.kernel.org Cc: douly.fnst@cn.fujitsu.com Cc: dwmw@amazon.co.uk Cc: dyoung@redhat.com Cc: ebiederm@xmission.com Cc: frank.rowand@sony.com Cc: frowand.list@gmail.com Cc: ivan.gorinov@intel.com Cc: jailhouse-dev@googlegroups.com Cc: jan.kiszka@siemens.com Cc: jgross@suse.com Cc: jroedel@suse.de Cc: keescook@chromium.org Cc: kexec@lists.infradead.org Cc: konrad.wilk@oracle.com Cc: kvm@vger.kernel.org Cc: linux-efi@vger.kernel.org Cc: linux-pci@vger.kernel.org Cc: luto@kernel.org Cc: m.mizuma@jp.fujitsu.com Cc: namit@vmware.com Cc: oleg@redhat.com Cc: pasha.tatashin@oracle.com Cc: pbonzini@redhat.com Cc: prarit@redhat.com Cc: pravin.shedge4linux@gmail.com Cc: rajvi.jingar@intel.com Cc: rkrcmar@redhat.com Cc: robh+dt@kernel.org Cc: robh@kernel.org Cc: rostedt@goodmis.org Cc: takahiro.akashi@linaro.org Cc: thomas.lendacky@amd.com Cc: tony.luck@intel.com Cc: up2wing@gmail.com Cc: virtualization@lists.linux-foundation.org Cc: zhe.he@windriver.com Cc: zhong.weidong@zte.com.cn Link: http://lkml.kernel.org/r/1542852249-19820-1-git-send-email-wang.yi59@zte.com.cn Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-11-22 09:04:09 +07:00
void * __weak arch_kexec_kernel_image_load(struct kimage *image);
int __weak arch_kexec_apply_relocations_add(struct purgatory_info *pi,
Elf_Shdr *section,
const Elf_Shdr *relsec,
const Elf_Shdr *symtab);
int __weak arch_kexec_apply_relocations(struct purgatory_info *pi,
Elf_Shdr *section,
const Elf_Shdr *relsec,
const Elf_Shdr *symtab);
extern int kexec_add_buffer(struct kexec_buf *kbuf);
int kexec_locate_mem_hole(struct kexec_buf *kbuf);
/* Alignment required for elf header segment */
#define ELF_CORE_HEADER_ALIGN 4096
struct crash_mem_range {
u64 start, end;
};
struct crash_mem {
unsigned int max_nr_ranges;
unsigned int nr_ranges;
struct crash_mem_range ranges[0];
};
extern int crash_exclude_mem_range(struct crash_mem *mem,
unsigned long long mstart,
unsigned long long mend);
extern int crash_prepare_elf64_headers(struct crash_mem *mem, int kernel_map,
void **addr, unsigned long *sz);
#endif /* CONFIG_KEXEC_FILE */
struct kimage {
kimage_entry_t head;
kimage_entry_t *entry;
kimage_entry_t *last_entry;
unsigned long start;
struct page *control_code_page;
kexec jump This patch provides an enhancement to kexec/kdump. It implements the following features: - Backup/restore memory used by the original kernel before/after kexec. - Save/restore CPU state before/after kexec. The features of this patch can be used as a general method to call program in physical mode (paging turning off). This can be used to call BIOS code under Linux. kexec-tools needs to be patched to support kexec jump. The patches and the precompiled kexec can be download from the following URL: source: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-src_git_kh10.tar.bz2 patches: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-patches_git_kh10.tar.bz2 binary: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec_git_kh10 Usage example of calling some physical mode code and return: 1. Compile and install patched kernel with following options selected: CONFIG_X86_32=y CONFIG_KEXEC=y CONFIG_PM=y CONFIG_KEXEC_JUMP=y 2. Build patched kexec-tool or download the pre-built one. 3. Build some physical mode executable named such as "phy_mode" 4. Boot kernel compiled in step 1. 5. Load physical mode executable with /sbin/kexec. The shell command line can be as follow: /sbin/kexec --load-preserve-context --args-none phy_mode 6. Call physical mode executable with following shell command line: /sbin/kexec -e Implementation point: To support jumping without reserving memory. One shadow backup page (source page) is allocated for each page used by kexeced code image (destination page). When do kexec_load, the image of kexeced code is loaded into source pages, and before executing, the destination pages and the source pages are swapped, so the contents of destination pages are backupped. Before jumping to the kexeced code image and after jumping back to the original kernel, the destination pages and the source pages are swapped too. C ABI (calling convention) is used as communication protocol between kernel and called code. A flag named KEXEC_PRESERVE_CONTEXT for sys_kexec_load is added to indicate that the loaded kernel image is used for jumping back. Now, only the i386 architecture is supported. Signed-off-by: Huang Ying <ying.huang@intel.com> Acked-by: Vivek Goyal <vgoyal@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: Nigel Cunningham <nigel@nigel.suspend2.net> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 09:45:07 +07:00
struct page *swap_page;
kdump: protect vmcoreinfo data under the crash memory Currently vmcoreinfo data is updated at boot time subsys_initcall(), it has the risk of being modified by some wrong code during system is running. As a result, vmcore dumped may contain the wrong vmcoreinfo. Later on, when using "crash", "makedumpfile", etc utility to parse this vmcore, we probably will get "Segmentation fault" or other unexpected errors. E.g. 1) wrong code overwrites vmcoreinfo_data; 2) further crashes the system; 3) trigger kdump, then we obviously will fail to recognize the crash context correctly due to the corrupted vmcoreinfo. Now except for vmcoreinfo, all the crash data is well protected(including the cpu note which is fully updated in the crash path, thus its correctness is guaranteed). Given that vmcoreinfo data is a large chunk prepared for kdump, we better protect it as well. To solve this, we relocate and copy vmcoreinfo_data to the crash memory when kdump is loading via kexec syscalls. Because the whole crash memory will be protected by existing arch_kexec_protect_crashkres() mechanism, we naturally protect vmcoreinfo_data from write(even read) access under kernel direct mapping after kdump is loaded. Since kdump is usually loaded at the very early stage after boot, we can trust the correctness of the vmcoreinfo data copied. On the other hand, we still need to operate the vmcoreinfo safe copy when crash happens to generate vmcoreinfo_note again, we rely on vmap() to map out a new kernel virtual address and update to use this new one instead in the following crash_save_vmcoreinfo(). BTW, we do not touch vmcoreinfo_note, because it will be fully updated using the protected vmcoreinfo_data after crash which is surely correct just like the cpu crash note. Link: http://lkml.kernel.org/r/1493281021-20737-3-git-send-email-xlpang@redhat.com Signed-off-by: Xunlei Pang <xlpang@redhat.com> Tested-by: Michael Holzheu <holzheu@linux.vnet.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dave Young <dyoung@redhat.com> Cc: Eric Biederman <ebiederm@xmission.com> Cc: Hari Bathini <hbathini@linux.vnet.ibm.com> Cc: Juergen Gross <jgross@suse.com> Cc: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-13 04:33:21 +07:00
void *vmcoreinfo_data_copy; /* locates in the crash memory */
unsigned long nr_segments;
struct kexec_segment segment[KEXEC_SEGMENT_MAX];
struct list_head control_pages;
struct list_head dest_pages;
struct list_head unusable_pages;
/* Address of next control page to allocate for crash kernels. */
unsigned long control_page;
/* Flags to indicate special processing */
unsigned int type : 1;
#define KEXEC_TYPE_DEFAULT 0
#define KEXEC_TYPE_CRASH 1
kexec jump This patch provides an enhancement to kexec/kdump. It implements the following features: - Backup/restore memory used by the original kernel before/after kexec. - Save/restore CPU state before/after kexec. The features of this patch can be used as a general method to call program in physical mode (paging turning off). This can be used to call BIOS code under Linux. kexec-tools needs to be patched to support kexec jump. The patches and the precompiled kexec can be download from the following URL: source: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-src_git_kh10.tar.bz2 patches: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-patches_git_kh10.tar.bz2 binary: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec_git_kh10 Usage example of calling some physical mode code and return: 1. Compile and install patched kernel with following options selected: CONFIG_X86_32=y CONFIG_KEXEC=y CONFIG_PM=y CONFIG_KEXEC_JUMP=y 2. Build patched kexec-tool or download the pre-built one. 3. Build some physical mode executable named such as "phy_mode" 4. Boot kernel compiled in step 1. 5. Load physical mode executable with /sbin/kexec. The shell command line can be as follow: /sbin/kexec --load-preserve-context --args-none phy_mode 6. Call physical mode executable with following shell command line: /sbin/kexec -e Implementation point: To support jumping without reserving memory. One shadow backup page (source page) is allocated for each page used by kexeced code image (destination page). When do kexec_load, the image of kexeced code is loaded into source pages, and before executing, the destination pages and the source pages are swapped, so the contents of destination pages are backupped. Before jumping to the kexeced code image and after jumping back to the original kernel, the destination pages and the source pages are swapped too. C ABI (calling convention) is used as communication protocol between kernel and called code. A flag named KEXEC_PRESERVE_CONTEXT for sys_kexec_load is added to indicate that the loaded kernel image is used for jumping back. Now, only the i386 architecture is supported. Signed-off-by: Huang Ying <ying.huang@intel.com> Acked-by: Vivek Goyal <vgoyal@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: Nigel Cunningham <nigel@nigel.suspend2.net> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 09:45:07 +07:00
unsigned int preserve_context : 1;
/* If set, we are using file mode kexec syscall */
unsigned int file_mode:1;
#ifdef ARCH_HAS_KIMAGE_ARCH
struct kimage_arch arch;
#endif
#ifdef CONFIG_KEXEC_FILE
/* Additional fields for file based kexec syscall */
void *kernel_buf;
unsigned long kernel_buf_len;
void *initrd_buf;
unsigned long initrd_buf_len;
char *cmdline_buf;
unsigned long cmdline_buf_len;
/* File operations provided by image loader */
const struct kexec_file_ops *fops;
/* Image loader handling the kernel can store a pointer here */
void *image_loader_data;
/* Information for loading purgatory */
struct purgatory_info purgatory_info;
#endif
};
/* kexec interface functions */
kexec jump This patch provides an enhancement to kexec/kdump. It implements the following features: - Backup/restore memory used by the original kernel before/after kexec. - Save/restore CPU state before/after kexec. The features of this patch can be used as a general method to call program in physical mode (paging turning off). This can be used to call BIOS code under Linux. kexec-tools needs to be patched to support kexec jump. The patches and the precompiled kexec can be download from the following URL: source: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-src_git_kh10.tar.bz2 patches: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-patches_git_kh10.tar.bz2 binary: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec_git_kh10 Usage example of calling some physical mode code and return: 1. Compile and install patched kernel with following options selected: CONFIG_X86_32=y CONFIG_KEXEC=y CONFIG_PM=y CONFIG_KEXEC_JUMP=y 2. Build patched kexec-tool or download the pre-built one. 3. Build some physical mode executable named such as "phy_mode" 4. Boot kernel compiled in step 1. 5. Load physical mode executable with /sbin/kexec. The shell command line can be as follow: /sbin/kexec --load-preserve-context --args-none phy_mode 6. Call physical mode executable with following shell command line: /sbin/kexec -e Implementation point: To support jumping without reserving memory. One shadow backup page (source page) is allocated for each page used by kexeced code image (destination page). When do kexec_load, the image of kexeced code is loaded into source pages, and before executing, the destination pages and the source pages are swapped, so the contents of destination pages are backupped. Before jumping to the kexeced code image and after jumping back to the original kernel, the destination pages and the source pages are swapped too. C ABI (calling convention) is used as communication protocol between kernel and called code. A flag named KEXEC_PRESERVE_CONTEXT for sys_kexec_load is added to indicate that the loaded kernel image is used for jumping back. Now, only the i386 architecture is supported. Signed-off-by: Huang Ying <ying.huang@intel.com> Acked-by: Vivek Goyal <vgoyal@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: Nigel Cunningham <nigel@nigel.suspend2.net> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 09:45:07 +07:00
extern void machine_kexec(struct kimage *image);
extern int machine_kexec_prepare(struct kimage *image);
extern void machine_kexec_cleanup(struct kimage *image);
kexec jump This patch provides an enhancement to kexec/kdump. It implements the following features: - Backup/restore memory used by the original kernel before/after kexec. - Save/restore CPU state before/after kexec. The features of this patch can be used as a general method to call program in physical mode (paging turning off). This can be used to call BIOS code under Linux. kexec-tools needs to be patched to support kexec jump. The patches and the precompiled kexec can be download from the following URL: source: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-src_git_kh10.tar.bz2 patches: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-patches_git_kh10.tar.bz2 binary: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec_git_kh10 Usage example of calling some physical mode code and return: 1. Compile and install patched kernel with following options selected: CONFIG_X86_32=y CONFIG_KEXEC=y CONFIG_PM=y CONFIG_KEXEC_JUMP=y 2. Build patched kexec-tool or download the pre-built one. 3. Build some physical mode executable named such as "phy_mode" 4. Boot kernel compiled in step 1. 5. Load physical mode executable with /sbin/kexec. The shell command line can be as follow: /sbin/kexec --load-preserve-context --args-none phy_mode 6. Call physical mode executable with following shell command line: /sbin/kexec -e Implementation point: To support jumping without reserving memory. One shadow backup page (source page) is allocated for each page used by kexeced code image (destination page). When do kexec_load, the image of kexeced code is loaded into source pages, and before executing, the destination pages and the source pages are swapped, so the contents of destination pages are backupped. Before jumping to the kexeced code image and after jumping back to the original kernel, the destination pages and the source pages are swapped too. C ABI (calling convention) is used as communication protocol between kernel and called code. A flag named KEXEC_PRESERVE_CONTEXT for sys_kexec_load is added to indicate that the loaded kernel image is used for jumping back. Now, only the i386 architecture is supported. Signed-off-by: Huang Ying <ying.huang@intel.com> Acked-by: Vivek Goyal <vgoyal@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: Nigel Cunningham <nigel@nigel.suspend2.net> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 09:45:07 +07:00
extern int kernel_kexec(void);
extern struct page *kimage_alloc_control_pages(struct kimage *image,
unsigned int order);
kexec: Fix race between panic() and crash_kexec() Currently, panic() and crash_kexec() can be called at the same time. For example (x86 case): CPU 0: oops_end() crash_kexec() mutex_trylock() // acquired nmi_shootdown_cpus() // stop other CPUs CPU 1: panic() crash_kexec() mutex_trylock() // failed to acquire smp_send_stop() // stop other CPUs infinite loop If CPU 1 calls smp_send_stop() before nmi_shootdown_cpus(), kdump fails. In another case: CPU 0: oops_end() crash_kexec() mutex_trylock() // acquired <NMI> io_check_error() panic() crash_kexec() mutex_trylock() // failed to acquire infinite loop Clearly, this is an undesirable result. To fix this problem, this patch changes crash_kexec() to exclude others by using the panic_cpu atomic. Signed-off-by: Hidehiro Kawai <hidehiro.kawai.ez@hitachi.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Baoquan He <bhe@redhat.com> Cc: Dave Young <dyoung@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: HATAYAMA Daisuke <d.hatayama@jp.fujitsu.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: kexec@lists.infradead.org Cc: linux-doc@vger.kernel.org Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Minfei Huang <mnfhuang@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Seth Jennings <sjenning@redhat.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: x86-ml <x86@kernel.org> Link: http://lkml.kernel.org/r/20151210014630.25437.94161.stgit@softrs Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2015-12-14 17:19:11 +07:00
extern void __crash_kexec(struct pt_regs *);
extern void crash_kexec(struct pt_regs *);
int kexec_should_crash(struct task_struct *);
int kexec_crash_loaded(void);
void crash_save_cpu(struct pt_regs *regs, int cpu);
kdump: protect vmcoreinfo data under the crash memory Currently vmcoreinfo data is updated at boot time subsys_initcall(), it has the risk of being modified by some wrong code during system is running. As a result, vmcore dumped may contain the wrong vmcoreinfo. Later on, when using "crash", "makedumpfile", etc utility to parse this vmcore, we probably will get "Segmentation fault" or other unexpected errors. E.g. 1) wrong code overwrites vmcoreinfo_data; 2) further crashes the system; 3) trigger kdump, then we obviously will fail to recognize the crash context correctly due to the corrupted vmcoreinfo. Now except for vmcoreinfo, all the crash data is well protected(including the cpu note which is fully updated in the crash path, thus its correctness is guaranteed). Given that vmcoreinfo data is a large chunk prepared for kdump, we better protect it as well. To solve this, we relocate and copy vmcoreinfo_data to the crash memory when kdump is loading via kexec syscalls. Because the whole crash memory will be protected by existing arch_kexec_protect_crashkres() mechanism, we naturally protect vmcoreinfo_data from write(even read) access under kernel direct mapping after kdump is loaded. Since kdump is usually loaded at the very early stage after boot, we can trust the correctness of the vmcoreinfo data copied. On the other hand, we still need to operate the vmcoreinfo safe copy when crash happens to generate vmcoreinfo_note again, we rely on vmap() to map out a new kernel virtual address and update to use this new one instead in the following crash_save_vmcoreinfo(). BTW, we do not touch vmcoreinfo_note, because it will be fully updated using the protected vmcoreinfo_data after crash which is surely correct just like the cpu crash note. Link: http://lkml.kernel.org/r/1493281021-20737-3-git-send-email-xlpang@redhat.com Signed-off-by: Xunlei Pang <xlpang@redhat.com> Tested-by: Michael Holzheu <holzheu@linux.vnet.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dave Young <dyoung@redhat.com> Cc: Eric Biederman <ebiederm@xmission.com> Cc: Hari Bathini <hbathini@linux.vnet.ibm.com> Cc: Juergen Gross <jgross@suse.com> Cc: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-13 04:33:21 +07:00
extern int kimage_crash_copy_vmcoreinfo(struct kimage *image);
extern struct kimage *kexec_image;
extern struct kimage *kexec_crash_image;
kexec: add sysctl to disable kexec_load For general-purpose (i.e. distro) kernel builds it makes sense to build with CONFIG_KEXEC to allow end users to choose what kind of things they want to do with kexec. However, in the face of trying to lock down a system with such a kernel, there needs to be a way to disable kexec_load (much like module loading can be disabled). Without this, it is too easy for the root user to modify kernel memory even when CONFIG_STRICT_DEVMEM and modules_disabled are set. With this change, it is still possible to load an image for use later, then disable kexec_load so the image (or lack of image) can't be altered. The intention is for using this in environments where "perfect" enforcement is hard. Without a verified boot, along with verified modules, and along with verified kexec, this is trying to give a system a better chance to defend itself (or at least grow the window of discoverability) against attack in the face of a privilege escalation. In my mind, I consider several boot scenarios: 1) Verified boot of read-only verified root fs loading fd-based verification of kexec images. 2) Secure boot of writable root fs loading signed kexec images. 3) Regular boot loading kexec (e.g. kcrash) image early and locking it. 4) Regular boot with no control of kexec image at all. 1 and 2 don't exist yet, but will soon once the verified kexec series has landed. 4 is the state of things now. The gap between 2 and 4 is too large, so this change creates scenario 3, a middle-ground above 4 when 2 and 1 are not possible for a system. Signed-off-by: Kees Cook <keescook@chromium.org> Acked-by: Rik van Riel <riel@redhat.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Eric Biederman <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-24 06:55:59 +07:00
extern int kexec_load_disabled;
#ifndef kexec_flush_icache_page
#define kexec_flush_icache_page(page)
#endif
kexec jump This patch provides an enhancement to kexec/kdump. It implements the following features: - Backup/restore memory used by the original kernel before/after kexec. - Save/restore CPU state before/after kexec. The features of this patch can be used as a general method to call program in physical mode (paging turning off). This can be used to call BIOS code under Linux. kexec-tools needs to be patched to support kexec jump. The patches and the precompiled kexec can be download from the following URL: source: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-src_git_kh10.tar.bz2 patches: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-patches_git_kh10.tar.bz2 binary: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec_git_kh10 Usage example of calling some physical mode code and return: 1. Compile and install patched kernel with following options selected: CONFIG_X86_32=y CONFIG_KEXEC=y CONFIG_PM=y CONFIG_KEXEC_JUMP=y 2. Build patched kexec-tool or download the pre-built one. 3. Build some physical mode executable named such as "phy_mode" 4. Boot kernel compiled in step 1. 5. Load physical mode executable with /sbin/kexec. The shell command line can be as follow: /sbin/kexec --load-preserve-context --args-none phy_mode 6. Call physical mode executable with following shell command line: /sbin/kexec -e Implementation point: To support jumping without reserving memory. One shadow backup page (source page) is allocated for each page used by kexeced code image (destination page). When do kexec_load, the image of kexeced code is loaded into source pages, and before executing, the destination pages and the source pages are swapped, so the contents of destination pages are backupped. Before jumping to the kexeced code image and after jumping back to the original kernel, the destination pages and the source pages are swapped too. C ABI (calling convention) is used as communication protocol between kernel and called code. A flag named KEXEC_PRESERVE_CONTEXT for sys_kexec_load is added to indicate that the loaded kernel image is used for jumping back. Now, only the i386 architecture is supported. Signed-off-by: Huang Ying <ying.huang@intel.com> Acked-by: Vivek Goyal <vgoyal@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: Nigel Cunningham <nigel@nigel.suspend2.net> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 09:45:07 +07:00
/* List of defined/legal kexec flags */
#ifndef CONFIG_KEXEC_JUMP
#define KEXEC_FLAGS KEXEC_ON_CRASH
#else
#define KEXEC_FLAGS (KEXEC_ON_CRASH | KEXEC_PRESERVE_CONTEXT)
#endif
/* List of defined/legal kexec file flags */
#define KEXEC_FILE_FLAGS (KEXEC_FILE_UNLOAD | KEXEC_FILE_ON_CRASH | \
KEXEC_FILE_NO_INITRAMFS)
/* Location of a reserved region to hold the crash kernel.
*/
extern struct resource crashk_res;
extern struct resource crashk_low_res;
extern note_buf_t __percpu *crash_notes;
/* flag to track if kexec reboot is in progress */
extern bool kexec_in_progress;
int crash_shrink_memory(unsigned long new_size);
size_t crash_get_memory_size(void);
void crash_free_reserved_phys_range(unsigned long begin, unsigned long end);
void arch_kexec_protect_crashkres(void);
void arch_kexec_unprotect_crashkres(void);
#ifndef page_to_boot_pfn
static inline unsigned long page_to_boot_pfn(struct page *page)
{
return page_to_pfn(page);
}
#endif
#ifndef boot_pfn_to_page
static inline struct page *boot_pfn_to_page(unsigned long boot_pfn)
{
return pfn_to_page(boot_pfn);
}
#endif
#ifndef phys_to_boot_phys
static inline unsigned long phys_to_boot_phys(phys_addr_t phys)
{
return phys;
}
#endif
#ifndef boot_phys_to_phys
static inline phys_addr_t boot_phys_to_phys(unsigned long boot_phys)
{
return boot_phys;
}
#endif
static inline unsigned long virt_to_boot_phys(void *addr)
{
return phys_to_boot_phys(__pa((unsigned long)addr));
}
static inline void *boot_phys_to_virt(unsigned long entry)
{
return phys_to_virt(boot_phys_to_phys(entry));
}
x86/mm, kexec: Allow kexec to be used with SME Provide support so that kexec can be used to boot a kernel when SME is enabled. Support is needed to allocate pages for kexec without encryption. This is needed in order to be able to reboot in the kernel in the same manner as originally booted. Additionally, when shutting down all of the CPUs we need to be sure to flush the caches and then halt. This is needed when booting from a state where SME was not active into a state where SME is active (or vice-versa). Without these steps, it is possible for cache lines to exist for the same physical location but tagged both with and without the encryption bit. This can cause random memory corruption when caches are flushed depending on which cacheline is written last. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Cc: <kexec@lists.infradead.org> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Brijesh Singh <brijesh.singh@amd.com> Cc: Dave Young <dyoung@redhat.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Toshimitsu Kani <toshi.kani@hpe.com> Cc: kasan-dev@googlegroups.com Cc: kvm@vger.kernel.org Cc: linux-arch@vger.kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-efi@vger.kernel.org Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/b95ff075db3e7cd545313f2fb609a49619a09625.1500319216.git.thomas.lendacky@amd.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-07-18 04:10:28 +07:00
#ifndef arch_kexec_post_alloc_pages
static inline int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp) { return 0; }
#endif
#ifndef arch_kexec_pre_free_pages
static inline void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages) { }
#endif
2015-09-10 05:38:55 +07:00
#else /* !CONFIG_KEXEC_CORE */
struct pt_regs;
struct task_struct;
kexec: Fix race between panic() and crash_kexec() Currently, panic() and crash_kexec() can be called at the same time. For example (x86 case): CPU 0: oops_end() crash_kexec() mutex_trylock() // acquired nmi_shootdown_cpus() // stop other CPUs CPU 1: panic() crash_kexec() mutex_trylock() // failed to acquire smp_send_stop() // stop other CPUs infinite loop If CPU 1 calls smp_send_stop() before nmi_shootdown_cpus(), kdump fails. In another case: CPU 0: oops_end() crash_kexec() mutex_trylock() // acquired <NMI> io_check_error() panic() crash_kexec() mutex_trylock() // failed to acquire infinite loop Clearly, this is an undesirable result. To fix this problem, this patch changes crash_kexec() to exclude others by using the panic_cpu atomic. Signed-off-by: Hidehiro Kawai <hidehiro.kawai.ez@hitachi.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Baoquan He <bhe@redhat.com> Cc: Dave Young <dyoung@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: HATAYAMA Daisuke <d.hatayama@jp.fujitsu.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: kexec@lists.infradead.org Cc: linux-doc@vger.kernel.org Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Minfei Huang <mnfhuang@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Seth Jennings <sjenning@redhat.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: x86-ml <x86@kernel.org> Link: http://lkml.kernel.org/r/20151210014630.25437.94161.stgit@softrs Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2015-12-14 17:19:11 +07:00
static inline void __crash_kexec(struct pt_regs *regs) { }
static inline void crash_kexec(struct pt_regs *regs) { }
static inline int kexec_should_crash(struct task_struct *p) { return 0; }
static inline int kexec_crash_loaded(void) { return 0; }
#define kexec_in_progress false
2015-09-10 05:38:55 +07:00
#endif /* CONFIG_KEXEC_CORE */
#endif /* !defined(__ASSEBMLY__) */
#endif /* LINUX_KEXEC_H */