linux_dsm_epyc7002/include/linux/i2c.h

730 lines
28 KiB
C
Raw Normal View History

/* ------------------------------------------------------------------------- */
/* */
/* i2c.h - definitions for the i2c-bus interface */
/* */
/* ------------------------------------------------------------------------- */
/* Copyright (C) 1995-2000 Simon G. Vogl
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
/* ------------------------------------------------------------------------- */
/* With some changes from Kyösti Mälkki <kmalkki@cc.hut.fi> and
Frodo Looijaard <frodol@dds.nl> */
#ifndef _LINUX_I2C_H
#define _LINUX_I2C_H
#include <linux/types.h>
#ifdef __KERNEL__
#include <linux/module.h>
#include <linux/i2c-id.h>
#include <linux/mod_devicetable.h>
#include <linux/device.h> /* for struct device */
#include <linux/sched.h> /* for completion */
#include <linux/mutex.h>
extern struct bus_type i2c_bus_type;
/* --- General options ------------------------------------------------ */
struct i2c_msg;
struct i2c_algorithm;
struct i2c_adapter;
struct i2c_client;
struct i2c_driver;
union i2c_smbus_data;
i2c: Add detection capability to new-style drivers Add a mechanism to let new-style i2c drivers optionally autodetect devices they would support on selected buses and ask i2c-core to instantiate them. This is a replacement for legacy i2c drivers, much cleaner. Where drivers had to implement both a legacy i2c_driver and a new-style i2c_driver so far, this mechanism makes it possible to get rid of the legacy i2c_driver and implement both enumerated and detected device support with just one (new-style) i2c_driver. Here is a quick conversion guide for these drivers, step by step: * Delete the legacy driver definition, registration and removal. Delete the attach_adapter and detach_client methods of the legacy driver. * Change the prototype of the legacy detect function from static int foo_detect(struct i2c_adapter *adapter, int address, int kind); to static int foo_detect(struct i2c_client *client, int kind, struct i2c_board_info *info); * Set the new-style driver detect callback to this new function, and set its address_data to &addr_data (addr_data is generally provided by I2C_CLIENT_INSMOD.) * Add the appropriate class to the new-style driver. This is typically the class the legacy attach_adapter method was checking for. Class checking is now mandatory (done by i2c-core.) See <linux/i2c.h> for the list of available classes. * Remove the i2c_client allocation and freeing from the detect function. A pre-allocated client is now handed to you by i2c-core, and is freed automatically. * Make the detect function fill the type field of the i2c_board_info structure it was passed as a parameter, and return 0, on success. If the detection fails, return -ENODEV. Signed-off-by: Jean Delvare <khali@linux-fr.org>
2008-07-15 03:38:36 +07:00
struct i2c_board_info;
#if defined(CONFIG_I2C) || defined(CONFIG_I2C_MODULE)
/*
* The master routines are the ones normally used to transmit data to devices
* on a bus (or read from them). Apart from two basic transfer functions to
* transmit one message at a time, a more complex version can be used to
* transmit an arbitrary number of messages without interruption.
*/
extern int i2c_master_send(struct i2c_client *client, const char *buf,
int count);
extern int i2c_master_recv(struct i2c_client *client, char *buf, int count);
/* Transfer num messages.
*/
extern int i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs,
int num);
/* This is the very generalized SMBus access routine. You probably do not
want to use this, though; one of the functions below may be much easier,
and probably just as fast.
Note that we use i2c_adapter here, because you do not need a specific
smbus adapter to call this function. */
extern s32 i2c_smbus_xfer(struct i2c_adapter *adapter, u16 addr,
unsigned short flags, char read_write, u8 command,
int size, union i2c_smbus_data *data);
/* Now follow the 'nice' access routines. These also document the calling
conventions of i2c_smbus_xfer. */
extern s32 i2c_smbus_read_byte(struct i2c_client *client);
extern s32 i2c_smbus_write_byte(struct i2c_client *client, u8 value);
extern s32 i2c_smbus_read_byte_data(struct i2c_client *client, u8 command);
extern s32 i2c_smbus_write_byte_data(struct i2c_client *client,
u8 command, u8 value);
extern s32 i2c_smbus_read_word_data(struct i2c_client *client, u8 command);
extern s32 i2c_smbus_write_word_data(struct i2c_client *client,
u8 command, u16 value);
/* Returns the number of read bytes */
extern s32 i2c_smbus_read_block_data(struct i2c_client *client,
u8 command, u8 *values);
extern s32 i2c_smbus_write_block_data(struct i2c_client *client,
u8 command, u8 length, const u8 *values);
/* Returns the number of read bytes */
extern s32 i2c_smbus_read_i2c_block_data(struct i2c_client *client,
i2c: Fix the i2c_smbus_read_i2c_block_data() prototype Let the drivers specify how many bytes they want to read with i2c_smbus_read_i2c_block_data(). So far, the block count was hard-coded to I2C_SMBUS_BLOCK_MAX (32), which did not make much sense. Many driver authors complained about this before, and I believe it's about time to fix it. Right now, authors have to do technically stupid things, such as individual byte reads or full-fledged I2C messaging, to work around the problem. We do not want to encourage that. I even found that some bus drivers (e.g. i2c-amd8111) already implemented I2C block read the "right" way, that is, they didn't follow the old, broken standard. The fact that it was never noticed before just shows how little i2c_smbus_read_i2c_block_data() was used, which isn't that surprising given how broken its prototype was so far. There are some obvious compatiblity considerations: * This changes the i2c_smbus_read_i2c_block_data() prototype. Users outside the kernel tree will notice at compilation time, and will have to update their code. * User-space has access to i2c_smbus_xfer() directly using i2c-dev, so the changed expectations would affect tools such as i2cdump. In order to preserve binary compatibility, we give I2C_SMBUS_I2C_BLOCK_DATA a new numeric value, and define I2C_SMBUS_I2C_BLOCK_BROKEN with the old numeric value. When i2c-dev receives a transaction with the old value, it can convert it to the new format on the fly. Signed-off-by: Jean Delvare <khali@linux-fr.org>
2007-07-12 19:12:29 +07:00
u8 command, u8 length, u8 *values);
extern s32 i2c_smbus_write_i2c_block_data(struct i2c_client *client,
u8 command, u8 length,
const u8 *values);
#endif /* I2C */
i2c: Add detection capability to new-style drivers Add a mechanism to let new-style i2c drivers optionally autodetect devices they would support on selected buses and ask i2c-core to instantiate them. This is a replacement for legacy i2c drivers, much cleaner. Where drivers had to implement both a legacy i2c_driver and a new-style i2c_driver so far, this mechanism makes it possible to get rid of the legacy i2c_driver and implement both enumerated and detected device support with just one (new-style) i2c_driver. Here is a quick conversion guide for these drivers, step by step: * Delete the legacy driver definition, registration and removal. Delete the attach_adapter and detach_client methods of the legacy driver. * Change the prototype of the legacy detect function from static int foo_detect(struct i2c_adapter *adapter, int address, int kind); to static int foo_detect(struct i2c_client *client, int kind, struct i2c_board_info *info); * Set the new-style driver detect callback to this new function, and set its address_data to &addr_data (addr_data is generally provided by I2C_CLIENT_INSMOD.) * Add the appropriate class to the new-style driver. This is typically the class the legacy attach_adapter method was checking for. Class checking is now mandatory (done by i2c-core.) See <linux/i2c.h> for the list of available classes. * Remove the i2c_client allocation and freeing from the detect function. A pre-allocated client is now handed to you by i2c-core, and is freed automatically. * Make the detect function fill the type field of the i2c_board_info structure it was passed as a parameter, and return 0, on success. If the detection fails, return -ENODEV. Signed-off-by: Jean Delvare <khali@linux-fr.org>
2008-07-15 03:38:36 +07:00
/**
* struct i2c_driver - represent an I2C device driver
* @class: What kind of i2c device we instantiate (for detect)
* @attach_adapter: Callback for bus addition (for legacy drivers)
* @detach_adapter: Callback for bus removal (for legacy drivers)
* @probe: Callback for device binding
* @remove: Callback for device unbinding
* @shutdown: Callback for device shutdown
* @suspend: Callback for device suspend
* @resume: Callback for device resume
* @command: Callback for bus-wide signaling (optional)
* @driver: Device driver model driver
* @id_table: List of I2C devices supported by this driver
i2c: Add detection capability to new-style drivers Add a mechanism to let new-style i2c drivers optionally autodetect devices they would support on selected buses and ask i2c-core to instantiate them. This is a replacement for legacy i2c drivers, much cleaner. Where drivers had to implement both a legacy i2c_driver and a new-style i2c_driver so far, this mechanism makes it possible to get rid of the legacy i2c_driver and implement both enumerated and detected device support with just one (new-style) i2c_driver. Here is a quick conversion guide for these drivers, step by step: * Delete the legacy driver definition, registration and removal. Delete the attach_adapter and detach_client methods of the legacy driver. * Change the prototype of the legacy detect function from static int foo_detect(struct i2c_adapter *adapter, int address, int kind); to static int foo_detect(struct i2c_client *client, int kind, struct i2c_board_info *info); * Set the new-style driver detect callback to this new function, and set its address_data to &addr_data (addr_data is generally provided by I2C_CLIENT_INSMOD.) * Add the appropriate class to the new-style driver. This is typically the class the legacy attach_adapter method was checking for. Class checking is now mandatory (done by i2c-core.) See <linux/i2c.h> for the list of available classes. * Remove the i2c_client allocation and freeing from the detect function. A pre-allocated client is now handed to you by i2c-core, and is freed automatically. * Make the detect function fill the type field of the i2c_board_info structure it was passed as a parameter, and return 0, on success. If the detection fails, return -ENODEV. Signed-off-by: Jean Delvare <khali@linux-fr.org>
2008-07-15 03:38:36 +07:00
* @detect: Callback for device detection
* @address_data: The I2C addresses to probe, ignore or force (for detect)
* @clients: List of detected clients we created (for i2c-core use only)
*
* The driver.owner field should be set to the module owner of this driver.
* The driver.name field should be set to the name of this driver.
i2c: Add detection capability to new-style drivers Add a mechanism to let new-style i2c drivers optionally autodetect devices they would support on selected buses and ask i2c-core to instantiate them. This is a replacement for legacy i2c drivers, much cleaner. Where drivers had to implement both a legacy i2c_driver and a new-style i2c_driver so far, this mechanism makes it possible to get rid of the legacy i2c_driver and implement both enumerated and detected device support with just one (new-style) i2c_driver. Here is a quick conversion guide for these drivers, step by step: * Delete the legacy driver definition, registration and removal. Delete the attach_adapter and detach_client methods of the legacy driver. * Change the prototype of the legacy detect function from static int foo_detect(struct i2c_adapter *adapter, int address, int kind); to static int foo_detect(struct i2c_client *client, int kind, struct i2c_board_info *info); * Set the new-style driver detect callback to this new function, and set its address_data to &addr_data (addr_data is generally provided by I2C_CLIENT_INSMOD.) * Add the appropriate class to the new-style driver. This is typically the class the legacy attach_adapter method was checking for. Class checking is now mandatory (done by i2c-core.) See <linux/i2c.h> for the list of available classes. * Remove the i2c_client allocation and freeing from the detect function. A pre-allocated client is now handed to you by i2c-core, and is freed automatically. * Make the detect function fill the type field of the i2c_board_info structure it was passed as a parameter, and return 0, on success. If the detection fails, return -ENODEV. Signed-off-by: Jean Delvare <khali@linux-fr.org>
2008-07-15 03:38:36 +07:00
*
* For automatic device detection, both @detect and @address_data must
* be defined. @class should also be set, otherwise only devices forced
* with module parameters will be created. The detect function must
* fill at least the name field of the i2c_board_info structure it is
* handed upon successful detection, and possibly also the flags field.
*
* If @detect is missing, the driver will still work fine for enumerated
* devices. Detected devices simply won't be supported. This is expected
* for the many I2C/SMBus devices which can't be detected reliably, and
* the ones which can always be enumerated in practice.
*
* The i2c_client structure which is handed to the @detect callback is
* not a real i2c_client. It is initialized just enough so that you can
* call i2c_smbus_read_byte_data and friends on it. Don't do anything
* else with it. In particular, calling dev_dbg and friends on it is
* not allowed.
*/
struct i2c_driver {
unsigned int class;
/* Notifies the driver that a new bus has appeared or is about to be
* removed. You should avoid using this if you can, it will probably
* be removed in a near future.
*/
int (*attach_adapter)(struct i2c_adapter *);
int (*detach_adapter)(struct i2c_adapter *);
/* Standard driver model interfaces */
int (*probe)(struct i2c_client *, const struct i2c_device_id *);
int (*remove)(struct i2c_client *);
/* driver model interfaces that don't relate to enumeration */
void (*shutdown)(struct i2c_client *);
int (*suspend)(struct i2c_client *, pm_message_t mesg);
int (*resume)(struct i2c_client *);
/* a ioctl like command that can be used to perform specific functions
* with the device.
*/
int (*command)(struct i2c_client *client, unsigned int cmd, void *arg);
struct device_driver driver;
const struct i2c_device_id *id_table;
i2c: Add detection capability to new-style drivers Add a mechanism to let new-style i2c drivers optionally autodetect devices they would support on selected buses and ask i2c-core to instantiate them. This is a replacement for legacy i2c drivers, much cleaner. Where drivers had to implement both a legacy i2c_driver and a new-style i2c_driver so far, this mechanism makes it possible to get rid of the legacy i2c_driver and implement both enumerated and detected device support with just one (new-style) i2c_driver. Here is a quick conversion guide for these drivers, step by step: * Delete the legacy driver definition, registration and removal. Delete the attach_adapter and detach_client methods of the legacy driver. * Change the prototype of the legacy detect function from static int foo_detect(struct i2c_adapter *adapter, int address, int kind); to static int foo_detect(struct i2c_client *client, int kind, struct i2c_board_info *info); * Set the new-style driver detect callback to this new function, and set its address_data to &addr_data (addr_data is generally provided by I2C_CLIENT_INSMOD.) * Add the appropriate class to the new-style driver. This is typically the class the legacy attach_adapter method was checking for. Class checking is now mandatory (done by i2c-core.) See <linux/i2c.h> for the list of available classes. * Remove the i2c_client allocation and freeing from the detect function. A pre-allocated client is now handed to you by i2c-core, and is freed automatically. * Make the detect function fill the type field of the i2c_board_info structure it was passed as a parameter, and return 0, on success. If the detection fails, return -ENODEV. Signed-off-by: Jean Delvare <khali@linux-fr.org>
2008-07-15 03:38:36 +07:00
/* Device detection callback for automatic device creation */
int (*detect)(struct i2c_client *, int kind, struct i2c_board_info *);
const struct i2c_client_address_data *address_data;
struct list_head clients;
};
#define to_i2c_driver(d) container_of(d, struct i2c_driver, driver)
/**
* struct i2c_client - represent an I2C slave device
* @flags: I2C_CLIENT_TEN indicates the device uses a ten bit chip address;
* I2C_CLIENT_PEC indicates it uses SMBus Packet Error Checking
* @addr: Address used on the I2C bus connected to the parent adapter.
* @name: Indicates the type of the device, usually a chip name that's
* generic enough to hide second-sourcing and compatible revisions.
* @adapter: manages the bus segment hosting this I2C device
* @driver: device's driver, hence pointer to access routines
* @dev: Driver model device node for the slave.
* @irq: indicates the IRQ generated by this device (if any)
* @detected: member of an i2c_driver.clients list or i2c-core's
* userspace_devices list
*
* An i2c_client identifies a single device (i.e. chip) connected to an
* i2c bus. The behaviour exposed to Linux is defined by the driver
* managing the device.
*/
struct i2c_client {
unsigned short flags; /* div., see below */
unsigned short addr; /* chip address - NOTE: 7bit */
/* addresses are stored in the */
/* _LOWER_ 7 bits */
char name[I2C_NAME_SIZE];
struct i2c_adapter *adapter; /* the adapter we sit on */
struct i2c_driver *driver; /* and our access routines */
struct device dev; /* the device structure */
int irq; /* irq issued by device */
i2c: Add detection capability to new-style drivers Add a mechanism to let new-style i2c drivers optionally autodetect devices they would support on selected buses and ask i2c-core to instantiate them. This is a replacement for legacy i2c drivers, much cleaner. Where drivers had to implement both a legacy i2c_driver and a new-style i2c_driver so far, this mechanism makes it possible to get rid of the legacy i2c_driver and implement both enumerated and detected device support with just one (new-style) i2c_driver. Here is a quick conversion guide for these drivers, step by step: * Delete the legacy driver definition, registration and removal. Delete the attach_adapter and detach_client methods of the legacy driver. * Change the prototype of the legacy detect function from static int foo_detect(struct i2c_adapter *adapter, int address, int kind); to static int foo_detect(struct i2c_client *client, int kind, struct i2c_board_info *info); * Set the new-style driver detect callback to this new function, and set its address_data to &addr_data (addr_data is generally provided by I2C_CLIENT_INSMOD.) * Add the appropriate class to the new-style driver. This is typically the class the legacy attach_adapter method was checking for. Class checking is now mandatory (done by i2c-core.) See <linux/i2c.h> for the list of available classes. * Remove the i2c_client allocation and freeing from the detect function. A pre-allocated client is now handed to you by i2c-core, and is freed automatically. * Make the detect function fill the type field of the i2c_board_info structure it was passed as a parameter, and return 0, on success. If the detection fails, return -ENODEV. Signed-off-by: Jean Delvare <khali@linux-fr.org>
2008-07-15 03:38:36 +07:00
struct list_head detected;
};
#define to_i2c_client(d) container_of(d, struct i2c_client, dev)
extern struct i2c_client *i2c_verify_client(struct device *dev);
static inline struct i2c_client *kobj_to_i2c_client(struct kobject *kobj)
{
struct device * const dev = container_of(kobj, struct device, kobj);
return to_i2c_client(dev);
}
static inline void *i2c_get_clientdata(const struct i2c_client *dev)
{
return dev_get_drvdata(&dev->dev);
}
static inline void i2c_set_clientdata(struct i2c_client *dev, void *data)
{
dev_set_drvdata(&dev->dev, data);
}
i2c: Add i2c_board_info and i2c_new_device() This provides partial support for new-style I2C driver binding. It builds on "struct i2c_board_info" declarations that identify I2C devices on a given board. This is needed on systems with I2C devices that can't be fully probed and/or autoconfigured, such as many embedded Linux configurations where the way a given I2C device is wired may affect how it must be used. There are two models for declaring such devices: * LATE -- using a public function i2c_new_device(). This lets modules declare I2C devices found *AFTER* a given I2C adapter becomes available. For example, a PCI card could create adapters giving access to utility chips on that card, and this would be used to associate those chips with those adapters. * EARLY -- from arch_initcall() level code, using a non-exported function i2c_register_board_info(). This copies the declarations *BEFORE* such an i2c_adapter becomes available, arranging that i2c_new_device() will be called later when i2c-core registers the relevant i2c_adapter. For example, arch/.../.../board-*.c files would declare the I2C devices along with their platform data, and I2C devices would behave much like PNPACPI devices. (That is, both enumerate from board-specific tables.) To match the exported i2c_new_device(), the previously-private function i2c_unregister_device() is now exported. Pending later patches using these new APIs, this is effectively a NOP. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Signed-off-by: Jean Delvare <khali@linux-fr.org>
2007-05-02 04:26:31 +07:00
/**
* struct i2c_board_info - template for device creation
* @type: chip type, to initialize i2c_client.name
i2c: Add i2c_board_info and i2c_new_device() This provides partial support for new-style I2C driver binding. It builds on "struct i2c_board_info" declarations that identify I2C devices on a given board. This is needed on systems with I2C devices that can't be fully probed and/or autoconfigured, such as many embedded Linux configurations where the way a given I2C device is wired may affect how it must be used. There are two models for declaring such devices: * LATE -- using a public function i2c_new_device(). This lets modules declare I2C devices found *AFTER* a given I2C adapter becomes available. For example, a PCI card could create adapters giving access to utility chips on that card, and this would be used to associate those chips with those adapters. * EARLY -- from arch_initcall() level code, using a non-exported function i2c_register_board_info(). This copies the declarations *BEFORE* such an i2c_adapter becomes available, arranging that i2c_new_device() will be called later when i2c-core registers the relevant i2c_adapter. For example, arch/.../.../board-*.c files would declare the I2C devices along with their platform data, and I2C devices would behave much like PNPACPI devices. (That is, both enumerate from board-specific tables.) To match the exported i2c_new_device(), the previously-private function i2c_unregister_device() is now exported. Pending later patches using these new APIs, this is effectively a NOP. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Signed-off-by: Jean Delvare <khali@linux-fr.org>
2007-05-02 04:26:31 +07:00
* @flags: to initialize i2c_client.flags
* @addr: stored in i2c_client.addr
* @platform_data: stored in i2c_client.dev.platform_data
* @archdata: copied into i2c_client.dev.archdata
i2c: Add i2c_board_info and i2c_new_device() This provides partial support for new-style I2C driver binding. It builds on "struct i2c_board_info" declarations that identify I2C devices on a given board. This is needed on systems with I2C devices that can't be fully probed and/or autoconfigured, such as many embedded Linux configurations where the way a given I2C device is wired may affect how it must be used. There are two models for declaring such devices: * LATE -- using a public function i2c_new_device(). This lets modules declare I2C devices found *AFTER* a given I2C adapter becomes available. For example, a PCI card could create adapters giving access to utility chips on that card, and this would be used to associate those chips with those adapters. * EARLY -- from arch_initcall() level code, using a non-exported function i2c_register_board_info(). This copies the declarations *BEFORE* such an i2c_adapter becomes available, arranging that i2c_new_device() will be called later when i2c-core registers the relevant i2c_adapter. For example, arch/.../.../board-*.c files would declare the I2C devices along with their platform data, and I2C devices would behave much like PNPACPI devices. (That is, both enumerate from board-specific tables.) To match the exported i2c_new_device(), the previously-private function i2c_unregister_device() is now exported. Pending later patches using these new APIs, this is effectively a NOP. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Signed-off-by: Jean Delvare <khali@linux-fr.org>
2007-05-02 04:26:31 +07:00
* @irq: stored in i2c_client.irq
*
i2c: Add i2c_board_info and i2c_new_device() This provides partial support for new-style I2C driver binding. It builds on "struct i2c_board_info" declarations that identify I2C devices on a given board. This is needed on systems with I2C devices that can't be fully probed and/or autoconfigured, such as many embedded Linux configurations where the way a given I2C device is wired may affect how it must be used. There are two models for declaring such devices: * LATE -- using a public function i2c_new_device(). This lets modules declare I2C devices found *AFTER* a given I2C adapter becomes available. For example, a PCI card could create adapters giving access to utility chips on that card, and this would be used to associate those chips with those adapters. * EARLY -- from arch_initcall() level code, using a non-exported function i2c_register_board_info(). This copies the declarations *BEFORE* such an i2c_adapter becomes available, arranging that i2c_new_device() will be called later when i2c-core registers the relevant i2c_adapter. For example, arch/.../.../board-*.c files would declare the I2C devices along with their platform data, and I2C devices would behave much like PNPACPI devices. (That is, both enumerate from board-specific tables.) To match the exported i2c_new_device(), the previously-private function i2c_unregister_device() is now exported. Pending later patches using these new APIs, this is effectively a NOP. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Signed-off-by: Jean Delvare <khali@linux-fr.org>
2007-05-02 04:26:31 +07:00
* I2C doesn't actually support hardware probing, although controllers and
* devices may be able to use I2C_SMBUS_QUICK to tell whether or not there's
* a device at a given address. Drivers commonly need more information than
* that, such as chip type, configuration, associated IRQ, and so on.
*
* i2c_board_info is used to build tables of information listing I2C devices
* that are present. This information is used to grow the driver model tree.
* For mainboards this is done statically using i2c_register_board_info();
* bus numbers identify adapters that aren't yet available. For add-on boards,
* i2c_new_device() does this dynamically with the adapter already known.
i2c: Add i2c_board_info and i2c_new_device() This provides partial support for new-style I2C driver binding. It builds on "struct i2c_board_info" declarations that identify I2C devices on a given board. This is needed on systems with I2C devices that can't be fully probed and/or autoconfigured, such as many embedded Linux configurations where the way a given I2C device is wired may affect how it must be used. There are two models for declaring such devices: * LATE -- using a public function i2c_new_device(). This lets modules declare I2C devices found *AFTER* a given I2C adapter becomes available. For example, a PCI card could create adapters giving access to utility chips on that card, and this would be used to associate those chips with those adapters. * EARLY -- from arch_initcall() level code, using a non-exported function i2c_register_board_info(). This copies the declarations *BEFORE* such an i2c_adapter becomes available, arranging that i2c_new_device() will be called later when i2c-core registers the relevant i2c_adapter. For example, arch/.../.../board-*.c files would declare the I2C devices along with their platform data, and I2C devices would behave much like PNPACPI devices. (That is, both enumerate from board-specific tables.) To match the exported i2c_new_device(), the previously-private function i2c_unregister_device() is now exported. Pending later patches using these new APIs, this is effectively a NOP. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Signed-off-by: Jean Delvare <khali@linux-fr.org>
2007-05-02 04:26:31 +07:00
*/
struct i2c_board_info {
char type[I2C_NAME_SIZE];
unsigned short flags;
unsigned short addr;
void *platform_data;
struct dev_archdata *archdata;
i2c: Add i2c_board_info and i2c_new_device() This provides partial support for new-style I2C driver binding. It builds on "struct i2c_board_info" declarations that identify I2C devices on a given board. This is needed on systems with I2C devices that can't be fully probed and/or autoconfigured, such as many embedded Linux configurations where the way a given I2C device is wired may affect how it must be used. There are two models for declaring such devices: * LATE -- using a public function i2c_new_device(). This lets modules declare I2C devices found *AFTER* a given I2C adapter becomes available. For example, a PCI card could create adapters giving access to utility chips on that card, and this would be used to associate those chips with those adapters. * EARLY -- from arch_initcall() level code, using a non-exported function i2c_register_board_info(). This copies the declarations *BEFORE* such an i2c_adapter becomes available, arranging that i2c_new_device() will be called later when i2c-core registers the relevant i2c_adapter. For example, arch/.../.../board-*.c files would declare the I2C devices along with their platform data, and I2C devices would behave much like PNPACPI devices. (That is, both enumerate from board-specific tables.) To match the exported i2c_new_device(), the previously-private function i2c_unregister_device() is now exported. Pending later patches using these new APIs, this is effectively a NOP. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Signed-off-by: Jean Delvare <khali@linux-fr.org>
2007-05-02 04:26:31 +07:00
int irq;
};
/**
* I2C_BOARD_INFO - macro used to list an i2c device and its address
* @dev_type: identifies the device type
i2c: Add i2c_board_info and i2c_new_device() This provides partial support for new-style I2C driver binding. It builds on "struct i2c_board_info" declarations that identify I2C devices on a given board. This is needed on systems with I2C devices that can't be fully probed and/or autoconfigured, such as many embedded Linux configurations where the way a given I2C device is wired may affect how it must be used. There are two models for declaring such devices: * LATE -- using a public function i2c_new_device(). This lets modules declare I2C devices found *AFTER* a given I2C adapter becomes available. For example, a PCI card could create adapters giving access to utility chips on that card, and this would be used to associate those chips with those adapters. * EARLY -- from arch_initcall() level code, using a non-exported function i2c_register_board_info(). This copies the declarations *BEFORE* such an i2c_adapter becomes available, arranging that i2c_new_device() will be called later when i2c-core registers the relevant i2c_adapter. For example, arch/.../.../board-*.c files would declare the I2C devices along with their platform data, and I2C devices would behave much like PNPACPI devices. (That is, both enumerate from board-specific tables.) To match the exported i2c_new_device(), the previously-private function i2c_unregister_device() is now exported. Pending later patches using these new APIs, this is effectively a NOP. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Signed-off-by: Jean Delvare <khali@linux-fr.org>
2007-05-02 04:26:31 +07:00
* @dev_addr: the device's address on the bus.
*
* This macro initializes essential fields of a struct i2c_board_info,
* declaring what has been provided on a particular board. Optional
* fields (such as associated irq, or device-specific platform_data)
* are provided using conventional syntax.
i2c: Add i2c_board_info and i2c_new_device() This provides partial support for new-style I2C driver binding. It builds on "struct i2c_board_info" declarations that identify I2C devices on a given board. This is needed on systems with I2C devices that can't be fully probed and/or autoconfigured, such as many embedded Linux configurations where the way a given I2C device is wired may affect how it must be used. There are two models for declaring such devices: * LATE -- using a public function i2c_new_device(). This lets modules declare I2C devices found *AFTER* a given I2C adapter becomes available. For example, a PCI card could create adapters giving access to utility chips on that card, and this would be used to associate those chips with those adapters. * EARLY -- from arch_initcall() level code, using a non-exported function i2c_register_board_info(). This copies the declarations *BEFORE* such an i2c_adapter becomes available, arranging that i2c_new_device() will be called later when i2c-core registers the relevant i2c_adapter. For example, arch/.../.../board-*.c files would declare the I2C devices along with their platform data, and I2C devices would behave much like PNPACPI devices. (That is, both enumerate from board-specific tables.) To match the exported i2c_new_device(), the previously-private function i2c_unregister_device() is now exported. Pending later patches using these new APIs, this is effectively a NOP. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Signed-off-by: Jean Delvare <khali@linux-fr.org>
2007-05-02 04:26:31 +07:00
*/
#define I2C_BOARD_INFO(dev_type, dev_addr) \
.type = dev_type, .addr = (dev_addr)
i2c: Add i2c_board_info and i2c_new_device() This provides partial support for new-style I2C driver binding. It builds on "struct i2c_board_info" declarations that identify I2C devices on a given board. This is needed on systems with I2C devices that can't be fully probed and/or autoconfigured, such as many embedded Linux configurations where the way a given I2C device is wired may affect how it must be used. There are two models for declaring such devices: * LATE -- using a public function i2c_new_device(). This lets modules declare I2C devices found *AFTER* a given I2C adapter becomes available. For example, a PCI card could create adapters giving access to utility chips on that card, and this would be used to associate those chips with those adapters. * EARLY -- from arch_initcall() level code, using a non-exported function i2c_register_board_info(). This copies the declarations *BEFORE* such an i2c_adapter becomes available, arranging that i2c_new_device() will be called later when i2c-core registers the relevant i2c_adapter. For example, arch/.../.../board-*.c files would declare the I2C devices along with their platform data, and I2C devices would behave much like PNPACPI devices. (That is, both enumerate from board-specific tables.) To match the exported i2c_new_device(), the previously-private function i2c_unregister_device() is now exported. Pending later patches using these new APIs, this is effectively a NOP. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Signed-off-by: Jean Delvare <khali@linux-fr.org>
2007-05-02 04:26:31 +07:00
#if defined(CONFIG_I2C) || defined(CONFIG_I2C_MODULE)
i2c: Add i2c_board_info and i2c_new_device() This provides partial support for new-style I2C driver binding. It builds on "struct i2c_board_info" declarations that identify I2C devices on a given board. This is needed on systems with I2C devices that can't be fully probed and/or autoconfigured, such as many embedded Linux configurations where the way a given I2C device is wired may affect how it must be used. There are two models for declaring such devices: * LATE -- using a public function i2c_new_device(). This lets modules declare I2C devices found *AFTER* a given I2C adapter becomes available. For example, a PCI card could create adapters giving access to utility chips on that card, and this would be used to associate those chips with those adapters. * EARLY -- from arch_initcall() level code, using a non-exported function i2c_register_board_info(). This copies the declarations *BEFORE* such an i2c_adapter becomes available, arranging that i2c_new_device() will be called later when i2c-core registers the relevant i2c_adapter. For example, arch/.../.../board-*.c files would declare the I2C devices along with their platform data, and I2C devices would behave much like PNPACPI devices. (That is, both enumerate from board-specific tables.) To match the exported i2c_new_device(), the previously-private function i2c_unregister_device() is now exported. Pending later patches using these new APIs, this is effectively a NOP. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Signed-off-by: Jean Delvare <khali@linux-fr.org>
2007-05-02 04:26:31 +07:00
/* Add-on boards should register/unregister their devices; e.g. a board
* with integrated I2C, a config eeprom, sensors, and a codec that's
* used in conjunction with the primary hardware.
*/
extern struct i2c_client *
i2c_new_device(struct i2c_adapter *adap, struct i2c_board_info const *info);
/* If you don't know the exact address of an I2C device, use this variant
* instead, which can probe for device presence in a list of possible
* addresses.
*/
extern struct i2c_client *
i2c_new_probed_device(struct i2c_adapter *adap,
struct i2c_board_info *info,
unsigned short const *addr_list);
/* For devices that use several addresses, use i2c_new_dummy() to make
* client handles for the extra addresses.
*/
extern struct i2c_client *
i2c_new_dummy(struct i2c_adapter *adap, u16 address);
i2c: Add i2c_board_info and i2c_new_device() This provides partial support for new-style I2C driver binding. It builds on "struct i2c_board_info" declarations that identify I2C devices on a given board. This is needed on systems with I2C devices that can't be fully probed and/or autoconfigured, such as many embedded Linux configurations where the way a given I2C device is wired may affect how it must be used. There are two models for declaring such devices: * LATE -- using a public function i2c_new_device(). This lets modules declare I2C devices found *AFTER* a given I2C adapter becomes available. For example, a PCI card could create adapters giving access to utility chips on that card, and this would be used to associate those chips with those adapters. * EARLY -- from arch_initcall() level code, using a non-exported function i2c_register_board_info(). This copies the declarations *BEFORE* such an i2c_adapter becomes available, arranging that i2c_new_device() will be called later when i2c-core registers the relevant i2c_adapter. For example, arch/.../.../board-*.c files would declare the I2C devices along with their platform data, and I2C devices would behave much like PNPACPI devices. (That is, both enumerate from board-specific tables.) To match the exported i2c_new_device(), the previously-private function i2c_unregister_device() is now exported. Pending later patches using these new APIs, this is effectively a NOP. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Signed-off-by: Jean Delvare <khali@linux-fr.org>
2007-05-02 04:26:31 +07:00
extern void i2c_unregister_device(struct i2c_client *);
#endif /* I2C */
i2c: Add i2c_board_info and i2c_new_device() This provides partial support for new-style I2C driver binding. It builds on "struct i2c_board_info" declarations that identify I2C devices on a given board. This is needed on systems with I2C devices that can't be fully probed and/or autoconfigured, such as many embedded Linux configurations where the way a given I2C device is wired may affect how it must be used. There are two models for declaring such devices: * LATE -- using a public function i2c_new_device(). This lets modules declare I2C devices found *AFTER* a given I2C adapter becomes available. For example, a PCI card could create adapters giving access to utility chips on that card, and this would be used to associate those chips with those adapters. * EARLY -- from arch_initcall() level code, using a non-exported function i2c_register_board_info(). This copies the declarations *BEFORE* such an i2c_adapter becomes available, arranging that i2c_new_device() will be called later when i2c-core registers the relevant i2c_adapter. For example, arch/.../.../board-*.c files would declare the I2C devices along with their platform data, and I2C devices would behave much like PNPACPI devices. (That is, both enumerate from board-specific tables.) To match the exported i2c_new_device(), the previously-private function i2c_unregister_device() is now exported. Pending later patches using these new APIs, this is effectively a NOP. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Signed-off-by: Jean Delvare <khali@linux-fr.org>
2007-05-02 04:26:31 +07:00
/* Mainboard arch_initcall() code should register all its I2C devices.
* This is done at arch_initcall time, before declaring any i2c adapters.
* Modules for add-on boards must use other calls.
*/
#ifdef CONFIG_I2C_BOARDINFO
i2c: Add i2c_board_info and i2c_new_device() This provides partial support for new-style I2C driver binding. It builds on "struct i2c_board_info" declarations that identify I2C devices on a given board. This is needed on systems with I2C devices that can't be fully probed and/or autoconfigured, such as many embedded Linux configurations where the way a given I2C device is wired may affect how it must be used. There are two models for declaring such devices: * LATE -- using a public function i2c_new_device(). This lets modules declare I2C devices found *AFTER* a given I2C adapter becomes available. For example, a PCI card could create adapters giving access to utility chips on that card, and this would be used to associate those chips with those adapters. * EARLY -- from arch_initcall() level code, using a non-exported function i2c_register_board_info(). This copies the declarations *BEFORE* such an i2c_adapter becomes available, arranging that i2c_new_device() will be called later when i2c-core registers the relevant i2c_adapter. For example, arch/.../.../board-*.c files would declare the I2C devices along with their platform data, and I2C devices would behave much like PNPACPI devices. (That is, both enumerate from board-specific tables.) To match the exported i2c_new_device(), the previously-private function i2c_unregister_device() is now exported. Pending later patches using these new APIs, this is effectively a NOP. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Signed-off-by: Jean Delvare <khali@linux-fr.org>
2007-05-02 04:26:31 +07:00
extern int
i2c_register_board_info(int busnum, struct i2c_board_info const *info,
unsigned n);
#else
static inline int
i2c_register_board_info(int busnum, struct i2c_board_info const *info,
unsigned n)
{
return 0;
}
#endif /* I2C_BOARDINFO */
i2c: Add i2c_board_info and i2c_new_device() This provides partial support for new-style I2C driver binding. It builds on "struct i2c_board_info" declarations that identify I2C devices on a given board. This is needed on systems with I2C devices that can't be fully probed and/or autoconfigured, such as many embedded Linux configurations where the way a given I2C device is wired may affect how it must be used. There are two models for declaring such devices: * LATE -- using a public function i2c_new_device(). This lets modules declare I2C devices found *AFTER* a given I2C adapter becomes available. For example, a PCI card could create adapters giving access to utility chips on that card, and this would be used to associate those chips with those adapters. * EARLY -- from arch_initcall() level code, using a non-exported function i2c_register_board_info(). This copies the declarations *BEFORE* such an i2c_adapter becomes available, arranging that i2c_new_device() will be called later when i2c-core registers the relevant i2c_adapter. For example, arch/.../.../board-*.c files would declare the I2C devices along with their platform data, and I2C devices would behave much like PNPACPI devices. (That is, both enumerate from board-specific tables.) To match the exported i2c_new_device(), the previously-private function i2c_unregister_device() is now exported. Pending later patches using these new APIs, this is effectively a NOP. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Signed-off-by: Jean Delvare <khali@linux-fr.org>
2007-05-02 04:26:31 +07:00
/*
* The following structs are for those who like to implement new bus drivers:
* i2c_algorithm is the interface to a class of hardware solutions which can
* be addressed using the same bus algorithms - i.e. bit-banging or the PCF8584
* to name two of the most common.
*/
struct i2c_algorithm {
/* If an adapter algorithm can't do I2C-level access, set master_xfer
to NULL. If an adapter algorithm can do SMBus access, set
smbus_xfer. If set to NULL, the SMBus protocol is simulated
using common I2C messages */
/* master_xfer should return the number of messages successfully
processed, or a negative value on error */
int (*master_xfer)(struct i2c_adapter *adap, struct i2c_msg *msgs,
int num);
int (*smbus_xfer) (struct i2c_adapter *adap, u16 addr,
unsigned short flags, char read_write,
u8 command, int size, union i2c_smbus_data *data);
/* To determine what the adapter supports */
u32 (*functionality) (struct i2c_adapter *);
};
/*
* i2c_adapter is the structure used to identify a physical i2c bus along
* with the access algorithms necessary to access it.
*/
struct i2c_adapter {
struct module *owner;
unsigned int id;
unsigned int class; /* classes to allow probing for */
const struct i2c_algorithm *algo; /* the algorithm to access the bus */
void *algo_data;
/* data fields that are valid for all devices */
u8 level; /* nesting level for lockdep */
struct mutex bus_lock;
int timeout; /* in jiffies */
int retries;
struct device dev; /* the adapter device */
int nr;
char name[48];
struct completion dev_released;
};
#define to_i2c_adapter(d) container_of(d, struct i2c_adapter, dev)
static inline void *i2c_get_adapdata(const struct i2c_adapter *dev)
{
return dev_get_drvdata(&dev->dev);
}
static inline void i2c_set_adapdata(struct i2c_adapter *dev, void *data)
{
dev_set_drvdata(&dev->dev, data);
}
/*flags for the client struct: */
#define I2C_CLIENT_PEC 0x04 /* Use Packet Error Checking */
#define I2C_CLIENT_TEN 0x10 /* we have a ten bit chip address */
/* Must equal I2C_M_TEN below */
#define I2C_CLIENT_WAKE 0x80 /* for board_info; true iff can wake */
/* i2c adapter classes (bitmask) */
#define I2C_CLASS_HWMON (1<<0) /* lm_sensors, ... */
#define I2C_CLASS_TV_ANALOG (1<<1) /* bttv + friends */
#define I2C_CLASS_TV_DIGITAL (1<<2) /* dvb cards */
#define I2C_CLASS_DDC (1<<3) /* DDC bus on graphics adapters */
#define I2C_CLASS_SPD (1<<7) /* SPD EEPROMs and similar */
/* i2c_client_address_data is the struct for holding default client
* addresses for a driver and for the parameters supplied on the
* command line
*/
struct i2c_client_address_data {
const unsigned short *normal_i2c;
const unsigned short *probe;
const unsigned short *ignore;
const unsigned short * const *forces;
};
/* Internal numbers to terminate lists */
#define I2C_CLIENT_END 0xfffeU
/* The numbers to use to set I2C bus address */
#define ANY_I2C_BUS 0xffff
/* Construct an I2C_CLIENT_END-terminated array of i2c addresses */
#define I2C_ADDRS(addr, addrs...) \
((const unsigned short []){ addr, ## addrs, I2C_CLIENT_END })
/* ----- functions exported by i2c.o */
/* administration...
*/
#if defined(CONFIG_I2C) || defined(CONFIG_I2C_MODULE)
extern int i2c_add_adapter(struct i2c_adapter *);
extern int i2c_del_adapter(struct i2c_adapter *);
extern int i2c_add_numbered_adapter(struct i2c_adapter *);
extern int i2c_register_driver(struct module *, struct i2c_driver *);
extern void i2c_del_driver(struct i2c_driver *);
static inline int i2c_add_driver(struct i2c_driver *driver)
{
return i2c_register_driver(THIS_MODULE, driver);
}
extern struct i2c_client *i2c_use_client(struct i2c_client *client);
extern void i2c_release_client(struct i2c_client *client);
/* call the i2c_client->command() of all attached clients with
* the given arguments */
extern void i2c_clients_command(struct i2c_adapter *adap,
unsigned int cmd, void *arg);
extern struct i2c_adapter *i2c_get_adapter(int id);
extern void i2c_put_adapter(struct i2c_adapter *adap);
/* Return the functionality mask */
static inline u32 i2c_get_functionality(struct i2c_adapter *adap)
{
return adap->algo->functionality(adap);
}
/* Return 1 if adapter supports everything we need, 0 if not. */
static inline int i2c_check_functionality(struct i2c_adapter *adap, u32 func)
{
return (func & i2c_get_functionality(adap)) == func;
}
/* Return the adapter number for a specific adapter */
static inline int i2c_adapter_id(struct i2c_adapter *adap)
{
return adap->nr;
}
#endif /* I2C */
#endif /* __KERNEL__ */
/**
* struct i2c_msg - an I2C transaction segment beginning with START
* @addr: Slave address, either seven or ten bits. When this is a ten
* bit address, I2C_M_TEN must be set in @flags and the adapter
* must support I2C_FUNC_10BIT_ADDR.
* @flags: I2C_M_RD is handled by all adapters. No other flags may be
* provided unless the adapter exported the relevant I2C_FUNC_*
* flags through i2c_check_functionality().
* @len: Number of data bytes in @buf being read from or written to the
* I2C slave address. For read transactions where I2C_M_RECV_LEN
* is set, the caller guarantees that this buffer can hold up to
* 32 bytes in addition to the initial length byte sent by the
* slave (plus, if used, the SMBus PEC); and this value will be
* incremented by the number of block data bytes received.
* @buf: The buffer into which data is read, or from which it's written.
*
* An i2c_msg is the low level representation of one segment of an I2C
* transaction. It is visible to drivers in the @i2c_transfer() procedure,
* to userspace from i2c-dev, and to I2C adapter drivers through the
* @i2c_adapter.@master_xfer() method.
*
* Except when I2C "protocol mangling" is used, all I2C adapters implement
* the standard rules for I2C transactions. Each transaction begins with a
* START. That is followed by the slave address, and a bit encoding read
* versus write. Then follow all the data bytes, possibly including a byte
* with SMBus PEC. The transfer terminates with a NAK, or when all those
* bytes have been transferred and ACKed. If this is the last message in a
* group, it is followed by a STOP. Otherwise it is followed by the next
* @i2c_msg transaction segment, beginning with a (repeated) START.
*
* Alternatively, when the adapter supports I2C_FUNC_PROTOCOL_MANGLING then
* passing certain @flags may have changed those standard protocol behaviors.
* Those flags are only for use with broken/nonconforming slaves, and with
* adapters which are known to support the specific mangling options they
* need (one or more of IGNORE_NAK, NO_RD_ACK, NOSTART, and REV_DIR_ADDR).
*/
struct i2c_msg {
__u16 addr; /* slave address */
__u16 flags;
#define I2C_M_TEN 0x0010 /* this is a ten bit chip address */
#define I2C_M_RD 0x0001 /* read data, from slave to master */
#define I2C_M_NOSTART 0x4000 /* if I2C_FUNC_PROTOCOL_MANGLING */
#define I2C_M_REV_DIR_ADDR 0x2000 /* if I2C_FUNC_PROTOCOL_MANGLING */
#define I2C_M_IGNORE_NAK 0x1000 /* if I2C_FUNC_PROTOCOL_MANGLING */
#define I2C_M_NO_RD_ACK 0x0800 /* if I2C_FUNC_PROTOCOL_MANGLING */
#define I2C_M_RECV_LEN 0x0400 /* length will be first received byte */
__u16 len; /* msg length */
__u8 *buf; /* pointer to msg data */
};
/* To determine what functionality is present */
#define I2C_FUNC_I2C 0x00000001
#define I2C_FUNC_10BIT_ADDR 0x00000002
#define I2C_FUNC_PROTOCOL_MANGLING 0x00000004 /* I2C_M_NOSTART etc. */
#define I2C_FUNC_SMBUS_PEC 0x00000008
#define I2C_FUNC_SMBUS_BLOCK_PROC_CALL 0x00008000 /* SMBus 2.0 */
#define I2C_FUNC_SMBUS_QUICK 0x00010000
#define I2C_FUNC_SMBUS_READ_BYTE 0x00020000
#define I2C_FUNC_SMBUS_WRITE_BYTE 0x00040000
#define I2C_FUNC_SMBUS_READ_BYTE_DATA 0x00080000
#define I2C_FUNC_SMBUS_WRITE_BYTE_DATA 0x00100000
#define I2C_FUNC_SMBUS_READ_WORD_DATA 0x00200000
#define I2C_FUNC_SMBUS_WRITE_WORD_DATA 0x00400000
#define I2C_FUNC_SMBUS_PROC_CALL 0x00800000
#define I2C_FUNC_SMBUS_READ_BLOCK_DATA 0x01000000
#define I2C_FUNC_SMBUS_WRITE_BLOCK_DATA 0x02000000
#define I2C_FUNC_SMBUS_READ_I2C_BLOCK 0x04000000 /* I2C-like block xfer */
#define I2C_FUNC_SMBUS_WRITE_I2C_BLOCK 0x08000000 /* w/ 1-byte reg. addr. */
#define I2C_FUNC_SMBUS_BYTE (I2C_FUNC_SMBUS_READ_BYTE | \
I2C_FUNC_SMBUS_WRITE_BYTE)
#define I2C_FUNC_SMBUS_BYTE_DATA (I2C_FUNC_SMBUS_READ_BYTE_DATA | \
I2C_FUNC_SMBUS_WRITE_BYTE_DATA)
#define I2C_FUNC_SMBUS_WORD_DATA (I2C_FUNC_SMBUS_READ_WORD_DATA | \
I2C_FUNC_SMBUS_WRITE_WORD_DATA)
#define I2C_FUNC_SMBUS_BLOCK_DATA (I2C_FUNC_SMBUS_READ_BLOCK_DATA | \
I2C_FUNC_SMBUS_WRITE_BLOCK_DATA)
#define I2C_FUNC_SMBUS_I2C_BLOCK (I2C_FUNC_SMBUS_READ_I2C_BLOCK | \
I2C_FUNC_SMBUS_WRITE_I2C_BLOCK)
#define I2C_FUNC_SMBUS_EMUL (I2C_FUNC_SMBUS_QUICK | \
I2C_FUNC_SMBUS_BYTE | \
I2C_FUNC_SMBUS_BYTE_DATA | \
I2C_FUNC_SMBUS_WORD_DATA | \
I2C_FUNC_SMBUS_PROC_CALL | \
I2C_FUNC_SMBUS_WRITE_BLOCK_DATA | \
I2C_FUNC_SMBUS_I2C_BLOCK | \
I2C_FUNC_SMBUS_PEC)
/*
* Data for SMBus Messages
*/
#define I2C_SMBUS_BLOCK_MAX 32 /* As specified in SMBus standard */
union i2c_smbus_data {
__u8 byte;
__u16 word;
__u8 block[I2C_SMBUS_BLOCK_MAX + 2]; /* block[0] is used for length */
/* and one more for user-space compatibility */
};
/* i2c_smbus_xfer read or write markers */
#define I2C_SMBUS_READ 1
#define I2C_SMBUS_WRITE 0
/* SMBus transaction types (size parameter in the above functions)
Note: these no longer correspond to the (arbitrary) PIIX4 internal codes! */
#define I2C_SMBUS_QUICK 0
#define I2C_SMBUS_BYTE 1
#define I2C_SMBUS_BYTE_DATA 2
#define I2C_SMBUS_WORD_DATA 3
#define I2C_SMBUS_PROC_CALL 4
#define I2C_SMBUS_BLOCK_DATA 5
i2c: Fix the i2c_smbus_read_i2c_block_data() prototype Let the drivers specify how many bytes they want to read with i2c_smbus_read_i2c_block_data(). So far, the block count was hard-coded to I2C_SMBUS_BLOCK_MAX (32), which did not make much sense. Many driver authors complained about this before, and I believe it's about time to fix it. Right now, authors have to do technically stupid things, such as individual byte reads or full-fledged I2C messaging, to work around the problem. We do not want to encourage that. I even found that some bus drivers (e.g. i2c-amd8111) already implemented I2C block read the "right" way, that is, they didn't follow the old, broken standard. The fact that it was never noticed before just shows how little i2c_smbus_read_i2c_block_data() was used, which isn't that surprising given how broken its prototype was so far. There are some obvious compatiblity considerations: * This changes the i2c_smbus_read_i2c_block_data() prototype. Users outside the kernel tree will notice at compilation time, and will have to update their code. * User-space has access to i2c_smbus_xfer() directly using i2c-dev, so the changed expectations would affect tools such as i2cdump. In order to preserve binary compatibility, we give I2C_SMBUS_I2C_BLOCK_DATA a new numeric value, and define I2C_SMBUS_I2C_BLOCK_BROKEN with the old numeric value. When i2c-dev receives a transaction with the old value, it can convert it to the new format on the fly. Signed-off-by: Jean Delvare <khali@linux-fr.org>
2007-07-12 19:12:29 +07:00
#define I2C_SMBUS_I2C_BLOCK_BROKEN 6
#define I2C_SMBUS_BLOCK_PROC_CALL 7 /* SMBus 2.0 */
i2c: Fix the i2c_smbus_read_i2c_block_data() prototype Let the drivers specify how many bytes they want to read with i2c_smbus_read_i2c_block_data(). So far, the block count was hard-coded to I2C_SMBUS_BLOCK_MAX (32), which did not make much sense. Many driver authors complained about this before, and I believe it's about time to fix it. Right now, authors have to do technically stupid things, such as individual byte reads or full-fledged I2C messaging, to work around the problem. We do not want to encourage that. I even found that some bus drivers (e.g. i2c-amd8111) already implemented I2C block read the "right" way, that is, they didn't follow the old, broken standard. The fact that it was never noticed before just shows how little i2c_smbus_read_i2c_block_data() was used, which isn't that surprising given how broken its prototype was so far. There are some obvious compatiblity considerations: * This changes the i2c_smbus_read_i2c_block_data() prototype. Users outside the kernel tree will notice at compilation time, and will have to update their code. * User-space has access to i2c_smbus_xfer() directly using i2c-dev, so the changed expectations would affect tools such as i2cdump. In order to preserve binary compatibility, we give I2C_SMBUS_I2C_BLOCK_DATA a new numeric value, and define I2C_SMBUS_I2C_BLOCK_BROKEN with the old numeric value. When i2c-dev receives a transaction with the old value, it can convert it to the new format on the fly. Signed-off-by: Jean Delvare <khali@linux-fr.org>
2007-07-12 19:12:29 +07:00
#define I2C_SMBUS_I2C_BLOCK_DATA 8
#ifdef __KERNEL__
/* These defines are used for probing i2c client addresses */
/* The length of the option lists */
#define I2C_CLIENT_MAX_OPTS 48
/* Default fill of many variables */
#define I2C_CLIENT_DEFAULTS {I2C_CLIENT_END, I2C_CLIENT_END, I2C_CLIENT_END, \
I2C_CLIENT_END, I2C_CLIENT_END, I2C_CLIENT_END, \
I2C_CLIENT_END, I2C_CLIENT_END, I2C_CLIENT_END, \
I2C_CLIENT_END, I2C_CLIENT_END, I2C_CLIENT_END, \
I2C_CLIENT_END, I2C_CLIENT_END, I2C_CLIENT_END, \
I2C_CLIENT_END, I2C_CLIENT_END, I2C_CLIENT_END, \
I2C_CLIENT_END, I2C_CLIENT_END, I2C_CLIENT_END, \
I2C_CLIENT_END, I2C_CLIENT_END, I2C_CLIENT_END, \
I2C_CLIENT_END, I2C_CLIENT_END, I2C_CLIENT_END, \
I2C_CLIENT_END, I2C_CLIENT_END, I2C_CLIENT_END, \
I2C_CLIENT_END, I2C_CLIENT_END, I2C_CLIENT_END, \
I2C_CLIENT_END, I2C_CLIENT_END, I2C_CLIENT_END, \
I2C_CLIENT_END, I2C_CLIENT_END, I2C_CLIENT_END, \
I2C_CLIENT_END, I2C_CLIENT_END, I2C_CLIENT_END, \
I2C_CLIENT_END, I2C_CLIENT_END, I2C_CLIENT_END, \
I2C_CLIENT_END, I2C_CLIENT_END, I2C_CLIENT_END}
/* I2C_CLIENT_MODULE_PARM creates a module parameter, and puts it in the
module header */
#define I2C_CLIENT_MODULE_PARM(var,desc) \
static unsigned short var[I2C_CLIENT_MAX_OPTS] = I2C_CLIENT_DEFAULTS; \
static unsigned int var##_num; \
module_param_array(var, short, &var##_num, 0); \
MODULE_PARM_DESC(var, desc)
#define I2C_CLIENT_MODULE_PARM_FORCE(name) \
I2C_CLIENT_MODULE_PARM(force_##name, \
"List of adapter,address pairs which are " \
"unquestionably assumed to contain a `" \
# name "' chip")
#define I2C_CLIENT_INSMOD_COMMON \
I2C_CLIENT_MODULE_PARM(probe, "List of adapter,address pairs to scan " \
"additionally"); \
I2C_CLIENT_MODULE_PARM(ignore, "List of adapter,address pairs not to " \
"scan"); \
static const struct i2c_client_address_data addr_data = { \
.normal_i2c = normal_i2c, \
.probe = probe, \
.ignore = ignore, \
.forces = forces, \
}
#define I2C_CLIENT_FORCE_TEXT \
"List of adapter,address pairs to boldly assume to be present"
/* These are the ones you want to use in your own drivers. Pick the one
which matches the number of devices the driver differenciates between. */
#define I2C_CLIENT_INSMOD \
I2C_CLIENT_MODULE_PARM(force, I2C_CLIENT_FORCE_TEXT); \
static const unsigned short * const forces[] = { force, NULL }; \
I2C_CLIENT_INSMOD_COMMON
#define I2C_CLIENT_INSMOD_1(chip1) \
enum chips { any_chip, chip1 }; \
I2C_CLIENT_MODULE_PARM(force, I2C_CLIENT_FORCE_TEXT); \
I2C_CLIENT_MODULE_PARM_FORCE(chip1); \
static const unsigned short * const forces[] = { force, \
force_##chip1, NULL }; \
I2C_CLIENT_INSMOD_COMMON
#define I2C_CLIENT_INSMOD_2(chip1, chip2) \
enum chips { any_chip, chip1, chip2 }; \
I2C_CLIENT_MODULE_PARM(force, I2C_CLIENT_FORCE_TEXT); \
I2C_CLIENT_MODULE_PARM_FORCE(chip1); \
I2C_CLIENT_MODULE_PARM_FORCE(chip2); \
static const unsigned short * const forces[] = { force, \
force_##chip1, force_##chip2, NULL }; \
I2C_CLIENT_INSMOD_COMMON
#define I2C_CLIENT_INSMOD_3(chip1, chip2, chip3) \
enum chips { any_chip, chip1, chip2, chip3 }; \
I2C_CLIENT_MODULE_PARM(force, I2C_CLIENT_FORCE_TEXT); \
I2C_CLIENT_MODULE_PARM_FORCE(chip1); \
I2C_CLIENT_MODULE_PARM_FORCE(chip2); \
I2C_CLIENT_MODULE_PARM_FORCE(chip3); \
static const unsigned short * const forces[] = { force, \
force_##chip1, force_##chip2, force_##chip3, NULL }; \
I2C_CLIENT_INSMOD_COMMON
#define I2C_CLIENT_INSMOD_4(chip1, chip2, chip3, chip4) \
enum chips { any_chip, chip1, chip2, chip3, chip4 }; \
I2C_CLIENT_MODULE_PARM(force, I2C_CLIENT_FORCE_TEXT); \
I2C_CLIENT_MODULE_PARM_FORCE(chip1); \
I2C_CLIENT_MODULE_PARM_FORCE(chip2); \
I2C_CLIENT_MODULE_PARM_FORCE(chip3); \
I2C_CLIENT_MODULE_PARM_FORCE(chip4); \
static const unsigned short * const forces[] = { force, \
force_##chip1, force_##chip2, force_##chip3, \
force_##chip4, NULL}; \
I2C_CLIENT_INSMOD_COMMON
#define I2C_CLIENT_INSMOD_5(chip1, chip2, chip3, chip4, chip5) \
enum chips { any_chip, chip1, chip2, chip3, chip4, chip5 }; \
I2C_CLIENT_MODULE_PARM(force, I2C_CLIENT_FORCE_TEXT); \
I2C_CLIENT_MODULE_PARM_FORCE(chip1); \
I2C_CLIENT_MODULE_PARM_FORCE(chip2); \
I2C_CLIENT_MODULE_PARM_FORCE(chip3); \
I2C_CLIENT_MODULE_PARM_FORCE(chip4); \
I2C_CLIENT_MODULE_PARM_FORCE(chip5); \
static const unsigned short * const forces[] = { force, \
force_##chip1, force_##chip2, force_##chip3, \
force_##chip4, force_##chip5, NULL }; \
I2C_CLIENT_INSMOD_COMMON
#define I2C_CLIENT_INSMOD_6(chip1, chip2, chip3, chip4, chip5, chip6) \
enum chips { any_chip, chip1, chip2, chip3, chip4, chip5, chip6 }; \
I2C_CLIENT_MODULE_PARM(force, I2C_CLIENT_FORCE_TEXT); \
I2C_CLIENT_MODULE_PARM_FORCE(chip1); \
I2C_CLIENT_MODULE_PARM_FORCE(chip2); \
I2C_CLIENT_MODULE_PARM_FORCE(chip3); \
I2C_CLIENT_MODULE_PARM_FORCE(chip4); \
I2C_CLIENT_MODULE_PARM_FORCE(chip5); \
I2C_CLIENT_MODULE_PARM_FORCE(chip6); \
static const unsigned short * const forces[] = { force, \
force_##chip1, force_##chip2, force_##chip3, \
force_##chip4, force_##chip5, force_##chip6, NULL }; \
I2C_CLIENT_INSMOD_COMMON
#define I2C_CLIENT_INSMOD_7(chip1, chip2, chip3, chip4, chip5, chip6, chip7) \
enum chips { any_chip, chip1, chip2, chip3, chip4, chip5, chip6, \
chip7 }; \
I2C_CLIENT_MODULE_PARM(force, I2C_CLIENT_FORCE_TEXT); \
I2C_CLIENT_MODULE_PARM_FORCE(chip1); \
I2C_CLIENT_MODULE_PARM_FORCE(chip2); \
I2C_CLIENT_MODULE_PARM_FORCE(chip3); \
I2C_CLIENT_MODULE_PARM_FORCE(chip4); \
I2C_CLIENT_MODULE_PARM_FORCE(chip5); \
I2C_CLIENT_MODULE_PARM_FORCE(chip6); \
I2C_CLIENT_MODULE_PARM_FORCE(chip7); \
static const unsigned short * const forces[] = { force, \
force_##chip1, force_##chip2, force_##chip3, \
force_##chip4, force_##chip5, force_##chip6, \
force_##chip7, NULL }; \
I2C_CLIENT_INSMOD_COMMON
#define I2C_CLIENT_INSMOD_8(chip1, chip2, chip3, chip4, chip5, chip6, chip7, chip8) \
enum chips { any_chip, chip1, chip2, chip3, chip4, chip5, chip6, \
chip7, chip8 }; \
I2C_CLIENT_MODULE_PARM(force, I2C_CLIENT_FORCE_TEXT); \
I2C_CLIENT_MODULE_PARM_FORCE(chip1); \
I2C_CLIENT_MODULE_PARM_FORCE(chip2); \
I2C_CLIENT_MODULE_PARM_FORCE(chip3); \
I2C_CLIENT_MODULE_PARM_FORCE(chip4); \
I2C_CLIENT_MODULE_PARM_FORCE(chip5); \
I2C_CLIENT_MODULE_PARM_FORCE(chip6); \
I2C_CLIENT_MODULE_PARM_FORCE(chip7); \
I2C_CLIENT_MODULE_PARM_FORCE(chip8); \
static const unsigned short * const forces[] = { force, \
force_##chip1, force_##chip2, force_##chip3, \
force_##chip4, force_##chip5, force_##chip6, \
force_##chip7, force_##chip8, NULL }; \
I2C_CLIENT_INSMOD_COMMON
#endif /* __KERNEL__ */
#endif /* _LINUX_I2C_H */