2020-03-03 02:59:20 +07:00
|
|
|
/* SPDX-License-Identifier: GPL-2.0+ */
|
|
|
|
/*
|
|
|
|
* Task-based RCU implementations.
|
|
|
|
*
|
|
|
|
* Copyright (C) 2020 Paul E. McKenney
|
|
|
|
*/
|
|
|
|
|
2020-03-04 02:49:21 +07:00
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// Generic data structures.
|
|
|
|
|
|
|
|
struct rcu_tasks;
|
|
|
|
typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp);
|
2020-03-03 02:59:20 +07:00
|
|
|
|
2020-03-03 06:16:57 +07:00
|
|
|
/**
|
|
|
|
* Definition for a Tasks-RCU-like mechanism.
|
|
|
|
* @cbs_head: Head of callback list.
|
|
|
|
* @cbs_tail: Tail pointer for callback list.
|
|
|
|
* @cbs_wq: Wait queue allowning new callback to get kthread's attention.
|
|
|
|
* @cbs_lock: Lock protecting callback list.
|
|
|
|
* @kthread_ptr: This flavor's grace-period/callback-invocation kthread.
|
2020-03-04 02:49:21 +07:00
|
|
|
* @gp_func: This flavor's grace-period-wait function.
|
|
|
|
* @call_func: This flavor's call_rcu()-equivalent function.
|
2020-03-04 06:50:31 +07:00
|
|
|
* @name: This flavor's textual name.
|
|
|
|
* @kname: This flavor's kthread name.
|
2020-03-03 06:16:57 +07:00
|
|
|
*/
|
|
|
|
struct rcu_tasks {
|
|
|
|
struct rcu_head *cbs_head;
|
|
|
|
struct rcu_head **cbs_tail;
|
|
|
|
struct wait_queue_head cbs_wq;
|
|
|
|
raw_spinlock_t cbs_lock;
|
|
|
|
struct task_struct *kthread_ptr;
|
2020-03-04 02:49:21 +07:00
|
|
|
rcu_tasks_gp_func_t gp_func;
|
|
|
|
call_rcu_func_t call_func;
|
2020-03-04 06:50:31 +07:00
|
|
|
char *name;
|
|
|
|
char *kname;
|
2020-03-03 06:16:57 +07:00
|
|
|
};
|
|
|
|
|
2020-03-04 06:50:31 +07:00
|
|
|
#define DEFINE_RCU_TASKS(rt_name, gp, call, n) \
|
|
|
|
static struct rcu_tasks rt_name = \
|
2020-03-03 06:16:57 +07:00
|
|
|
{ \
|
2020-03-04 06:50:31 +07:00
|
|
|
.cbs_tail = &rt_name.cbs_head, \
|
|
|
|
.cbs_wq = __WAIT_QUEUE_HEAD_INITIALIZER(rt_name.cbs_wq), \
|
|
|
|
.cbs_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_lock), \
|
2020-03-04 02:49:21 +07:00
|
|
|
.gp_func = gp, \
|
|
|
|
.call_func = call, \
|
2020-03-04 06:50:31 +07:00
|
|
|
.name = n, \
|
|
|
|
.kname = #rt_name, \
|
2020-03-03 06:16:57 +07:00
|
|
|
}
|
|
|
|
|
2020-03-03 02:59:20 +07:00
|
|
|
/* Track exiting tasks in order to allow them to be waited for. */
|
|
|
|
DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu);
|
|
|
|
|
|
|
|
/* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */
|
|
|
|
#define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
|
|
|
|
static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
|
|
|
|
module_param(rcu_task_stall_timeout, int, 0644);
|
|
|
|
|
2020-03-04 02:49:21 +07:00
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// Generic code.
|
|
|
|
|
|
|
|
// Enqueue a callback for the specified flavor of Tasks RCU.
|
|
|
|
static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func,
|
|
|
|
struct rcu_tasks *rtp)
|
2020-03-03 02:59:20 +07:00
|
|
|
{
|
|
|
|
unsigned long flags;
|
|
|
|
bool needwake;
|
|
|
|
|
|
|
|
rhp->next = NULL;
|
|
|
|
rhp->func = func;
|
2020-03-03 06:16:57 +07:00
|
|
|
raw_spin_lock_irqsave(&rtp->cbs_lock, flags);
|
|
|
|
needwake = !rtp->cbs_head;
|
|
|
|
WRITE_ONCE(*rtp->cbs_tail, rhp);
|
|
|
|
rtp->cbs_tail = &rhp->next;
|
|
|
|
raw_spin_unlock_irqrestore(&rtp->cbs_lock, flags);
|
2020-03-03 02:59:20 +07:00
|
|
|
/* We can't create the thread unless interrupts are enabled. */
|
2020-03-03 06:16:57 +07:00
|
|
|
if (needwake && READ_ONCE(rtp->kthread_ptr))
|
|
|
|
wake_up(&rtp->cbs_wq);
|
2020-03-03 02:59:20 +07:00
|
|
|
}
|
|
|
|
|
2020-03-04 02:49:21 +07:00
|
|
|
// Wait for a grace period for the specified flavor of Tasks RCU.
|
|
|
|
static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp)
|
2020-03-03 02:59:20 +07:00
|
|
|
{
|
|
|
|
/* Complain if the scheduler has not started. */
|
|
|
|
RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
|
|
|
|
"synchronize_rcu_tasks called too soon");
|
|
|
|
|
|
|
|
/* Wait for the grace period. */
|
2020-03-04 02:49:21 +07:00
|
|
|
wait_rcu_gp(rtp->call_func);
|
2020-03-03 02:59:20 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
/* RCU-tasks kthread that detects grace periods and invokes callbacks. */
|
|
|
|
static int __noreturn rcu_tasks_kthread(void *arg)
|
|
|
|
{
|
|
|
|
unsigned long flags;
|
|
|
|
struct rcu_head *list;
|
|
|
|
struct rcu_head *next;
|
2020-03-03 06:16:57 +07:00
|
|
|
struct rcu_tasks *rtp = arg;
|
2020-03-03 02:59:20 +07:00
|
|
|
|
|
|
|
/* Run on housekeeping CPUs by default. Sysadm can move if desired. */
|
|
|
|
housekeeping_affine(current, HK_FLAG_RCU);
|
2020-03-03 06:16:57 +07:00
|
|
|
WRITE_ONCE(rtp->kthread_ptr, current); // Let GPs start!
|
2020-03-03 02:59:20 +07:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Each pass through the following loop makes one check for
|
|
|
|
* newly arrived callbacks, and, if there are some, waits for
|
|
|
|
* one RCU-tasks grace period and then invokes the callbacks.
|
|
|
|
* This loop is terminated by the system going down. ;-)
|
|
|
|
*/
|
|
|
|
for (;;) {
|
|
|
|
|
|
|
|
/* Pick up any new callbacks. */
|
2020-03-03 06:16:57 +07:00
|
|
|
raw_spin_lock_irqsave(&rtp->cbs_lock, flags);
|
|
|
|
list = rtp->cbs_head;
|
|
|
|
rtp->cbs_head = NULL;
|
|
|
|
rtp->cbs_tail = &rtp->cbs_head;
|
|
|
|
raw_spin_unlock_irqrestore(&rtp->cbs_lock, flags);
|
2020-03-03 02:59:20 +07:00
|
|
|
|
|
|
|
/* If there were none, wait a bit and start over. */
|
|
|
|
if (!list) {
|
2020-03-03 06:16:57 +07:00
|
|
|
wait_event_interruptible(rtp->cbs_wq,
|
|
|
|
READ_ONCE(rtp->cbs_head));
|
|
|
|
if (!rtp->cbs_head) {
|
2020-03-03 02:59:20 +07:00
|
|
|
WARN_ON(signal_pending(current));
|
|
|
|
schedule_timeout_interruptible(HZ/10);
|
|
|
|
}
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
2020-03-04 02:49:21 +07:00
|
|
|
// Wait for one grace period.
|
|
|
|
rtp->gp_func(rtp);
|
2020-03-03 02:59:20 +07:00
|
|
|
|
|
|
|
/* Invoke the callbacks. */
|
|
|
|
while (list) {
|
|
|
|
next = list->next;
|
|
|
|
local_bh_disable();
|
|
|
|
list->func(list);
|
|
|
|
local_bh_enable();
|
|
|
|
list = next;
|
|
|
|
cond_resched();
|
|
|
|
}
|
|
|
|
/* Paranoid sleep to keep this from entering a tight loop */
|
|
|
|
schedule_timeout_uninterruptible(HZ/10);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2020-03-04 02:49:21 +07:00
|
|
|
/* Spawn RCU-tasks grace-period kthread, e.g., at core_initcall() time. */
|
|
|
|
static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp)
|
2020-03-03 02:59:20 +07:00
|
|
|
{
|
|
|
|
struct task_struct *t;
|
|
|
|
|
2020-03-04 06:50:31 +07:00
|
|
|
t = kthread_run(rcu_tasks_kthread, rtp, "%s_kthread", rtp->kname);
|
|
|
|
if (WARN_ONCE(IS_ERR(t), "%s: Could not start %s grace-period kthread, OOM is now expected behavior\n", __func__, rtp->name))
|
2020-03-04 02:49:21 +07:00
|
|
|
return;
|
2020-03-03 02:59:20 +07:00
|
|
|
smp_mb(); /* Ensure others see full kthread. */
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Do the srcu_read_lock() for the above synchronize_srcu(). */
|
|
|
|
void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu)
|
|
|
|
{
|
|
|
|
preempt_disable();
|
|
|
|
current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu);
|
|
|
|
preempt_enable();
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Do the srcu_read_unlock() for the above synchronize_srcu(). */
|
|
|
|
void exit_tasks_rcu_finish(void) __releases(&tasks_rcu_exit_srcu)
|
|
|
|
{
|
|
|
|
preempt_disable();
|
|
|
|
__srcu_read_unlock(&tasks_rcu_exit_srcu, current->rcu_tasks_idx);
|
|
|
|
preempt_enable();
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef CONFIG_TINY_RCU
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Print any non-default Tasks RCU settings.
|
|
|
|
*/
|
|
|
|
static void __init rcu_tasks_bootup_oddness(void)
|
|
|
|
{
|
|
|
|
#ifdef CONFIG_TASKS_RCU
|
|
|
|
if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
|
|
|
|
pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
|
|
|
|
else
|
|
|
|
pr_info("\tTasks RCU enabled.\n");
|
|
|
|
#endif /* #ifdef CONFIG_TASKS_RCU */
|
2020-03-03 12:06:43 +07:00
|
|
|
#ifdef CONFIG_TASKS_RUDE_RCU
|
|
|
|
pr_info("\tRude variant of Tasks RCU enabled.\n");
|
|
|
|
#endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
|
2020-03-03 02:59:20 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
#endif /* #ifndef CONFIG_TINY_RCU */
|
2020-03-04 02:49:21 +07:00
|
|
|
|
|
|
|
#ifdef CONFIG_TASKS_RCU
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// Simple variant of RCU whose quiescent states are voluntary context
|
|
|
|
// switch, cond_resched_rcu_qs(), user-space execution, and idle.
|
|
|
|
// As such, grace periods can take one good long time. There are no
|
|
|
|
// read-side primitives similar to rcu_read_lock() and rcu_read_unlock()
|
|
|
|
// because this implementation is intended to get the system into a safe
|
|
|
|
// state for some of the manipulations involved in tracing and the like.
|
|
|
|
// Finally, this implementation does not support high call_rcu_tasks()
|
|
|
|
// rates from multiple CPUs. If this is required, per-CPU callback lists
|
|
|
|
// will be needed.
|
|
|
|
|
|
|
|
/* See if tasks are still holding out, complain if so. */
|
|
|
|
static void check_holdout_task(struct task_struct *t,
|
|
|
|
bool needreport, bool *firstreport)
|
|
|
|
{
|
|
|
|
int cpu;
|
|
|
|
|
|
|
|
if (!READ_ONCE(t->rcu_tasks_holdout) ||
|
|
|
|
t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
|
|
|
|
!READ_ONCE(t->on_rq) ||
|
|
|
|
(IS_ENABLED(CONFIG_NO_HZ_FULL) &&
|
|
|
|
!is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
|
|
|
|
WRITE_ONCE(t->rcu_tasks_holdout, false);
|
|
|
|
list_del_init(&t->rcu_tasks_holdout_list);
|
|
|
|
put_task_struct(t);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
rcu_request_urgent_qs_task(t);
|
|
|
|
if (!needreport)
|
|
|
|
return;
|
|
|
|
if (*firstreport) {
|
|
|
|
pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
|
|
|
|
*firstreport = false;
|
|
|
|
}
|
|
|
|
cpu = task_cpu(t);
|
|
|
|
pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
|
|
|
|
t, ".I"[is_idle_task(t)],
|
|
|
|
"N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
|
|
|
|
t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
|
|
|
|
t->rcu_tasks_idle_cpu, cpu);
|
|
|
|
sched_show_task(t);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Wait for one RCU-tasks grace period. */
|
|
|
|
static void rcu_tasks_wait_gp(struct rcu_tasks *rtp)
|
|
|
|
{
|
|
|
|
struct task_struct *g, *t;
|
|
|
|
unsigned long lastreport;
|
|
|
|
LIST_HEAD(rcu_tasks_holdouts);
|
|
|
|
int fract;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Wait for all pre-existing t->on_rq and t->nvcsw transitions
|
|
|
|
* to complete. Invoking synchronize_rcu() suffices because all
|
|
|
|
* these transitions occur with interrupts disabled. Without this
|
|
|
|
* synchronize_rcu(), a read-side critical section that started
|
|
|
|
* before the grace period might be incorrectly seen as having
|
|
|
|
* started after the grace period.
|
|
|
|
*
|
|
|
|
* This synchronize_rcu() also dispenses with the need for a
|
|
|
|
* memory barrier on the first store to t->rcu_tasks_holdout,
|
|
|
|
* as it forces the store to happen after the beginning of the
|
|
|
|
* grace period.
|
|
|
|
*/
|
|
|
|
synchronize_rcu();
|
|
|
|
|
|
|
|
/*
|
|
|
|
* There were callbacks, so we need to wait for an RCU-tasks
|
|
|
|
* grace period. Start off by scanning the task list for tasks
|
|
|
|
* that are not already voluntarily blocked. Mark these tasks
|
|
|
|
* and make a list of them in rcu_tasks_holdouts.
|
|
|
|
*/
|
|
|
|
rcu_read_lock();
|
|
|
|
for_each_process_thread(g, t) {
|
|
|
|
if (t != current && READ_ONCE(t->on_rq) && !is_idle_task(t)) {
|
|
|
|
get_task_struct(t);
|
|
|
|
t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
|
|
|
|
WRITE_ONCE(t->rcu_tasks_holdout, true);
|
|
|
|
list_add(&t->rcu_tasks_holdout_list,
|
|
|
|
&rcu_tasks_holdouts);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Wait for tasks that are in the process of exiting. This
|
|
|
|
* does only part of the job, ensuring that all tasks that were
|
|
|
|
* previously exiting reach the point where they have disabled
|
|
|
|
* preemption, allowing the later synchronize_rcu() to finish
|
|
|
|
* the job.
|
|
|
|
*/
|
|
|
|
synchronize_srcu(&tasks_rcu_exit_srcu);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Each pass through the following loop scans the list of holdout
|
|
|
|
* tasks, removing any that are no longer holdouts. When the list
|
|
|
|
* is empty, we are done.
|
|
|
|
*/
|
|
|
|
lastreport = jiffies;
|
|
|
|
|
|
|
|
/* Start off with HZ/10 wait and slowly back off to 1 HZ wait. */
|
|
|
|
fract = 10;
|
|
|
|
|
|
|
|
for (;;) {
|
|
|
|
bool firstreport;
|
|
|
|
bool needreport;
|
|
|
|
int rtst;
|
|
|
|
struct task_struct *t1;
|
|
|
|
|
|
|
|
if (list_empty(&rcu_tasks_holdouts))
|
|
|
|
break;
|
|
|
|
|
|
|
|
/* Slowly back off waiting for holdouts */
|
|
|
|
schedule_timeout_interruptible(HZ/fract);
|
|
|
|
|
|
|
|
if (fract > 1)
|
|
|
|
fract--;
|
|
|
|
|
|
|
|
rtst = READ_ONCE(rcu_task_stall_timeout);
|
|
|
|
needreport = rtst > 0 && time_after(jiffies, lastreport + rtst);
|
|
|
|
if (needreport)
|
|
|
|
lastreport = jiffies;
|
|
|
|
firstreport = true;
|
|
|
|
WARN_ON(signal_pending(current));
|
|
|
|
list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
|
|
|
|
rcu_tasks_holdout_list) {
|
|
|
|
check_holdout_task(t, needreport, &firstreport);
|
|
|
|
cond_resched();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Because ->on_rq and ->nvcsw are not guaranteed to have a full
|
|
|
|
* memory barriers prior to them in the schedule() path, memory
|
|
|
|
* reordering on other CPUs could cause their RCU-tasks read-side
|
|
|
|
* critical sections to extend past the end of the grace period.
|
|
|
|
* However, because these ->nvcsw updates are carried out with
|
|
|
|
* interrupts disabled, we can use synchronize_rcu() to force the
|
|
|
|
* needed ordering on all such CPUs.
|
|
|
|
*
|
|
|
|
* This synchronize_rcu() also confines all ->rcu_tasks_holdout
|
|
|
|
* accesses to be within the grace period, avoiding the need for
|
|
|
|
* memory barriers for ->rcu_tasks_holdout accesses.
|
|
|
|
*
|
|
|
|
* In addition, this synchronize_rcu() waits for exiting tasks
|
|
|
|
* to complete their final preempt_disable() region of execution,
|
|
|
|
* cleaning up after the synchronize_srcu() above.
|
|
|
|
*/
|
|
|
|
synchronize_rcu();
|
|
|
|
}
|
|
|
|
|
|
|
|
void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func);
|
2020-03-04 06:50:31 +07:00
|
|
|
DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks");
|
2020-03-04 02:49:21 +07:00
|
|
|
|
|
|
|
/**
|
|
|
|
* call_rcu_tasks() - Queue an RCU for invocation task-based grace period
|
|
|
|
* @rhp: structure to be used for queueing the RCU updates.
|
|
|
|
* @func: actual callback function to be invoked after the grace period
|
|
|
|
*
|
|
|
|
* The callback function will be invoked some time after a full grace
|
|
|
|
* period elapses, in other words after all currently executing RCU
|
|
|
|
* read-side critical sections have completed. call_rcu_tasks() assumes
|
|
|
|
* that the read-side critical sections end at a voluntary context
|
|
|
|
* switch (not a preemption!), cond_resched_rcu_qs(), entry into idle,
|
|
|
|
* or transition to usermode execution. As such, there are no read-side
|
|
|
|
* primitives analogous to rcu_read_lock() and rcu_read_unlock() because
|
|
|
|
* this primitive is intended to determine that all tasks have passed
|
|
|
|
* through a safe state, not so much for data-strcuture synchronization.
|
|
|
|
*
|
|
|
|
* See the description of call_rcu() for more detailed information on
|
|
|
|
* memory ordering guarantees.
|
|
|
|
*/
|
|
|
|
void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
|
|
|
|
{
|
|
|
|
call_rcu_tasks_generic(rhp, func, &rcu_tasks);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(call_rcu_tasks);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
|
|
|
|
*
|
|
|
|
* Control will return to the caller some time after a full rcu-tasks
|
|
|
|
* grace period has elapsed, in other words after all currently
|
|
|
|
* executing rcu-tasks read-side critical sections have elapsed. These
|
|
|
|
* read-side critical sections are delimited by calls to schedule(),
|
|
|
|
* cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
|
|
|
|
* to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
|
|
|
|
*
|
|
|
|
* This is a very specialized primitive, intended only for a few uses in
|
|
|
|
* tracing and other situations requiring manipulation of function
|
|
|
|
* preambles and profiling hooks. The synchronize_rcu_tasks() function
|
|
|
|
* is not (yet) intended for heavy use from multiple CPUs.
|
|
|
|
*
|
|
|
|
* See the description of synchronize_rcu() for more detailed information
|
|
|
|
* on memory ordering guarantees.
|
|
|
|
*/
|
|
|
|
void synchronize_rcu_tasks(void)
|
|
|
|
{
|
|
|
|
synchronize_rcu_tasks_generic(&rcu_tasks);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
|
|
|
|
*
|
|
|
|
* Although the current implementation is guaranteed to wait, it is not
|
|
|
|
* obligated to, for example, if there are no pending callbacks.
|
|
|
|
*/
|
|
|
|
void rcu_barrier_tasks(void)
|
|
|
|
{
|
|
|
|
/* There is only one callback queue, so this is easy. ;-) */
|
|
|
|
synchronize_rcu_tasks();
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
|
|
|
|
|
|
|
|
static int __init rcu_spawn_tasks_kthread(void)
|
|
|
|
{
|
|
|
|
rcu_spawn_tasks_kthread_generic(&rcu_tasks);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
core_initcall(rcu_spawn_tasks_kthread);
|
|
|
|
|
|
|
|
#endif /* #ifdef CONFIG_TASKS_RCU */
|
2020-03-03 12:06:43 +07:00
|
|
|
|
|
|
|
#ifdef CONFIG_TASKS_RUDE_RCU
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// "Rude" variant of Tasks RCU, inspired by Steve Rostedt's trick of
|
|
|
|
// passing an empty function to schedule_on_each_cpu(). This approach
|
|
|
|
// provides an asynchronous call_rcu_tasks_rude() API and batching
|
|
|
|
// of concurrent calls to the synchronous synchronize_rcu_rude() API.
|
|
|
|
// This sends IPIs far and wide and induces otherwise unnecessary context
|
|
|
|
// switches on all online CPUs, whether idle or not.
|
|
|
|
|
|
|
|
// Empty function to allow workqueues to force a context switch.
|
|
|
|
static void rcu_tasks_be_rude(struct work_struct *work)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
// Wait for one rude RCU-tasks grace period.
|
|
|
|
static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp)
|
|
|
|
{
|
|
|
|
schedule_on_each_cpu(rcu_tasks_be_rude);
|
|
|
|
}
|
|
|
|
|
|
|
|
void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func);
|
2020-03-04 06:50:31 +07:00
|
|
|
DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude,
|
|
|
|
"RCU Tasks Rude");
|
2020-03-03 12:06:43 +07:00
|
|
|
|
|
|
|
/**
|
|
|
|
* call_rcu_tasks_rude() - Queue a callback rude task-based grace period
|
|
|
|
* @rhp: structure to be used for queueing the RCU updates.
|
|
|
|
* @func: actual callback function to be invoked after the grace period
|
|
|
|
*
|
|
|
|
* The callback function will be invoked some time after a full grace
|
|
|
|
* period elapses, in other words after all currently executing RCU
|
|
|
|
* read-side critical sections have completed. call_rcu_tasks_rude()
|
|
|
|
* assumes that the read-side critical sections end at context switch,
|
|
|
|
* cond_resched_rcu_qs(), or transition to usermode execution. As such,
|
|
|
|
* there are no read-side primitives analogous to rcu_read_lock() and
|
|
|
|
* rcu_read_unlock() because this primitive is intended to determine
|
|
|
|
* that all tasks have passed through a safe state, not so much for
|
|
|
|
* data-strcuture synchronization.
|
|
|
|
*
|
|
|
|
* See the description of call_rcu() for more detailed information on
|
|
|
|
* memory ordering guarantees.
|
|
|
|
*/
|
|
|
|
void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func)
|
|
|
|
{
|
|
|
|
call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(call_rcu_tasks_rude);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period
|
|
|
|
*
|
|
|
|
* Control will return to the caller some time after a rude rcu-tasks
|
|
|
|
* grace period has elapsed, in other words after all currently
|
|
|
|
* executing rcu-tasks read-side critical sections have elapsed. These
|
|
|
|
* read-side critical sections are delimited by calls to schedule(),
|
|
|
|
* cond_resched_tasks_rcu_qs(), userspace execution, and (in theory,
|
|
|
|
* anyway) cond_resched().
|
|
|
|
*
|
|
|
|
* This is a very specialized primitive, intended only for a few uses in
|
|
|
|
* tracing and other situations requiring manipulation of function preambles
|
|
|
|
* and profiling hooks. The synchronize_rcu_tasks_rude() function is not
|
|
|
|
* (yet) intended for heavy use from multiple CPUs.
|
|
|
|
*
|
|
|
|
* See the description of synchronize_rcu() for more detailed information
|
|
|
|
* on memory ordering guarantees.
|
|
|
|
*/
|
|
|
|
void synchronize_rcu_tasks_rude(void)
|
|
|
|
{
|
|
|
|
synchronize_rcu_tasks_generic(&rcu_tasks_rude);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* rcu_barrier_tasks_rude - Wait for in-flight call_rcu_tasks_rude() callbacks.
|
|
|
|
*
|
|
|
|
* Although the current implementation is guaranteed to wait, it is not
|
|
|
|
* obligated to, for example, if there are no pending callbacks.
|
|
|
|
*/
|
|
|
|
void rcu_barrier_tasks_rude(void)
|
|
|
|
{
|
|
|
|
/* There is only one callback queue, so this is easy. ;-) */
|
|
|
|
synchronize_rcu_tasks_rude();
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(rcu_barrier_tasks_rude);
|
|
|
|
|
|
|
|
static int __init rcu_spawn_tasks_rude_kthread(void)
|
|
|
|
{
|
|
|
|
rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
core_initcall(rcu_spawn_tasks_rude_kthread);
|
|
|
|
|
|
|
|
#endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
|