linux_dsm_epyc7002/drivers/usb/dwc2/hcd.c

3014 lines
84 KiB
C
Raw Normal View History

/*
* hcd.c - DesignWare HS OTG Controller host-mode routines
*
* Copyright (C) 2004-2013 Synopsys, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The names of the above-listed copyright holders may not be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* ALTERNATIVELY, this software may be distributed under the terms of the
* GNU General Public License ("GPL") as published by the Free Software
* Foundation; either version 2 of the License, or (at your option) any
* later version.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This file contains the core HCD code, and implements the Linux hc_driver
* API
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/usb.h>
#include <linux/usb/hcd.h>
#include <linux/usb/ch11.h>
#include "core.h"
#include "hcd.h"
/**
* dwc2_dump_channel_info() - Prints the state of a host channel
*
* @hsotg: Programming view of DWC_otg controller
* @chan: Pointer to the channel to dump
*
* Must be called with interrupt disabled and spinlock held
*
* NOTE: This function will be removed once the peripheral controller code
* is integrated and the driver is stable
*/
static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg,
struct dwc2_host_chan *chan)
{
#ifdef VERBOSE_DEBUG
int num_channels = hsotg->core_params->host_channels;
struct dwc2_qh *qh;
u32 hcchar;
u32 hcsplt;
u32 hctsiz;
u32 hc_dma;
int i;
if (chan == NULL)
return;
hcchar = readl(hsotg->regs + HCCHAR(chan->hc_num));
hcsplt = readl(hsotg->regs + HCSPLT(chan->hc_num));
hctsiz = readl(hsotg->regs + HCTSIZ(chan->hc_num));
hc_dma = readl(hsotg->regs + HCDMA(chan->hc_num));
dev_dbg(hsotg->dev, " Assigned to channel %p:\n", chan);
dev_dbg(hsotg->dev, " hcchar 0x%08x, hcsplt 0x%08x\n",
hcchar, hcsplt);
dev_dbg(hsotg->dev, " hctsiz 0x%08x, hc_dma 0x%08x\n",
hctsiz, hc_dma);
dev_dbg(hsotg->dev, " dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
chan->dev_addr, chan->ep_num, chan->ep_is_in);
dev_dbg(hsotg->dev, " ep_type: %d\n", chan->ep_type);
dev_dbg(hsotg->dev, " max_packet: %d\n", chan->max_packet);
dev_dbg(hsotg->dev, " data_pid_start: %d\n", chan->data_pid_start);
dev_dbg(hsotg->dev, " xfer_started: %d\n", chan->xfer_started);
dev_dbg(hsotg->dev, " halt_status: %d\n", chan->halt_status);
dev_dbg(hsotg->dev, " xfer_buf: %p\n", chan->xfer_buf);
dev_dbg(hsotg->dev, " xfer_dma: %08lx\n",
(unsigned long)chan->xfer_dma);
dev_dbg(hsotg->dev, " xfer_len: %d\n", chan->xfer_len);
dev_dbg(hsotg->dev, " qh: %p\n", chan->qh);
dev_dbg(hsotg->dev, " NP inactive sched:\n");
list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive,
qh_list_entry)
dev_dbg(hsotg->dev, " %p\n", qh);
dev_dbg(hsotg->dev, " NP active sched:\n");
list_for_each_entry(qh, &hsotg->non_periodic_sched_active,
qh_list_entry)
dev_dbg(hsotg->dev, " %p\n", qh);
dev_dbg(hsotg->dev, " Channels:\n");
for (i = 0; i < num_channels; i++) {
struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
dev_dbg(hsotg->dev, " %2d: %p\n", i, chan);
}
#endif /* VERBOSE_DEBUG */
}
/*
* Processes all the URBs in a single list of QHs. Completes them with
* -ETIMEDOUT and frees the QTD.
*
* Must be called with interrupt disabled and spinlock held
*/
static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg,
struct list_head *qh_list)
{
struct dwc2_qh *qh, *qh_tmp;
struct dwc2_qtd *qtd, *qtd_tmp;
list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
qtd_list_entry) {
dwc2_host_complete(hsotg, qtd, -ETIMEDOUT);
dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
}
}
}
static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg,
struct list_head *qh_list)
{
struct dwc2_qtd *qtd, *qtd_tmp;
struct dwc2_qh *qh, *qh_tmp;
unsigned long flags;
if (!qh_list->next)
/* The list hasn't been initialized yet */
return;
spin_lock_irqsave(&hsotg->lock, flags);
/* Ensure there are no QTDs or URBs left */
dwc2_kill_urbs_in_qh_list(hsotg, qh_list);
list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
dwc2_hcd_qh_unlink(hsotg, qh);
/* Free each QTD in the QH's QTD list */
list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
qtd_list_entry)
dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
spin_unlock_irqrestore(&hsotg->lock, flags);
dwc2_hcd_qh_free(hsotg, qh);
spin_lock_irqsave(&hsotg->lock, flags);
}
spin_unlock_irqrestore(&hsotg->lock, flags);
}
/*
* Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
* and periodic schedules. The QTD associated with each URB is removed from
* the schedule and freed. This function may be called when a disconnect is
* detected or when the HCD is being stopped.
*
* Must be called with interrupt disabled and spinlock held
*/
static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg)
{
dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive);
dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active);
dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive);
dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready);
dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned);
dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued);
}
/**
* dwc2_hcd_start() - Starts the HCD when switching to Host mode
*
* @hsotg: Pointer to struct dwc2_hsotg
*/
void dwc2_hcd_start(struct dwc2_hsotg *hsotg)
{
u32 hprt0;
if (hsotg->op_state == OTG_STATE_B_HOST) {
/*
* Reset the port. During a HNP mode switch the reset
* needs to occur within 1ms and have a duration of at
* least 50ms.
*/
hprt0 = dwc2_read_hprt0(hsotg);
hprt0 |= HPRT0_RST;
writel(hprt0, hsotg->regs + HPRT0);
}
queue_delayed_work(hsotg->wq_otg, &hsotg->start_work,
msecs_to_jiffies(50));
}
/* Must be called with interrupt disabled and spinlock held */
static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg)
{
int num_channels = hsotg->core_params->host_channels;
struct dwc2_host_chan *channel;
u32 hcchar;
int i;
if (hsotg->core_params->dma_enable <= 0) {
/* Flush out any channel requests in slave mode */
for (i = 0; i < num_channels; i++) {
channel = hsotg->hc_ptr_array[i];
if (!list_empty(&channel->hc_list_entry))
continue;
hcchar = readl(hsotg->regs + HCCHAR(i));
if (hcchar & HCCHAR_CHENA) {
hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR);
hcchar |= HCCHAR_CHDIS;
writel(hcchar, hsotg->regs + HCCHAR(i));
}
}
}
for (i = 0; i < num_channels; i++) {
channel = hsotg->hc_ptr_array[i];
if (!list_empty(&channel->hc_list_entry))
continue;
hcchar = readl(hsotg->regs + HCCHAR(i));
if (hcchar & HCCHAR_CHENA) {
/* Halt the channel */
hcchar |= HCCHAR_CHDIS;
writel(hcchar, hsotg->regs + HCCHAR(i));
}
dwc2_hc_cleanup(hsotg, channel);
list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list);
/*
* Added for Descriptor DMA to prevent channel double cleanup in
* release_channel_ddma(), which is called from ep_disable when
* device disconnects
*/
channel->qh = NULL;
}
/* All channels have been freed, mark them available */
if (hsotg->core_params->uframe_sched > 0) {
hsotg->available_host_channels =
hsotg->core_params->host_channels;
} else {
hsotg->non_periodic_channels = 0;
hsotg->periodic_channels = 0;
}
}
/**
* dwc2_hcd_disconnect() - Handles disconnect of the HCD
*
* @hsotg: Pointer to struct dwc2_hsotg
*
* Must be called with interrupt disabled and spinlock held
*/
void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg)
{
u32 intr;
/* Set status flags for the hub driver */
hsotg->flags.b.port_connect_status_change = 1;
hsotg->flags.b.port_connect_status = 0;
/*
* Shutdown any transfers in process by clearing the Tx FIFO Empty
* interrupt mask and status bits and disabling subsequent host
* channel interrupts.
*/
intr = readl(hsotg->regs + GINTMSK);
intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT);
writel(intr, hsotg->regs + GINTMSK);
intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT;
writel(intr, hsotg->regs + GINTSTS);
/*
* Turn off the vbus power only if the core has transitioned to device
* mode. If still in host mode, need to keep power on to detect a
* reconnection.
*/
if (dwc2_is_device_mode(hsotg)) {
if (hsotg->op_state != OTG_STATE_A_SUSPEND) {
dev_dbg(hsotg->dev, "Disconnect: PortPower off\n");
writel(0, hsotg->regs + HPRT0);
}
dwc2_disable_host_interrupts(hsotg);
}
/* Respond with an error status to all URBs in the schedule */
dwc2_kill_all_urbs(hsotg);
if (dwc2_is_host_mode(hsotg))
/* Clean up any host channels that were in use */
dwc2_hcd_cleanup_channels(hsotg);
dwc2_host_disconnect(hsotg);
}
/**
* dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
*
* @hsotg: Pointer to struct dwc2_hsotg
*/
static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg)
{
if (hsotg->lx_state == DWC2_L2) {
hsotg->flags.b.port_suspend_change = 1;
usb_hcd_resume_root_hub(hsotg->priv);
} else {
hsotg->flags.b.port_l1_change = 1;
}
}
/**
* dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
*
* @hsotg: Pointer to struct dwc2_hsotg
*
* Must be called with interrupt disabled and spinlock held
*/
void dwc2_hcd_stop(struct dwc2_hsotg *hsotg)
{
dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n");
/*
* The root hub should be disconnected before this function is called.
* The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
* and the QH lists (via ..._hcd_endpoint_disable).
*/
/* Turn off all host-specific interrupts */
dwc2_disable_host_interrupts(hsotg);
/* Turn off the vbus power */
dev_dbg(hsotg->dev, "PortPower off\n");
writel(0, hsotg->regs + HPRT0);
}
static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
struct dwc2_hcd_urb *urb, void **ep_handle,
gfp_t mem_flags)
{
struct dwc2_qtd *qtd;
unsigned long flags;
u32 intr_mask;
int retval;
int dev_speed;
if (!hsotg->flags.b.port_connect_status) {
/* No longer connected */
dev_err(hsotg->dev, "Not connected\n");
return -ENODEV;
}
dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
/* Some configurations cannot support LS traffic on a FS root port */
if ((dev_speed == USB_SPEED_LOW) &&
(hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) &&
(hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) {
u32 hprt0 = readl(hsotg->regs + HPRT0);
u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
if (prtspd == HPRT0_SPD_FULL_SPEED)
return -ENODEV;
}
qtd = kzalloc(sizeof(*qtd), mem_flags);
if (!qtd)
return -ENOMEM;
dwc2_hcd_qtd_init(qtd, urb);
retval = dwc2_hcd_qtd_add(hsotg, qtd, (struct dwc2_qh **)ep_handle,
mem_flags);
if (retval) {
dev_err(hsotg->dev,
"DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
retval);
kfree(qtd);
return retval;
}
intr_mask = readl(hsotg->regs + GINTMSK);
if (!(intr_mask & GINTSTS_SOF)) {
enum dwc2_transaction_type tr_type;
if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK &&
!(qtd->urb->flags & URB_GIVEBACK_ASAP))
/*
* Do not schedule SG transactions until qtd has
* URB_GIVEBACK_ASAP set
*/
return 0;
spin_lock_irqsave(&hsotg->lock, flags);
tr_type = dwc2_hcd_select_transactions(hsotg);
if (tr_type != DWC2_TRANSACTION_NONE)
dwc2_hcd_queue_transactions(hsotg, tr_type);
spin_unlock_irqrestore(&hsotg->lock, flags);
}
return 0;
}
/* Must be called with interrupt disabled and spinlock held */
static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg,
struct dwc2_hcd_urb *urb)
{
struct dwc2_qh *qh;
struct dwc2_qtd *urb_qtd;
urb_qtd = urb->qtd;
if (!urb_qtd) {
dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n");
return -EINVAL;
}
qh = urb_qtd->qh;
if (!qh) {
dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n");
return -EINVAL;
}
urb->priv = NULL;
if (urb_qtd->in_process && qh->channel) {
dwc2_dump_channel_info(hsotg, qh->channel);
/* The QTD is in process (it has been assigned to a channel) */
if (hsotg->flags.b.port_connect_status)
/*
* If still connected (i.e. in host mode), halt the
* channel so it can be used for other transfers. If
* no longer connected, the host registers can't be
* written to halt the channel since the core is in
* device mode.
*/
dwc2_hc_halt(hsotg, qh->channel,
DWC2_HC_XFER_URB_DEQUEUE);
}
/*
* Free the QTD and clean up the associated QH. Leave the QH in the
* schedule if it has any remaining QTDs.
*/
if (hsotg->core_params->dma_desc_enable <= 0) {
u8 in_process = urb_qtd->in_process;
dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
if (in_process) {
dwc2_hcd_qh_deactivate(hsotg, qh, 0);
qh->channel = NULL;
} else if (list_empty(&qh->qtd_list)) {
dwc2_hcd_qh_unlink(hsotg, qh);
}
} else {
dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
}
return 0;
}
/* Must NOT be called with interrupt disabled or spinlock held */
static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg,
struct usb_host_endpoint *ep, int retry)
{
struct dwc2_qtd *qtd, *qtd_tmp;
struct dwc2_qh *qh;
unsigned long flags;
int rc;
spin_lock_irqsave(&hsotg->lock, flags);
qh = ep->hcpriv;
if (!qh) {
rc = -EINVAL;
goto err;
}
while (!list_empty(&qh->qtd_list) && retry--) {
if (retry == 0) {
dev_err(hsotg->dev,
"## timeout in dwc2_hcd_endpoint_disable() ##\n");
rc = -EBUSY;
goto err;
}
spin_unlock_irqrestore(&hsotg->lock, flags);
usleep_range(20000, 40000);
spin_lock_irqsave(&hsotg->lock, flags);
qh = ep->hcpriv;
if (!qh) {
rc = -EINVAL;
goto err;
}
}
dwc2_hcd_qh_unlink(hsotg, qh);
/* Free each QTD in the QH's QTD list */
list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry)
dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
ep->hcpriv = NULL;
spin_unlock_irqrestore(&hsotg->lock, flags);
dwc2_hcd_qh_free(hsotg, qh);
return 0;
err:
ep->hcpriv = NULL;
spin_unlock_irqrestore(&hsotg->lock, flags);
return rc;
}
/* Must be called with interrupt disabled and spinlock held */
static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg,
struct usb_host_endpoint *ep)
{
struct dwc2_qh *qh = ep->hcpriv;
if (!qh)
return -EINVAL;
qh->data_toggle = DWC2_HC_PID_DATA0;
return 0;
}
/*
* Initializes dynamic portions of the DWC_otg HCD state
*
* Must be called with interrupt disabled and spinlock held
*/
static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg)
{
struct dwc2_host_chan *chan, *chan_tmp;
int num_channels;
int i;
hsotg->flags.d32 = 0;
hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active;
if (hsotg->core_params->uframe_sched > 0) {
hsotg->available_host_channels =
hsotg->core_params->host_channels;
} else {
hsotg->non_periodic_channels = 0;
hsotg->periodic_channels = 0;
}
/*
* Put all channels in the free channel list and clean up channel
* states
*/
list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list,
hc_list_entry)
list_del_init(&chan->hc_list_entry);
num_channels = hsotg->core_params->host_channels;
for (i = 0; i < num_channels; i++) {
chan = hsotg->hc_ptr_array[i];
list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
dwc2_hc_cleanup(hsotg, chan);
}
/* Initialize the DWC core for host mode operation */
dwc2_core_host_init(hsotg);
}
static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg,
struct dwc2_host_chan *chan,
struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
{
int hub_addr, hub_port;
chan->do_split = 1;
chan->xact_pos = qtd->isoc_split_pos;
chan->complete_split = qtd->complete_split;
dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
chan->hub_addr = (u8)hub_addr;
chan->hub_port = (u8)hub_port;
}
static void *dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg,
struct dwc2_host_chan *chan,
struct dwc2_qtd *qtd, void *bufptr)
{
struct dwc2_hcd_urb *urb = qtd->urb;
struct dwc2_hcd_iso_packet_desc *frame_desc;
switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) {
case USB_ENDPOINT_XFER_CONTROL:
chan->ep_type = USB_ENDPOINT_XFER_CONTROL;
switch (qtd->control_phase) {
case DWC2_CONTROL_SETUP:
dev_vdbg(hsotg->dev, " Control setup transaction\n");
chan->do_ping = 0;
chan->ep_is_in = 0;
chan->data_pid_start = DWC2_HC_PID_SETUP;
if (hsotg->core_params->dma_enable > 0)
chan->xfer_dma = urb->setup_dma;
else
chan->xfer_buf = urb->setup_packet;
chan->xfer_len = 8;
bufptr = NULL;
break;
case DWC2_CONTROL_DATA:
dev_vdbg(hsotg->dev, " Control data transaction\n");
chan->data_pid_start = qtd->data_toggle;
break;
case DWC2_CONTROL_STATUS:
/*
* Direction is opposite of data direction or IN if no
* data
*/
dev_vdbg(hsotg->dev, " Control status transaction\n");
if (urb->length == 0)
chan->ep_is_in = 1;
else
chan->ep_is_in =
dwc2_hcd_is_pipe_out(&urb->pipe_info);
if (chan->ep_is_in)
chan->do_ping = 0;
chan->data_pid_start = DWC2_HC_PID_DATA1;
chan->xfer_len = 0;
if (hsotg->core_params->dma_enable > 0)
chan->xfer_dma = hsotg->status_buf_dma;
else
chan->xfer_buf = hsotg->status_buf;
bufptr = NULL;
break;
}
break;
case USB_ENDPOINT_XFER_BULK:
chan->ep_type = USB_ENDPOINT_XFER_BULK;
break;
case USB_ENDPOINT_XFER_INT:
chan->ep_type = USB_ENDPOINT_XFER_INT;
break;
case USB_ENDPOINT_XFER_ISOC:
chan->ep_type = USB_ENDPOINT_XFER_ISOC;
if (hsotg->core_params->dma_desc_enable > 0)
break;
frame_desc = &urb->iso_descs[qtd->isoc_frame_index];
frame_desc->status = 0;
if (hsotg->core_params->dma_enable > 0) {
chan->xfer_dma = urb->dma;
chan->xfer_dma += frame_desc->offset +
qtd->isoc_split_offset;
} else {
chan->xfer_buf = urb->buf;
chan->xfer_buf += frame_desc->offset +
qtd->isoc_split_offset;
}
chan->xfer_len = frame_desc->length - qtd->isoc_split_offset;
/* For non-dword aligned buffers */
if (hsotg->core_params->dma_enable > 0 &&
(chan->xfer_dma & 0x3))
bufptr = (u8 *)urb->buf + frame_desc->offset +
qtd->isoc_split_offset;
else
bufptr = NULL;
if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) {
if (chan->xfer_len <= 188)
chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL;
else
chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN;
}
break;
}
return bufptr;
}
static int dwc2_hc_setup_align_buf(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
struct dwc2_host_chan *chan,
struct dwc2_hcd_urb *urb, void *bufptr)
{
u32 buf_size;
struct urb *usb_urb;
struct usb_hcd *hcd;
if (!qh->dw_align_buf) {
if (chan->ep_type != USB_ENDPOINT_XFER_ISOC)
buf_size = hsotg->core_params->max_transfer_size;
else
/* 3072 = 3 max-size Isoc packets */
buf_size = 3072;
qh->dw_align_buf = dma_alloc_coherent(hsotg->dev, buf_size,
&qh->dw_align_buf_dma,
GFP_ATOMIC);
if (!qh->dw_align_buf)
return -ENOMEM;
qh->dw_align_buf_size = buf_size;
}
if (chan->xfer_len) {
dev_vdbg(hsotg->dev, "%s(): non-aligned buffer\n", __func__);
usb_urb = urb->priv;
if (usb_urb) {
if (usb_urb->transfer_flags &
(URB_SETUP_MAP_SINGLE | URB_DMA_MAP_SG |
URB_DMA_MAP_PAGE | URB_DMA_MAP_SINGLE)) {
hcd = dwc2_hsotg_to_hcd(hsotg);
usb_hcd_unmap_urb_for_dma(hcd, usb_urb);
}
if (!chan->ep_is_in)
memcpy(qh->dw_align_buf, bufptr,
chan->xfer_len);
} else {
dev_warn(hsotg->dev, "no URB in dwc2_urb\n");
}
}
chan->align_buf = qh->dw_align_buf_dma;
return 0;
}
/**
* dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
* channel and initializes the host channel to perform the transactions. The
* host channel is removed from the free list.
*
* @hsotg: The HCD state structure
* @qh: Transactions from the first QTD for this QH are selected and assigned
* to a free host channel
*/
static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
{
struct dwc2_host_chan *chan;
struct dwc2_hcd_urb *urb;
struct dwc2_qtd *qtd;
void *bufptr = NULL;
if (dbg_qh(qh))
dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh);
if (list_empty(&qh->qtd_list)) {
dev_dbg(hsotg->dev, "No QTDs in QH list\n");
return -ENOMEM;
}
if (list_empty(&hsotg->free_hc_list)) {
dev_dbg(hsotg->dev, "No free channel to assign\n");
return -ENOMEM;
}
chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan,
hc_list_entry);
/* Remove host channel from free list */
list_del_init(&chan->hc_list_entry);
qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry);
urb = qtd->urb;
qh->channel = chan;
qtd->in_process = 1;
/*
* Use usb_pipedevice to determine device address. This address is
* 0 before the SET_ADDRESS command and the correct address afterward.
*/
chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info);
chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info);
chan->speed = qh->dev_speed;
chan->max_packet = dwc2_max_packet(qh->maxp);
chan->xfer_started = 0;
chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS;
chan->error_state = (qtd->error_count > 0);
chan->halt_on_queue = 0;
chan->halt_pending = 0;
chan->requests = 0;
/*
* The following values may be modified in the transfer type section
* below. The xfer_len value may be reduced when the transfer is
* started to accommodate the max widths of the XferSize and PktCnt
* fields in the HCTSIZn register.
*/
chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0);
if (chan->ep_is_in)
chan->do_ping = 0;
else
chan->do_ping = qh->ping_state;
chan->data_pid_start = qh->data_toggle;
chan->multi_count = 1;
if (urb->actual_length > urb->length &&
!dwc2_hcd_is_pipe_in(&urb->pipe_info))
urb->actual_length = urb->length;
if (hsotg->core_params->dma_enable > 0) {
chan->xfer_dma = urb->dma + urb->actual_length;
/* For non-dword aligned case */
if (hsotg->core_params->dma_desc_enable <= 0 &&
(chan->xfer_dma & 0x3))
bufptr = (u8 *)urb->buf + urb->actual_length;
} else {
chan->xfer_buf = (u8 *)urb->buf + urb->actual_length;
}
chan->xfer_len = urb->length - urb->actual_length;
chan->xfer_count = 0;
/* Set the split attributes if required */
if (qh->do_split)
dwc2_hc_init_split(hsotg, chan, qtd, urb);
else
chan->do_split = 0;
/* Set the transfer attributes */
bufptr = dwc2_hc_init_xfer(hsotg, chan, qtd, bufptr);
/* Non DWORD-aligned buffer case */
if (bufptr) {
dev_vdbg(hsotg->dev, "Non-aligned buffer\n");
if (dwc2_hc_setup_align_buf(hsotg, qh, chan, urb, bufptr)) {
dev_err(hsotg->dev,
"%s: Failed to allocate memory to handle non-dword aligned buffer\n",
__func__);
/* Add channel back to free list */
chan->align_buf = 0;
chan->multi_count = 0;
list_add_tail(&chan->hc_list_entry,
&hsotg->free_hc_list);
qtd->in_process = 0;
qh->channel = NULL;
return -ENOMEM;
}
} else {
chan->align_buf = 0;
}
if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
chan->ep_type == USB_ENDPOINT_XFER_ISOC)
/*
* This value may be modified when the transfer is started
* to reflect the actual transfer length
*/
chan->multi_count = dwc2_hb_mult(qh->maxp);
if (hsotg->core_params->dma_desc_enable > 0)
chan->desc_list_addr = qh->desc_list_dma;
dwc2_hc_init(hsotg, chan);
chan->qh = qh;
return 0;
}
/**
* dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
* schedule and assigns them to available host channels. Called from the HCD
* interrupt handler functions.
*
* @hsotg: The HCD state structure
*
* Return: The types of new transactions that were assigned to host channels
*/
enum dwc2_transaction_type dwc2_hcd_select_transactions(
struct dwc2_hsotg *hsotg)
{
enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE;
struct list_head *qh_ptr;
struct dwc2_qh *qh;
int num_channels;
#ifdef DWC2_DEBUG_SOF
dev_vdbg(hsotg->dev, " Select Transactions\n");
#endif
/* Process entries in the periodic ready list */
qh_ptr = hsotg->periodic_sched_ready.next;
while (qh_ptr != &hsotg->periodic_sched_ready) {
if (list_empty(&hsotg->free_hc_list))
break;
if (hsotg->core_params->uframe_sched > 0) {
if (hsotg->available_host_channels <= 1)
break;
hsotg->available_host_channels--;
}
qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
if (dwc2_assign_and_init_hc(hsotg, qh))
break;
/*
* Move the QH from the periodic ready schedule to the
* periodic assigned schedule
*/
qh_ptr = qh_ptr->next;
list_move(&qh->qh_list_entry, &hsotg->periodic_sched_assigned);
ret_val = DWC2_TRANSACTION_PERIODIC;
}
/*
* Process entries in the inactive portion of the non-periodic
* schedule. Some free host channels may not be used if they are
* reserved for periodic transfers.
*/
num_channels = hsotg->core_params->host_channels;
qh_ptr = hsotg->non_periodic_sched_inactive.next;
while (qh_ptr != &hsotg->non_periodic_sched_inactive) {
if (hsotg->core_params->uframe_sched <= 0 &&
hsotg->non_periodic_channels >= num_channels -
hsotg->periodic_channels)
break;
if (list_empty(&hsotg->free_hc_list))
break;
qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
if (hsotg->core_params->uframe_sched > 0) {
if (hsotg->available_host_channels < 1)
break;
hsotg->available_host_channels--;
}
if (dwc2_assign_and_init_hc(hsotg, qh))
break;
/*
* Move the QH from the non-periodic inactive schedule to the
* non-periodic active schedule
*/
qh_ptr = qh_ptr->next;
list_move(&qh->qh_list_entry,
&hsotg->non_periodic_sched_active);
if (ret_val == DWC2_TRANSACTION_NONE)
ret_val = DWC2_TRANSACTION_NON_PERIODIC;
else
ret_val = DWC2_TRANSACTION_ALL;
if (hsotg->core_params->uframe_sched <= 0)
hsotg->non_periodic_channels++;
}
return ret_val;
}
/**
* dwc2_queue_transaction() - Attempts to queue a single transaction request for
* a host channel associated with either a periodic or non-periodic transfer
*
* @hsotg: The HCD state structure
* @chan: Host channel descriptor associated with either a periodic or
* non-periodic transfer
* @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
* for periodic transfers or the non-periodic Tx FIFO
* for non-periodic transfers
*
* Return: 1 if a request is queued and more requests may be needed to
* complete the transfer, 0 if no more requests are required for this
* transfer, -1 if there is insufficient space in the Tx FIFO
*
* This function assumes that there is space available in the appropriate
* request queue. For an OUT transfer or SETUP transaction in Slave mode,
* it checks whether space is available in the appropriate Tx FIFO.
*
* Must be called with interrupt disabled and spinlock held
*/
static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg,
struct dwc2_host_chan *chan,
u16 fifo_dwords_avail)
{
int retval = 0;
if (hsotg->core_params->dma_enable > 0) {
if (hsotg->core_params->dma_desc_enable > 0) {
if (!chan->xfer_started ||
chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
dwc2_hcd_start_xfer_ddma(hsotg, chan->qh);
chan->qh->ping_state = 0;
}
} else if (!chan->xfer_started) {
dwc2_hc_start_transfer(hsotg, chan);
chan->qh->ping_state = 0;
}
} else if (chan->halt_pending) {
/* Don't queue a request if the channel has been halted */
} else if (chan->halt_on_queue) {
dwc2_hc_halt(hsotg, chan, chan->halt_status);
} else if (chan->do_ping) {
if (!chan->xfer_started)
dwc2_hc_start_transfer(hsotg, chan);
} else if (!chan->ep_is_in ||
chan->data_pid_start == DWC2_HC_PID_SETUP) {
if ((fifo_dwords_avail * 4) >= chan->max_packet) {
if (!chan->xfer_started) {
dwc2_hc_start_transfer(hsotg, chan);
retval = 1;
} else {
retval = dwc2_hc_continue_transfer(hsotg, chan);
}
} else {
retval = -1;
}
} else {
if (!chan->xfer_started) {
dwc2_hc_start_transfer(hsotg, chan);
retval = 1;
} else {
retval = dwc2_hc_continue_transfer(hsotg, chan);
}
}
return retval;
}
/*
* Processes periodic channels for the next frame and queues transactions for
* these channels to the DWC_otg controller. After queueing transactions, the
* Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
* to queue as Periodic Tx FIFO or request queue space becomes available.
* Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
*
* Must be called with interrupt disabled and spinlock held
*/
static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg)
{
struct list_head *qh_ptr;
struct dwc2_qh *qh;
u32 tx_status;
u32 fspcavail;
u32 gintmsk;
int status;
int no_queue_space = 0;
int no_fifo_space = 0;
u32 qspcavail;
if (dbg_perio())
dev_vdbg(hsotg->dev, "Queue periodic transactions\n");
tx_status = readl(hsotg->regs + HPTXSTS);
qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
TXSTS_QSPCAVAIL_SHIFT;
fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
TXSTS_FSPCAVAIL_SHIFT;
if (dbg_perio()) {
dev_vdbg(hsotg->dev, " P Tx Req Queue Space Avail (before queue): %d\n",
qspcavail);
dev_vdbg(hsotg->dev, " P Tx FIFO Space Avail (before queue): %d\n",
fspcavail);
}
qh_ptr = hsotg->periodic_sched_assigned.next;
while (qh_ptr != &hsotg->periodic_sched_assigned) {
tx_status = readl(hsotg->regs + HPTXSTS);
qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
TXSTS_QSPCAVAIL_SHIFT;
if (qspcavail == 0) {
no_queue_space = 1;
break;
}
qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
if (!qh->channel) {
qh_ptr = qh_ptr->next;
continue;
}
/* Make sure EP's TT buffer is clean before queueing qtds */
if (qh->tt_buffer_dirty) {
qh_ptr = qh_ptr->next;
continue;
}
/*
* Set a flag if we're queuing high-bandwidth in slave mode.
* The flag prevents any halts to get into the request queue in
* the middle of multiple high-bandwidth packets getting queued.
*/
if (hsotg->core_params->dma_enable <= 0 &&
qh->channel->multi_count > 1)
hsotg->queuing_high_bandwidth = 1;
fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
TXSTS_FSPCAVAIL_SHIFT;
status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
if (status < 0) {
no_fifo_space = 1;
break;
}
/*
* In Slave mode, stay on the current transfer until there is
* nothing more to do or the high-bandwidth request count is
* reached. In DMA mode, only need to queue one request. The
* controller automatically handles multiple packets for
* high-bandwidth transfers.
*/
if (hsotg->core_params->dma_enable > 0 || status == 0 ||
qh->channel->requests == qh->channel->multi_count) {
qh_ptr = qh_ptr->next;
/*
* Move the QH from the periodic assigned schedule to
* the periodic queued schedule
*/
list_move(&qh->qh_list_entry,
&hsotg->periodic_sched_queued);
/* done queuing high bandwidth */
hsotg->queuing_high_bandwidth = 0;
}
}
if (hsotg->core_params->dma_enable <= 0) {
tx_status = readl(hsotg->regs + HPTXSTS);
qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
TXSTS_QSPCAVAIL_SHIFT;
fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
TXSTS_FSPCAVAIL_SHIFT;
if (dbg_perio()) {
dev_vdbg(hsotg->dev,
" P Tx Req Queue Space Avail (after queue): %d\n",
qspcavail);
dev_vdbg(hsotg->dev,
" P Tx FIFO Space Avail (after queue): %d\n",
fspcavail);
}
if (!list_empty(&hsotg->periodic_sched_assigned) ||
no_queue_space || no_fifo_space) {
/*
* May need to queue more transactions as the request
* queue or Tx FIFO empties. Enable the periodic Tx
* FIFO empty interrupt. (Always use the half-empty
* level to ensure that new requests are loaded as
* soon as possible.)
*/
gintmsk = readl(hsotg->regs + GINTMSK);
gintmsk |= GINTSTS_PTXFEMP;
writel(gintmsk, hsotg->regs + GINTMSK);
} else {
/*
* Disable the Tx FIFO empty interrupt since there are
* no more transactions that need to be queued right
* now. This function is called from interrupt
* handlers to queue more transactions as transfer
* states change.
*/
gintmsk = readl(hsotg->regs + GINTMSK);
gintmsk &= ~GINTSTS_PTXFEMP;
writel(gintmsk, hsotg->regs + GINTMSK);
}
}
}
/*
* Processes active non-periodic channels and queues transactions for these
* channels to the DWC_otg controller. After queueing transactions, the NP Tx
* FIFO Empty interrupt is enabled if there are more transactions to queue as
* NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
* FIFO Empty interrupt is disabled.
*
* Must be called with interrupt disabled and spinlock held
*/
static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg)
{
struct list_head *orig_qh_ptr;
struct dwc2_qh *qh;
u32 tx_status;
u32 qspcavail;
u32 fspcavail;
u32 gintmsk;
int status;
int no_queue_space = 0;
int no_fifo_space = 0;
int more_to_do = 0;
dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n");
tx_status = readl(hsotg->regs + GNPTXSTS);
qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
TXSTS_QSPCAVAIL_SHIFT;
fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
TXSTS_FSPCAVAIL_SHIFT;
dev_vdbg(hsotg->dev, " NP Tx Req Queue Space Avail (before queue): %d\n",
qspcavail);
dev_vdbg(hsotg->dev, " NP Tx FIFO Space Avail (before queue): %d\n",
fspcavail);
/*
* Keep track of the starting point. Skip over the start-of-list
* entry.
*/
if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active)
hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
orig_qh_ptr = hsotg->non_periodic_qh_ptr;
/*
* Process once through the active list or until no more space is
* available in the request queue or the Tx FIFO
*/
do {
tx_status = readl(hsotg->regs + GNPTXSTS);
qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
TXSTS_QSPCAVAIL_SHIFT;
if (hsotg->core_params->dma_enable <= 0 && qspcavail == 0) {
no_queue_space = 1;
break;
}
qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh,
qh_list_entry);
if (!qh->channel)
goto next;
/* Make sure EP's TT buffer is clean before queueing qtds */
if (qh->tt_buffer_dirty)
goto next;
fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
TXSTS_FSPCAVAIL_SHIFT;
status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
if (status > 0) {
more_to_do = 1;
} else if (status < 0) {
no_fifo_space = 1;
break;
}
next:
/* Advance to next QH, skipping start-of-list entry */
hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
if (hsotg->non_periodic_qh_ptr ==
&hsotg->non_periodic_sched_active)
hsotg->non_periodic_qh_ptr =
hsotg->non_periodic_qh_ptr->next;
} while (hsotg->non_periodic_qh_ptr != orig_qh_ptr);
if (hsotg->core_params->dma_enable <= 0) {
tx_status = readl(hsotg->regs + GNPTXSTS);
qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
TXSTS_QSPCAVAIL_SHIFT;
fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
TXSTS_FSPCAVAIL_SHIFT;
dev_vdbg(hsotg->dev,
" NP Tx Req Queue Space Avail (after queue): %d\n",
qspcavail);
dev_vdbg(hsotg->dev,
" NP Tx FIFO Space Avail (after queue): %d\n",
fspcavail);
if (more_to_do || no_queue_space || no_fifo_space) {
/*
* May need to queue more transactions as the request
* queue or Tx FIFO empties. Enable the non-periodic
* Tx FIFO empty interrupt. (Always use the half-empty
* level to ensure that new requests are loaded as
* soon as possible.)
*/
gintmsk = readl(hsotg->regs + GINTMSK);
gintmsk |= GINTSTS_NPTXFEMP;
writel(gintmsk, hsotg->regs + GINTMSK);
} else {
/*
* Disable the Tx FIFO empty interrupt since there are
* no more transactions that need to be queued right
* now. This function is called from interrupt
* handlers to queue more transactions as transfer
* states change.
*/
gintmsk = readl(hsotg->regs + GINTMSK);
gintmsk &= ~GINTSTS_NPTXFEMP;
writel(gintmsk, hsotg->regs + GINTMSK);
}
}
}
/**
* dwc2_hcd_queue_transactions() - Processes the currently active host channels
* and queues transactions for these channels to the DWC_otg controller. Called
* from the HCD interrupt handler functions.
*
* @hsotg: The HCD state structure
* @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
* or both)
*
* Must be called with interrupt disabled and spinlock held
*/
void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
enum dwc2_transaction_type tr_type)
{
#ifdef DWC2_DEBUG_SOF
dev_vdbg(hsotg->dev, "Queue Transactions\n");
#endif
/* Process host channels associated with periodic transfers */
if ((tr_type == DWC2_TRANSACTION_PERIODIC ||
tr_type == DWC2_TRANSACTION_ALL) &&
!list_empty(&hsotg->periodic_sched_assigned))
dwc2_process_periodic_channels(hsotg);
/* Process host channels associated with non-periodic transfers */
if (tr_type == DWC2_TRANSACTION_NON_PERIODIC ||
tr_type == DWC2_TRANSACTION_ALL) {
if (!list_empty(&hsotg->non_periodic_sched_active)) {
dwc2_process_non_periodic_channels(hsotg);
} else {
/*
* Ensure NP Tx FIFO empty interrupt is disabled when
* there are no non-periodic transfers to process
*/
u32 gintmsk = readl(hsotg->regs + GINTMSK);
gintmsk &= ~GINTSTS_NPTXFEMP;
writel(gintmsk, hsotg->regs + GINTMSK);
}
}
}
static void dwc2_conn_id_status_change(struct work_struct *work)
{
struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
wf_otg);
u32 count = 0;
u32 gotgctl;
dev_dbg(hsotg->dev, "%s()\n", __func__);
gotgctl = readl(hsotg->regs + GOTGCTL);
dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl);
dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n",
!!(gotgctl & GOTGCTL_CONID_B));
/* B-Device connector (Device Mode) */
if (gotgctl & GOTGCTL_CONID_B) {
/* Wait for switch to device mode */
dev_dbg(hsotg->dev, "connId B\n");
while (!dwc2_is_device_mode(hsotg)) {
dev_info(hsotg->dev,
"Waiting for Peripheral Mode, Mode=%s\n",
dwc2_is_host_mode(hsotg) ? "Host" :
"Peripheral");
usleep_range(20000, 40000);
if (++count > 250)
break;
}
if (count > 250)
dev_err(hsotg->dev,
"Connection id status change timed out\n");
hsotg->op_state = OTG_STATE_B_PERIPHERAL;
dwc2_core_init(hsotg, false, -1);
dwc2_enable_global_interrupts(hsotg);
s3c_hsotg_core_init_disconnected(hsotg, false);
s3c_hsotg_core_connect(hsotg);
} else {
/* A-Device connector (Host Mode) */
dev_dbg(hsotg->dev, "connId A\n");
while (!dwc2_is_host_mode(hsotg)) {
dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n",
dwc2_is_host_mode(hsotg) ?
"Host" : "Peripheral");
usleep_range(20000, 40000);
if (++count > 250)
break;
}
if (count > 250)
dev_err(hsotg->dev,
"Connection id status change timed out\n");
hsotg->op_state = OTG_STATE_A_HOST;
/* Initialize the Core for Host mode */
dwc2_core_init(hsotg, false, -1);
dwc2_enable_global_interrupts(hsotg);
dwc2_hcd_start(hsotg);
}
}
static void dwc2_wakeup_detected(unsigned long data)
{
struct dwc2_hsotg *hsotg = (struct dwc2_hsotg *)data;
u32 hprt0;
dev_dbg(hsotg->dev, "%s()\n", __func__);
/*
* Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
* so that OPT tests pass with all PHYs.)
*/
hprt0 = dwc2_read_hprt0(hsotg);
dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0);
hprt0 &= ~HPRT0_RES;
writel(hprt0, hsotg->regs + HPRT0);
dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n",
readl(hsotg->regs + HPRT0));
dwc2_hcd_rem_wakeup(hsotg);
/* Change to L0 state */
hsotg->lx_state = DWC2_L0;
}
static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg)
{
struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
return hcd->self.b_hnp_enable;
}
/* Must NOT be called with interrupt disabled or spinlock held */
static void dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
{
unsigned long flags;
u32 hprt0;
u32 pcgctl;
u32 gotgctl;
dev_dbg(hsotg->dev, "%s()\n", __func__);
spin_lock_irqsave(&hsotg->lock, flags);
if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) {
gotgctl = readl(hsotg->regs + GOTGCTL);
gotgctl |= GOTGCTL_HSTSETHNPEN;
writel(gotgctl, hsotg->regs + GOTGCTL);
hsotg->op_state = OTG_STATE_A_SUSPEND;
}
hprt0 = dwc2_read_hprt0(hsotg);
hprt0 |= HPRT0_SUSP;
writel(hprt0, hsotg->regs + HPRT0);
/* Update lx_state */
hsotg->lx_state = DWC2_L2;
/* Suspend the Phy Clock */
pcgctl = readl(hsotg->regs + PCGCTL);
pcgctl |= PCGCTL_STOPPCLK;
writel(pcgctl, hsotg->regs + PCGCTL);
udelay(10);
/* For HNP the bus must be suspended for at least 200ms */
if (dwc2_host_is_b_hnp_enabled(hsotg)) {
pcgctl = readl(hsotg->regs + PCGCTL);
pcgctl &= ~PCGCTL_STOPPCLK;
writel(pcgctl, hsotg->regs + PCGCTL);
spin_unlock_irqrestore(&hsotg->lock, flags);
usleep_range(200000, 250000);
} else {
spin_unlock_irqrestore(&hsotg->lock, flags);
}
}
/* Handles hub class-specific requests */
static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq,
u16 wvalue, u16 windex, char *buf, u16 wlength)
{
struct usb_hub_descriptor *hub_desc;
int retval = 0;
u32 hprt0;
u32 port_status;
u32 speed;
u32 pcgctl;
switch (typereq) {
case ClearHubFeature:
dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue);
switch (wvalue) {
case C_HUB_LOCAL_POWER:
case C_HUB_OVER_CURRENT:
/* Nothing required here */
break;
default:
retval = -EINVAL;
dev_err(hsotg->dev,
"ClearHubFeature request %1xh unknown\n",
wvalue);
}
break;
case ClearPortFeature:
if (wvalue != USB_PORT_FEAT_L1)
if (!windex || windex > 1)
goto error;
switch (wvalue) {
case USB_PORT_FEAT_ENABLE:
dev_dbg(hsotg->dev,
"ClearPortFeature USB_PORT_FEAT_ENABLE\n");
hprt0 = dwc2_read_hprt0(hsotg);
hprt0 |= HPRT0_ENA;
writel(hprt0, hsotg->regs + HPRT0);
break;
case USB_PORT_FEAT_SUSPEND:
dev_dbg(hsotg->dev,
"ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
writel(0, hsotg->regs + PCGCTL);
msleep(USB_RESUME_TIMEOUT);
hprt0 = dwc2_read_hprt0(hsotg);
hprt0 |= HPRT0_RES;
writel(hprt0, hsotg->regs + HPRT0);
hprt0 &= ~HPRT0_SUSP;
usleep_range(100000, 150000);
hprt0 &= ~HPRT0_RES;
writel(hprt0, hsotg->regs + HPRT0);
break;
case USB_PORT_FEAT_POWER:
dev_dbg(hsotg->dev,
"ClearPortFeature USB_PORT_FEAT_POWER\n");
hprt0 = dwc2_read_hprt0(hsotg);
hprt0 &= ~HPRT0_PWR;
writel(hprt0, hsotg->regs + HPRT0);
break;
case USB_PORT_FEAT_INDICATOR:
dev_dbg(hsotg->dev,
"ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
/* Port indicator not supported */
break;
case USB_PORT_FEAT_C_CONNECTION:
/*
* Clears driver's internal Connect Status Change flag
*/
dev_dbg(hsotg->dev,
"ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
hsotg->flags.b.port_connect_status_change = 0;
break;
case USB_PORT_FEAT_C_RESET:
/* Clears driver's internal Port Reset Change flag */
dev_dbg(hsotg->dev,
"ClearPortFeature USB_PORT_FEAT_C_RESET\n");
hsotg->flags.b.port_reset_change = 0;
break;
case USB_PORT_FEAT_C_ENABLE:
/*
* Clears the driver's internal Port Enable/Disable
* Change flag
*/
dev_dbg(hsotg->dev,
"ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
hsotg->flags.b.port_enable_change = 0;
break;
case USB_PORT_FEAT_C_SUSPEND:
/*
* Clears the driver's internal Port Suspend Change
* flag, which is set when resume signaling on the host
* port is complete
*/
dev_dbg(hsotg->dev,
"ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
hsotg->flags.b.port_suspend_change = 0;
break;
case USB_PORT_FEAT_C_PORT_L1:
dev_dbg(hsotg->dev,
"ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
hsotg->flags.b.port_l1_change = 0;
break;
case USB_PORT_FEAT_C_OVER_CURRENT:
dev_dbg(hsotg->dev,
"ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
hsotg->flags.b.port_over_current_change = 0;
break;
default:
retval = -EINVAL;
dev_err(hsotg->dev,
"ClearPortFeature request %1xh unknown or unsupported\n",
wvalue);
}
break;
case GetHubDescriptor:
dev_dbg(hsotg->dev, "GetHubDescriptor\n");
hub_desc = (struct usb_hub_descriptor *)buf;
hub_desc->bDescLength = 9;
hub_desc->bDescriptorType = USB_DT_HUB;
hub_desc->bNbrPorts = 1;
hub_desc->wHubCharacteristics =
cpu_to_le16(HUB_CHAR_COMMON_LPSM |
HUB_CHAR_INDV_PORT_OCPM);
hub_desc->bPwrOn2PwrGood = 1;
hub_desc->bHubContrCurrent = 0;
hub_desc->u.hs.DeviceRemovable[0] = 0;
hub_desc->u.hs.DeviceRemovable[1] = 0xff;
break;
case GetHubStatus:
dev_dbg(hsotg->dev, "GetHubStatus\n");
memset(buf, 0, 4);
break;
case GetPortStatus:
dev_vdbg(hsotg->dev,
"GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex,
hsotg->flags.d32);
if (!windex || windex > 1)
goto error;
port_status = 0;
if (hsotg->flags.b.port_connect_status_change)
port_status |= USB_PORT_STAT_C_CONNECTION << 16;
if (hsotg->flags.b.port_enable_change)
port_status |= USB_PORT_STAT_C_ENABLE << 16;
if (hsotg->flags.b.port_suspend_change)
port_status |= USB_PORT_STAT_C_SUSPEND << 16;
if (hsotg->flags.b.port_l1_change)
port_status |= USB_PORT_STAT_C_L1 << 16;
if (hsotg->flags.b.port_reset_change)
port_status |= USB_PORT_STAT_C_RESET << 16;
if (hsotg->flags.b.port_over_current_change) {
dev_warn(hsotg->dev, "Overcurrent change detected\n");
port_status |= USB_PORT_STAT_C_OVERCURRENT << 16;
}
if (!hsotg->flags.b.port_connect_status) {
/*
* The port is disconnected, which means the core is
* either in device mode or it soon will be. Just
* return 0's for the remainder of the port status
* since the port register can't be read if the core
* is in device mode.
*/
*(__le32 *)buf = cpu_to_le32(port_status);
break;
}
hprt0 = readl(hsotg->regs + HPRT0);
dev_vdbg(hsotg->dev, " HPRT0: 0x%08x\n", hprt0);
if (hprt0 & HPRT0_CONNSTS)
port_status |= USB_PORT_STAT_CONNECTION;
if (hprt0 & HPRT0_ENA)
port_status |= USB_PORT_STAT_ENABLE;
if (hprt0 & HPRT0_SUSP)
port_status |= USB_PORT_STAT_SUSPEND;
if (hprt0 & HPRT0_OVRCURRACT)
port_status |= USB_PORT_STAT_OVERCURRENT;
if (hprt0 & HPRT0_RST)
port_status |= USB_PORT_STAT_RESET;
if (hprt0 & HPRT0_PWR)
port_status |= USB_PORT_STAT_POWER;
speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
if (speed == HPRT0_SPD_HIGH_SPEED)
port_status |= USB_PORT_STAT_HIGH_SPEED;
else if (speed == HPRT0_SPD_LOW_SPEED)
port_status |= USB_PORT_STAT_LOW_SPEED;
if (hprt0 & HPRT0_TSTCTL_MASK)
port_status |= USB_PORT_STAT_TEST;
/* USB_PORT_FEAT_INDICATOR unsupported always 0 */
dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status);
*(__le32 *)buf = cpu_to_le32(port_status);
break;
case SetHubFeature:
dev_dbg(hsotg->dev, "SetHubFeature\n");
/* No HUB features supported */
break;
case SetPortFeature:
dev_dbg(hsotg->dev, "SetPortFeature\n");
if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1))
goto error;
if (!hsotg->flags.b.port_connect_status) {
/*
* The port is disconnected, which means the core is
* either in device mode or it soon will be. Just
* return without doing anything since the port
* register can't be written if the core is in device
* mode.
*/
break;
}
switch (wvalue) {
case USB_PORT_FEAT_SUSPEND:
dev_dbg(hsotg->dev,
"SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
if (windex != hsotg->otg_port)
goto error;
dwc2_port_suspend(hsotg, windex);
break;
case USB_PORT_FEAT_POWER:
dev_dbg(hsotg->dev,
"SetPortFeature - USB_PORT_FEAT_POWER\n");
hprt0 = dwc2_read_hprt0(hsotg);
hprt0 |= HPRT0_PWR;
writel(hprt0, hsotg->regs + HPRT0);
break;
case USB_PORT_FEAT_RESET:
hprt0 = dwc2_read_hprt0(hsotg);
dev_dbg(hsotg->dev,
"SetPortFeature - USB_PORT_FEAT_RESET\n");
pcgctl = readl(hsotg->regs + PCGCTL);
pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK);
writel(pcgctl, hsotg->regs + PCGCTL);
/* ??? Original driver does this */
writel(0, hsotg->regs + PCGCTL);
hprt0 = dwc2_read_hprt0(hsotg);
/* Clear suspend bit if resetting from suspend state */
hprt0 &= ~HPRT0_SUSP;
/*
* When B-Host the Port reset bit is set in the Start
* HCD Callback function, so that the reset is started
* within 1ms of the HNP success interrupt
*/
if (!dwc2_hcd_is_b_host(hsotg)) {
hprt0 |= HPRT0_PWR | HPRT0_RST;
dev_dbg(hsotg->dev,
"In host mode, hprt0=%08x\n", hprt0);
writel(hprt0, hsotg->regs + HPRT0);
}
/* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
usleep_range(50000, 70000);
hprt0 &= ~HPRT0_RST;
writel(hprt0, hsotg->regs + HPRT0);
hsotg->lx_state = DWC2_L0; /* Now back to On state */
break;
case USB_PORT_FEAT_INDICATOR:
dev_dbg(hsotg->dev,
"SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
/* Not supported */
break;
default:
retval = -EINVAL;
dev_err(hsotg->dev,
"SetPortFeature %1xh unknown or unsupported\n",
wvalue);
break;
}
break;
default:
error:
retval = -EINVAL;
dev_dbg(hsotg->dev,
"Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
typereq, windex, wvalue);
break;
}
return retval;
}
static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port)
{
int retval;
if (port != 1)
return -EINVAL;
retval = (hsotg->flags.b.port_connect_status_change ||
hsotg->flags.b.port_reset_change ||
hsotg->flags.b.port_enable_change ||
hsotg->flags.b.port_suspend_change ||
hsotg->flags.b.port_over_current_change);
if (retval) {
dev_dbg(hsotg->dev,
"DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
dev_dbg(hsotg->dev, " port_connect_status_change: %d\n",
hsotg->flags.b.port_connect_status_change);
dev_dbg(hsotg->dev, " port_reset_change: %d\n",
hsotg->flags.b.port_reset_change);
dev_dbg(hsotg->dev, " port_enable_change: %d\n",
hsotg->flags.b.port_enable_change);
dev_dbg(hsotg->dev, " port_suspend_change: %d\n",
hsotg->flags.b.port_suspend_change);
dev_dbg(hsotg->dev, " port_over_current_change: %d\n",
hsotg->flags.b.port_over_current_change);
}
return retval;
}
int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
{
u32 hfnum = readl(hsotg->regs + HFNUM);
#ifdef DWC2_DEBUG_SOF
dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n",
(hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT);
#endif
return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
}
int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg)
{
return hsotg->op_state == OTG_STATE_B_HOST;
}
static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg,
int iso_desc_count,
gfp_t mem_flags)
{
struct dwc2_hcd_urb *urb;
u32 size = sizeof(*urb) + iso_desc_count *
sizeof(struct dwc2_hcd_iso_packet_desc);
urb = kzalloc(size, mem_flags);
if (urb)
urb->packet_count = iso_desc_count;
return urb;
}
static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg,
struct dwc2_hcd_urb *urb, u8 dev_addr,
u8 ep_num, u8 ep_type, u8 ep_dir, u16 mps)
{
if (dbg_perio() ||
ep_type == USB_ENDPOINT_XFER_BULK ||
ep_type == USB_ENDPOINT_XFER_CONTROL)
dev_vdbg(hsotg->dev,
"addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, mps=%d\n",
dev_addr, ep_num, ep_dir, ep_type, mps);
urb->pipe_info.dev_addr = dev_addr;
urb->pipe_info.ep_num = ep_num;
urb->pipe_info.pipe_type = ep_type;
urb->pipe_info.pipe_dir = ep_dir;
urb->pipe_info.mps = mps;
}
/*
* NOTE: This function will be removed once the peripheral controller code
* is integrated and the driver is stable
*/
void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg)
{
#ifdef DEBUG
struct dwc2_host_chan *chan;
struct dwc2_hcd_urb *urb;
struct dwc2_qtd *qtd;
int num_channels;
u32 np_tx_status;
u32 p_tx_status;
int i;
num_channels = hsotg->core_params->host_channels;
dev_dbg(hsotg->dev, "\n");
dev_dbg(hsotg->dev,
"************************************************************\n");
dev_dbg(hsotg->dev, "HCD State:\n");
dev_dbg(hsotg->dev, " Num channels: %d\n", num_channels);
for (i = 0; i < num_channels; i++) {
chan = hsotg->hc_ptr_array[i];
dev_dbg(hsotg->dev, " Channel %d:\n", i);
dev_dbg(hsotg->dev,
" dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
chan->dev_addr, chan->ep_num, chan->ep_is_in);
dev_dbg(hsotg->dev, " speed: %d\n", chan->speed);
dev_dbg(hsotg->dev, " ep_type: %d\n", chan->ep_type);
dev_dbg(hsotg->dev, " max_packet: %d\n", chan->max_packet);
dev_dbg(hsotg->dev, " data_pid_start: %d\n",
chan->data_pid_start);
dev_dbg(hsotg->dev, " multi_count: %d\n", chan->multi_count);
dev_dbg(hsotg->dev, " xfer_started: %d\n",
chan->xfer_started);
dev_dbg(hsotg->dev, " xfer_buf: %p\n", chan->xfer_buf);
dev_dbg(hsotg->dev, " xfer_dma: %08lx\n",
(unsigned long)chan->xfer_dma);
dev_dbg(hsotg->dev, " xfer_len: %d\n", chan->xfer_len);
dev_dbg(hsotg->dev, " xfer_count: %d\n", chan->xfer_count);
dev_dbg(hsotg->dev, " halt_on_queue: %d\n",
chan->halt_on_queue);
dev_dbg(hsotg->dev, " halt_pending: %d\n",
chan->halt_pending);
dev_dbg(hsotg->dev, " halt_status: %d\n", chan->halt_status);
dev_dbg(hsotg->dev, " do_split: %d\n", chan->do_split);
dev_dbg(hsotg->dev, " complete_split: %d\n",
chan->complete_split);
dev_dbg(hsotg->dev, " hub_addr: %d\n", chan->hub_addr);
dev_dbg(hsotg->dev, " hub_port: %d\n", chan->hub_port);
dev_dbg(hsotg->dev, " xact_pos: %d\n", chan->xact_pos);
dev_dbg(hsotg->dev, " requests: %d\n", chan->requests);
dev_dbg(hsotg->dev, " qh: %p\n", chan->qh);
if (chan->xfer_started) {
u32 hfnum, hcchar, hctsiz, hcint, hcintmsk;
hfnum = readl(hsotg->regs + HFNUM);
hcchar = readl(hsotg->regs + HCCHAR(i));
hctsiz = readl(hsotg->regs + HCTSIZ(i));
hcint = readl(hsotg->regs + HCINT(i));
hcintmsk = readl(hsotg->regs + HCINTMSK(i));
dev_dbg(hsotg->dev, " hfnum: 0x%08x\n", hfnum);
dev_dbg(hsotg->dev, " hcchar: 0x%08x\n", hcchar);
dev_dbg(hsotg->dev, " hctsiz: 0x%08x\n", hctsiz);
dev_dbg(hsotg->dev, " hcint: 0x%08x\n", hcint);
dev_dbg(hsotg->dev, " hcintmsk: 0x%08x\n", hcintmsk);
}
if (!(chan->xfer_started && chan->qh))
continue;
list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) {
if (!qtd->in_process)
break;
urb = qtd->urb;
dev_dbg(hsotg->dev, " URB Info:\n");
dev_dbg(hsotg->dev, " qtd: %p, urb: %p\n",
qtd, urb);
if (urb) {
dev_dbg(hsotg->dev,
" Dev: %d, EP: %d %s\n",
dwc2_hcd_get_dev_addr(&urb->pipe_info),
dwc2_hcd_get_ep_num(&urb->pipe_info),
dwc2_hcd_is_pipe_in(&urb->pipe_info) ?
"IN" : "OUT");
dev_dbg(hsotg->dev,
" Max packet size: %d\n",
dwc2_hcd_get_mps(&urb->pipe_info));
dev_dbg(hsotg->dev,
" transfer_buffer: %p\n",
urb->buf);
dev_dbg(hsotg->dev,
" transfer_dma: %08lx\n",
(unsigned long)urb->dma);
dev_dbg(hsotg->dev,
" transfer_buffer_length: %d\n",
urb->length);
dev_dbg(hsotg->dev, " actual_length: %d\n",
urb->actual_length);
}
}
}
dev_dbg(hsotg->dev, " non_periodic_channels: %d\n",
hsotg->non_periodic_channels);
dev_dbg(hsotg->dev, " periodic_channels: %d\n",
hsotg->periodic_channels);
dev_dbg(hsotg->dev, " periodic_usecs: %d\n", hsotg->periodic_usecs);
np_tx_status = readl(hsotg->regs + GNPTXSTS);
dev_dbg(hsotg->dev, " NP Tx Req Queue Space Avail: %d\n",
(np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
dev_dbg(hsotg->dev, " NP Tx FIFO Space Avail: %d\n",
(np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
p_tx_status = readl(hsotg->regs + HPTXSTS);
dev_dbg(hsotg->dev, " P Tx Req Queue Space Avail: %d\n",
(p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
dev_dbg(hsotg->dev, " P Tx FIFO Space Avail: %d\n",
(p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
dwc2_hcd_dump_frrem(hsotg);
dwc2_dump_global_registers(hsotg);
dwc2_dump_host_registers(hsotg);
dev_dbg(hsotg->dev,
"************************************************************\n");
dev_dbg(hsotg->dev, "\n");
#endif
}
/*
* NOTE: This function will be removed once the peripheral controller code
* is integrated and the driver is stable
*/
void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg)
{
#ifdef DWC2_DUMP_FRREM
dev_dbg(hsotg->dev, "Frame remaining at SOF:\n");
dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
hsotg->frrem_samples, hsotg->frrem_accum,
hsotg->frrem_samples > 0 ?
hsotg->frrem_accum / hsotg->frrem_samples : 0);
dev_dbg(hsotg->dev, "\n");
dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 7):\n");
dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
hsotg->hfnum_7_samples,
hsotg->hfnum_7_frrem_accum,
hsotg->hfnum_7_samples > 0 ?
hsotg->hfnum_7_frrem_accum / hsotg->hfnum_7_samples : 0);
dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 0):\n");
dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
hsotg->hfnum_0_samples,
hsotg->hfnum_0_frrem_accum,
hsotg->hfnum_0_samples > 0 ?
hsotg->hfnum_0_frrem_accum / hsotg->hfnum_0_samples : 0);
dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 1-6):\n");
dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
hsotg->hfnum_other_samples,
hsotg->hfnum_other_frrem_accum,
hsotg->hfnum_other_samples > 0 ?
hsotg->hfnum_other_frrem_accum / hsotg->hfnum_other_samples :
0);
dev_dbg(hsotg->dev, "\n");
dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 7):\n");
dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
hsotg->hfnum_7_samples_a, hsotg->hfnum_7_frrem_accum_a,
hsotg->hfnum_7_samples_a > 0 ?
hsotg->hfnum_7_frrem_accum_a / hsotg->hfnum_7_samples_a : 0);
dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 0):\n");
dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
hsotg->hfnum_0_samples_a, hsotg->hfnum_0_frrem_accum_a,
hsotg->hfnum_0_samples_a > 0 ?
hsotg->hfnum_0_frrem_accum_a / hsotg->hfnum_0_samples_a : 0);
dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 1-6):\n");
dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
hsotg->hfnum_other_samples_a, hsotg->hfnum_other_frrem_accum_a,
hsotg->hfnum_other_samples_a > 0 ?
hsotg->hfnum_other_frrem_accum_a / hsotg->hfnum_other_samples_a
: 0);
dev_dbg(hsotg->dev, "\n");
dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 7):\n");
dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
hsotg->hfnum_7_samples_b, hsotg->hfnum_7_frrem_accum_b,
hsotg->hfnum_7_samples_b > 0 ?
hsotg->hfnum_7_frrem_accum_b / hsotg->hfnum_7_samples_b : 0);
dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 0):\n");
dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
hsotg->hfnum_0_samples_b, hsotg->hfnum_0_frrem_accum_b,
(hsotg->hfnum_0_samples_b > 0) ?
hsotg->hfnum_0_frrem_accum_b / hsotg->hfnum_0_samples_b : 0);
dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 1-6):\n");
dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
hsotg->hfnum_other_samples_b, hsotg->hfnum_other_frrem_accum_b,
(hsotg->hfnum_other_samples_b > 0) ?
hsotg->hfnum_other_frrem_accum_b / hsotg->hfnum_other_samples_b
: 0);
#endif
}
struct wrapper_priv_data {
struct dwc2_hsotg *hsotg;
};
/* Gets the dwc2_hsotg from a usb_hcd */
static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd)
{
struct wrapper_priv_data *p;
p = (struct wrapper_priv_data *) &hcd->hcd_priv;
return p->hsotg;
}
static int _dwc2_hcd_start(struct usb_hcd *hcd);
void dwc2_host_start(struct dwc2_hsotg *hsotg)
{
struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg);
_dwc2_hcd_start(hcd);
}
void dwc2_host_disconnect(struct dwc2_hsotg *hsotg)
{
struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
hcd->self.is_b_host = 0;
}
void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context, int *hub_addr,
int *hub_port)
{
struct urb *urb = context;
if (urb->dev->tt)
*hub_addr = urb->dev->tt->hub->devnum;
else
*hub_addr = 0;
*hub_port = urb->dev->ttport;
}
int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context)
{
struct urb *urb = context;
return urb->dev->speed;
}
static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
struct urb *urb)
{
struct usb_bus *bus = hcd_to_bus(hcd);
if (urb->interval)
bus->bandwidth_allocated += bw / urb->interval;
if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
bus->bandwidth_isoc_reqs++;
else
bus->bandwidth_int_reqs++;
}
static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
struct urb *urb)
{
struct usb_bus *bus = hcd_to_bus(hcd);
if (urb->interval)
bus->bandwidth_allocated -= bw / urb->interval;
if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
bus->bandwidth_isoc_reqs--;
else
bus->bandwidth_int_reqs--;
}
/*
* Sets the final status of an URB and returns it to the upper layer. Any
* required cleanup of the URB is performed.
*
* Must be called with interrupt disabled and spinlock held
*/
void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
int status)
{
struct urb *urb;
int i;
if (!qtd) {
dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__);
return;
}
if (!qtd->urb) {
dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__);
return;
}
urb = qtd->urb->priv;
if (!urb) {
dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__);
return;
}
urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb);
if (dbg_urb(urb))
dev_vdbg(hsotg->dev,
"%s: urb %p device %d ep %d-%s status %d actual %d\n",
__func__, urb, usb_pipedevice(urb->pipe),
usb_pipeendpoint(urb->pipe),
usb_pipein(urb->pipe) ? "IN" : "OUT", status,
urb->actual_length);
if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) {
for (i = 0; i < urb->number_of_packets; i++)
dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n",
i, urb->iso_frame_desc[i].status);
}
if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb);
for (i = 0; i < urb->number_of_packets; ++i) {
urb->iso_frame_desc[i].actual_length =
dwc2_hcd_urb_get_iso_desc_actual_length(
qtd->urb, i);
urb->iso_frame_desc[i].status =
dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i);
}
}
urb->status = status;
if (!status) {
if ((urb->transfer_flags & URB_SHORT_NOT_OK) &&
urb->actual_length < urb->transfer_buffer_length)
urb->status = -EREMOTEIO;
}
if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
struct usb_host_endpoint *ep = urb->ep;
if (ep)
dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg),
dwc2_hcd_get_ep_bandwidth(hsotg, ep),
urb);
}
usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb);
urb->hcpriv = NULL;
kfree(qtd->urb);
qtd->urb = NULL;
spin_unlock(&hsotg->lock);
usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status);
spin_lock(&hsotg->lock);
}
/*
* Work queue function for starting the HCD when A-Cable is connected
*/
static void dwc2_hcd_start_func(struct work_struct *work)
{
struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
start_work.work);
dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg);
dwc2_host_start(hsotg);
}
/*
* Reset work queue function
*/
static void dwc2_hcd_reset_func(struct work_struct *work)
{
struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
reset_work.work);
u32 hprt0;
dev_dbg(hsotg->dev, "USB RESET function called\n");
hprt0 = dwc2_read_hprt0(hsotg);
hprt0 &= ~HPRT0_RST;
writel(hprt0, hsotg->regs + HPRT0);
hsotg->flags.b.port_reset_change = 1;
}
/*
* =========================================================================
* Linux HC Driver Functions
* =========================================================================
*/
/*
* Initializes the DWC_otg controller and its root hub and prepares it for host
* mode operation. Activates the root port. Returns 0 on success and a negative
* error code on failure.
*/
static int _dwc2_hcd_start(struct usb_hcd *hcd)
{
struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
struct usb_bus *bus = hcd_to_bus(hcd);
unsigned long flags;
dev_dbg(hsotg->dev, "DWC OTG HCD START\n");
spin_lock_irqsave(&hsotg->lock, flags);
hcd->state = HC_STATE_RUNNING;
if (dwc2_is_device_mode(hsotg)) {
spin_unlock_irqrestore(&hsotg->lock, flags);
return 0; /* why 0 ?? */
}
dwc2_hcd_reinit(hsotg);
/* Initialize and connect root hub if one is not already attached */
if (bus->root_hub) {
dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n");
/* Inform the HUB driver to resume */
usb_hcd_resume_root_hub(hcd);
}
spin_unlock_irqrestore(&hsotg->lock, flags);
return 0;
}
/*
* Halts the DWC_otg host mode operations in a clean manner. USB transfers are
* stopped.
*/
static void _dwc2_hcd_stop(struct usb_hcd *hcd)
{
struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
unsigned long flags;
spin_lock_irqsave(&hsotg->lock, flags);
dwc2_hcd_stop(hsotg);
spin_unlock_irqrestore(&hsotg->lock, flags);
usleep_range(1000, 3000);
}
/* Returns the current frame number */
static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd)
{
struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
return dwc2_hcd_get_frame_number(hsotg);
}
static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb,
char *fn_name)
{
#ifdef VERBOSE_DEBUG
struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
char *pipetype;
char *speed;
dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb);
dev_vdbg(hsotg->dev, " Device address: %d\n",
usb_pipedevice(urb->pipe));
dev_vdbg(hsotg->dev, " Endpoint: %d, %s\n",
usb_pipeendpoint(urb->pipe),
usb_pipein(urb->pipe) ? "IN" : "OUT");
switch (usb_pipetype(urb->pipe)) {
case PIPE_CONTROL:
pipetype = "CONTROL";
break;
case PIPE_BULK:
pipetype = "BULK";
break;
case PIPE_INTERRUPT:
pipetype = "INTERRUPT";
break;
case PIPE_ISOCHRONOUS:
pipetype = "ISOCHRONOUS";
break;
default:
pipetype = "UNKNOWN";
break;
}
dev_vdbg(hsotg->dev, " Endpoint type: %s %s (%s)\n", pipetype,
usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ?
"IN" : "OUT");
switch (urb->dev->speed) {
case USB_SPEED_HIGH:
speed = "HIGH";
break;
case USB_SPEED_FULL:
speed = "FULL";
break;
case USB_SPEED_LOW:
speed = "LOW";
break;
default:
speed = "UNKNOWN";
break;
}
dev_vdbg(hsotg->dev, " Speed: %s\n", speed);
dev_vdbg(hsotg->dev, " Max packet size: %d\n",
usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
dev_vdbg(hsotg->dev, " Data buffer length: %d\n",
urb->transfer_buffer_length);
dev_vdbg(hsotg->dev, " Transfer buffer: %p, Transfer DMA: %08lx\n",
urb->transfer_buffer, (unsigned long)urb->transfer_dma);
dev_vdbg(hsotg->dev, " Setup buffer: %p, Setup DMA: %08lx\n",
urb->setup_packet, (unsigned long)urb->setup_dma);
dev_vdbg(hsotg->dev, " Interval: %d\n", urb->interval);
if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
int i;
for (i = 0; i < urb->number_of_packets; i++) {
dev_vdbg(hsotg->dev, " ISO Desc %d:\n", i);
dev_vdbg(hsotg->dev, " offset: %d, length %d\n",
urb->iso_frame_desc[i].offset,
urb->iso_frame_desc[i].length);
}
}
#endif
}
/*
* Starts processing a USB transfer request specified by a USB Request Block
* (URB). mem_flags indicates the type of memory allocation to use while
* processing this URB.
*/
static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
gfp_t mem_flags)
{
struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
struct usb_host_endpoint *ep = urb->ep;
struct dwc2_hcd_urb *dwc2_urb;
int i;
int retval;
int alloc_bandwidth = 0;
u8 ep_type = 0;
u32 tflags = 0;
void *buf;
unsigned long flags;
if (dbg_urb(urb)) {
dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n");
dwc2_dump_urb_info(hcd, urb, "urb_enqueue");
}
if (ep == NULL)
return -EINVAL;
if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
spin_lock_irqsave(&hsotg->lock, flags);
if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep))
alloc_bandwidth = 1;
spin_unlock_irqrestore(&hsotg->lock, flags);
}
switch (usb_pipetype(urb->pipe)) {
case PIPE_CONTROL:
ep_type = USB_ENDPOINT_XFER_CONTROL;
break;
case PIPE_ISOCHRONOUS:
ep_type = USB_ENDPOINT_XFER_ISOC;
break;
case PIPE_BULK:
ep_type = USB_ENDPOINT_XFER_BULK;
break;
case PIPE_INTERRUPT:
ep_type = USB_ENDPOINT_XFER_INT;
break;
default:
dev_warn(hsotg->dev, "Wrong ep type\n");
}
dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets,
mem_flags);
if (!dwc2_urb)
return -ENOMEM;
dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe),
usb_pipeendpoint(urb->pipe), ep_type,
usb_pipein(urb->pipe),
usb_maxpacket(urb->dev, urb->pipe,
!(usb_pipein(urb->pipe))));
buf = urb->transfer_buffer;
if (hcd->self.uses_dma) {
if (!buf && (urb->transfer_dma & 3)) {
dev_err(hsotg->dev,
"%s: unaligned transfer with no transfer_buffer",
__func__);
retval = -EINVAL;
goto fail1;
}
}
if (!(urb->transfer_flags & URB_NO_INTERRUPT))
tflags |= URB_GIVEBACK_ASAP;
if (urb->transfer_flags & URB_ZERO_PACKET)
tflags |= URB_SEND_ZERO_PACKET;
dwc2_urb->priv = urb;
dwc2_urb->buf = buf;
dwc2_urb->dma = urb->transfer_dma;
dwc2_urb->length = urb->transfer_buffer_length;
dwc2_urb->setup_packet = urb->setup_packet;
dwc2_urb->setup_dma = urb->setup_dma;
dwc2_urb->flags = tflags;
dwc2_urb->interval = urb->interval;
dwc2_urb->status = -EINPROGRESS;
for (i = 0; i < urb->number_of_packets; ++i)
dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i,
urb->iso_frame_desc[i].offset,
urb->iso_frame_desc[i].length);
urb->hcpriv = dwc2_urb;
spin_lock_irqsave(&hsotg->lock, flags);
retval = usb_hcd_link_urb_to_ep(hcd, urb);
spin_unlock_irqrestore(&hsotg->lock, flags);
if (retval)
goto fail1;
retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, &ep->hcpriv, mem_flags);
if (retval)
goto fail2;
if (alloc_bandwidth) {
spin_lock_irqsave(&hsotg->lock, flags);
dwc2_allocate_bus_bandwidth(hcd,
dwc2_hcd_get_ep_bandwidth(hsotg, ep),
urb);
spin_unlock_irqrestore(&hsotg->lock, flags);
}
return 0;
fail2:
spin_lock_irqsave(&hsotg->lock, flags);
dwc2_urb->priv = NULL;
usb_hcd_unlink_urb_from_ep(hcd, urb);
spin_unlock_irqrestore(&hsotg->lock, flags);
fail1:
urb->hcpriv = NULL;
kfree(dwc2_urb);
return retval;
}
/*
* Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
*/
static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
int status)
{
struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
int rc;
unsigned long flags;
dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n");
dwc2_dump_urb_info(hcd, urb, "urb_dequeue");
spin_lock_irqsave(&hsotg->lock, flags);
rc = usb_hcd_check_unlink_urb(hcd, urb, status);
if (rc)
goto out;
if (!urb->hcpriv) {
dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n");
goto out;
}
rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv);
usb_hcd_unlink_urb_from_ep(hcd, urb);
kfree(urb->hcpriv);
urb->hcpriv = NULL;
/* Higher layer software sets URB status */
spin_unlock(&hsotg->lock);
usb_hcd_giveback_urb(hcd, urb, status);
spin_lock(&hsotg->lock);
dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n");
dev_dbg(hsotg->dev, " urb->status = %d\n", urb->status);
out:
spin_unlock_irqrestore(&hsotg->lock, flags);
return rc;
}
/*
* Frees resources in the DWC_otg controller related to a given endpoint. Also
* clears state in the HCD related to the endpoint. Any URBs for the endpoint
* must already be dequeued.
*/
static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd,
struct usb_host_endpoint *ep)
{
struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
dev_dbg(hsotg->dev,
"DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
ep->desc.bEndpointAddress, ep->hcpriv);
dwc2_hcd_endpoint_disable(hsotg, ep, 250);
}
/*
* Resets endpoint specific parameter values, in current version used to reset
* the data toggle (as a WA). This function can be called from usb_clear_halt
* routine.
*/
static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd,
struct usb_host_endpoint *ep)
{
struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
unsigned long flags;
dev_dbg(hsotg->dev,
"DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
ep->desc.bEndpointAddress);
spin_lock_irqsave(&hsotg->lock, flags);
dwc2_hcd_endpoint_reset(hsotg, ep);
spin_unlock_irqrestore(&hsotg->lock, flags);
}
/*
* Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
* there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
* interrupt.
*
* This function is called by the USB core when an interrupt occurs
*/
static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd)
{
struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
return dwc2_handle_hcd_intr(hsotg);
}
/*
* Creates Status Change bitmap for the root hub and root port. The bitmap is
* returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
* is the status change indicator for the single root port. Returns 1 if either
* change indicator is 1, otherwise returns 0.
*/
static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
{
struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1;
return buf[0] != 0;
}
/* Handles hub class-specific requests */
static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue,
u16 windex, char *buf, u16 wlength)
{
int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq,
wvalue, windex, buf, wlength);
return retval;
}
/* Handles hub TT buffer clear completions */
static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd,
struct usb_host_endpoint *ep)
{
struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
struct dwc2_qh *qh;
unsigned long flags;
qh = ep->hcpriv;
if (!qh)
return;
spin_lock_irqsave(&hsotg->lock, flags);
qh->tt_buffer_dirty = 0;
if (hsotg->flags.b.port_connect_status)
dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL);
spin_unlock_irqrestore(&hsotg->lock, flags);
}
static struct hc_driver dwc2_hc_driver = {
.description = "dwc2_hsotg",
.product_desc = "DWC OTG Controller",
.hcd_priv_size = sizeof(struct wrapper_priv_data),
.irq = _dwc2_hcd_irq,
.flags = HCD_MEMORY | HCD_USB2,
.start = _dwc2_hcd_start,
.stop = _dwc2_hcd_stop,
.urb_enqueue = _dwc2_hcd_urb_enqueue,
.urb_dequeue = _dwc2_hcd_urb_dequeue,
.endpoint_disable = _dwc2_hcd_endpoint_disable,
.endpoint_reset = _dwc2_hcd_endpoint_reset,
.get_frame_number = _dwc2_hcd_get_frame_number,
.hub_status_data = _dwc2_hcd_hub_status_data,
.hub_control = _dwc2_hcd_hub_control,
.clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete,
};
/*
* Frees secondary storage associated with the dwc2_hsotg structure contained
* in the struct usb_hcd field
*/
static void dwc2_hcd_free(struct dwc2_hsotg *hsotg)
{
u32 ahbcfg;
u32 dctl;
int i;
dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n");
/* Free memory for QH/QTD lists */
dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive);
dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active);
dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive);
dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready);
dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned);
dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued);
/* Free memory for the host channels */
for (i = 0; i < MAX_EPS_CHANNELS; i++) {
struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
if (chan != NULL) {
dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n",
i, chan);
hsotg->hc_ptr_array[i] = NULL;
kfree(chan);
}
}
if (hsotg->core_params->dma_enable > 0) {
if (hsotg->status_buf) {
dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE,
hsotg->status_buf,
hsotg->status_buf_dma);
hsotg->status_buf = NULL;
}
} else {
kfree(hsotg->status_buf);
hsotg->status_buf = NULL;
}
ahbcfg = readl(hsotg->regs + GAHBCFG);
/* Disable all interrupts */
ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
writel(ahbcfg, hsotg->regs + GAHBCFG);
writel(0, hsotg->regs + GINTMSK);
if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) {
dctl = readl(hsotg->regs + DCTL);
dctl |= DCTL_SFTDISCON;
writel(dctl, hsotg->regs + DCTL);
}
if (hsotg->wq_otg) {
if (!cancel_work_sync(&hsotg->wf_otg))
flush_workqueue(hsotg->wq_otg);
destroy_workqueue(hsotg->wq_otg);
}
kfree(hsotg->core_params);
hsotg->core_params = NULL;
del_timer(&hsotg->wkp_timer);
}
static void dwc2_hcd_release(struct dwc2_hsotg *hsotg)
{
/* Turn off all host-specific interrupts */
dwc2_disable_host_interrupts(hsotg);
dwc2_hcd_free(hsotg);
}
/*
* Sets all parameters to the given value.
*
* Assumes that the dwc2_core_params struct contains only integers.
*/
void dwc2_set_all_params(struct dwc2_core_params *params, int value)
{
int *p = (int *)params;
size_t size = sizeof(*params) / sizeof(*p);
int i;
for (i = 0; i < size; i++)
p[i] = value;
}
EXPORT_SYMBOL_GPL(dwc2_set_all_params);
/*
* Initializes the HCD. This function allocates memory for and initializes the
* static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
* USB bus with the core and calls the hc_driver->start() function. It returns
* a negative error on failure.
*/
int dwc2_hcd_init(struct dwc2_hsotg *hsotg, int irq,
const struct dwc2_core_params *params)
{
struct usb_hcd *hcd;
struct dwc2_host_chan *channel;
u32 hcfg;
int i, num_channels;
int retval;
if (usb_disabled())
return -ENODEV;
dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n");
/* Detect config values from hardware */
retval = dwc2_get_hwparams(hsotg);
if (retval)
return retval;
retval = -ENOMEM;
hcfg = readl(hsotg->regs + HCFG);
dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg);
#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
hsotg->frame_num_array = kzalloc(sizeof(*hsotg->frame_num_array) *
FRAME_NUM_ARRAY_SIZE, GFP_KERNEL);
if (!hsotg->frame_num_array)
goto error1;
hsotg->last_frame_num_array = kzalloc(
sizeof(*hsotg->last_frame_num_array) *
FRAME_NUM_ARRAY_SIZE, GFP_KERNEL);
if (!hsotg->last_frame_num_array)
goto error1;
hsotg->last_frame_num = HFNUM_MAX_FRNUM;
#endif
hsotg->core_params = kzalloc(sizeof(*hsotg->core_params), GFP_KERNEL);
if (!hsotg->core_params)
goto error1;
dwc2_set_all_params(hsotg->core_params, -1);
/* Validate parameter values */
dwc2_set_parameters(hsotg, params);
/* Check if the bus driver or platform code has setup a dma_mask */
if (hsotg->core_params->dma_enable > 0 &&
hsotg->dev->dma_mask == NULL) {
dev_warn(hsotg->dev,
"dma_mask not set, disabling DMA\n");
hsotg->core_params->dma_enable = 0;
hsotg->core_params->dma_desc_enable = 0;
}
/* Set device flags indicating whether the HCD supports DMA */
if (hsotg->core_params->dma_enable > 0) {
if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
dev_warn(hsotg->dev, "can't set DMA mask\n");
if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
dev_warn(hsotg->dev, "can't set coherent DMA mask\n");
}
hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev));
if (!hcd)
goto error1;
if (hsotg->core_params->dma_enable <= 0)
hcd->self.uses_dma = 0;
hcd->has_tt = 1;
((struct wrapper_priv_data *) &hcd->hcd_priv)->hsotg = hsotg;
hsotg->priv = hcd;
/*
* Disable the global interrupt until all the interrupt handlers are
* installed
*/
dwc2_disable_global_interrupts(hsotg);
/* Initialize the DWC_otg core, and select the Phy type */
retval = dwc2_core_init(hsotg, true, irq);
if (retval)
goto error2;
/* Create new workqueue and init work */
retval = -ENOMEM;
hsotg->wq_otg = create_singlethread_workqueue("dwc2");
if (!hsotg->wq_otg) {
dev_err(hsotg->dev, "Failed to create workqueue\n");
goto error2;
}
INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change);
setup_timer(&hsotg->wkp_timer, dwc2_wakeup_detected,
(unsigned long)hsotg);
/* Initialize the non-periodic schedule */
INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive);
INIT_LIST_HEAD(&hsotg->non_periodic_sched_active);
/* Initialize the periodic schedule */
INIT_LIST_HEAD(&hsotg->periodic_sched_inactive);
INIT_LIST_HEAD(&hsotg->periodic_sched_ready);
INIT_LIST_HEAD(&hsotg->periodic_sched_assigned);
INIT_LIST_HEAD(&hsotg->periodic_sched_queued);
/*
* Create a host channel descriptor for each host channel implemented
* in the controller. Initialize the channel descriptor array.
*/
INIT_LIST_HEAD(&hsotg->free_hc_list);
num_channels = hsotg->core_params->host_channels;
memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array));
for (i = 0; i < num_channels; i++) {
channel = kzalloc(sizeof(*channel), GFP_KERNEL);
if (channel == NULL)
goto error3;
channel->hc_num = i;
hsotg->hc_ptr_array[i] = channel;
}
if (hsotg->core_params->uframe_sched > 0)
dwc2_hcd_init_usecs(hsotg);
/* Initialize hsotg start work */
INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func);
/* Initialize port reset work */
INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func);
/*
* Allocate space for storing data on status transactions. Normally no
* data is sent, but this space acts as a bit bucket. This must be
* done after usb_add_hcd since that function allocates the DMA buffer
* pool.
*/
if (hsotg->core_params->dma_enable > 0)
hsotg->status_buf = dma_alloc_coherent(hsotg->dev,
DWC2_HCD_STATUS_BUF_SIZE,
&hsotg->status_buf_dma, GFP_KERNEL);
else
hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE,
GFP_KERNEL);
if (!hsotg->status_buf)
goto error3;
hsotg->otg_port = 1;
hsotg->frame_list = NULL;
hsotg->frame_list_dma = 0;
hsotg->periodic_qh_count = 0;
/* Initiate lx_state to L3 disconnected state */
hsotg->lx_state = DWC2_L3;
hcd->self.otg_port = hsotg->otg_port;
/* Don't support SG list at this point */
hcd->self.sg_tablesize = 0;
/*
* Finish generic HCD initialization and start the HCD. This function
* allocates the DMA buffer pool, registers the USB bus, requests the
* IRQ line, and calls hcd_start method.
*/
retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
if (retval < 0)
goto error3;
device_wakeup_enable(hcd->self.controller);
dwc2_hcd_dump_state(hsotg);
dwc2_enable_global_interrupts(hsotg);
return 0;
error3:
dwc2_hcd_release(hsotg);
error2:
usb_put_hcd(hcd);
error1:
kfree(hsotg->core_params);
#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
kfree(hsotg->last_frame_num_array);
kfree(hsotg->frame_num_array);
#endif
dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval);
return retval;
}
EXPORT_SYMBOL_GPL(dwc2_hcd_init);
/*
* Removes the HCD.
* Frees memory and resources associated with the HCD and deregisters the bus.
*/
void dwc2_hcd_remove(struct dwc2_hsotg *hsotg)
{
struct usb_hcd *hcd;
dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n");
hcd = dwc2_hsotg_to_hcd(hsotg);
dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd);
if (!hcd) {
dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
__func__);
return;
}
usb_remove_hcd(hcd);
hsotg->priv = NULL;
dwc2_hcd_release(hsotg);
usb_put_hcd(hcd);
#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
kfree(hsotg->last_frame_num_array);
kfree(hsotg->frame_num_array);
#endif
}
EXPORT_SYMBOL_GPL(dwc2_hcd_remove);