linux_dsm_epyc7002/include/linux/nfs_fs.h

567 lines
16 KiB
C
Raw Normal View History

/*
* linux/include/linux/nfs_fs.h
*
* Copyright (C) 1992 Rick Sladkey
*
* OS-specific nfs filesystem definitions and declarations
*/
#ifndef _LINUX_NFS_FS_H
#define _LINUX_NFS_FS_H
#include <uapi/linux/nfs_fs.h>
/*
* Enable dprintk() debugging support for nfs client.
*/
#ifdef CONFIG_NFS_DEBUG
# define NFS_DEBUG
#endif
#include <linux/in.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/rbtree.h>
#include <linux/rwsem.h>
#include <linux/wait.h>
#include <linux/sunrpc/debug.h>
#include <linux/sunrpc/auth.h>
#include <linux/sunrpc/clnt.h>
#include <linux/nfs.h>
#include <linux/nfs2.h>
#include <linux/nfs3.h>
#include <linux/nfs4.h>
#include <linux/nfs_xdr.h>
#include <linux/nfs_fs_sb.h>
#include <linux/mempool.h>
/*
* These are the default flags for swap requests
*/
#define NFS_RPC_SWAPFLAGS (RPC_TASK_SWAPPER|RPC_TASK_ROOTCREDS)
/*
* NFSv3/v4 Access mode cache entry
*/
struct nfs_access_entry {
struct rb_node rb_node;
struct list_head lru;
unsigned long jiffies;
struct rpc_cred * cred;
int mask;
struct rcu_head rcu_head;
};
struct nfs_lockowner {
fl_owner_t l_owner;
pid_t l_pid;
};
#define NFS_IO_INPROGRESS 0
struct nfs_io_counter {
unsigned long flags;
atomic_t io_count;
};
struct nfs_lock_context {
atomic_t count;
struct list_head list;
struct nfs_open_context *open_context;
struct nfs_lockowner lockowner;
struct nfs_io_counter io_count;
};
struct nfs4_state;
struct nfs_open_context {
struct nfs_lock_context lock_context;
struct dentry *dentry;
struct rpc_cred *cred;
struct nfs4_state *state;
fmode_t mode;
unsigned long flags;
#define NFS_CONTEXT_ERROR_WRITE (0)
#define NFS_CONTEXT_RESEND_WRITES (1)
#define NFS_CONTEXT_BAD (2)
int error;
struct list_head list;
struct nfs4_threshold *mdsthreshold;
};
struct nfs_open_dir_context {
struct list_head list;
struct rpc_cred *cred;
unsigned long attr_gencount;
__u64 dir_cookie;
__u64 dup_cookie;
signed char duped;
};
/*
* NFSv4 delegation
*/
struct nfs_delegation;
struct posix_acl;
/*
* nfs fs inode data in memory
*/
struct nfs_inode {
/*
* The 64bit 'inode number'
*/
__u64 fileid;
/*
* NFS file handle
*/
struct nfs_fh fh;
/*
* Various flags
*/
unsigned long flags; /* atomic bit ops */
unsigned long cache_validity; /* bit mask */
/*
* read_cache_jiffies is when we started read-caching this inode.
* attrtimeo is for how long the cached information is assumed
* to be valid. A successful attribute revalidation doubles
* attrtimeo (up to acregmax/acdirmax), a failure resets it to
* acregmin/acdirmin.
*
* We need to revalidate the cached attrs for this inode if
*
* jiffies - read_cache_jiffies >= attrtimeo
*
* Please note the comparison is greater than or equal
* so that zero timeout values can be specified.
*/
unsigned long read_cache_jiffies;
unsigned long attrtimeo;
unsigned long attrtimeo_timestamp;
unsigned long attr_gencount;
/* "Generation counter" for the attribute cache. This is
* bumped whenever we update the metadata on the
* server.
*/
unsigned long cache_change_attribute;
struct rb_root access_cache;
struct list_head access_cache_entry_lru;
struct list_head access_cache_inode_lru;
/*
* This is the cookie verifier used for NFSv3 readdir
* operations
*/
__be32 cookieverf[2];
unsigned long nrequests;
struct nfs_mds_commit_info commit_info;
/* Open contexts for shared mmap writes */
struct list_head open_files;
/* Number of in-flight sillydelete RPC calls */
atomic_t silly_count;
/* List of deferred sillydelete requests */
struct hlist_head silly_list;
wait_queue_head_t waitqueue;
#if IS_ENABLED(CONFIG_NFS_V4)
struct nfs4_cached_acl *nfs4_acl;
/* NFSv4 state */
struct list_head open_states;
struct nfs_delegation __rcu *delegation;
fmode_t delegation_state;
struct rw_semaphore rwsem;
/* pNFS layout information */
struct pnfs_layout_hdr *layout;
#endif /* CONFIG_NFS_V4*/
/* how many bytes have been written/read and how many bytes queued up */
__u64 write_io;
__u64 read_io;
#ifdef CONFIG_NFS_FSCACHE
struct fscache_cookie *fscache;
#endif
struct inode vfs_inode;
};
/*
* Cache validity bit flags
*/
#define NFS_INO_INVALID_ATTR 0x0001 /* cached attrs are invalid */
#define NFS_INO_INVALID_DATA 0x0002 /* cached data is invalid */
#define NFS_INO_INVALID_ATIME 0x0004 /* cached atime is invalid */
#define NFS_INO_INVALID_ACCESS 0x0008 /* cached access cred invalid */
#define NFS_INO_INVALID_ACL 0x0010 /* cached acls are invalid */
#define NFS_INO_REVAL_PAGECACHE 0x0020 /* must revalidate pagecache */
#define NFS_INO_REVAL_FORCED 0x0040 /* force revalidation ignoring a delegation */
#define NFS_INO_INVALID_LABEL 0x0080 /* cached label is invalid */
/*
* Bit offsets in flags field
*/
#define NFS_INO_ADVISE_RDPLUS (0) /* advise readdirplus */
#define NFS_INO_STALE (1) /* possible stale inode */
#define NFS_INO_ACL_LRU_SET (2) /* Inode is on the LRU list */
NFS: fix the handling of NFS_INO_INVALID_DATA flag in nfs_revalidate_mapping There is a possible race in how the nfs_invalidate_mapping function is handled. Currently, we go and invalidate the pages in the file and then clear NFS_INO_INVALID_DATA. The problem is that it's possible for a stale page to creep into the mapping after the page was invalidated (i.e., via readahead). If another writer comes along and sets the flag after that happens but before invalidate_inode_pages2 returns then we could clear the flag without the cache having been properly invalidated. So, we must clear the flag first and then invalidate the pages. Doing this however, opens another race: It's possible to have two concurrent read() calls that end up in nfs_revalidate_mapping at the same time. The first one clears the NFS_INO_INVALID_DATA flag and then goes to call nfs_invalidate_mapping. Just before calling that though, the other task races in, checks the flag and finds it cleared. At that point, it trusts that the mapping is good and gets the lock on the page, allowing the read() to be satisfied from the cache even though the data is no longer valid. These effects are easily manifested by running diotest3 from the LTP test suite on NFS. That program does a series of DIO writes and buffered reads. The operations are serialized and page-aligned but the existing code fails the test since it occasionally allows a read to come out of the cache incorrectly. While mixing direct and buffered I/O isn't recommended, I believe it's possible to hit this in other ways that just use buffered I/O, though that situation is much harder to reproduce. The problem is that the checking/clearing of that flag and the invalidation of the mapping really need to be atomic. Fix this by serializing concurrent invalidations with a bitlock. At the same time, we also need to allow other places that check NFS_INO_INVALID_DATA to check whether we might be in the middle of invalidating the file, so fix up a couple of places that do that to look for the new NFS_INO_INVALIDATING flag. Doing this requires us to be careful not to set the bitlock unnecessarily, so this code only does that if it believes it will be doing an invalidation. Signed-off-by: Jeff Layton <jlayton@redhat.com> Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
2014-01-28 01:46:15 +07:00
#define NFS_INO_INVALIDATING (3) /* inode is being invalidated */
2009-03-12 01:10:30 +07:00
#define NFS_INO_FLUSHING (4) /* inode is flushing out data */
#define NFS_INO_FSCACHE (5) /* inode can be cached by FS-Cache */
#define NFS_INO_FSCACHE_LOCK (6) /* FS-Cache cookie management lock */
#define NFS_INO_COMMIT (7) /* inode is committing unstable writes */
#define NFS_INO_LAYOUTCOMMIT (9) /* layoutcommit required */
#define NFS_INO_LAYOUTCOMMITTING (10) /* layoutcommit inflight */
static inline struct nfs_inode *NFS_I(const struct inode *inode)
{
return container_of(inode, struct nfs_inode, vfs_inode);
}
static inline struct nfs_server *NFS_SB(const struct super_block *s)
{
return (struct nfs_server *)(s->s_fs_info);
}
static inline struct nfs_fh *NFS_FH(const struct inode *inode)
{
return &NFS_I(inode)->fh;
}
static inline struct nfs_server *NFS_SERVER(const struct inode *inode)
{
return NFS_SB(inode->i_sb);
}
static inline struct rpc_clnt *NFS_CLIENT(const struct inode *inode)
{
return NFS_SERVER(inode)->client;
}
static inline const struct nfs_rpc_ops *NFS_PROTO(const struct inode *inode)
{
return NFS_SERVER(inode)->nfs_client->rpc_ops;
}
static inline unsigned NFS_MINATTRTIMEO(const struct inode *inode)
{
struct nfs_server *nfss = NFS_SERVER(inode);
return S_ISDIR(inode->i_mode) ? nfss->acdirmin : nfss->acregmin;
}
static inline unsigned NFS_MAXATTRTIMEO(const struct inode *inode)
{
struct nfs_server *nfss = NFS_SERVER(inode);
return S_ISDIR(inode->i_mode) ? nfss->acdirmax : nfss->acregmax;
}
static inline int NFS_STALE(const struct inode *inode)
{
return test_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
}
NFS: Use i_writecount to control whether to get an fscache cookie in nfs_open() Use i_writecount to control whether to get an fscache cookie in nfs_open() as NFS does not do write caching yet. I *think* this is the cause of a problem encountered by Mark Moseley whereby __fscache_uncache_page() gets a NULL pointer dereference because cookie->def is NULL: BUG: unable to handle kernel NULL pointer dereference at 0000000000000010 IP: [<ffffffff812a1903>] __fscache_uncache_page+0x23/0x160 PGD 0 Thread overran stack, or stack corrupted Oops: 0000 [#1] SMP Modules linked in: ... CPU: 7 PID: 18993 Comm: php Not tainted 3.11.1 #1 Hardware name: Dell Inc. PowerEdge R420/072XWF, BIOS 1.3.5 08/21/2012 task: ffff8804203460c0 ti: ffff880420346640 RIP: 0010:[<ffffffff812a1903>] __fscache_uncache_page+0x23/0x160 RSP: 0018:ffff8801053af878 EFLAGS: 00210286 RAX: 0000000000000000 RBX: ffff8800be2f8780 RCX: ffff88022ffae5e8 RDX: 0000000000004c66 RSI: ffffea00055ff440 RDI: ffff8800be2f8780 RBP: ffff8801053af898 R08: 0000000000000001 R09: 0000000000000003 R10: 0000000000000000 R11: 0000000000000000 R12: ffffea00055ff440 R13: 0000000000001000 R14: ffff8800c50be538 R15: 0000000000000000 FS: 0000000000000000(0000) GS:ffff88042fc60000(0063) knlGS:00000000e439c700 CS: 0010 DS: 002b ES: 002b CR0: 0000000080050033 CR2: 0000000000000010 CR3: 0000000001d8f000 CR4: 00000000000607f0 Stack: ... Call Trace: [<ffffffff81365a72>] __nfs_fscache_invalidate_page+0x42/0x70 [<ffffffff813553d5>] nfs_invalidate_page+0x75/0x90 [<ffffffff811b8f5e>] truncate_inode_page+0x8e/0x90 [<ffffffff811b90ad>] truncate_inode_pages_range.part.12+0x14d/0x620 [<ffffffff81d6387d>] ? __mutex_lock_slowpath+0x1fd/0x2e0 [<ffffffff811b95d3>] truncate_inode_pages_range+0x53/0x70 [<ffffffff811b969d>] truncate_inode_pages+0x2d/0x40 [<ffffffff811b96ff>] truncate_pagecache+0x4f/0x70 [<ffffffff81356840>] nfs_setattr_update_inode+0xa0/0x120 [<ffffffff81368de4>] nfs3_proc_setattr+0xc4/0xe0 [<ffffffff81357f78>] nfs_setattr+0xc8/0x150 [<ffffffff8122d95b>] notify_change+0x1cb/0x390 [<ffffffff8120a55b>] do_truncate+0x7b/0xc0 [<ffffffff8121f96c>] do_last+0xa4c/0xfd0 [<ffffffff8121ffbc>] path_openat+0xcc/0x670 [<ffffffff81220a0e>] do_filp_open+0x4e/0xb0 [<ffffffff8120ba1f>] do_sys_open+0x13f/0x2b0 [<ffffffff8126aaf6>] compat_SyS_open+0x36/0x50 [<ffffffff81d7204c>] sysenter_dispatch+0x7/0x24 The code at the instruction pointer was disassembled: > (gdb) disas __fscache_uncache_page > Dump of assembler code for function __fscache_uncache_page: > ... > 0xffffffff812a18ff <+31>: mov 0x48(%rbx),%rax > 0xffffffff812a1903 <+35>: cmpb $0x0,0x10(%rax) > 0xffffffff812a1907 <+39>: je 0xffffffff812a19cd <__fscache_uncache_page+237> These instructions make up: ASSERTCMP(cookie->def->type, !=, FSCACHE_COOKIE_TYPE_INDEX); That cmpb is the faulting instruction (%rax is 0). So cookie->def is NULL - which presumably means that the cookie has already been at least partway through __fscache_relinquish_cookie(). What I think may be happening is something like a three-way race on the same file: PROCESS 1 PROCESS 2 PROCESS 3 =============== =============== =============== open(O_TRUNC|O_WRONLY) open(O_RDONLY) open(O_WRONLY) -->nfs_open() -->nfs_fscache_set_inode_cookie() nfs_fscache_inode_lock() nfs_fscache_disable_inode_cookie() __fscache_relinquish_cookie() nfs_inode->fscache = NULL <--nfs_fscache_set_inode_cookie() -->nfs_open() -->nfs_fscache_set_inode_cookie() nfs_fscache_inode_lock() nfs_fscache_enable_inode_cookie() __fscache_acquire_cookie() nfs_inode->fscache = cookie <--nfs_fscache_set_inode_cookie() <--nfs_open() -->nfs_setattr() ... ... -->nfs_invalidate_page() -->__nfs_fscache_invalidate_page() cookie = nfsi->fscache -->nfs_open() -->nfs_fscache_set_inode_cookie() nfs_fscache_inode_lock() nfs_fscache_disable_inode_cookie() -->__fscache_relinquish_cookie() -->__fscache_uncache_page(cookie) <crash> <--__fscache_relinquish_cookie() nfs_inode->fscache = NULL <--nfs_fscache_set_inode_cookie() What is needed is something to prevent process #2 from reacquiring the cookie - and I think checking i_writecount should do the trick. It's also possible to have a two-way race on this if the file is opened O_TRUNC|O_RDONLY instead. Reported-by: Mark Moseley <moseleymark@gmail.com> Signed-off-by: David Howells <dhowells@redhat.com>
2013-09-27 17:20:03 +07:00
static inline struct fscache_cookie *nfs_i_fscache(struct inode *inode)
{
NFS: Use i_writecount to control whether to get an fscache cookie in nfs_open() Use i_writecount to control whether to get an fscache cookie in nfs_open() as NFS does not do write caching yet. I *think* this is the cause of a problem encountered by Mark Moseley whereby __fscache_uncache_page() gets a NULL pointer dereference because cookie->def is NULL: BUG: unable to handle kernel NULL pointer dereference at 0000000000000010 IP: [<ffffffff812a1903>] __fscache_uncache_page+0x23/0x160 PGD 0 Thread overran stack, or stack corrupted Oops: 0000 [#1] SMP Modules linked in: ... CPU: 7 PID: 18993 Comm: php Not tainted 3.11.1 #1 Hardware name: Dell Inc. PowerEdge R420/072XWF, BIOS 1.3.5 08/21/2012 task: ffff8804203460c0 ti: ffff880420346640 RIP: 0010:[<ffffffff812a1903>] __fscache_uncache_page+0x23/0x160 RSP: 0018:ffff8801053af878 EFLAGS: 00210286 RAX: 0000000000000000 RBX: ffff8800be2f8780 RCX: ffff88022ffae5e8 RDX: 0000000000004c66 RSI: ffffea00055ff440 RDI: ffff8800be2f8780 RBP: ffff8801053af898 R08: 0000000000000001 R09: 0000000000000003 R10: 0000000000000000 R11: 0000000000000000 R12: ffffea00055ff440 R13: 0000000000001000 R14: ffff8800c50be538 R15: 0000000000000000 FS: 0000000000000000(0000) GS:ffff88042fc60000(0063) knlGS:00000000e439c700 CS: 0010 DS: 002b ES: 002b CR0: 0000000080050033 CR2: 0000000000000010 CR3: 0000000001d8f000 CR4: 00000000000607f0 Stack: ... Call Trace: [<ffffffff81365a72>] __nfs_fscache_invalidate_page+0x42/0x70 [<ffffffff813553d5>] nfs_invalidate_page+0x75/0x90 [<ffffffff811b8f5e>] truncate_inode_page+0x8e/0x90 [<ffffffff811b90ad>] truncate_inode_pages_range.part.12+0x14d/0x620 [<ffffffff81d6387d>] ? __mutex_lock_slowpath+0x1fd/0x2e0 [<ffffffff811b95d3>] truncate_inode_pages_range+0x53/0x70 [<ffffffff811b969d>] truncate_inode_pages+0x2d/0x40 [<ffffffff811b96ff>] truncate_pagecache+0x4f/0x70 [<ffffffff81356840>] nfs_setattr_update_inode+0xa0/0x120 [<ffffffff81368de4>] nfs3_proc_setattr+0xc4/0xe0 [<ffffffff81357f78>] nfs_setattr+0xc8/0x150 [<ffffffff8122d95b>] notify_change+0x1cb/0x390 [<ffffffff8120a55b>] do_truncate+0x7b/0xc0 [<ffffffff8121f96c>] do_last+0xa4c/0xfd0 [<ffffffff8121ffbc>] path_openat+0xcc/0x670 [<ffffffff81220a0e>] do_filp_open+0x4e/0xb0 [<ffffffff8120ba1f>] do_sys_open+0x13f/0x2b0 [<ffffffff8126aaf6>] compat_SyS_open+0x36/0x50 [<ffffffff81d7204c>] sysenter_dispatch+0x7/0x24 The code at the instruction pointer was disassembled: > (gdb) disas __fscache_uncache_page > Dump of assembler code for function __fscache_uncache_page: > ... > 0xffffffff812a18ff <+31>: mov 0x48(%rbx),%rax > 0xffffffff812a1903 <+35>: cmpb $0x0,0x10(%rax) > 0xffffffff812a1907 <+39>: je 0xffffffff812a19cd <__fscache_uncache_page+237> These instructions make up: ASSERTCMP(cookie->def->type, !=, FSCACHE_COOKIE_TYPE_INDEX); That cmpb is the faulting instruction (%rax is 0). So cookie->def is NULL - which presumably means that the cookie has already been at least partway through __fscache_relinquish_cookie(). What I think may be happening is something like a three-way race on the same file: PROCESS 1 PROCESS 2 PROCESS 3 =============== =============== =============== open(O_TRUNC|O_WRONLY) open(O_RDONLY) open(O_WRONLY) -->nfs_open() -->nfs_fscache_set_inode_cookie() nfs_fscache_inode_lock() nfs_fscache_disable_inode_cookie() __fscache_relinquish_cookie() nfs_inode->fscache = NULL <--nfs_fscache_set_inode_cookie() -->nfs_open() -->nfs_fscache_set_inode_cookie() nfs_fscache_inode_lock() nfs_fscache_enable_inode_cookie() __fscache_acquire_cookie() nfs_inode->fscache = cookie <--nfs_fscache_set_inode_cookie() <--nfs_open() -->nfs_setattr() ... ... -->nfs_invalidate_page() -->__nfs_fscache_invalidate_page() cookie = nfsi->fscache -->nfs_open() -->nfs_fscache_set_inode_cookie() nfs_fscache_inode_lock() nfs_fscache_disable_inode_cookie() -->__fscache_relinquish_cookie() -->__fscache_uncache_page(cookie) <crash> <--__fscache_relinquish_cookie() nfs_inode->fscache = NULL <--nfs_fscache_set_inode_cookie() What is needed is something to prevent process #2 from reacquiring the cookie - and I think checking i_writecount should do the trick. It's also possible to have a two-way race on this if the file is opened O_TRUNC|O_RDONLY instead. Reported-by: Mark Moseley <moseleymark@gmail.com> Signed-off-by: David Howells <dhowells@redhat.com>
2013-09-27 17:20:03 +07:00
#ifdef CONFIG_NFS_FSCACHE
return NFS_I(inode)->fscache;
#else
return NULL;
#endif
}
static inline __u64 NFS_FILEID(const struct inode *inode)
{
return NFS_I(inode)->fileid;
}
static inline void set_nfs_fileid(struct inode *inode, __u64 fileid)
{
NFS_I(inode)->fileid = fileid;
}
static inline void nfs_mark_for_revalidate(struct inode *inode)
{
struct nfs_inode *nfsi = NFS_I(inode);
spin_lock(&inode->i_lock);
nfsi->cache_validity |= NFS_INO_INVALID_ATTR|NFS_INO_INVALID_ACCESS;
if (S_ISDIR(inode->i_mode))
nfsi->cache_validity |= NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA;
spin_unlock(&inode->i_lock);
}
static inline int nfs_server_capable(struct inode *inode, int cap)
{
return NFS_SERVER(inode)->caps & cap;
}
static inline void nfs_set_verifier(struct dentry * dentry, unsigned long verf)
{
dentry->d_time = verf;
}
/**
* nfs_save_change_attribute - Returns the inode attribute change cookie
* @dir - pointer to parent directory inode
* The "change attribute" is updated every time we finish an operation
* that will result in a metadata change on the server.
*/
static inline unsigned long nfs_save_change_attribute(struct inode *dir)
{
return NFS_I(dir)->cache_change_attribute;
}
/**
* nfs_verify_change_attribute - Detects NFS remote directory changes
* @dir - pointer to parent directory inode
* @chattr - previously saved change attribute
* Return "false" if the verifiers doesn't match the change attribute.
* This would usually indicate that the directory contents have changed on
* the server, and that any dentries need revalidating.
*/
static inline int nfs_verify_change_attribute(struct inode *dir, unsigned long chattr)
{
return chattr == NFS_I(dir)->cache_change_attribute;
}
/*
* linux/fs/nfs/inode.c
*/
extern int nfs_sync_mapping(struct address_space *mapping);
extern void nfs_zap_mapping(struct inode *inode, struct address_space *mapping);
extern void nfs_zap_caches(struct inode *);
extern void nfs_invalidate_atime(struct inode *);
extern struct inode *nfs_fhget(struct super_block *, struct nfs_fh *,
struct nfs_fattr *, struct nfs4_label *);
extern int nfs_refresh_inode(struct inode *, struct nfs_fattr *);
extern int nfs_post_op_update_inode(struct inode *inode, struct nfs_fattr *fattr);
extern int nfs_post_op_update_inode_force_wcc(struct inode *inode, struct nfs_fattr *fattr);
extern int nfs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
extern void nfs_access_add_cache(struct inode *, struct nfs_access_entry *);
extern void nfs_access_set_mask(struct nfs_access_entry *, u32);
extern int nfs_permission(struct inode *, int);
extern int nfs_open(struct inode *, struct file *);
extern int nfs_release(struct inode *, struct file *);
extern int nfs_attribute_timeout(struct inode *inode);
extern int nfs_attribute_cache_expired(struct inode *inode);
extern int nfs_revalidate_inode(struct nfs_server *server, struct inode *inode);
extern int nfs_revalidate_inode_rcu(struct nfs_server *server, struct inode *inode);
extern int __nfs_revalidate_inode(struct nfs_server *, struct inode *);
extern int nfs_revalidate_mapping(struct inode *inode, struct address_space *mapping);
extern int nfs_setattr(struct dentry *, struct iattr *);
extern void nfs_setattr_update_inode(struct inode *inode, struct iattr *attr);
extern void nfs_setsecurity(struct inode *inode, struct nfs_fattr *fattr,
struct nfs4_label *label);
extern struct nfs_open_context *get_nfs_open_context(struct nfs_open_context *ctx);
extern void put_nfs_open_context(struct nfs_open_context *ctx);
extern struct nfs_open_context *nfs_find_open_context(struct inode *inode, struct rpc_cred *cred, fmode_t mode);
extern struct nfs_open_context *alloc_nfs_open_context(struct dentry *dentry, fmode_t f_mode);
extern void nfs_inode_attach_open_context(struct nfs_open_context *ctx);
extern void nfs_file_set_open_context(struct file *filp, struct nfs_open_context *ctx);
extern struct nfs_lock_context *nfs_get_lock_context(struct nfs_open_context *ctx);
extern void nfs_put_lock_context(struct nfs_lock_context *l_ctx);
extern u64 nfs_compat_user_ino64(u64 fileid);
extern void nfs_fattr_init(struct nfs_fattr *fattr);
extern unsigned long nfs_inc_attr_generation_counter(void);
extern struct nfs_fattr *nfs_alloc_fattr(void);
static inline void nfs_free_fattr(const struct nfs_fattr *fattr)
{
kfree(fattr);
}
extern struct nfs_fh *nfs_alloc_fhandle(void);
static inline void nfs_free_fhandle(const struct nfs_fh *fh)
{
kfree(fh);
}
#ifdef NFS_DEBUG
extern u32 _nfs_display_fhandle_hash(const struct nfs_fh *fh);
static inline u32 nfs_display_fhandle_hash(const struct nfs_fh *fh)
{
return _nfs_display_fhandle_hash(fh);
}
extern void _nfs_display_fhandle(const struct nfs_fh *fh, const char *caption);
#define nfs_display_fhandle(fh, caption) \
do { \
if (unlikely(nfs_debug & NFSDBG_FACILITY)) \
_nfs_display_fhandle(fh, caption); \
} while (0)
#else
static inline u32 nfs_display_fhandle_hash(const struct nfs_fh *fh)
{
return 0;
}
static inline void nfs_display_fhandle(const struct nfs_fh *fh,
const char *caption)
{
}
#endif
/*
* linux/fs/nfs/nfsroot.c
*/
extern int nfs_root_data(char **root_device, char **root_data); /*__init*/
/* linux/net/ipv4/ipconfig.c: trims ip addr off front of name, too. */
extern __be32 root_nfs_parse_addr(char *name); /*__init*/
/*
* linux/fs/nfs/file.c
*/
extern const struct file_operations nfs_file_operations;
#if IS_ENABLED(CONFIG_NFS_V4)
extern const struct file_operations nfs4_file_operations;
#endif /* CONFIG_NFS_V4 */
extern const struct address_space_operations nfs_file_aops;
extern const struct address_space_operations nfs_dir_aops;
static inline struct nfs_open_context *nfs_file_open_context(struct file *filp)
{
return filp->private_data;
}
static inline struct rpc_cred *nfs_file_cred(struct file *file)
{
if (file != NULL) {
struct nfs_open_context *ctx =
nfs_file_open_context(file);
if (ctx)
return ctx->cred;
}
return NULL;
}
/*
* linux/fs/nfs/direct.c
*/
extern ssize_t nfs_direct_IO(int, struct kiocb *, struct iov_iter *, loff_t);
extern ssize_t nfs_file_direct_read(struct kiocb *iocb,
struct iov_iter *iter,
loff_t pos);
extern ssize_t nfs_file_direct_write(struct kiocb *iocb,
struct iov_iter *iter,
loff_t pos);
/*
* linux/fs/nfs/dir.c
*/
extern const struct file_operations nfs_dir_operations;
extern const struct dentry_operations nfs_dentry_operations;
extern void nfs_force_lookup_revalidate(struct inode *dir);
extern int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fh,
struct nfs_fattr *fattr, struct nfs4_label *label);
extern int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags);
extern void nfs_access_zap_cache(struct inode *inode);
/*
* linux/fs/nfs/symlink.c
*/
extern const struct inode_operations nfs_symlink_inode_operations;
/*
* linux/fs/nfs/sysctl.c
*/
#ifdef CONFIG_SYSCTL
extern int nfs_register_sysctl(void);
extern void nfs_unregister_sysctl(void);
#else
#define nfs_register_sysctl() 0
#define nfs_unregister_sysctl() do { } while(0)
#endif
/*
* linux/fs/nfs/namespace.c
*/
extern const struct inode_operations nfs_mountpoint_inode_operations;
extern const struct inode_operations nfs_referral_inode_operations;
extern int nfs_mountpoint_expiry_timeout;
extern void nfs_release_automount_timer(void);
/*
* linux/fs/nfs/unlink.c
*/
extern void nfs_complete_unlink(struct dentry *dentry, struct inode *);
extern void nfs_wait_on_sillyrename(struct dentry *dentry);
extern void nfs_block_sillyrename(struct dentry *dentry);
extern void nfs_unblock_sillyrename(struct dentry *dentry);
/*
* linux/fs/nfs/write.c
*/
extern int nfs_congestion_kb;
extern int nfs_writepage(struct page *page, struct writeback_control *wbc);
extern int nfs_writepages(struct address_space *, struct writeback_control *);
extern int nfs_flush_incompatible(struct file *file, struct page *page);
extern int nfs_updatepage(struct file *, struct page *, unsigned int, unsigned int);
/*
* Try to write back everything synchronously (but check the
* return value!)
*/
extern int nfs_wb_all(struct inode *inode);
extern int nfs_wb_page(struct inode *inode, struct page* page);
extern int nfs_wb_page_cancel(struct inode *inode, struct page* page);
extern int nfs_commit_inode(struct inode *, int);
extern struct nfs_commit_data *nfs_commitdata_alloc(void);
extern void nfs_commit_free(struct nfs_commit_data *data);
static inline int
nfs_have_writebacks(struct inode *inode)
{
return NFS_I(inode)->nrequests != 0;
}
/*
* linux/fs/nfs/read.c
*/
extern int nfs_readpage(struct file *, struct page *);
extern int nfs_readpages(struct file *, struct address_space *,
struct list_head *, unsigned);
extern int nfs_readpage_async(struct nfs_open_context *, struct inode *,
struct page *);
/*
* inline functions
*/
static inline loff_t nfs_size_to_loff_t(__u64 size)
{
if (size > (__u64) OFFSET_MAX - 1)
return OFFSET_MAX - 1;
return (loff_t) size;
}
static inline ino_t
nfs_fileid_to_ino_t(u64 fileid)
{
ino_t ino = (ino_t) fileid;
if (sizeof(ino_t) < sizeof(u64))
ino ^= fileid >> (sizeof(u64)-sizeof(ino_t)) * 8;
return ino;
}
#define NFS_JUKEBOX_RETRY_TIME (5 * HZ)
# undef ifdebug
# ifdef NFS_DEBUG
# define ifdebug(fac) if (unlikely(nfs_debug & NFSDBG_##fac))
# define NFS_IFDEBUG(x) x
# else
# define ifdebug(fac) if (0)
# define NFS_IFDEBUG(x)
# endif
#endif