[PATCH] lockdep: core
Do 'make oldconfig' and accept all the defaults for new config options -
reboot into the kernel and if everything goes well it should boot up fine and
you should have /proc/lockdep and /proc/lockdep_stats files.
Typically if the lock validator finds some problem it will print out
voluminous debug output that begins with "BUG: ..." and which syslog output
can be used by kernel developers to figure out the precise locking scenario.
What does the lock validator do? It "observes" and maps all locking rules as
they occur dynamically (as triggered by the kernel's natural use of spinlocks,
rwlocks, mutexes and rwsems). Whenever the lock validator subsystem detects a
new locking scenario, it validates this new rule against the existing set of
rules. If this new rule is consistent with the existing set of rules then the
new rule is added transparently and the kernel continues as normal. If the
new rule could create a deadlock scenario then this condition is printed out.
When determining validity of locking, all possible "deadlock scenarios" are
considered: assuming arbitrary number of CPUs, arbitrary irq context and task
context constellations, running arbitrary combinations of all the existing
locking scenarios. In a typical system this means millions of separate
scenarios. This is why we call it a "locking correctness" validator - for all
rules that are observed the lock validator proves it with mathematical
certainty that a deadlock could not occur (assuming that the lock validator
implementation itself is correct and its internal data structures are not
corrupted by some other kernel subsystem). [see more details and conditionals
of this statement in include/linux/lockdep.h and
Documentation/lockdep-design.txt]
Furthermore, this "all possible scenarios" property of the validator also
enables the finding of complex, highly unlikely multi-CPU multi-context races
via single single-context rules, increasing the likelyhood of finding bugs
drastically. In practical terms: the lock validator already found a bug in
the upstream kernel that could only occur on systems with 3 or more CPUs, and
which needed 3 very unlikely code sequences to occur at once on the 3 CPUs.
That bug was found and reported on a single-CPU system (!). So in essence a
race will be found "piecemail-wise", triggering all the necessary components
for the race, without having to reproduce the race scenario itself! In its
short existence the lock validator found and reported many bugs before they
actually caused a real deadlock.
To further increase the efficiency of the validator, the mapping is not per
"lock instance", but per "lock-class". For example, all struct inode objects
in the kernel have inode->inotify_mutex. If there are 10,000 inodes cached,
then there are 10,000 lock objects. But ->inotify_mutex is a single "lock
type", and all locking activities that occur against ->inotify_mutex are
"unified" into this single lock-class. The advantage of the lock-class
approach is that all historical ->inotify_mutex uses are mapped into a single
(and as narrow as possible) set of locking rules - regardless of how many
different tasks or inode structures it took to build this set of rules. The
set of rules persist during the lifetime of the kernel.
To see the rough magnitude of checking that the lock validator does, here's a
portion of /proc/lockdep_stats, fresh after bootup:
lock-classes: 694 [max: 2048]
direct dependencies: 1598 [max: 8192]
indirect dependencies: 17896
all direct dependencies: 16206
dependency chains: 1910 [max: 8192]
in-hardirq chains: 17
in-softirq chains: 105
in-process chains: 1065
stack-trace entries: 38761 [max: 131072]
combined max dependencies: 2033928
hardirq-safe locks: 24
hardirq-unsafe locks: 176
softirq-safe locks: 53
softirq-unsafe locks: 137
irq-safe locks: 59
irq-unsafe locks: 176
The lock validator has observed 1598 actual single-thread locking patterns,
and has validated all possible 2033928 distinct locking scenarios.
More details about the design of the lock validator can be found in
Documentation/lockdep-design.txt, which can also found at:
http://redhat.com/~mingo/lockdep-patches/lockdep-design.txt
[bunk@stusta.de: cleanups]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-07-03 14:24:50 +07:00
|
|
|
/*
|
|
|
|
* kernel/lockdep_internals.h
|
|
|
|
*
|
|
|
|
* Runtime locking correctness validator
|
|
|
|
*
|
|
|
|
* lockdep subsystem internal functions and variables.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* MAX_LOCKDEP_ENTRIES is the maximum number of lock dependencies
|
|
|
|
* we track.
|
|
|
|
*
|
|
|
|
* We use the per-lock dependency maps in two ways: we grow it by adding
|
|
|
|
* every to-be-taken lock to all currently held lock's own dependency
|
|
|
|
* table (if it's not there yet), and we check it for lock order
|
|
|
|
* conflicts and deadlocks.
|
|
|
|
*/
|
|
|
|
#define MAX_LOCKDEP_ENTRIES 8192UL
|
|
|
|
|
|
|
|
#define MAX_LOCKDEP_KEYS_BITS 11
|
|
|
|
#define MAX_LOCKDEP_KEYS (1UL << MAX_LOCKDEP_KEYS_BITS)
|
|
|
|
|
|
|
|
#define MAX_LOCKDEP_CHAINS_BITS 13
|
|
|
|
#define MAX_LOCKDEP_CHAINS (1UL << MAX_LOCKDEP_CHAINS_BITS)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Stack-trace: tightly packed array of stack backtrace
|
|
|
|
* addresses. Protected by the hash_lock.
|
|
|
|
*/
|
2006-09-13 10:35:50 +07:00
|
|
|
#define MAX_STACK_TRACE_ENTRIES 262144UL
|
[PATCH] lockdep: core
Do 'make oldconfig' and accept all the defaults for new config options -
reboot into the kernel and if everything goes well it should boot up fine and
you should have /proc/lockdep and /proc/lockdep_stats files.
Typically if the lock validator finds some problem it will print out
voluminous debug output that begins with "BUG: ..." and which syslog output
can be used by kernel developers to figure out the precise locking scenario.
What does the lock validator do? It "observes" and maps all locking rules as
they occur dynamically (as triggered by the kernel's natural use of spinlocks,
rwlocks, mutexes and rwsems). Whenever the lock validator subsystem detects a
new locking scenario, it validates this new rule against the existing set of
rules. If this new rule is consistent with the existing set of rules then the
new rule is added transparently and the kernel continues as normal. If the
new rule could create a deadlock scenario then this condition is printed out.
When determining validity of locking, all possible "deadlock scenarios" are
considered: assuming arbitrary number of CPUs, arbitrary irq context and task
context constellations, running arbitrary combinations of all the existing
locking scenarios. In a typical system this means millions of separate
scenarios. This is why we call it a "locking correctness" validator - for all
rules that are observed the lock validator proves it with mathematical
certainty that a deadlock could not occur (assuming that the lock validator
implementation itself is correct and its internal data structures are not
corrupted by some other kernel subsystem). [see more details and conditionals
of this statement in include/linux/lockdep.h and
Documentation/lockdep-design.txt]
Furthermore, this "all possible scenarios" property of the validator also
enables the finding of complex, highly unlikely multi-CPU multi-context races
via single single-context rules, increasing the likelyhood of finding bugs
drastically. In practical terms: the lock validator already found a bug in
the upstream kernel that could only occur on systems with 3 or more CPUs, and
which needed 3 very unlikely code sequences to occur at once on the 3 CPUs.
That bug was found and reported on a single-CPU system (!). So in essence a
race will be found "piecemail-wise", triggering all the necessary components
for the race, without having to reproduce the race scenario itself! In its
short existence the lock validator found and reported many bugs before they
actually caused a real deadlock.
To further increase the efficiency of the validator, the mapping is not per
"lock instance", but per "lock-class". For example, all struct inode objects
in the kernel have inode->inotify_mutex. If there are 10,000 inodes cached,
then there are 10,000 lock objects. But ->inotify_mutex is a single "lock
type", and all locking activities that occur against ->inotify_mutex are
"unified" into this single lock-class. The advantage of the lock-class
approach is that all historical ->inotify_mutex uses are mapped into a single
(and as narrow as possible) set of locking rules - regardless of how many
different tasks or inode structures it took to build this set of rules. The
set of rules persist during the lifetime of the kernel.
To see the rough magnitude of checking that the lock validator does, here's a
portion of /proc/lockdep_stats, fresh after bootup:
lock-classes: 694 [max: 2048]
direct dependencies: 1598 [max: 8192]
indirect dependencies: 17896
all direct dependencies: 16206
dependency chains: 1910 [max: 8192]
in-hardirq chains: 17
in-softirq chains: 105
in-process chains: 1065
stack-trace entries: 38761 [max: 131072]
combined max dependencies: 2033928
hardirq-safe locks: 24
hardirq-unsafe locks: 176
softirq-safe locks: 53
softirq-unsafe locks: 137
irq-safe locks: 59
irq-unsafe locks: 176
The lock validator has observed 1598 actual single-thread locking patterns,
and has validated all possible 2033928 distinct locking scenarios.
More details about the design of the lock validator can be found in
Documentation/lockdep-design.txt, which can also found at:
http://redhat.com/~mingo/lockdep-patches/lockdep-design.txt
[bunk@stusta.de: cleanups]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-07-03 14:24:50 +07:00
|
|
|
|
|
|
|
extern struct list_head all_lock_classes;
|
|
|
|
|
|
|
|
extern void
|
|
|
|
get_usage_chars(struct lock_class *class, char *c1, char *c2, char *c3, char *c4);
|
|
|
|
|
|
|
|
extern const char * __get_key_name(struct lockdep_subclass_key *key, char *str);
|
|
|
|
|
|
|
|
extern unsigned long nr_lock_classes;
|
|
|
|
extern unsigned long nr_list_entries;
|
|
|
|
extern unsigned long nr_lock_chains;
|
|
|
|
extern unsigned long nr_stack_trace_entries;
|
|
|
|
|
|
|
|
extern unsigned int nr_hardirq_chains;
|
|
|
|
extern unsigned int nr_softirq_chains;
|
|
|
|
extern unsigned int nr_process_chains;
|
|
|
|
extern unsigned int max_lockdep_depth;
|
|
|
|
extern unsigned int max_recursion_depth;
|
|
|
|
|
|
|
|
#ifdef CONFIG_DEBUG_LOCKDEP
|
|
|
|
/*
|
|
|
|
* Various lockdep statistics:
|
|
|
|
*/
|
|
|
|
extern atomic_t chain_lookup_hits;
|
|
|
|
extern atomic_t chain_lookup_misses;
|
|
|
|
extern atomic_t hardirqs_on_events;
|
|
|
|
extern atomic_t hardirqs_off_events;
|
|
|
|
extern atomic_t redundant_hardirqs_on;
|
|
|
|
extern atomic_t redundant_hardirqs_off;
|
|
|
|
extern atomic_t softirqs_on_events;
|
|
|
|
extern atomic_t softirqs_off_events;
|
|
|
|
extern atomic_t redundant_softirqs_on;
|
|
|
|
extern atomic_t redundant_softirqs_off;
|
|
|
|
extern atomic_t nr_unused_locks;
|
|
|
|
extern atomic_t nr_cyclic_checks;
|
|
|
|
extern atomic_t nr_cyclic_check_recursions;
|
|
|
|
extern atomic_t nr_find_usage_forwards_checks;
|
|
|
|
extern atomic_t nr_find_usage_forwards_recursions;
|
|
|
|
extern atomic_t nr_find_usage_backwards_checks;
|
|
|
|
extern atomic_t nr_find_usage_backwards_recursions;
|
|
|
|
# define debug_atomic_inc(ptr) atomic_inc(ptr)
|
|
|
|
# define debug_atomic_dec(ptr) atomic_dec(ptr)
|
|
|
|
# define debug_atomic_read(ptr) atomic_read(ptr)
|
|
|
|
#else
|
|
|
|
# define debug_atomic_inc(ptr) do { } while (0)
|
|
|
|
# define debug_atomic_dec(ptr) do { } while (0)
|
|
|
|
# define debug_atomic_read(ptr) 0
|
|
|
|
#endif
|