linux_dsm_epyc7002/include/linux/fs_parser.h

135 lines
4.4 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0-or-later */
vfs: Add configuration parser helpers Because the new API passes in key,value parameters, match_token() cannot be used with it. Instead, provide three new helpers to aid with parsing: (1) fs_parse(). This takes a parameter and a simple static description of all the parameters and maps the key name to an ID. It returns 1 on a match, 0 on no match if unknowns should be ignored and some other negative error code on a parse error. The parameter description includes a list of key names to IDs, desired parameter types and a list of enumeration name -> ID mappings. [!] Note that for the moment I've required that the key->ID mapping array is expected to be sorted and unterminated. The size of the array is noted in the fsconfig_parser struct. This allows me to use bsearch(), but I'm not sure any performance gain is worth the hassle of requiring people to keep the array sorted. The parameter type array is sized according to the number of parameter IDs and is indexed directly. The optional enum mapping array is an unterminated, unsorted list and the size goes into the fsconfig_parser struct. The function can do some additional things: (a) If it's not ambiguous and no value is given, the prefix "no" on a key name is permitted to indicate that the parameter should be considered negatory. (b) If the desired type is a single simple integer, it will perform an appropriate conversion and store the result in a union in the parse result. (c) If the desired type is an enumeration, {key ID, name} will be looked up in the enumeration list and the matching value will be stored in the parse result union. (d) Optionally generate an error if the key is unrecognised. This is called something like: enum rdt_param { Opt_cdp, Opt_cdpl2, Opt_mba_mpbs, nr__rdt_params }; const struct fs_parameter_spec rdt_param_specs[nr__rdt_params] = { [Opt_cdp] = { fs_param_is_bool }, [Opt_cdpl2] = { fs_param_is_bool }, [Opt_mba_mpbs] = { fs_param_is_bool }, }; const const char *const rdt_param_keys[nr__rdt_params] = { [Opt_cdp] = "cdp", [Opt_cdpl2] = "cdpl2", [Opt_mba_mpbs] = "mba_mbps", }; const struct fs_parameter_description rdt_parser = { .name = "rdt", .nr_params = nr__rdt_params, .keys = rdt_param_keys, .specs = rdt_param_specs, .no_source = true, }; int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct fs_parse_result parse; struct rdt_fs_context *ctx = rdt_fc2context(fc); int ret; ret = fs_parse(fc, &rdt_parser, param, &parse); if (ret < 0) return ret; switch (parse.key) { case Opt_cdp: ctx->enable_cdpl3 = true; return 0; case Opt_cdpl2: ctx->enable_cdpl2 = true; return 0; case Opt_mba_mpbs: ctx->enable_mba_mbps = true; return 0; } return -EINVAL; } (2) fs_lookup_param(). This takes a { dirfd, path, LOOKUP_EMPTY? } or string value and performs an appropriate path lookup to convert it into a path object, which it will then return. If the desired type was a blockdev, the type of the looked up inode will be checked to make sure it is one. This can be used like: enum foo_param { Opt_source, nr__foo_params }; const struct fs_parameter_spec foo_param_specs[nr__foo_params] = { [Opt_source] = { fs_param_is_blockdev }, }; const char *char foo_param_keys[nr__foo_params] = { [Opt_source] = "source", }; const struct constant_table foo_param_alt_keys[] = { { "device", Opt_source }, }; const struct fs_parameter_description foo_parser = { .name = "foo", .nr_params = nr__foo_params, .nr_alt_keys = ARRAY_SIZE(foo_param_alt_keys), .keys = foo_param_keys, .alt_keys = foo_param_alt_keys, .specs = foo_param_specs, }; int foo_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct fs_parse_result parse; struct foo_fs_context *ctx = foo_fc2context(fc); int ret; ret = fs_parse(fc, &foo_parser, param, &parse); if (ret < 0) return ret; switch (parse.key) { case Opt_source: return fs_lookup_param(fc, &foo_parser, param, &parse, &ctx->source); default: return -EINVAL; } } (3) lookup_constant(). This takes a table of named constants and looks up the given name within it. The table is expected to be sorted such that bsearch() be used upon it. Possibly I should require the table be terminated and just use a for-loop to scan it instead of using bsearch() to reduce hassle. Tables look something like: static const struct constant_table bool_names[] = { { "0", false }, { "1", true }, { "false", false }, { "no", false }, { "true", true }, { "yes", true }, }; and a lookup is done with something like: b = lookup_constant(bool_names, param->string, -1); Additionally, optional validation routines for the parameter description are provided that can be enabled at compile time. A later patch will invoke these when a filesystem is registered. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2018-11-02 06:07:24 +07:00
/* Filesystem parameter description and parser
*
* Copyright (C) 2018 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*/
#ifndef _LINUX_FS_PARSER_H
#define _LINUX_FS_PARSER_H
#include <linux/fs_context.h>
struct path;
struct constant_table {
const char *name;
int value;
};
struct fs_parameter_spec;
struct fs_parse_result;
typedef int fs_param_type(struct p_log *,
const struct fs_parameter_spec *,
struct fs_parameter *,
struct fs_parse_result *);
vfs: Add configuration parser helpers Because the new API passes in key,value parameters, match_token() cannot be used with it. Instead, provide three new helpers to aid with parsing: (1) fs_parse(). This takes a parameter and a simple static description of all the parameters and maps the key name to an ID. It returns 1 on a match, 0 on no match if unknowns should be ignored and some other negative error code on a parse error. The parameter description includes a list of key names to IDs, desired parameter types and a list of enumeration name -> ID mappings. [!] Note that for the moment I've required that the key->ID mapping array is expected to be sorted and unterminated. The size of the array is noted in the fsconfig_parser struct. This allows me to use bsearch(), but I'm not sure any performance gain is worth the hassle of requiring people to keep the array sorted. The parameter type array is sized according to the number of parameter IDs and is indexed directly. The optional enum mapping array is an unterminated, unsorted list and the size goes into the fsconfig_parser struct. The function can do some additional things: (a) If it's not ambiguous and no value is given, the prefix "no" on a key name is permitted to indicate that the parameter should be considered negatory. (b) If the desired type is a single simple integer, it will perform an appropriate conversion and store the result in a union in the parse result. (c) If the desired type is an enumeration, {key ID, name} will be looked up in the enumeration list and the matching value will be stored in the parse result union. (d) Optionally generate an error if the key is unrecognised. This is called something like: enum rdt_param { Opt_cdp, Opt_cdpl2, Opt_mba_mpbs, nr__rdt_params }; const struct fs_parameter_spec rdt_param_specs[nr__rdt_params] = { [Opt_cdp] = { fs_param_is_bool }, [Opt_cdpl2] = { fs_param_is_bool }, [Opt_mba_mpbs] = { fs_param_is_bool }, }; const const char *const rdt_param_keys[nr__rdt_params] = { [Opt_cdp] = "cdp", [Opt_cdpl2] = "cdpl2", [Opt_mba_mpbs] = "mba_mbps", }; const struct fs_parameter_description rdt_parser = { .name = "rdt", .nr_params = nr__rdt_params, .keys = rdt_param_keys, .specs = rdt_param_specs, .no_source = true, }; int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct fs_parse_result parse; struct rdt_fs_context *ctx = rdt_fc2context(fc); int ret; ret = fs_parse(fc, &rdt_parser, param, &parse); if (ret < 0) return ret; switch (parse.key) { case Opt_cdp: ctx->enable_cdpl3 = true; return 0; case Opt_cdpl2: ctx->enable_cdpl2 = true; return 0; case Opt_mba_mpbs: ctx->enable_mba_mbps = true; return 0; } return -EINVAL; } (2) fs_lookup_param(). This takes a { dirfd, path, LOOKUP_EMPTY? } or string value and performs an appropriate path lookup to convert it into a path object, which it will then return. If the desired type was a blockdev, the type of the looked up inode will be checked to make sure it is one. This can be used like: enum foo_param { Opt_source, nr__foo_params }; const struct fs_parameter_spec foo_param_specs[nr__foo_params] = { [Opt_source] = { fs_param_is_blockdev }, }; const char *char foo_param_keys[nr__foo_params] = { [Opt_source] = "source", }; const struct constant_table foo_param_alt_keys[] = { { "device", Opt_source }, }; const struct fs_parameter_description foo_parser = { .name = "foo", .nr_params = nr__foo_params, .nr_alt_keys = ARRAY_SIZE(foo_param_alt_keys), .keys = foo_param_keys, .alt_keys = foo_param_alt_keys, .specs = foo_param_specs, }; int foo_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct fs_parse_result parse; struct foo_fs_context *ctx = foo_fc2context(fc); int ret; ret = fs_parse(fc, &foo_parser, param, &parse); if (ret < 0) return ret; switch (parse.key) { case Opt_source: return fs_lookup_param(fc, &foo_parser, param, &parse, &ctx->source); default: return -EINVAL; } } (3) lookup_constant(). This takes a table of named constants and looks up the given name within it. The table is expected to be sorted such that bsearch() be used upon it. Possibly I should require the table be terminated and just use a for-loop to scan it instead of using bsearch() to reduce hassle. Tables look something like: static const struct constant_table bool_names[] = { { "0", false }, { "1", true }, { "false", false }, { "no", false }, { "true", true }, { "yes", true }, }; and a lookup is done with something like: b = lookup_constant(bool_names, param->string, -1); Additionally, optional validation routines for the parameter description are provided that can be enabled at compile time. A later patch will invoke these when a filesystem is registered. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2018-11-02 06:07:24 +07:00
/*
* The type of parameter expected.
*/
fs_param_type fs_param_is_bool, fs_param_is_u32, fs_param_is_s32, fs_param_is_u64,
fs_param_is_enum, fs_param_is_string, fs_param_is_blob, fs_param_is_blockdev,
fs_param_is_path, fs_param_is_fd;
vfs: Add configuration parser helpers Because the new API passes in key,value parameters, match_token() cannot be used with it. Instead, provide three new helpers to aid with parsing: (1) fs_parse(). This takes a parameter and a simple static description of all the parameters and maps the key name to an ID. It returns 1 on a match, 0 on no match if unknowns should be ignored and some other negative error code on a parse error. The parameter description includes a list of key names to IDs, desired parameter types and a list of enumeration name -> ID mappings. [!] Note that for the moment I've required that the key->ID mapping array is expected to be sorted and unterminated. The size of the array is noted in the fsconfig_parser struct. This allows me to use bsearch(), but I'm not sure any performance gain is worth the hassle of requiring people to keep the array sorted. The parameter type array is sized according to the number of parameter IDs and is indexed directly. The optional enum mapping array is an unterminated, unsorted list and the size goes into the fsconfig_parser struct. The function can do some additional things: (a) If it's not ambiguous and no value is given, the prefix "no" on a key name is permitted to indicate that the parameter should be considered negatory. (b) If the desired type is a single simple integer, it will perform an appropriate conversion and store the result in a union in the parse result. (c) If the desired type is an enumeration, {key ID, name} will be looked up in the enumeration list and the matching value will be stored in the parse result union. (d) Optionally generate an error if the key is unrecognised. This is called something like: enum rdt_param { Opt_cdp, Opt_cdpl2, Opt_mba_mpbs, nr__rdt_params }; const struct fs_parameter_spec rdt_param_specs[nr__rdt_params] = { [Opt_cdp] = { fs_param_is_bool }, [Opt_cdpl2] = { fs_param_is_bool }, [Opt_mba_mpbs] = { fs_param_is_bool }, }; const const char *const rdt_param_keys[nr__rdt_params] = { [Opt_cdp] = "cdp", [Opt_cdpl2] = "cdpl2", [Opt_mba_mpbs] = "mba_mbps", }; const struct fs_parameter_description rdt_parser = { .name = "rdt", .nr_params = nr__rdt_params, .keys = rdt_param_keys, .specs = rdt_param_specs, .no_source = true, }; int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct fs_parse_result parse; struct rdt_fs_context *ctx = rdt_fc2context(fc); int ret; ret = fs_parse(fc, &rdt_parser, param, &parse); if (ret < 0) return ret; switch (parse.key) { case Opt_cdp: ctx->enable_cdpl3 = true; return 0; case Opt_cdpl2: ctx->enable_cdpl2 = true; return 0; case Opt_mba_mpbs: ctx->enable_mba_mbps = true; return 0; } return -EINVAL; } (2) fs_lookup_param(). This takes a { dirfd, path, LOOKUP_EMPTY? } or string value and performs an appropriate path lookup to convert it into a path object, which it will then return. If the desired type was a blockdev, the type of the looked up inode will be checked to make sure it is one. This can be used like: enum foo_param { Opt_source, nr__foo_params }; const struct fs_parameter_spec foo_param_specs[nr__foo_params] = { [Opt_source] = { fs_param_is_blockdev }, }; const char *char foo_param_keys[nr__foo_params] = { [Opt_source] = "source", }; const struct constant_table foo_param_alt_keys[] = { { "device", Opt_source }, }; const struct fs_parameter_description foo_parser = { .name = "foo", .nr_params = nr__foo_params, .nr_alt_keys = ARRAY_SIZE(foo_param_alt_keys), .keys = foo_param_keys, .alt_keys = foo_param_alt_keys, .specs = foo_param_specs, }; int foo_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct fs_parse_result parse; struct foo_fs_context *ctx = foo_fc2context(fc); int ret; ret = fs_parse(fc, &foo_parser, param, &parse); if (ret < 0) return ret; switch (parse.key) { case Opt_source: return fs_lookup_param(fc, &foo_parser, param, &parse, &ctx->source); default: return -EINVAL; } } (3) lookup_constant(). This takes a table of named constants and looks up the given name within it. The table is expected to be sorted such that bsearch() be used upon it. Possibly I should require the table be terminated and just use a for-loop to scan it instead of using bsearch() to reduce hassle. Tables look something like: static const struct constant_table bool_names[] = { { "0", false }, { "1", true }, { "false", false }, { "no", false }, { "true", true }, { "yes", true }, }; and a lookup is done with something like: b = lookup_constant(bool_names, param->string, -1); Additionally, optional validation routines for the parameter description are provided that can be enabled at compile time. A later patch will invoke these when a filesystem is registered. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2018-11-02 06:07:24 +07:00
/*
* Specification of the type of value a parameter wants.
*
* Note that the fsparam_flag(), fsparam_string(), fsparam_u32(), ... macros
* should be used to generate elements of this type.
*/
struct fs_parameter_spec {
const char *name;
fs_param_type *type; /* The desired parameter type */
vfs: Add configuration parser helpers Because the new API passes in key,value parameters, match_token() cannot be used with it. Instead, provide three new helpers to aid with parsing: (1) fs_parse(). This takes a parameter and a simple static description of all the parameters and maps the key name to an ID. It returns 1 on a match, 0 on no match if unknowns should be ignored and some other negative error code on a parse error. The parameter description includes a list of key names to IDs, desired parameter types and a list of enumeration name -> ID mappings. [!] Note that for the moment I've required that the key->ID mapping array is expected to be sorted and unterminated. The size of the array is noted in the fsconfig_parser struct. This allows me to use bsearch(), but I'm not sure any performance gain is worth the hassle of requiring people to keep the array sorted. The parameter type array is sized according to the number of parameter IDs and is indexed directly. The optional enum mapping array is an unterminated, unsorted list and the size goes into the fsconfig_parser struct. The function can do some additional things: (a) If it's not ambiguous and no value is given, the prefix "no" on a key name is permitted to indicate that the parameter should be considered negatory. (b) If the desired type is a single simple integer, it will perform an appropriate conversion and store the result in a union in the parse result. (c) If the desired type is an enumeration, {key ID, name} will be looked up in the enumeration list and the matching value will be stored in the parse result union. (d) Optionally generate an error if the key is unrecognised. This is called something like: enum rdt_param { Opt_cdp, Opt_cdpl2, Opt_mba_mpbs, nr__rdt_params }; const struct fs_parameter_spec rdt_param_specs[nr__rdt_params] = { [Opt_cdp] = { fs_param_is_bool }, [Opt_cdpl2] = { fs_param_is_bool }, [Opt_mba_mpbs] = { fs_param_is_bool }, }; const const char *const rdt_param_keys[nr__rdt_params] = { [Opt_cdp] = "cdp", [Opt_cdpl2] = "cdpl2", [Opt_mba_mpbs] = "mba_mbps", }; const struct fs_parameter_description rdt_parser = { .name = "rdt", .nr_params = nr__rdt_params, .keys = rdt_param_keys, .specs = rdt_param_specs, .no_source = true, }; int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct fs_parse_result parse; struct rdt_fs_context *ctx = rdt_fc2context(fc); int ret; ret = fs_parse(fc, &rdt_parser, param, &parse); if (ret < 0) return ret; switch (parse.key) { case Opt_cdp: ctx->enable_cdpl3 = true; return 0; case Opt_cdpl2: ctx->enable_cdpl2 = true; return 0; case Opt_mba_mpbs: ctx->enable_mba_mbps = true; return 0; } return -EINVAL; } (2) fs_lookup_param(). This takes a { dirfd, path, LOOKUP_EMPTY? } or string value and performs an appropriate path lookup to convert it into a path object, which it will then return. If the desired type was a blockdev, the type of the looked up inode will be checked to make sure it is one. This can be used like: enum foo_param { Opt_source, nr__foo_params }; const struct fs_parameter_spec foo_param_specs[nr__foo_params] = { [Opt_source] = { fs_param_is_blockdev }, }; const char *char foo_param_keys[nr__foo_params] = { [Opt_source] = "source", }; const struct constant_table foo_param_alt_keys[] = { { "device", Opt_source }, }; const struct fs_parameter_description foo_parser = { .name = "foo", .nr_params = nr__foo_params, .nr_alt_keys = ARRAY_SIZE(foo_param_alt_keys), .keys = foo_param_keys, .alt_keys = foo_param_alt_keys, .specs = foo_param_specs, }; int foo_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct fs_parse_result parse; struct foo_fs_context *ctx = foo_fc2context(fc); int ret; ret = fs_parse(fc, &foo_parser, param, &parse); if (ret < 0) return ret; switch (parse.key) { case Opt_source: return fs_lookup_param(fc, &foo_parser, param, &parse, &ctx->source); default: return -EINVAL; } } (3) lookup_constant(). This takes a table of named constants and looks up the given name within it. The table is expected to be sorted such that bsearch() be used upon it. Possibly I should require the table be terminated and just use a for-loop to scan it instead of using bsearch() to reduce hassle. Tables look something like: static const struct constant_table bool_names[] = { { "0", false }, { "1", true }, { "false", false }, { "no", false }, { "true", true }, { "yes", true }, }; and a lookup is done with something like: b = lookup_constant(bool_names, param->string, -1); Additionally, optional validation routines for the parameter description are provided that can be enabled at compile time. A later patch will invoke these when a filesystem is registered. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2018-11-02 06:07:24 +07:00
u8 opt; /* Option number (returned by fs_parse()) */
unsigned short flags;
#define fs_param_neg_with_no 0x0002 /* "noxxx" is negative param */
#define fs_param_neg_with_empty 0x0004 /* "xxx=" is negative param */
#define fs_param_deprecated 0x0008 /* The param is deprecated */
const void *data;
vfs: Add configuration parser helpers Because the new API passes in key,value parameters, match_token() cannot be used with it. Instead, provide three new helpers to aid with parsing: (1) fs_parse(). This takes a parameter and a simple static description of all the parameters and maps the key name to an ID. It returns 1 on a match, 0 on no match if unknowns should be ignored and some other negative error code on a parse error. The parameter description includes a list of key names to IDs, desired parameter types and a list of enumeration name -> ID mappings. [!] Note that for the moment I've required that the key->ID mapping array is expected to be sorted and unterminated. The size of the array is noted in the fsconfig_parser struct. This allows me to use bsearch(), but I'm not sure any performance gain is worth the hassle of requiring people to keep the array sorted. The parameter type array is sized according to the number of parameter IDs and is indexed directly. The optional enum mapping array is an unterminated, unsorted list and the size goes into the fsconfig_parser struct. The function can do some additional things: (a) If it's not ambiguous and no value is given, the prefix "no" on a key name is permitted to indicate that the parameter should be considered negatory. (b) If the desired type is a single simple integer, it will perform an appropriate conversion and store the result in a union in the parse result. (c) If the desired type is an enumeration, {key ID, name} will be looked up in the enumeration list and the matching value will be stored in the parse result union. (d) Optionally generate an error if the key is unrecognised. This is called something like: enum rdt_param { Opt_cdp, Opt_cdpl2, Opt_mba_mpbs, nr__rdt_params }; const struct fs_parameter_spec rdt_param_specs[nr__rdt_params] = { [Opt_cdp] = { fs_param_is_bool }, [Opt_cdpl2] = { fs_param_is_bool }, [Opt_mba_mpbs] = { fs_param_is_bool }, }; const const char *const rdt_param_keys[nr__rdt_params] = { [Opt_cdp] = "cdp", [Opt_cdpl2] = "cdpl2", [Opt_mba_mpbs] = "mba_mbps", }; const struct fs_parameter_description rdt_parser = { .name = "rdt", .nr_params = nr__rdt_params, .keys = rdt_param_keys, .specs = rdt_param_specs, .no_source = true, }; int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct fs_parse_result parse; struct rdt_fs_context *ctx = rdt_fc2context(fc); int ret; ret = fs_parse(fc, &rdt_parser, param, &parse); if (ret < 0) return ret; switch (parse.key) { case Opt_cdp: ctx->enable_cdpl3 = true; return 0; case Opt_cdpl2: ctx->enable_cdpl2 = true; return 0; case Opt_mba_mpbs: ctx->enable_mba_mbps = true; return 0; } return -EINVAL; } (2) fs_lookup_param(). This takes a { dirfd, path, LOOKUP_EMPTY? } or string value and performs an appropriate path lookup to convert it into a path object, which it will then return. If the desired type was a blockdev, the type of the looked up inode will be checked to make sure it is one. This can be used like: enum foo_param { Opt_source, nr__foo_params }; const struct fs_parameter_spec foo_param_specs[nr__foo_params] = { [Opt_source] = { fs_param_is_blockdev }, }; const char *char foo_param_keys[nr__foo_params] = { [Opt_source] = "source", }; const struct constant_table foo_param_alt_keys[] = { { "device", Opt_source }, }; const struct fs_parameter_description foo_parser = { .name = "foo", .nr_params = nr__foo_params, .nr_alt_keys = ARRAY_SIZE(foo_param_alt_keys), .keys = foo_param_keys, .alt_keys = foo_param_alt_keys, .specs = foo_param_specs, }; int foo_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct fs_parse_result parse; struct foo_fs_context *ctx = foo_fc2context(fc); int ret; ret = fs_parse(fc, &foo_parser, param, &parse); if (ret < 0) return ret; switch (parse.key) { case Opt_source: return fs_lookup_param(fc, &foo_parser, param, &parse, &ctx->source); default: return -EINVAL; } } (3) lookup_constant(). This takes a table of named constants and looks up the given name within it. The table is expected to be sorted such that bsearch() be used upon it. Possibly I should require the table be terminated and just use a for-loop to scan it instead of using bsearch() to reduce hassle. Tables look something like: static const struct constant_table bool_names[] = { { "0", false }, { "1", true }, { "false", false }, { "no", false }, { "true", true }, { "yes", true }, }; and a lookup is done with something like: b = lookup_constant(bool_names, param->string, -1); Additionally, optional validation routines for the parameter description are provided that can be enabled at compile time. A later patch will invoke these when a filesystem is registered. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2018-11-02 06:07:24 +07:00
};
/*
* Result of parse.
*/
struct fs_parse_result {
bool negated; /* T if param was "noxxx" */
union {
bool boolean; /* For spec_bool */
int int_32; /* For spec_s32/spec_enum */
unsigned int uint_32; /* For spec_u32{,_octal,_hex}/spec_enum */
u64 uint_64; /* For spec_u64 */
};
};
extern int __fs_parse(struct p_log *log,
const struct fs_parameter_spec *desc,
struct fs_parameter *value,
struct fs_parse_result *result);
static inline int fs_parse(struct fs_context *fc,
const struct fs_parameter_spec *desc,
struct fs_parameter *param,
struct fs_parse_result *result)
{
return __fs_parse(&fc->log, desc, param, result);
}
vfs: Add configuration parser helpers Because the new API passes in key,value parameters, match_token() cannot be used with it. Instead, provide three new helpers to aid with parsing: (1) fs_parse(). This takes a parameter and a simple static description of all the parameters and maps the key name to an ID. It returns 1 on a match, 0 on no match if unknowns should be ignored and some other negative error code on a parse error. The parameter description includes a list of key names to IDs, desired parameter types and a list of enumeration name -> ID mappings. [!] Note that for the moment I've required that the key->ID mapping array is expected to be sorted and unterminated. The size of the array is noted in the fsconfig_parser struct. This allows me to use bsearch(), but I'm not sure any performance gain is worth the hassle of requiring people to keep the array sorted. The parameter type array is sized according to the number of parameter IDs and is indexed directly. The optional enum mapping array is an unterminated, unsorted list and the size goes into the fsconfig_parser struct. The function can do some additional things: (a) If it's not ambiguous and no value is given, the prefix "no" on a key name is permitted to indicate that the parameter should be considered negatory. (b) If the desired type is a single simple integer, it will perform an appropriate conversion and store the result in a union in the parse result. (c) If the desired type is an enumeration, {key ID, name} will be looked up in the enumeration list and the matching value will be stored in the parse result union. (d) Optionally generate an error if the key is unrecognised. This is called something like: enum rdt_param { Opt_cdp, Opt_cdpl2, Opt_mba_mpbs, nr__rdt_params }; const struct fs_parameter_spec rdt_param_specs[nr__rdt_params] = { [Opt_cdp] = { fs_param_is_bool }, [Opt_cdpl2] = { fs_param_is_bool }, [Opt_mba_mpbs] = { fs_param_is_bool }, }; const const char *const rdt_param_keys[nr__rdt_params] = { [Opt_cdp] = "cdp", [Opt_cdpl2] = "cdpl2", [Opt_mba_mpbs] = "mba_mbps", }; const struct fs_parameter_description rdt_parser = { .name = "rdt", .nr_params = nr__rdt_params, .keys = rdt_param_keys, .specs = rdt_param_specs, .no_source = true, }; int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct fs_parse_result parse; struct rdt_fs_context *ctx = rdt_fc2context(fc); int ret; ret = fs_parse(fc, &rdt_parser, param, &parse); if (ret < 0) return ret; switch (parse.key) { case Opt_cdp: ctx->enable_cdpl3 = true; return 0; case Opt_cdpl2: ctx->enable_cdpl2 = true; return 0; case Opt_mba_mpbs: ctx->enable_mba_mbps = true; return 0; } return -EINVAL; } (2) fs_lookup_param(). This takes a { dirfd, path, LOOKUP_EMPTY? } or string value and performs an appropriate path lookup to convert it into a path object, which it will then return. If the desired type was a blockdev, the type of the looked up inode will be checked to make sure it is one. This can be used like: enum foo_param { Opt_source, nr__foo_params }; const struct fs_parameter_spec foo_param_specs[nr__foo_params] = { [Opt_source] = { fs_param_is_blockdev }, }; const char *char foo_param_keys[nr__foo_params] = { [Opt_source] = "source", }; const struct constant_table foo_param_alt_keys[] = { { "device", Opt_source }, }; const struct fs_parameter_description foo_parser = { .name = "foo", .nr_params = nr__foo_params, .nr_alt_keys = ARRAY_SIZE(foo_param_alt_keys), .keys = foo_param_keys, .alt_keys = foo_param_alt_keys, .specs = foo_param_specs, }; int foo_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct fs_parse_result parse; struct foo_fs_context *ctx = foo_fc2context(fc); int ret; ret = fs_parse(fc, &foo_parser, param, &parse); if (ret < 0) return ret; switch (parse.key) { case Opt_source: return fs_lookup_param(fc, &foo_parser, param, &parse, &ctx->source); default: return -EINVAL; } } (3) lookup_constant(). This takes a table of named constants and looks up the given name within it. The table is expected to be sorted such that bsearch() be used upon it. Possibly I should require the table be terminated and just use a for-loop to scan it instead of using bsearch() to reduce hassle. Tables look something like: static const struct constant_table bool_names[] = { { "0", false }, { "1", true }, { "false", false }, { "no", false }, { "true", true }, { "yes", true }, }; and a lookup is done with something like: b = lookup_constant(bool_names, param->string, -1); Additionally, optional validation routines for the parameter description are provided that can be enabled at compile time. A later patch will invoke these when a filesystem is registered. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2018-11-02 06:07:24 +07:00
extern int fs_lookup_param(struct fs_context *fc,
struct fs_parameter *param,
bool want_bdev,
struct path *_path);
extern int lookup_constant(const struct constant_table tbl[], const char *name, int not_found);
vfs: Add configuration parser helpers Because the new API passes in key,value parameters, match_token() cannot be used with it. Instead, provide three new helpers to aid with parsing: (1) fs_parse(). This takes a parameter and a simple static description of all the parameters and maps the key name to an ID. It returns 1 on a match, 0 on no match if unknowns should be ignored and some other negative error code on a parse error. The parameter description includes a list of key names to IDs, desired parameter types and a list of enumeration name -> ID mappings. [!] Note that for the moment I've required that the key->ID mapping array is expected to be sorted and unterminated. The size of the array is noted in the fsconfig_parser struct. This allows me to use bsearch(), but I'm not sure any performance gain is worth the hassle of requiring people to keep the array sorted. The parameter type array is sized according to the number of parameter IDs and is indexed directly. The optional enum mapping array is an unterminated, unsorted list and the size goes into the fsconfig_parser struct. The function can do some additional things: (a) If it's not ambiguous and no value is given, the prefix "no" on a key name is permitted to indicate that the parameter should be considered negatory. (b) If the desired type is a single simple integer, it will perform an appropriate conversion and store the result in a union in the parse result. (c) If the desired type is an enumeration, {key ID, name} will be looked up in the enumeration list and the matching value will be stored in the parse result union. (d) Optionally generate an error if the key is unrecognised. This is called something like: enum rdt_param { Opt_cdp, Opt_cdpl2, Opt_mba_mpbs, nr__rdt_params }; const struct fs_parameter_spec rdt_param_specs[nr__rdt_params] = { [Opt_cdp] = { fs_param_is_bool }, [Opt_cdpl2] = { fs_param_is_bool }, [Opt_mba_mpbs] = { fs_param_is_bool }, }; const const char *const rdt_param_keys[nr__rdt_params] = { [Opt_cdp] = "cdp", [Opt_cdpl2] = "cdpl2", [Opt_mba_mpbs] = "mba_mbps", }; const struct fs_parameter_description rdt_parser = { .name = "rdt", .nr_params = nr__rdt_params, .keys = rdt_param_keys, .specs = rdt_param_specs, .no_source = true, }; int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct fs_parse_result parse; struct rdt_fs_context *ctx = rdt_fc2context(fc); int ret; ret = fs_parse(fc, &rdt_parser, param, &parse); if (ret < 0) return ret; switch (parse.key) { case Opt_cdp: ctx->enable_cdpl3 = true; return 0; case Opt_cdpl2: ctx->enable_cdpl2 = true; return 0; case Opt_mba_mpbs: ctx->enable_mba_mbps = true; return 0; } return -EINVAL; } (2) fs_lookup_param(). This takes a { dirfd, path, LOOKUP_EMPTY? } or string value and performs an appropriate path lookup to convert it into a path object, which it will then return. If the desired type was a blockdev, the type of the looked up inode will be checked to make sure it is one. This can be used like: enum foo_param { Opt_source, nr__foo_params }; const struct fs_parameter_spec foo_param_specs[nr__foo_params] = { [Opt_source] = { fs_param_is_blockdev }, }; const char *char foo_param_keys[nr__foo_params] = { [Opt_source] = "source", }; const struct constant_table foo_param_alt_keys[] = { { "device", Opt_source }, }; const struct fs_parameter_description foo_parser = { .name = "foo", .nr_params = nr__foo_params, .nr_alt_keys = ARRAY_SIZE(foo_param_alt_keys), .keys = foo_param_keys, .alt_keys = foo_param_alt_keys, .specs = foo_param_specs, }; int foo_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct fs_parse_result parse; struct foo_fs_context *ctx = foo_fc2context(fc); int ret; ret = fs_parse(fc, &foo_parser, param, &parse); if (ret < 0) return ret; switch (parse.key) { case Opt_source: return fs_lookup_param(fc, &foo_parser, param, &parse, &ctx->source); default: return -EINVAL; } } (3) lookup_constant(). This takes a table of named constants and looks up the given name within it. The table is expected to be sorted such that bsearch() be used upon it. Possibly I should require the table be terminated and just use a for-loop to scan it instead of using bsearch() to reduce hassle. Tables look something like: static const struct constant_table bool_names[] = { { "0", false }, { "1", true }, { "false", false }, { "no", false }, { "true", true }, { "yes", true }, }; and a lookup is done with something like: b = lookup_constant(bool_names, param->string, -1); Additionally, optional validation routines for the parameter description are provided that can be enabled at compile time. A later patch will invoke these when a filesystem is registered. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2018-11-02 06:07:24 +07:00
#ifdef CONFIG_VALIDATE_FS_PARSER
extern bool validate_constant_table(const struct constant_table *tbl, size_t tbl_size,
int low, int high, int special);
extern bool fs_validate_description(const char *name,
const struct fs_parameter_spec *desc);
vfs: Add configuration parser helpers Because the new API passes in key,value parameters, match_token() cannot be used with it. Instead, provide three new helpers to aid with parsing: (1) fs_parse(). This takes a parameter and a simple static description of all the parameters and maps the key name to an ID. It returns 1 on a match, 0 on no match if unknowns should be ignored and some other negative error code on a parse error. The parameter description includes a list of key names to IDs, desired parameter types and a list of enumeration name -> ID mappings. [!] Note that for the moment I've required that the key->ID mapping array is expected to be sorted and unterminated. The size of the array is noted in the fsconfig_parser struct. This allows me to use bsearch(), but I'm not sure any performance gain is worth the hassle of requiring people to keep the array sorted. The parameter type array is sized according to the number of parameter IDs and is indexed directly. The optional enum mapping array is an unterminated, unsorted list and the size goes into the fsconfig_parser struct. The function can do some additional things: (a) If it's not ambiguous and no value is given, the prefix "no" on a key name is permitted to indicate that the parameter should be considered negatory. (b) If the desired type is a single simple integer, it will perform an appropriate conversion and store the result in a union in the parse result. (c) If the desired type is an enumeration, {key ID, name} will be looked up in the enumeration list and the matching value will be stored in the parse result union. (d) Optionally generate an error if the key is unrecognised. This is called something like: enum rdt_param { Opt_cdp, Opt_cdpl2, Opt_mba_mpbs, nr__rdt_params }; const struct fs_parameter_spec rdt_param_specs[nr__rdt_params] = { [Opt_cdp] = { fs_param_is_bool }, [Opt_cdpl2] = { fs_param_is_bool }, [Opt_mba_mpbs] = { fs_param_is_bool }, }; const const char *const rdt_param_keys[nr__rdt_params] = { [Opt_cdp] = "cdp", [Opt_cdpl2] = "cdpl2", [Opt_mba_mpbs] = "mba_mbps", }; const struct fs_parameter_description rdt_parser = { .name = "rdt", .nr_params = nr__rdt_params, .keys = rdt_param_keys, .specs = rdt_param_specs, .no_source = true, }; int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct fs_parse_result parse; struct rdt_fs_context *ctx = rdt_fc2context(fc); int ret; ret = fs_parse(fc, &rdt_parser, param, &parse); if (ret < 0) return ret; switch (parse.key) { case Opt_cdp: ctx->enable_cdpl3 = true; return 0; case Opt_cdpl2: ctx->enable_cdpl2 = true; return 0; case Opt_mba_mpbs: ctx->enable_mba_mbps = true; return 0; } return -EINVAL; } (2) fs_lookup_param(). This takes a { dirfd, path, LOOKUP_EMPTY? } or string value and performs an appropriate path lookup to convert it into a path object, which it will then return. If the desired type was a blockdev, the type of the looked up inode will be checked to make sure it is one. This can be used like: enum foo_param { Opt_source, nr__foo_params }; const struct fs_parameter_spec foo_param_specs[nr__foo_params] = { [Opt_source] = { fs_param_is_blockdev }, }; const char *char foo_param_keys[nr__foo_params] = { [Opt_source] = "source", }; const struct constant_table foo_param_alt_keys[] = { { "device", Opt_source }, }; const struct fs_parameter_description foo_parser = { .name = "foo", .nr_params = nr__foo_params, .nr_alt_keys = ARRAY_SIZE(foo_param_alt_keys), .keys = foo_param_keys, .alt_keys = foo_param_alt_keys, .specs = foo_param_specs, }; int foo_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct fs_parse_result parse; struct foo_fs_context *ctx = foo_fc2context(fc); int ret; ret = fs_parse(fc, &foo_parser, param, &parse); if (ret < 0) return ret; switch (parse.key) { case Opt_source: return fs_lookup_param(fc, &foo_parser, param, &parse, &ctx->source); default: return -EINVAL; } } (3) lookup_constant(). This takes a table of named constants and looks up the given name within it. The table is expected to be sorted such that bsearch() be used upon it. Possibly I should require the table be terminated and just use a for-loop to scan it instead of using bsearch() to reduce hassle. Tables look something like: static const struct constant_table bool_names[] = { { "0", false }, { "1", true }, { "false", false }, { "no", false }, { "true", true }, { "yes", true }, }; and a lookup is done with something like: b = lookup_constant(bool_names, param->string, -1); Additionally, optional validation routines for the parameter description are provided that can be enabled at compile time. A later patch will invoke these when a filesystem is registered. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2018-11-02 06:07:24 +07:00
#else
static inline bool validate_constant_table(const struct constant_table *tbl, size_t tbl_size,
int low, int high, int special)
{ return true; }
static inline bool fs_validate_description(const char *name,
const struct fs_parameter_spec *desc)
vfs: Add configuration parser helpers Because the new API passes in key,value parameters, match_token() cannot be used with it. Instead, provide three new helpers to aid with parsing: (1) fs_parse(). This takes a parameter and a simple static description of all the parameters and maps the key name to an ID. It returns 1 on a match, 0 on no match if unknowns should be ignored and some other negative error code on a parse error. The parameter description includes a list of key names to IDs, desired parameter types and a list of enumeration name -> ID mappings. [!] Note that for the moment I've required that the key->ID mapping array is expected to be sorted and unterminated. The size of the array is noted in the fsconfig_parser struct. This allows me to use bsearch(), but I'm not sure any performance gain is worth the hassle of requiring people to keep the array sorted. The parameter type array is sized according to the number of parameter IDs and is indexed directly. The optional enum mapping array is an unterminated, unsorted list and the size goes into the fsconfig_parser struct. The function can do some additional things: (a) If it's not ambiguous and no value is given, the prefix "no" on a key name is permitted to indicate that the parameter should be considered negatory. (b) If the desired type is a single simple integer, it will perform an appropriate conversion and store the result in a union in the parse result. (c) If the desired type is an enumeration, {key ID, name} will be looked up in the enumeration list and the matching value will be stored in the parse result union. (d) Optionally generate an error if the key is unrecognised. This is called something like: enum rdt_param { Opt_cdp, Opt_cdpl2, Opt_mba_mpbs, nr__rdt_params }; const struct fs_parameter_spec rdt_param_specs[nr__rdt_params] = { [Opt_cdp] = { fs_param_is_bool }, [Opt_cdpl2] = { fs_param_is_bool }, [Opt_mba_mpbs] = { fs_param_is_bool }, }; const const char *const rdt_param_keys[nr__rdt_params] = { [Opt_cdp] = "cdp", [Opt_cdpl2] = "cdpl2", [Opt_mba_mpbs] = "mba_mbps", }; const struct fs_parameter_description rdt_parser = { .name = "rdt", .nr_params = nr__rdt_params, .keys = rdt_param_keys, .specs = rdt_param_specs, .no_source = true, }; int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct fs_parse_result parse; struct rdt_fs_context *ctx = rdt_fc2context(fc); int ret; ret = fs_parse(fc, &rdt_parser, param, &parse); if (ret < 0) return ret; switch (parse.key) { case Opt_cdp: ctx->enable_cdpl3 = true; return 0; case Opt_cdpl2: ctx->enable_cdpl2 = true; return 0; case Opt_mba_mpbs: ctx->enable_mba_mbps = true; return 0; } return -EINVAL; } (2) fs_lookup_param(). This takes a { dirfd, path, LOOKUP_EMPTY? } or string value and performs an appropriate path lookup to convert it into a path object, which it will then return. If the desired type was a blockdev, the type of the looked up inode will be checked to make sure it is one. This can be used like: enum foo_param { Opt_source, nr__foo_params }; const struct fs_parameter_spec foo_param_specs[nr__foo_params] = { [Opt_source] = { fs_param_is_blockdev }, }; const char *char foo_param_keys[nr__foo_params] = { [Opt_source] = "source", }; const struct constant_table foo_param_alt_keys[] = { { "device", Opt_source }, }; const struct fs_parameter_description foo_parser = { .name = "foo", .nr_params = nr__foo_params, .nr_alt_keys = ARRAY_SIZE(foo_param_alt_keys), .keys = foo_param_keys, .alt_keys = foo_param_alt_keys, .specs = foo_param_specs, }; int foo_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct fs_parse_result parse; struct foo_fs_context *ctx = foo_fc2context(fc); int ret; ret = fs_parse(fc, &foo_parser, param, &parse); if (ret < 0) return ret; switch (parse.key) { case Opt_source: return fs_lookup_param(fc, &foo_parser, param, &parse, &ctx->source); default: return -EINVAL; } } (3) lookup_constant(). This takes a table of named constants and looks up the given name within it. The table is expected to be sorted such that bsearch() be used upon it. Possibly I should require the table be terminated and just use a for-loop to scan it instead of using bsearch() to reduce hassle. Tables look something like: static const struct constant_table bool_names[] = { { "0", false }, { "1", true }, { "false", false }, { "no", false }, { "true", true }, { "yes", true }, }; and a lookup is done with something like: b = lookup_constant(bool_names, param->string, -1); Additionally, optional validation routines for the parameter description are provided that can be enabled at compile time. A later patch will invoke these when a filesystem is registered. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2018-11-02 06:07:24 +07:00
{ return true; }
#endif
/*
* Parameter type, name, index and flags element constructors. Use as:
*
* fsparam_xxxx("foo", Opt_foo)
*
* If existing helpers are not enough, direct use of __fsparam() would
* work, but any such case is probably a sign that new helper is needed.
* Helpers will remain stable; low-level implementation may change.
*/
#define __fsparam(TYPE, NAME, OPT, FLAGS, DATA) \
vfs: Add configuration parser helpers Because the new API passes in key,value parameters, match_token() cannot be used with it. Instead, provide three new helpers to aid with parsing: (1) fs_parse(). This takes a parameter and a simple static description of all the parameters and maps the key name to an ID. It returns 1 on a match, 0 on no match if unknowns should be ignored and some other negative error code on a parse error. The parameter description includes a list of key names to IDs, desired parameter types and a list of enumeration name -> ID mappings. [!] Note that for the moment I've required that the key->ID mapping array is expected to be sorted and unterminated. The size of the array is noted in the fsconfig_parser struct. This allows me to use bsearch(), but I'm not sure any performance gain is worth the hassle of requiring people to keep the array sorted. The parameter type array is sized according to the number of parameter IDs and is indexed directly. The optional enum mapping array is an unterminated, unsorted list and the size goes into the fsconfig_parser struct. The function can do some additional things: (a) If it's not ambiguous and no value is given, the prefix "no" on a key name is permitted to indicate that the parameter should be considered negatory. (b) If the desired type is a single simple integer, it will perform an appropriate conversion and store the result in a union in the parse result. (c) If the desired type is an enumeration, {key ID, name} will be looked up in the enumeration list and the matching value will be stored in the parse result union. (d) Optionally generate an error if the key is unrecognised. This is called something like: enum rdt_param { Opt_cdp, Opt_cdpl2, Opt_mba_mpbs, nr__rdt_params }; const struct fs_parameter_spec rdt_param_specs[nr__rdt_params] = { [Opt_cdp] = { fs_param_is_bool }, [Opt_cdpl2] = { fs_param_is_bool }, [Opt_mba_mpbs] = { fs_param_is_bool }, }; const const char *const rdt_param_keys[nr__rdt_params] = { [Opt_cdp] = "cdp", [Opt_cdpl2] = "cdpl2", [Opt_mba_mpbs] = "mba_mbps", }; const struct fs_parameter_description rdt_parser = { .name = "rdt", .nr_params = nr__rdt_params, .keys = rdt_param_keys, .specs = rdt_param_specs, .no_source = true, }; int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct fs_parse_result parse; struct rdt_fs_context *ctx = rdt_fc2context(fc); int ret; ret = fs_parse(fc, &rdt_parser, param, &parse); if (ret < 0) return ret; switch (parse.key) { case Opt_cdp: ctx->enable_cdpl3 = true; return 0; case Opt_cdpl2: ctx->enable_cdpl2 = true; return 0; case Opt_mba_mpbs: ctx->enable_mba_mbps = true; return 0; } return -EINVAL; } (2) fs_lookup_param(). This takes a { dirfd, path, LOOKUP_EMPTY? } or string value and performs an appropriate path lookup to convert it into a path object, which it will then return. If the desired type was a blockdev, the type of the looked up inode will be checked to make sure it is one. This can be used like: enum foo_param { Opt_source, nr__foo_params }; const struct fs_parameter_spec foo_param_specs[nr__foo_params] = { [Opt_source] = { fs_param_is_blockdev }, }; const char *char foo_param_keys[nr__foo_params] = { [Opt_source] = "source", }; const struct constant_table foo_param_alt_keys[] = { { "device", Opt_source }, }; const struct fs_parameter_description foo_parser = { .name = "foo", .nr_params = nr__foo_params, .nr_alt_keys = ARRAY_SIZE(foo_param_alt_keys), .keys = foo_param_keys, .alt_keys = foo_param_alt_keys, .specs = foo_param_specs, }; int foo_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct fs_parse_result parse; struct foo_fs_context *ctx = foo_fc2context(fc); int ret; ret = fs_parse(fc, &foo_parser, param, &parse); if (ret < 0) return ret; switch (parse.key) { case Opt_source: return fs_lookup_param(fc, &foo_parser, param, &parse, &ctx->source); default: return -EINVAL; } } (3) lookup_constant(). This takes a table of named constants and looks up the given name within it. The table is expected to be sorted such that bsearch() be used upon it. Possibly I should require the table be terminated and just use a for-loop to scan it instead of using bsearch() to reduce hassle. Tables look something like: static const struct constant_table bool_names[] = { { "0", false }, { "1", true }, { "false", false }, { "no", false }, { "true", true }, { "yes", true }, }; and a lookup is done with something like: b = lookup_constant(bool_names, param->string, -1); Additionally, optional validation routines for the parameter description are provided that can be enabled at compile time. A later patch will invoke these when a filesystem is registered. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2018-11-02 06:07:24 +07:00
{ \
.name = NAME, \
.opt = OPT, \
.type = TYPE, \
.flags = FLAGS, \
.data = DATA \
vfs: Add configuration parser helpers Because the new API passes in key,value parameters, match_token() cannot be used with it. Instead, provide three new helpers to aid with parsing: (1) fs_parse(). This takes a parameter and a simple static description of all the parameters and maps the key name to an ID. It returns 1 on a match, 0 on no match if unknowns should be ignored and some other negative error code on a parse error. The parameter description includes a list of key names to IDs, desired parameter types and a list of enumeration name -> ID mappings. [!] Note that for the moment I've required that the key->ID mapping array is expected to be sorted and unterminated. The size of the array is noted in the fsconfig_parser struct. This allows me to use bsearch(), but I'm not sure any performance gain is worth the hassle of requiring people to keep the array sorted. The parameter type array is sized according to the number of parameter IDs and is indexed directly. The optional enum mapping array is an unterminated, unsorted list and the size goes into the fsconfig_parser struct. The function can do some additional things: (a) If it's not ambiguous and no value is given, the prefix "no" on a key name is permitted to indicate that the parameter should be considered negatory. (b) If the desired type is a single simple integer, it will perform an appropriate conversion and store the result in a union in the parse result. (c) If the desired type is an enumeration, {key ID, name} will be looked up in the enumeration list and the matching value will be stored in the parse result union. (d) Optionally generate an error if the key is unrecognised. This is called something like: enum rdt_param { Opt_cdp, Opt_cdpl2, Opt_mba_mpbs, nr__rdt_params }; const struct fs_parameter_spec rdt_param_specs[nr__rdt_params] = { [Opt_cdp] = { fs_param_is_bool }, [Opt_cdpl2] = { fs_param_is_bool }, [Opt_mba_mpbs] = { fs_param_is_bool }, }; const const char *const rdt_param_keys[nr__rdt_params] = { [Opt_cdp] = "cdp", [Opt_cdpl2] = "cdpl2", [Opt_mba_mpbs] = "mba_mbps", }; const struct fs_parameter_description rdt_parser = { .name = "rdt", .nr_params = nr__rdt_params, .keys = rdt_param_keys, .specs = rdt_param_specs, .no_source = true, }; int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct fs_parse_result parse; struct rdt_fs_context *ctx = rdt_fc2context(fc); int ret; ret = fs_parse(fc, &rdt_parser, param, &parse); if (ret < 0) return ret; switch (parse.key) { case Opt_cdp: ctx->enable_cdpl3 = true; return 0; case Opt_cdpl2: ctx->enable_cdpl2 = true; return 0; case Opt_mba_mpbs: ctx->enable_mba_mbps = true; return 0; } return -EINVAL; } (2) fs_lookup_param(). This takes a { dirfd, path, LOOKUP_EMPTY? } or string value and performs an appropriate path lookup to convert it into a path object, which it will then return. If the desired type was a blockdev, the type of the looked up inode will be checked to make sure it is one. This can be used like: enum foo_param { Opt_source, nr__foo_params }; const struct fs_parameter_spec foo_param_specs[nr__foo_params] = { [Opt_source] = { fs_param_is_blockdev }, }; const char *char foo_param_keys[nr__foo_params] = { [Opt_source] = "source", }; const struct constant_table foo_param_alt_keys[] = { { "device", Opt_source }, }; const struct fs_parameter_description foo_parser = { .name = "foo", .nr_params = nr__foo_params, .nr_alt_keys = ARRAY_SIZE(foo_param_alt_keys), .keys = foo_param_keys, .alt_keys = foo_param_alt_keys, .specs = foo_param_specs, }; int foo_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct fs_parse_result parse; struct foo_fs_context *ctx = foo_fc2context(fc); int ret; ret = fs_parse(fc, &foo_parser, param, &parse); if (ret < 0) return ret; switch (parse.key) { case Opt_source: return fs_lookup_param(fc, &foo_parser, param, &parse, &ctx->source); default: return -EINVAL; } } (3) lookup_constant(). This takes a table of named constants and looks up the given name within it. The table is expected to be sorted such that bsearch() be used upon it. Possibly I should require the table be terminated and just use a for-loop to scan it instead of using bsearch() to reduce hassle. Tables look something like: static const struct constant_table bool_names[] = { { "0", false }, { "1", true }, { "false", false }, { "no", false }, { "true", true }, { "yes", true }, }; and a lookup is done with something like: b = lookup_constant(bool_names, param->string, -1); Additionally, optional validation routines for the parameter description are provided that can be enabled at compile time. A later patch will invoke these when a filesystem is registered. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2018-11-02 06:07:24 +07:00
}
#define fsparam_flag(NAME, OPT) __fsparam(NULL, NAME, OPT, 0, NULL)
vfs: Add configuration parser helpers Because the new API passes in key,value parameters, match_token() cannot be used with it. Instead, provide three new helpers to aid with parsing: (1) fs_parse(). This takes a parameter and a simple static description of all the parameters and maps the key name to an ID. It returns 1 on a match, 0 on no match if unknowns should be ignored and some other negative error code on a parse error. The parameter description includes a list of key names to IDs, desired parameter types and a list of enumeration name -> ID mappings. [!] Note that for the moment I've required that the key->ID mapping array is expected to be sorted and unterminated. The size of the array is noted in the fsconfig_parser struct. This allows me to use bsearch(), but I'm not sure any performance gain is worth the hassle of requiring people to keep the array sorted. The parameter type array is sized according to the number of parameter IDs and is indexed directly. The optional enum mapping array is an unterminated, unsorted list and the size goes into the fsconfig_parser struct. The function can do some additional things: (a) If it's not ambiguous and no value is given, the prefix "no" on a key name is permitted to indicate that the parameter should be considered negatory. (b) If the desired type is a single simple integer, it will perform an appropriate conversion and store the result in a union in the parse result. (c) If the desired type is an enumeration, {key ID, name} will be looked up in the enumeration list and the matching value will be stored in the parse result union. (d) Optionally generate an error if the key is unrecognised. This is called something like: enum rdt_param { Opt_cdp, Opt_cdpl2, Opt_mba_mpbs, nr__rdt_params }; const struct fs_parameter_spec rdt_param_specs[nr__rdt_params] = { [Opt_cdp] = { fs_param_is_bool }, [Opt_cdpl2] = { fs_param_is_bool }, [Opt_mba_mpbs] = { fs_param_is_bool }, }; const const char *const rdt_param_keys[nr__rdt_params] = { [Opt_cdp] = "cdp", [Opt_cdpl2] = "cdpl2", [Opt_mba_mpbs] = "mba_mbps", }; const struct fs_parameter_description rdt_parser = { .name = "rdt", .nr_params = nr__rdt_params, .keys = rdt_param_keys, .specs = rdt_param_specs, .no_source = true, }; int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct fs_parse_result parse; struct rdt_fs_context *ctx = rdt_fc2context(fc); int ret; ret = fs_parse(fc, &rdt_parser, param, &parse); if (ret < 0) return ret; switch (parse.key) { case Opt_cdp: ctx->enable_cdpl3 = true; return 0; case Opt_cdpl2: ctx->enable_cdpl2 = true; return 0; case Opt_mba_mpbs: ctx->enable_mba_mbps = true; return 0; } return -EINVAL; } (2) fs_lookup_param(). This takes a { dirfd, path, LOOKUP_EMPTY? } or string value and performs an appropriate path lookup to convert it into a path object, which it will then return. If the desired type was a blockdev, the type of the looked up inode will be checked to make sure it is one. This can be used like: enum foo_param { Opt_source, nr__foo_params }; const struct fs_parameter_spec foo_param_specs[nr__foo_params] = { [Opt_source] = { fs_param_is_blockdev }, }; const char *char foo_param_keys[nr__foo_params] = { [Opt_source] = "source", }; const struct constant_table foo_param_alt_keys[] = { { "device", Opt_source }, }; const struct fs_parameter_description foo_parser = { .name = "foo", .nr_params = nr__foo_params, .nr_alt_keys = ARRAY_SIZE(foo_param_alt_keys), .keys = foo_param_keys, .alt_keys = foo_param_alt_keys, .specs = foo_param_specs, }; int foo_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct fs_parse_result parse; struct foo_fs_context *ctx = foo_fc2context(fc); int ret; ret = fs_parse(fc, &foo_parser, param, &parse); if (ret < 0) return ret; switch (parse.key) { case Opt_source: return fs_lookup_param(fc, &foo_parser, param, &parse, &ctx->source); default: return -EINVAL; } } (3) lookup_constant(). This takes a table of named constants and looks up the given name within it. The table is expected to be sorted such that bsearch() be used upon it. Possibly I should require the table be terminated and just use a for-loop to scan it instead of using bsearch() to reduce hassle. Tables look something like: static const struct constant_table bool_names[] = { { "0", false }, { "1", true }, { "false", false }, { "no", false }, { "true", true }, { "yes", true }, }; and a lookup is done with something like: b = lookup_constant(bool_names, param->string, -1); Additionally, optional validation routines for the parameter description are provided that can be enabled at compile time. A later patch will invoke these when a filesystem is registered. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2018-11-02 06:07:24 +07:00
#define fsparam_flag_no(NAME, OPT) \
__fsparam(NULL, NAME, OPT, fs_param_neg_with_no, NULL)
#define fsparam_bool(NAME, OPT) __fsparam(fs_param_is_bool, NAME, OPT, 0, NULL)
#define fsparam_u32(NAME, OPT) __fsparam(fs_param_is_u32, NAME, OPT, 0, NULL)
vfs: Add configuration parser helpers Because the new API passes in key,value parameters, match_token() cannot be used with it. Instead, provide three new helpers to aid with parsing: (1) fs_parse(). This takes a parameter and a simple static description of all the parameters and maps the key name to an ID. It returns 1 on a match, 0 on no match if unknowns should be ignored and some other negative error code on a parse error. The parameter description includes a list of key names to IDs, desired parameter types and a list of enumeration name -> ID mappings. [!] Note that for the moment I've required that the key->ID mapping array is expected to be sorted and unterminated. The size of the array is noted in the fsconfig_parser struct. This allows me to use bsearch(), but I'm not sure any performance gain is worth the hassle of requiring people to keep the array sorted. The parameter type array is sized according to the number of parameter IDs and is indexed directly. The optional enum mapping array is an unterminated, unsorted list and the size goes into the fsconfig_parser struct. The function can do some additional things: (a) If it's not ambiguous and no value is given, the prefix "no" on a key name is permitted to indicate that the parameter should be considered negatory. (b) If the desired type is a single simple integer, it will perform an appropriate conversion and store the result in a union in the parse result. (c) If the desired type is an enumeration, {key ID, name} will be looked up in the enumeration list and the matching value will be stored in the parse result union. (d) Optionally generate an error if the key is unrecognised. This is called something like: enum rdt_param { Opt_cdp, Opt_cdpl2, Opt_mba_mpbs, nr__rdt_params }; const struct fs_parameter_spec rdt_param_specs[nr__rdt_params] = { [Opt_cdp] = { fs_param_is_bool }, [Opt_cdpl2] = { fs_param_is_bool }, [Opt_mba_mpbs] = { fs_param_is_bool }, }; const const char *const rdt_param_keys[nr__rdt_params] = { [Opt_cdp] = "cdp", [Opt_cdpl2] = "cdpl2", [Opt_mba_mpbs] = "mba_mbps", }; const struct fs_parameter_description rdt_parser = { .name = "rdt", .nr_params = nr__rdt_params, .keys = rdt_param_keys, .specs = rdt_param_specs, .no_source = true, }; int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct fs_parse_result parse; struct rdt_fs_context *ctx = rdt_fc2context(fc); int ret; ret = fs_parse(fc, &rdt_parser, param, &parse); if (ret < 0) return ret; switch (parse.key) { case Opt_cdp: ctx->enable_cdpl3 = true; return 0; case Opt_cdpl2: ctx->enable_cdpl2 = true; return 0; case Opt_mba_mpbs: ctx->enable_mba_mbps = true; return 0; } return -EINVAL; } (2) fs_lookup_param(). This takes a { dirfd, path, LOOKUP_EMPTY? } or string value and performs an appropriate path lookup to convert it into a path object, which it will then return. If the desired type was a blockdev, the type of the looked up inode will be checked to make sure it is one. This can be used like: enum foo_param { Opt_source, nr__foo_params }; const struct fs_parameter_spec foo_param_specs[nr__foo_params] = { [Opt_source] = { fs_param_is_blockdev }, }; const char *char foo_param_keys[nr__foo_params] = { [Opt_source] = "source", }; const struct constant_table foo_param_alt_keys[] = { { "device", Opt_source }, }; const struct fs_parameter_description foo_parser = { .name = "foo", .nr_params = nr__foo_params, .nr_alt_keys = ARRAY_SIZE(foo_param_alt_keys), .keys = foo_param_keys, .alt_keys = foo_param_alt_keys, .specs = foo_param_specs, }; int foo_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct fs_parse_result parse; struct foo_fs_context *ctx = foo_fc2context(fc); int ret; ret = fs_parse(fc, &foo_parser, param, &parse); if (ret < 0) return ret; switch (parse.key) { case Opt_source: return fs_lookup_param(fc, &foo_parser, param, &parse, &ctx->source); default: return -EINVAL; } } (3) lookup_constant(). This takes a table of named constants and looks up the given name within it. The table is expected to be sorted such that bsearch() be used upon it. Possibly I should require the table be terminated and just use a for-loop to scan it instead of using bsearch() to reduce hassle. Tables look something like: static const struct constant_table bool_names[] = { { "0", false }, { "1", true }, { "false", false }, { "no", false }, { "true", true }, { "yes", true }, }; and a lookup is done with something like: b = lookup_constant(bool_names, param->string, -1); Additionally, optional validation routines for the parameter description are provided that can be enabled at compile time. A later patch will invoke these when a filesystem is registered. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2018-11-02 06:07:24 +07:00
#define fsparam_u32oct(NAME, OPT) \
__fsparam(fs_param_is_u32, NAME, OPT, 0, (void *)8)
vfs: Add configuration parser helpers Because the new API passes in key,value parameters, match_token() cannot be used with it. Instead, provide three new helpers to aid with parsing: (1) fs_parse(). This takes a parameter and a simple static description of all the parameters and maps the key name to an ID. It returns 1 on a match, 0 on no match if unknowns should be ignored and some other negative error code on a parse error. The parameter description includes a list of key names to IDs, desired parameter types and a list of enumeration name -> ID mappings. [!] Note that for the moment I've required that the key->ID mapping array is expected to be sorted and unterminated. The size of the array is noted in the fsconfig_parser struct. This allows me to use bsearch(), but I'm not sure any performance gain is worth the hassle of requiring people to keep the array sorted. The parameter type array is sized according to the number of parameter IDs and is indexed directly. The optional enum mapping array is an unterminated, unsorted list and the size goes into the fsconfig_parser struct. The function can do some additional things: (a) If it's not ambiguous and no value is given, the prefix "no" on a key name is permitted to indicate that the parameter should be considered negatory. (b) If the desired type is a single simple integer, it will perform an appropriate conversion and store the result in a union in the parse result. (c) If the desired type is an enumeration, {key ID, name} will be looked up in the enumeration list and the matching value will be stored in the parse result union. (d) Optionally generate an error if the key is unrecognised. This is called something like: enum rdt_param { Opt_cdp, Opt_cdpl2, Opt_mba_mpbs, nr__rdt_params }; const struct fs_parameter_spec rdt_param_specs[nr__rdt_params] = { [Opt_cdp] = { fs_param_is_bool }, [Opt_cdpl2] = { fs_param_is_bool }, [Opt_mba_mpbs] = { fs_param_is_bool }, }; const const char *const rdt_param_keys[nr__rdt_params] = { [Opt_cdp] = "cdp", [Opt_cdpl2] = "cdpl2", [Opt_mba_mpbs] = "mba_mbps", }; const struct fs_parameter_description rdt_parser = { .name = "rdt", .nr_params = nr__rdt_params, .keys = rdt_param_keys, .specs = rdt_param_specs, .no_source = true, }; int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct fs_parse_result parse; struct rdt_fs_context *ctx = rdt_fc2context(fc); int ret; ret = fs_parse(fc, &rdt_parser, param, &parse); if (ret < 0) return ret; switch (parse.key) { case Opt_cdp: ctx->enable_cdpl3 = true; return 0; case Opt_cdpl2: ctx->enable_cdpl2 = true; return 0; case Opt_mba_mpbs: ctx->enable_mba_mbps = true; return 0; } return -EINVAL; } (2) fs_lookup_param(). This takes a { dirfd, path, LOOKUP_EMPTY? } or string value and performs an appropriate path lookup to convert it into a path object, which it will then return. If the desired type was a blockdev, the type of the looked up inode will be checked to make sure it is one. This can be used like: enum foo_param { Opt_source, nr__foo_params }; const struct fs_parameter_spec foo_param_specs[nr__foo_params] = { [Opt_source] = { fs_param_is_blockdev }, }; const char *char foo_param_keys[nr__foo_params] = { [Opt_source] = "source", }; const struct constant_table foo_param_alt_keys[] = { { "device", Opt_source }, }; const struct fs_parameter_description foo_parser = { .name = "foo", .nr_params = nr__foo_params, .nr_alt_keys = ARRAY_SIZE(foo_param_alt_keys), .keys = foo_param_keys, .alt_keys = foo_param_alt_keys, .specs = foo_param_specs, }; int foo_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct fs_parse_result parse; struct foo_fs_context *ctx = foo_fc2context(fc); int ret; ret = fs_parse(fc, &foo_parser, param, &parse); if (ret < 0) return ret; switch (parse.key) { case Opt_source: return fs_lookup_param(fc, &foo_parser, param, &parse, &ctx->source); default: return -EINVAL; } } (3) lookup_constant(). This takes a table of named constants and looks up the given name within it. The table is expected to be sorted such that bsearch() be used upon it. Possibly I should require the table be terminated and just use a for-loop to scan it instead of using bsearch() to reduce hassle. Tables look something like: static const struct constant_table bool_names[] = { { "0", false }, { "1", true }, { "false", false }, { "no", false }, { "true", true }, { "yes", true }, }; and a lookup is done with something like: b = lookup_constant(bool_names, param->string, -1); Additionally, optional validation routines for the parameter description are provided that can be enabled at compile time. A later patch will invoke these when a filesystem is registered. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2018-11-02 06:07:24 +07:00
#define fsparam_u32hex(NAME, OPT) \
__fsparam(fs_param_is_u32_hex, NAME, OPT, 0, (void *16))
#define fsparam_s32(NAME, OPT) __fsparam(fs_param_is_s32, NAME, OPT, 0, NULL)
#define fsparam_u64(NAME, OPT) __fsparam(fs_param_is_u64, NAME, OPT, 0, NULL)
#define fsparam_enum(NAME, OPT, array) __fsparam(fs_param_is_enum, NAME, OPT, 0, array)
vfs: Add configuration parser helpers Because the new API passes in key,value parameters, match_token() cannot be used with it. Instead, provide three new helpers to aid with parsing: (1) fs_parse(). This takes a parameter and a simple static description of all the parameters and maps the key name to an ID. It returns 1 on a match, 0 on no match if unknowns should be ignored and some other negative error code on a parse error. The parameter description includes a list of key names to IDs, desired parameter types and a list of enumeration name -> ID mappings. [!] Note that for the moment I've required that the key->ID mapping array is expected to be sorted and unterminated. The size of the array is noted in the fsconfig_parser struct. This allows me to use bsearch(), but I'm not sure any performance gain is worth the hassle of requiring people to keep the array sorted. The parameter type array is sized according to the number of parameter IDs and is indexed directly. The optional enum mapping array is an unterminated, unsorted list and the size goes into the fsconfig_parser struct. The function can do some additional things: (a) If it's not ambiguous and no value is given, the prefix "no" on a key name is permitted to indicate that the parameter should be considered negatory. (b) If the desired type is a single simple integer, it will perform an appropriate conversion and store the result in a union in the parse result. (c) If the desired type is an enumeration, {key ID, name} will be looked up in the enumeration list and the matching value will be stored in the parse result union. (d) Optionally generate an error if the key is unrecognised. This is called something like: enum rdt_param { Opt_cdp, Opt_cdpl2, Opt_mba_mpbs, nr__rdt_params }; const struct fs_parameter_spec rdt_param_specs[nr__rdt_params] = { [Opt_cdp] = { fs_param_is_bool }, [Opt_cdpl2] = { fs_param_is_bool }, [Opt_mba_mpbs] = { fs_param_is_bool }, }; const const char *const rdt_param_keys[nr__rdt_params] = { [Opt_cdp] = "cdp", [Opt_cdpl2] = "cdpl2", [Opt_mba_mpbs] = "mba_mbps", }; const struct fs_parameter_description rdt_parser = { .name = "rdt", .nr_params = nr__rdt_params, .keys = rdt_param_keys, .specs = rdt_param_specs, .no_source = true, }; int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct fs_parse_result parse; struct rdt_fs_context *ctx = rdt_fc2context(fc); int ret; ret = fs_parse(fc, &rdt_parser, param, &parse); if (ret < 0) return ret; switch (parse.key) { case Opt_cdp: ctx->enable_cdpl3 = true; return 0; case Opt_cdpl2: ctx->enable_cdpl2 = true; return 0; case Opt_mba_mpbs: ctx->enable_mba_mbps = true; return 0; } return -EINVAL; } (2) fs_lookup_param(). This takes a { dirfd, path, LOOKUP_EMPTY? } or string value and performs an appropriate path lookup to convert it into a path object, which it will then return. If the desired type was a blockdev, the type of the looked up inode will be checked to make sure it is one. This can be used like: enum foo_param { Opt_source, nr__foo_params }; const struct fs_parameter_spec foo_param_specs[nr__foo_params] = { [Opt_source] = { fs_param_is_blockdev }, }; const char *char foo_param_keys[nr__foo_params] = { [Opt_source] = "source", }; const struct constant_table foo_param_alt_keys[] = { { "device", Opt_source }, }; const struct fs_parameter_description foo_parser = { .name = "foo", .nr_params = nr__foo_params, .nr_alt_keys = ARRAY_SIZE(foo_param_alt_keys), .keys = foo_param_keys, .alt_keys = foo_param_alt_keys, .specs = foo_param_specs, }; int foo_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct fs_parse_result parse; struct foo_fs_context *ctx = foo_fc2context(fc); int ret; ret = fs_parse(fc, &foo_parser, param, &parse); if (ret < 0) return ret; switch (parse.key) { case Opt_source: return fs_lookup_param(fc, &foo_parser, param, &parse, &ctx->source); default: return -EINVAL; } } (3) lookup_constant(). This takes a table of named constants and looks up the given name within it. The table is expected to be sorted such that bsearch() be used upon it. Possibly I should require the table be terminated and just use a for-loop to scan it instead of using bsearch() to reduce hassle. Tables look something like: static const struct constant_table bool_names[] = { { "0", false }, { "1", true }, { "false", false }, { "no", false }, { "true", true }, { "yes", true }, }; and a lookup is done with something like: b = lookup_constant(bool_names, param->string, -1); Additionally, optional validation routines for the parameter description are provided that can be enabled at compile time. A later patch will invoke these when a filesystem is registered. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2018-11-02 06:07:24 +07:00
#define fsparam_string(NAME, OPT) \
__fsparam(fs_param_is_string, NAME, OPT, 0, NULL)
#define fsparam_blob(NAME, OPT) __fsparam(fs_param_is_blob, NAME, OPT, 0, NULL)
#define fsparam_bdev(NAME, OPT) __fsparam(fs_param_is_blockdev, NAME, OPT, 0, NULL)
#define fsparam_path(NAME, OPT) __fsparam(fs_param_is_path, NAME, OPT, 0, NULL)
#define fsparam_fd(NAME, OPT) __fsparam(fs_param_is_fd, NAME, OPT, 0, NULL)
vfs: Add configuration parser helpers Because the new API passes in key,value parameters, match_token() cannot be used with it. Instead, provide three new helpers to aid with parsing: (1) fs_parse(). This takes a parameter and a simple static description of all the parameters and maps the key name to an ID. It returns 1 on a match, 0 on no match if unknowns should be ignored and some other negative error code on a parse error. The parameter description includes a list of key names to IDs, desired parameter types and a list of enumeration name -> ID mappings. [!] Note that for the moment I've required that the key->ID mapping array is expected to be sorted and unterminated. The size of the array is noted in the fsconfig_parser struct. This allows me to use bsearch(), but I'm not sure any performance gain is worth the hassle of requiring people to keep the array sorted. The parameter type array is sized according to the number of parameter IDs and is indexed directly. The optional enum mapping array is an unterminated, unsorted list and the size goes into the fsconfig_parser struct. The function can do some additional things: (a) If it's not ambiguous and no value is given, the prefix "no" on a key name is permitted to indicate that the parameter should be considered negatory. (b) If the desired type is a single simple integer, it will perform an appropriate conversion and store the result in a union in the parse result. (c) If the desired type is an enumeration, {key ID, name} will be looked up in the enumeration list and the matching value will be stored in the parse result union. (d) Optionally generate an error if the key is unrecognised. This is called something like: enum rdt_param { Opt_cdp, Opt_cdpl2, Opt_mba_mpbs, nr__rdt_params }; const struct fs_parameter_spec rdt_param_specs[nr__rdt_params] = { [Opt_cdp] = { fs_param_is_bool }, [Opt_cdpl2] = { fs_param_is_bool }, [Opt_mba_mpbs] = { fs_param_is_bool }, }; const const char *const rdt_param_keys[nr__rdt_params] = { [Opt_cdp] = "cdp", [Opt_cdpl2] = "cdpl2", [Opt_mba_mpbs] = "mba_mbps", }; const struct fs_parameter_description rdt_parser = { .name = "rdt", .nr_params = nr__rdt_params, .keys = rdt_param_keys, .specs = rdt_param_specs, .no_source = true, }; int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct fs_parse_result parse; struct rdt_fs_context *ctx = rdt_fc2context(fc); int ret; ret = fs_parse(fc, &rdt_parser, param, &parse); if (ret < 0) return ret; switch (parse.key) { case Opt_cdp: ctx->enable_cdpl3 = true; return 0; case Opt_cdpl2: ctx->enable_cdpl2 = true; return 0; case Opt_mba_mpbs: ctx->enable_mba_mbps = true; return 0; } return -EINVAL; } (2) fs_lookup_param(). This takes a { dirfd, path, LOOKUP_EMPTY? } or string value and performs an appropriate path lookup to convert it into a path object, which it will then return. If the desired type was a blockdev, the type of the looked up inode will be checked to make sure it is one. This can be used like: enum foo_param { Opt_source, nr__foo_params }; const struct fs_parameter_spec foo_param_specs[nr__foo_params] = { [Opt_source] = { fs_param_is_blockdev }, }; const char *char foo_param_keys[nr__foo_params] = { [Opt_source] = "source", }; const struct constant_table foo_param_alt_keys[] = { { "device", Opt_source }, }; const struct fs_parameter_description foo_parser = { .name = "foo", .nr_params = nr__foo_params, .nr_alt_keys = ARRAY_SIZE(foo_param_alt_keys), .keys = foo_param_keys, .alt_keys = foo_param_alt_keys, .specs = foo_param_specs, }; int foo_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct fs_parse_result parse; struct foo_fs_context *ctx = foo_fc2context(fc); int ret; ret = fs_parse(fc, &foo_parser, param, &parse); if (ret < 0) return ret; switch (parse.key) { case Opt_source: return fs_lookup_param(fc, &foo_parser, param, &parse, &ctx->source); default: return -EINVAL; } } (3) lookup_constant(). This takes a table of named constants and looks up the given name within it. The table is expected to be sorted such that bsearch() be used upon it. Possibly I should require the table be terminated and just use a for-loop to scan it instead of using bsearch() to reduce hassle. Tables look something like: static const struct constant_table bool_names[] = { { "0", false }, { "1", true }, { "false", false }, { "no", false }, { "true", true }, { "yes", true }, }; and a lookup is done with something like: b = lookup_constant(bool_names, param->string, -1); Additionally, optional validation routines for the parameter description are provided that can be enabled at compile time. A later patch will invoke these when a filesystem is registered. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2018-11-02 06:07:24 +07:00
#endif /* _LINUX_FS_PARSER_H */