2007-07-09 23:51:58 +07:00
|
|
|
|
|
|
|
#ifdef CONFIG_SCHEDSTATS
|
2008-10-06 16:23:43 +07:00
|
|
|
|
2007-07-09 23:51:58 +07:00
|
|
|
/*
|
|
|
|
* Expects runqueue lock to be held for atomicity of update
|
|
|
|
*/
|
|
|
|
static inline void
|
|
|
|
rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
|
|
|
|
{
|
|
|
|
if (rq) {
|
|
|
|
rq->rq_sched_info.run_delay += delta;
|
2007-10-15 22:00:12 +07:00
|
|
|
rq->rq_sched_info.pcount++;
|
2007-07-09 23:51:58 +07:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Expects runqueue lock to be held for atomicity of update
|
|
|
|
*/
|
|
|
|
static inline void
|
|
|
|
rq_sched_info_depart(struct rq *rq, unsigned long long delta)
|
|
|
|
{
|
|
|
|
if (rq)
|
2008-12-17 14:41:22 +07:00
|
|
|
rq->rq_cpu_time += delta;
|
2007-07-09 23:51:58 +07:00
|
|
|
}
|
sched: fix accounting in task delay accounting & migration
On Thu, Jun 19, 2008 at 12:27:14PM +0200, Peter Zijlstra wrote:
> On Thu, 2008-06-05 at 10:50 +0530, Ankita Garg wrote:
>
> > Thanks Peter for the explanation...
> >
> > I agree with the above and that is the reason why I did not see weird
> > values with cpu_time. But, run_delay still would suffer skews as the end
> > points for delta could be taken on different cpus due to migration (more
> > so on RT kernel due to the push-pull operations). With the below patch,
> > I could not reproduce the issue I had seen earlier. After every dequeue,
> > we take the delta and start wait measurements from zero when moved to a
> > different rq.
>
> OK, so task delay delay accounting is broken because it doesn't take
> migration into account.
>
> What you've done is make it symmetric wrt enqueue, and account it like
>
> cpu0 cpu1
>
> enqueue
> <wait-d1>
> dequeue
> enqueue
> <wait-d2>
> run
>
> Where you add both d1 and d2 to the run_delay,.. right?
>
Thanks for reviewing the patch. The above is exactly what I have done.
> This seems like a good fix, however it looks like the patch will break
> compilation in !CONFIG_SCHEDSTATS && !CONFIG_TASK_DELAY_ACCT, of it
> failing to provide a stub for sched_info_dequeue() in that case.
Fixed. Pl. find the new patch below.
Signed-off-by: Ankita Garg <ankita@in.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Gregory Haskins <ghaskins@novell.com>
Cc: rostedt@goodmis.org
Cc: suresh.b.siddha@intel.com
Cc: aneesh.kumar@linux.vnet.ibm.com
Cc: dhaval@linux.vnet.ibm.com
Cc: vatsa@linux.vnet.ibm.com
Cc: David Bahi <DBahi@novell.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-07-01 16:00:06 +07:00
|
|
|
|
|
|
|
static inline void
|
|
|
|
rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
|
|
|
|
{
|
|
|
|
if (rq)
|
|
|
|
rq->rq_sched_info.run_delay += delta;
|
|
|
|
}
|
2007-07-09 23:51:58 +07:00
|
|
|
# define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
|
|
|
|
# define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
|
2007-08-02 22:41:40 +07:00
|
|
|
# define schedstat_set(var, val) do { var = (val); } while (0)
|
2007-07-09 23:51:58 +07:00
|
|
|
#else /* !CONFIG_SCHEDSTATS */
|
|
|
|
static inline void
|
|
|
|
rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
|
|
|
|
{}
|
|
|
|
static inline void
|
sched: fix accounting in task delay accounting & migration
On Thu, Jun 19, 2008 at 12:27:14PM +0200, Peter Zijlstra wrote:
> On Thu, 2008-06-05 at 10:50 +0530, Ankita Garg wrote:
>
> > Thanks Peter for the explanation...
> >
> > I agree with the above and that is the reason why I did not see weird
> > values with cpu_time. But, run_delay still would suffer skews as the end
> > points for delta could be taken on different cpus due to migration (more
> > so on RT kernel due to the push-pull operations). With the below patch,
> > I could not reproduce the issue I had seen earlier. After every dequeue,
> > we take the delta and start wait measurements from zero when moved to a
> > different rq.
>
> OK, so task delay delay accounting is broken because it doesn't take
> migration into account.
>
> What you've done is make it symmetric wrt enqueue, and account it like
>
> cpu0 cpu1
>
> enqueue
> <wait-d1>
> dequeue
> enqueue
> <wait-d2>
> run
>
> Where you add both d1 and d2 to the run_delay,.. right?
>
Thanks for reviewing the patch. The above is exactly what I have done.
> This seems like a good fix, however it looks like the patch will break
> compilation in !CONFIG_SCHEDSTATS && !CONFIG_TASK_DELAY_ACCT, of it
> failing to provide a stub for sched_info_dequeue() in that case.
Fixed. Pl. find the new patch below.
Signed-off-by: Ankita Garg <ankita@in.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Gregory Haskins <ghaskins@novell.com>
Cc: rostedt@goodmis.org
Cc: suresh.b.siddha@intel.com
Cc: aneesh.kumar@linux.vnet.ibm.com
Cc: dhaval@linux.vnet.ibm.com
Cc: vatsa@linux.vnet.ibm.com
Cc: David Bahi <DBahi@novell.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-07-01 16:00:06 +07:00
|
|
|
rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
|
|
|
|
{}
|
|
|
|
static inline void
|
2007-07-09 23:51:58 +07:00
|
|
|
rq_sched_info_depart(struct rq *rq, unsigned long long delta)
|
|
|
|
{}
|
|
|
|
# define schedstat_inc(rq, field) do { } while (0)
|
|
|
|
# define schedstat_add(rq, field, amt) do { } while (0)
|
2007-08-02 22:41:40 +07:00
|
|
|
# define schedstat_set(var, val) do { } while (0)
|
2007-07-09 23:51:58 +07:00
|
|
|
#endif
|
|
|
|
|
2007-11-10 04:39:37 +07:00
|
|
|
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
|
sched: fix accounting in task delay accounting & migration
On Thu, Jun 19, 2008 at 12:27:14PM +0200, Peter Zijlstra wrote:
> On Thu, 2008-06-05 at 10:50 +0530, Ankita Garg wrote:
>
> > Thanks Peter for the explanation...
> >
> > I agree with the above and that is the reason why I did not see weird
> > values with cpu_time. But, run_delay still would suffer skews as the end
> > points for delta could be taken on different cpus due to migration (more
> > so on RT kernel due to the push-pull operations). With the below patch,
> > I could not reproduce the issue I had seen earlier. After every dequeue,
> > we take the delta and start wait measurements from zero when moved to a
> > different rq.
>
> OK, so task delay delay accounting is broken because it doesn't take
> migration into account.
>
> What you've done is make it symmetric wrt enqueue, and account it like
>
> cpu0 cpu1
>
> enqueue
> <wait-d1>
> dequeue
> enqueue
> <wait-d2>
> run
>
> Where you add both d1 and d2 to the run_delay,.. right?
>
Thanks for reviewing the patch. The above is exactly what I have done.
> This seems like a good fix, however it looks like the patch will break
> compilation in !CONFIG_SCHEDSTATS && !CONFIG_TASK_DELAY_ACCT, of it
> failing to provide a stub for sched_info_dequeue() in that case.
Fixed. Pl. find the new patch below.
Signed-off-by: Ankita Garg <ankita@in.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Gregory Haskins <ghaskins@novell.com>
Cc: rostedt@goodmis.org
Cc: suresh.b.siddha@intel.com
Cc: aneesh.kumar@linux.vnet.ibm.com
Cc: dhaval@linux.vnet.ibm.com
Cc: vatsa@linux.vnet.ibm.com
Cc: David Bahi <DBahi@novell.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-07-01 16:00:06 +07:00
|
|
|
static inline void sched_info_reset_dequeued(struct task_struct *t)
|
|
|
|
{
|
|
|
|
t->sched_info.last_queued = 0;
|
|
|
|
}
|
|
|
|
|
2007-07-09 23:51:58 +07:00
|
|
|
/*
|
2010-10-24 17:28:47 +07:00
|
|
|
* We are interested in knowing how long it was from the *first* time a
|
sched: fix accounting in task delay accounting & migration
On Thu, Jun 19, 2008 at 12:27:14PM +0200, Peter Zijlstra wrote:
> On Thu, 2008-06-05 at 10:50 +0530, Ankita Garg wrote:
>
> > Thanks Peter for the explanation...
> >
> > I agree with the above and that is the reason why I did not see weird
> > values with cpu_time. But, run_delay still would suffer skews as the end
> > points for delta could be taken on different cpus due to migration (more
> > so on RT kernel due to the push-pull operations). With the below patch,
> > I could not reproduce the issue I had seen earlier. After every dequeue,
> > we take the delta and start wait measurements from zero when moved to a
> > different rq.
>
> OK, so task delay delay accounting is broken because it doesn't take
> migration into account.
>
> What you've done is make it symmetric wrt enqueue, and account it like
>
> cpu0 cpu1
>
> enqueue
> <wait-d1>
> dequeue
> enqueue
> <wait-d2>
> run
>
> Where you add both d1 and d2 to the run_delay,.. right?
>
Thanks for reviewing the patch. The above is exactly what I have done.
> This seems like a good fix, however it looks like the patch will break
> compilation in !CONFIG_SCHEDSTATS && !CONFIG_TASK_DELAY_ACCT, of it
> failing to provide a stub for sched_info_dequeue() in that case.
Fixed. Pl. find the new patch below.
Signed-off-by: Ankita Garg <ankita@in.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Gregory Haskins <ghaskins@novell.com>
Cc: rostedt@goodmis.org
Cc: suresh.b.siddha@intel.com
Cc: aneesh.kumar@linux.vnet.ibm.com
Cc: dhaval@linux.vnet.ibm.com
Cc: vatsa@linux.vnet.ibm.com
Cc: David Bahi <DBahi@novell.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-07-01 16:00:06 +07:00
|
|
|
* task was queued to the time that it finally hit a cpu, we call this routine
|
|
|
|
* from dequeue_task() to account for possible rq->clock skew across cpus. The
|
|
|
|
* delta taken on each cpu would annul the skew.
|
2007-07-09 23:51:58 +07:00
|
|
|
*/
|
|
|
|
static inline void sched_info_dequeued(struct task_struct *t)
|
|
|
|
{
|
2013-04-12 06:51:02 +07:00
|
|
|
unsigned long long now = rq_clock(task_rq(t)), delta = 0;
|
sched: fix accounting in task delay accounting & migration
On Thu, Jun 19, 2008 at 12:27:14PM +0200, Peter Zijlstra wrote:
> On Thu, 2008-06-05 at 10:50 +0530, Ankita Garg wrote:
>
> > Thanks Peter for the explanation...
> >
> > I agree with the above and that is the reason why I did not see weird
> > values with cpu_time. But, run_delay still would suffer skews as the end
> > points for delta could be taken on different cpus due to migration (more
> > so on RT kernel due to the push-pull operations). With the below patch,
> > I could not reproduce the issue I had seen earlier. After every dequeue,
> > we take the delta and start wait measurements from zero when moved to a
> > different rq.
>
> OK, so task delay delay accounting is broken because it doesn't take
> migration into account.
>
> What you've done is make it symmetric wrt enqueue, and account it like
>
> cpu0 cpu1
>
> enqueue
> <wait-d1>
> dequeue
> enqueue
> <wait-d2>
> run
>
> Where you add both d1 and d2 to the run_delay,.. right?
>
Thanks for reviewing the patch. The above is exactly what I have done.
> This seems like a good fix, however it looks like the patch will break
> compilation in !CONFIG_SCHEDSTATS && !CONFIG_TASK_DELAY_ACCT, of it
> failing to provide a stub for sched_info_dequeue() in that case.
Fixed. Pl. find the new patch below.
Signed-off-by: Ankita Garg <ankita@in.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Gregory Haskins <ghaskins@novell.com>
Cc: rostedt@goodmis.org
Cc: suresh.b.siddha@intel.com
Cc: aneesh.kumar@linux.vnet.ibm.com
Cc: dhaval@linux.vnet.ibm.com
Cc: vatsa@linux.vnet.ibm.com
Cc: David Bahi <DBahi@novell.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-07-01 16:00:06 +07:00
|
|
|
|
|
|
|
if (unlikely(sched_info_on()))
|
|
|
|
if (t->sched_info.last_queued)
|
|
|
|
delta = now - t->sched_info.last_queued;
|
|
|
|
sched_info_reset_dequeued(t);
|
|
|
|
t->sched_info.run_delay += delta;
|
|
|
|
|
|
|
|
rq_sched_info_dequeued(task_rq(t), delta);
|
2007-07-09 23:51:58 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Called when a task finally hits the cpu. We can now calculate how
|
|
|
|
* long it was waiting to run. We also note when it began so that we
|
|
|
|
* can keep stats on how long its timeslice is.
|
|
|
|
*/
|
|
|
|
static void sched_info_arrive(struct task_struct *t)
|
|
|
|
{
|
2013-04-12 06:51:02 +07:00
|
|
|
unsigned long long now = rq_clock(task_rq(t)), delta = 0;
|
2007-07-09 23:51:58 +07:00
|
|
|
|
|
|
|
if (t->sched_info.last_queued)
|
|
|
|
delta = now - t->sched_info.last_queued;
|
sched: fix accounting in task delay accounting & migration
On Thu, Jun 19, 2008 at 12:27:14PM +0200, Peter Zijlstra wrote:
> On Thu, 2008-06-05 at 10:50 +0530, Ankita Garg wrote:
>
> > Thanks Peter for the explanation...
> >
> > I agree with the above and that is the reason why I did not see weird
> > values with cpu_time. But, run_delay still would suffer skews as the end
> > points for delta could be taken on different cpus due to migration (more
> > so on RT kernel due to the push-pull operations). With the below patch,
> > I could not reproduce the issue I had seen earlier. After every dequeue,
> > we take the delta and start wait measurements from zero when moved to a
> > different rq.
>
> OK, so task delay delay accounting is broken because it doesn't take
> migration into account.
>
> What you've done is make it symmetric wrt enqueue, and account it like
>
> cpu0 cpu1
>
> enqueue
> <wait-d1>
> dequeue
> enqueue
> <wait-d2>
> run
>
> Where you add both d1 and d2 to the run_delay,.. right?
>
Thanks for reviewing the patch. The above is exactly what I have done.
> This seems like a good fix, however it looks like the patch will break
> compilation in !CONFIG_SCHEDSTATS && !CONFIG_TASK_DELAY_ACCT, of it
> failing to provide a stub for sched_info_dequeue() in that case.
Fixed. Pl. find the new patch below.
Signed-off-by: Ankita Garg <ankita@in.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Gregory Haskins <ghaskins@novell.com>
Cc: rostedt@goodmis.org
Cc: suresh.b.siddha@intel.com
Cc: aneesh.kumar@linux.vnet.ibm.com
Cc: dhaval@linux.vnet.ibm.com
Cc: vatsa@linux.vnet.ibm.com
Cc: David Bahi <DBahi@novell.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-07-01 16:00:06 +07:00
|
|
|
sched_info_reset_dequeued(t);
|
2007-07-09 23:51:58 +07:00
|
|
|
t->sched_info.run_delay += delta;
|
|
|
|
t->sched_info.last_arrival = now;
|
2007-10-15 22:00:12 +07:00
|
|
|
t->sched_info.pcount++;
|
2007-07-09 23:51:58 +07:00
|
|
|
|
|
|
|
rq_sched_info_arrive(task_rq(t), delta);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This function is only called from enqueue_task(), but also only updates
|
|
|
|
* the timestamp if it is already not set. It's assumed that
|
|
|
|
* sched_info_dequeued() will clear that stamp when appropriate.
|
|
|
|
*/
|
|
|
|
static inline void sched_info_queued(struct task_struct *t)
|
|
|
|
{
|
|
|
|
if (unlikely(sched_info_on()))
|
|
|
|
if (!t->sched_info.last_queued)
|
2013-04-12 06:51:02 +07:00
|
|
|
t->sched_info.last_queued = rq_clock(task_rq(t));
|
2007-07-09 23:51:58 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Called when a process ceases being the active-running process, either
|
|
|
|
* voluntarily or involuntarily. Now we can calculate how long we ran.
|
2008-06-16 16:41:01 +07:00
|
|
|
* Also, if the process is still in the TASK_RUNNING state, call
|
|
|
|
* sched_info_queued() to mark that it has now again started waiting on
|
|
|
|
* the runqueue.
|
2007-07-09 23:51:58 +07:00
|
|
|
*/
|
|
|
|
static inline void sched_info_depart(struct task_struct *t)
|
|
|
|
{
|
2013-04-12 06:51:02 +07:00
|
|
|
unsigned long long delta = rq_clock(task_rq(t)) -
|
2007-11-10 04:39:37 +07:00
|
|
|
t->sched_info.last_arrival;
|
2007-07-09 23:51:58 +07:00
|
|
|
|
|
|
|
rq_sched_info_depart(task_rq(t), delta);
|
2008-06-16 16:41:01 +07:00
|
|
|
|
|
|
|
if (t->state == TASK_RUNNING)
|
|
|
|
sched_info_queued(t);
|
2007-07-09 23:51:58 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Called when tasks are switched involuntarily due, typically, to expiring
|
|
|
|
* their time slice. (This may also be called when switching to or from
|
|
|
|
* the idle task.) We are only called when prev != next.
|
|
|
|
*/
|
|
|
|
static inline void
|
|
|
|
__sched_info_switch(struct task_struct *prev, struct task_struct *next)
|
|
|
|
{
|
|
|
|
struct rq *rq = task_rq(prev);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* prev now departs the cpu. It's not interesting to record
|
|
|
|
* stats about how efficient we were at scheduling the idle
|
|
|
|
* process, however.
|
|
|
|
*/
|
|
|
|
if (prev != rq->idle)
|
|
|
|
sched_info_depart(prev);
|
|
|
|
|
|
|
|
if (next != rq->idle)
|
|
|
|
sched_info_arrive(next);
|
|
|
|
}
|
|
|
|
static inline void
|
|
|
|
sched_info_switch(struct task_struct *prev, struct task_struct *next)
|
|
|
|
{
|
|
|
|
if (unlikely(sched_info_on()))
|
|
|
|
__sched_info_switch(prev, next);
|
|
|
|
}
|
|
|
|
#else
|
sched: fix accounting in task delay accounting & migration
On Thu, Jun 19, 2008 at 12:27:14PM +0200, Peter Zijlstra wrote:
> On Thu, 2008-06-05 at 10:50 +0530, Ankita Garg wrote:
>
> > Thanks Peter for the explanation...
> >
> > I agree with the above and that is the reason why I did not see weird
> > values with cpu_time. But, run_delay still would suffer skews as the end
> > points for delta could be taken on different cpus due to migration (more
> > so on RT kernel due to the push-pull operations). With the below patch,
> > I could not reproduce the issue I had seen earlier. After every dequeue,
> > we take the delta and start wait measurements from zero when moved to a
> > different rq.
>
> OK, so task delay delay accounting is broken because it doesn't take
> migration into account.
>
> What you've done is make it symmetric wrt enqueue, and account it like
>
> cpu0 cpu1
>
> enqueue
> <wait-d1>
> dequeue
> enqueue
> <wait-d2>
> run
>
> Where you add both d1 and d2 to the run_delay,.. right?
>
Thanks for reviewing the patch. The above is exactly what I have done.
> This seems like a good fix, however it looks like the patch will break
> compilation in !CONFIG_SCHEDSTATS && !CONFIG_TASK_DELAY_ACCT, of it
> failing to provide a stub for sched_info_dequeue() in that case.
Fixed. Pl. find the new patch below.
Signed-off-by: Ankita Garg <ankita@in.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Gregory Haskins <ghaskins@novell.com>
Cc: rostedt@goodmis.org
Cc: suresh.b.siddha@intel.com
Cc: aneesh.kumar@linux.vnet.ibm.com
Cc: dhaval@linux.vnet.ibm.com
Cc: vatsa@linux.vnet.ibm.com
Cc: David Bahi <DBahi@novell.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-07-01 16:00:06 +07:00
|
|
|
#define sched_info_queued(t) do { } while (0)
|
|
|
|
#define sched_info_reset_dequeued(t) do { } while (0)
|
|
|
|
#define sched_info_dequeued(t) do { } while (0)
|
|
|
|
#define sched_info_switch(t, next) do { } while (0)
|
2007-11-10 04:39:37 +07:00
|
|
|
#endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
|
2007-07-09 23:51:58 +07:00
|
|
|
|
2008-09-12 23:54:39 +07:00
|
|
|
/*
|
|
|
|
* The following are functions that support scheduler-internal time accounting.
|
|
|
|
* These functions are generally called at the timer tick. None of this depends
|
|
|
|
* on CONFIG_SCHEDSTATS.
|
|
|
|
*/
|
|
|
|
|
2013-05-27 04:35:41 +07:00
|
|
|
/**
|
|
|
|
* cputimer_running - return true if cputimer is running
|
|
|
|
*
|
|
|
|
* @tsk: Pointer to target task.
|
|
|
|
*/
|
|
|
|
static inline bool cputimer_running(struct task_struct *tsk)
|
|
|
|
|
|
|
|
{
|
|
|
|
struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
|
|
|
|
|
|
|
|
if (!cputimer->running)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* After we flush the task's sum_exec_runtime to sig->sum_sched_runtime
|
|
|
|
* in __exit_signal(), we won't account to the signal struct further
|
|
|
|
* cputime consumed by that task, even though the task can still be
|
|
|
|
* ticking after __exit_signal().
|
|
|
|
*
|
|
|
|
* In order to keep a consistent behaviour between thread group cputime
|
|
|
|
* and thread group cputimer accounting, lets also ignore the cputime
|
|
|
|
* elapsing after __exit_signal() in any thread group timer running.
|
|
|
|
*
|
|
|
|
* This makes sure that POSIX CPU clocks and timers are synchronized, so
|
|
|
|
* that a POSIX CPU timer won't expire while the corresponding POSIX CPU
|
|
|
|
* clock delta is behind the expiring timer value.
|
|
|
|
*/
|
|
|
|
if (unlikely(!tsk->sighand))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2008-09-12 23:54:39 +07:00
|
|
|
/**
|
2008-09-12 23:54:39 +07:00
|
|
|
* account_group_user_time - Maintain utime for a thread group.
|
2008-09-12 23:54:39 +07:00
|
|
|
*
|
2008-09-12 23:54:39 +07:00
|
|
|
* @tsk: Pointer to task structure.
|
|
|
|
* @cputime: Time value by which to increment the utime field of the
|
|
|
|
* thread_group_cputime structure.
|
2008-09-12 23:54:39 +07:00
|
|
|
*
|
|
|
|
* If thread group time is being maintained, get the structure for the
|
|
|
|
* running CPU and update the utime field there.
|
|
|
|
*/
|
2008-09-12 23:54:39 +07:00
|
|
|
static inline void account_group_user_time(struct task_struct *tsk,
|
|
|
|
cputime_t cputime)
|
2008-09-12 23:54:39 +07:00
|
|
|
{
|
2010-06-11 06:09:52 +07:00
|
|
|
struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
|
2008-09-12 23:54:39 +07:00
|
|
|
|
2013-05-27 04:35:41 +07:00
|
|
|
if (!cputimer_running(tsk))
|
2009-02-05 18:24:16 +07:00
|
|
|
return;
|
|
|
|
|
2009-07-25 23:56:56 +07:00
|
|
|
raw_spin_lock(&cputimer->lock);
|
2011-12-15 20:56:09 +07:00
|
|
|
cputimer->cputime.utime += cputime;
|
2009-07-25 23:56:56 +07:00
|
|
|
raw_spin_unlock(&cputimer->lock);
|
2008-09-12 23:54:39 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
2008-09-12 23:54:39 +07:00
|
|
|
* account_group_system_time - Maintain stime for a thread group.
|
2008-09-12 23:54:39 +07:00
|
|
|
*
|
2008-09-12 23:54:39 +07:00
|
|
|
* @tsk: Pointer to task structure.
|
|
|
|
* @cputime: Time value by which to increment the stime field of the
|
|
|
|
* thread_group_cputime structure.
|
2008-09-12 23:54:39 +07:00
|
|
|
*
|
|
|
|
* If thread group time is being maintained, get the structure for the
|
|
|
|
* running CPU and update the stime field there.
|
|
|
|
*/
|
2008-09-12 23:54:39 +07:00
|
|
|
static inline void account_group_system_time(struct task_struct *tsk,
|
|
|
|
cputime_t cputime)
|
2008-09-12 23:54:39 +07:00
|
|
|
{
|
2010-06-11 06:09:52 +07:00
|
|
|
struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
|
2009-02-05 18:24:16 +07:00
|
|
|
|
2013-05-27 04:35:41 +07:00
|
|
|
if (!cputimer_running(tsk))
|
2009-02-05 18:24:16 +07:00
|
|
|
return;
|
2008-09-12 23:54:39 +07:00
|
|
|
|
2009-07-25 23:56:56 +07:00
|
|
|
raw_spin_lock(&cputimer->lock);
|
2011-12-15 20:56:09 +07:00
|
|
|
cputimer->cputime.stime += cputime;
|
2009-07-25 23:56:56 +07:00
|
|
|
raw_spin_unlock(&cputimer->lock);
|
2008-09-12 23:54:39 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
2008-09-12 23:54:39 +07:00
|
|
|
* account_group_exec_runtime - Maintain exec runtime for a thread group.
|
2008-09-12 23:54:39 +07:00
|
|
|
*
|
2008-09-12 23:54:39 +07:00
|
|
|
* @tsk: Pointer to task structure.
|
2008-09-12 23:54:39 +07:00
|
|
|
* @ns: Time value by which to increment the sum_exec_runtime field
|
2008-09-12 23:54:39 +07:00
|
|
|
* of the thread_group_cputime structure.
|
2008-09-12 23:54:39 +07:00
|
|
|
*
|
|
|
|
* If thread group time is being maintained, get the structure for the
|
|
|
|
* running CPU and update the sum_exec_runtime field there.
|
|
|
|
*/
|
2008-09-12 23:54:39 +07:00
|
|
|
static inline void account_group_exec_runtime(struct task_struct *tsk,
|
|
|
|
unsigned long long ns)
|
2008-09-12 23:54:39 +07:00
|
|
|
{
|
2010-06-11 06:09:52 +07:00
|
|
|
struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
|
2009-02-05 18:24:16 +07:00
|
|
|
|
2013-05-27 04:35:41 +07:00
|
|
|
if (!cputimer_running(tsk))
|
2009-02-05 18:24:16 +07:00
|
|
|
return;
|
2008-09-12 23:54:39 +07:00
|
|
|
|
2009-07-25 23:56:56 +07:00
|
|
|
raw_spin_lock(&cputimer->lock);
|
2009-02-05 18:24:16 +07:00
|
|
|
cputimer->cputime.sum_exec_runtime += ns;
|
2009-07-25 23:56:56 +07:00
|
|
|
raw_spin_unlock(&cputimer->lock);
|
2008-09-12 23:54:39 +07:00
|
|
|
}
|