linux_dsm_epyc7002/include/linux/oid_registry.h

118 lines
4.4 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0-or-later */
/* ASN.1 Object identifier (OID) registry
*
* Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*/
#ifndef _LINUX_OID_REGISTRY_H
#define _LINUX_OID_REGISTRY_H
#include <linux/types.h>
/*
* OIDs are turned into these values if possible, or OID__NR if not held here.
*
* NOTE! Do not mess with the format of each line as this is read by
* build_OID_registry.pl to generate the data for look_up_OID().
*/
enum OID {
OID_id_dsa_with_sha1, /* 1.2.840.10030.4.3 */
OID_id_dsa, /* 1.2.840.10040.4.1 */
OID_id_ecdsa_with_sha1, /* 1.2.840.10045.4.1 */
OID_id_ecPublicKey, /* 1.2.840.10045.2.1 */
/* PKCS#1 {iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1)} */
OID_rsaEncryption, /* 1.2.840.113549.1.1.1 */
OID_md2WithRSAEncryption, /* 1.2.840.113549.1.1.2 */
OID_md3WithRSAEncryption, /* 1.2.840.113549.1.1.3 */
OID_md4WithRSAEncryption, /* 1.2.840.113549.1.1.4 */
OID_sha1WithRSAEncryption, /* 1.2.840.113549.1.1.5 */
OID_sha256WithRSAEncryption, /* 1.2.840.113549.1.1.11 */
OID_sha384WithRSAEncryption, /* 1.2.840.113549.1.1.12 */
OID_sha512WithRSAEncryption, /* 1.2.840.113549.1.1.13 */
OID_sha224WithRSAEncryption, /* 1.2.840.113549.1.1.14 */
/* PKCS#7 {iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-7(7)} */
OID_data, /* 1.2.840.113549.1.7.1 */
OID_signed_data, /* 1.2.840.113549.1.7.2 */
/* PKCS#9 {iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)} */
OID_email_address, /* 1.2.840.113549.1.9.1 */
PKCS#7: Appropriately restrict authenticated attributes and content type A PKCS#7 or CMS message can have per-signature authenticated attributes that are digested as a lump and signed by the authorising key for that signature. If such attributes exist, the content digest isn't itself signed, but rather it is included in a special authattr which then contributes to the signature. Further, we already require the master message content type to be pkcs7_signedData - but there's also a separate content type for the data itself within the SignedData object and this must be repeated inside the authattrs for each signer [RFC2315 9.2, RFC5652 11.1]. We should really validate the authattrs if they exist or forbid them entirely as appropriate. To this end: (1) Alter the PKCS#7 parser to reject any message that has more than one signature where at least one signature has authattrs and at least one that does not. (2) Validate authattrs if they are present and strongly restrict them. Only the following authattrs are permitted and all others are rejected: (a) contentType. This is checked to be an OID that matches the content type in the SignedData object. (b) messageDigest. This must match the crypto digest of the data. (c) signingTime. If present, we check that this is a valid, parseable UTCTime or GeneralTime and that the date it encodes fits within the validity window of the matching X.509 cert. (d) S/MIME capabilities. We don't check the contents. (e) Authenticode SP Opus Info. We don't check the contents. (f) Authenticode Statement Type. We don't check the contents. The message is rejected if (a) or (b) are missing. If the message is an Authenticode type, the message is rejected if (e) is missing; if not Authenticode, the message is rejected if (d) - (f) are present. The S/MIME capabilities authattr (d) unfortunately has to be allowed to support kernels already signed by the pesign program. This only affects kexec. sign-file suppresses them (CMS_NOSMIMECAP). The message is also rejected if an authattr is given more than once or if it contains more than one element in its set of values. (3) Add a parameter to pkcs7_verify() to select one of the following restrictions and pass in the appropriate option from the callers: (*) VERIFYING_MODULE_SIGNATURE This requires that the SignedData content type be pkcs7-data and forbids authattrs. sign-file sets CMS_NOATTR. We could be more flexible and permit authattrs optionally, but only permit minimal content. (*) VERIFYING_FIRMWARE_SIGNATURE This requires that the SignedData content type be pkcs7-data and requires authattrs. In future, this will require an attribute holding the target firmware name in addition to the minimal set. (*) VERIFYING_UNSPECIFIED_SIGNATURE This requires that the SignedData content type be pkcs7-data but allows either no authattrs or only permits the minimal set. (*) VERIFYING_KEXEC_PE_SIGNATURE This only supports the Authenticode SPC_INDIRECT_DATA content type and requires at least an SpcSpOpusInfo authattr in addition to the minimal set. It also permits an SPC_STATEMENT_TYPE authattr (and an S/MIME capabilities authattr because the pesign program doesn't remove these). (*) VERIFYING_KEY_SIGNATURE (*) VERIFYING_KEY_SELF_SIGNATURE These are invalid in this context but are included for later use when limiting the use of X.509 certs. (4) The pkcs7_test key type is given a module parameter to select between the above options for testing purposes. For example: echo 1 >/sys/module/pkcs7_test_key/parameters/usage keyctl padd pkcs7_test foo @s </tmp/stuff.pkcs7 will attempt to check the signature on stuff.pkcs7 as if it contains a firmware blob (1 being VERIFYING_FIRMWARE_SIGNATURE). Suggested-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Marcel Holtmann <marcel@holtmann.org> Reviewed-by: David Woodhouse <David.Woodhouse@intel.com>
2015-08-05 21:22:27 +07:00
OID_contentType, /* 1.2.840.113549.1.9.3 */
OID_messageDigest, /* 1.2.840.113549.1.9.4 */
OID_signingTime, /* 1.2.840.113549.1.9.5 */
OID_smimeCapabilites, /* 1.2.840.113549.1.9.15 */
OID_smimeAuthenticatedAttrs, /* 1.2.840.113549.1.9.16.2.11 */
/* {iso(1) member-body(2) us(840) rsadsi(113549) digestAlgorithm(2)} */
OID_md2, /* 1.2.840.113549.2.2 */
OID_md4, /* 1.2.840.113549.2.4 */
OID_md5, /* 1.2.840.113549.2.5 */
/* Microsoft Authenticode & Software Publishing */
OID_msIndirectData, /* 1.3.6.1.4.1.311.2.1.4 */
PKCS#7: Appropriately restrict authenticated attributes and content type A PKCS#7 or CMS message can have per-signature authenticated attributes that are digested as a lump and signed by the authorising key for that signature. If such attributes exist, the content digest isn't itself signed, but rather it is included in a special authattr which then contributes to the signature. Further, we already require the master message content type to be pkcs7_signedData - but there's also a separate content type for the data itself within the SignedData object and this must be repeated inside the authattrs for each signer [RFC2315 9.2, RFC5652 11.1]. We should really validate the authattrs if they exist or forbid them entirely as appropriate. To this end: (1) Alter the PKCS#7 parser to reject any message that has more than one signature where at least one signature has authattrs and at least one that does not. (2) Validate authattrs if they are present and strongly restrict them. Only the following authattrs are permitted and all others are rejected: (a) contentType. This is checked to be an OID that matches the content type in the SignedData object. (b) messageDigest. This must match the crypto digest of the data. (c) signingTime. If present, we check that this is a valid, parseable UTCTime or GeneralTime and that the date it encodes fits within the validity window of the matching X.509 cert. (d) S/MIME capabilities. We don't check the contents. (e) Authenticode SP Opus Info. We don't check the contents. (f) Authenticode Statement Type. We don't check the contents. The message is rejected if (a) or (b) are missing. If the message is an Authenticode type, the message is rejected if (e) is missing; if not Authenticode, the message is rejected if (d) - (f) are present. The S/MIME capabilities authattr (d) unfortunately has to be allowed to support kernels already signed by the pesign program. This only affects kexec. sign-file suppresses them (CMS_NOSMIMECAP). The message is also rejected if an authattr is given more than once or if it contains more than one element in its set of values. (3) Add a parameter to pkcs7_verify() to select one of the following restrictions and pass in the appropriate option from the callers: (*) VERIFYING_MODULE_SIGNATURE This requires that the SignedData content type be pkcs7-data and forbids authattrs. sign-file sets CMS_NOATTR. We could be more flexible and permit authattrs optionally, but only permit minimal content. (*) VERIFYING_FIRMWARE_SIGNATURE This requires that the SignedData content type be pkcs7-data and requires authattrs. In future, this will require an attribute holding the target firmware name in addition to the minimal set. (*) VERIFYING_UNSPECIFIED_SIGNATURE This requires that the SignedData content type be pkcs7-data but allows either no authattrs or only permits the minimal set. (*) VERIFYING_KEXEC_PE_SIGNATURE This only supports the Authenticode SPC_INDIRECT_DATA content type and requires at least an SpcSpOpusInfo authattr in addition to the minimal set. It also permits an SPC_STATEMENT_TYPE authattr (and an S/MIME capabilities authattr because the pesign program doesn't remove these). (*) VERIFYING_KEY_SIGNATURE (*) VERIFYING_KEY_SELF_SIGNATURE These are invalid in this context but are included for later use when limiting the use of X.509 certs. (4) The pkcs7_test key type is given a module parameter to select between the above options for testing purposes. For example: echo 1 >/sys/module/pkcs7_test_key/parameters/usage keyctl padd pkcs7_test foo @s </tmp/stuff.pkcs7 will attempt to check the signature on stuff.pkcs7 as if it contains a firmware blob (1 being VERIFYING_FIRMWARE_SIGNATURE). Suggested-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Marcel Holtmann <marcel@holtmann.org> Reviewed-by: David Woodhouse <David.Woodhouse@intel.com>
2015-08-05 21:22:27 +07:00
OID_msStatementType, /* 1.3.6.1.4.1.311.2.1.11 */
OID_msSpOpusInfo, /* 1.3.6.1.4.1.311.2.1.12 */
OID_msPeImageDataObjId, /* 1.3.6.1.4.1.311.2.1.15 */
OID_msIndividualSPKeyPurpose, /* 1.3.6.1.4.1.311.2.1.21 */
OID_msOutlookExpress, /* 1.3.6.1.4.1.311.16.4 */
OID_certAuthInfoAccess, /* 1.3.6.1.5.5.7.1.1 */
OID_sha1, /* 1.3.14.3.2.26 */
OID_sha256, /* 2.16.840.1.101.3.4.2.1 */
OID_sha384, /* 2.16.840.1.101.3.4.2.2 */
OID_sha512, /* 2.16.840.1.101.3.4.2.3 */
OID_sha224, /* 2.16.840.1.101.3.4.2.4 */
/* Distinguished Name attribute IDs [RFC 2256] */
OID_commonName, /* 2.5.4.3 */
OID_surname, /* 2.5.4.4 */
OID_countryName, /* 2.5.4.6 */
OID_locality, /* 2.5.4.7 */
OID_stateOrProvinceName, /* 2.5.4.8 */
OID_organizationName, /* 2.5.4.10 */
OID_organizationUnitName, /* 2.5.4.11 */
OID_title, /* 2.5.4.12 */
OID_description, /* 2.5.4.13 */
OID_name, /* 2.5.4.41 */
OID_givenName, /* 2.5.4.42 */
OID_initials, /* 2.5.4.43 */
OID_generationalQualifier, /* 2.5.4.44 */
/* Certificate extension IDs */
OID_subjectKeyIdentifier, /* 2.5.29.14 */
OID_keyUsage, /* 2.5.29.15 */
OID_subjectAltName, /* 2.5.29.17 */
OID_issuerAltName, /* 2.5.29.18 */
OID_basicConstraints, /* 2.5.29.19 */
OID_crlDistributionPoints, /* 2.5.29.31 */
OID_certPolicies, /* 2.5.29.32 */
OID_authorityKeyIdentifier, /* 2.5.29.35 */
OID_extKeyUsage, /* 2.5.29.37 */
crypto: ecrdsa - add EC-RDSA (GOST 34.10) algorithm Add Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012, RFC 7091, ISO/IEC 14888-3) is one of the Russian (and since 2018 the CIS countries) cryptographic standard algorithms (called GOST algorithms). Only signature verification is supported, with intent to be used in the IMA. Summary of the changes: * crypto/Kconfig: - EC-RDSA is added into Public-key cryptography section. * crypto/Makefile: - ecrdsa objects are added. * crypto/asymmetric_keys/x509_cert_parser.c: - Recognize EC-RDSA and Streebog OIDs. * include/linux/oid_registry.h: - EC-RDSA OIDs are added to the enum. Also, a two currently not implemented curve OIDs are added for possible extension later (to not change numbering and grouping). * crypto/ecc.c: - Kenneth MacKay copyright date is updated to 2014, because vli_mmod_slow, ecc_point_add, ecc_point_mult_shamir are based on his code from micro-ecc. - Functions needed for ecrdsa are EXPORT_SYMBOL'ed. - New functions: vli_is_negative - helper to determine sign of vli; vli_from_be64 - unpack big-endian array into vli (used for a signature); vli_from_le64 - unpack little-endian array into vli (used for a public key); vli_uadd, vli_usub - add/sub u64 value to/from vli (used for increment/decrement); mul_64_64 - optimized to use __int128 where appropriate, this speeds up point multiplication (and as a consequence signature verification) by the factor of 1.5-2; vli_umult - multiply vli by a small value (speeds up point multiplication by another factor of 1.5-2, depending on vli sizes); vli_mmod_special - module reduction for some form of Pseudo-Mersenne primes (used for the curves A); vli_mmod_special2 - module reduction for another form of Pseudo-Mersenne primes (used for the curves B); vli_mmod_barrett - module reduction using pre-computed value (used for the curve C); vli_mmod_slow - more general module reduction which is much slower (used when the modulus is subgroup order); vli_mod_mult_slow - modular multiplication; ecc_point_add - add two points; ecc_point_mult_shamir - add two points multiplied by scalars in one combined multiplication (this gives speed up by another factor 2 in compare to two separate multiplications). ecc_is_pubkey_valid_partial - additional samity check is added. - Updated vli_mmod_fast with non-strict heuristic to call optimal module reduction function depending on the prime value; - All computations for the previously defined (two NIST) curves should not unaffected. * crypto/ecc.h: - Newly exported functions are documented. * crypto/ecrdsa_defs.h - Five curves are defined. * crypto/ecrdsa.c: - Signature verification is implemented. * crypto/ecrdsa_params.asn1, crypto/ecrdsa_pub_key.asn1: - Templates for BER decoder for EC-RDSA parameters and public key. Cc: linux-integrity@vger.kernel.org Signed-off-by: Vitaly Chikunov <vt@altlinux.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-04-11 22:51:20 +07:00
/* EC-RDSA */
OID_gostCPSignA, /* 1.2.643.2.2.35.1 */
OID_gostCPSignB, /* 1.2.643.2.2.35.2 */
OID_gostCPSignC, /* 1.2.643.2.2.35.3 */
OID_gost2012PKey256, /* 1.2.643.7.1.1.1.1 */
OID_gost2012PKey512, /* 1.2.643.7.1.1.1.2 */
OID_gost2012Digest256, /* 1.2.643.7.1.1.2.2 */
OID_gost2012Digest512, /* 1.2.643.7.1.1.2.3 */
OID_gost2012Signature256, /* 1.2.643.7.1.1.3.2 */
OID_gost2012Signature512, /* 1.2.643.7.1.1.3.3 */
OID_gostTC26Sign256A, /* 1.2.643.7.1.2.1.1.1 */
OID_gostTC26Sign256B, /* 1.2.643.7.1.2.1.1.2 */
OID_gostTC26Sign256C, /* 1.2.643.7.1.2.1.1.3 */
OID_gostTC26Sign256D, /* 1.2.643.7.1.2.1.1.4 */
OID_gostTC26Sign512A, /* 1.2.643.7.1.2.1.2.1 */
OID_gostTC26Sign512B, /* 1.2.643.7.1.2.1.2.2 */
OID_gostTC26Sign512C, /* 1.2.643.7.1.2.1.2.3 */
OID__NR
};
extern enum OID look_up_OID(const void *data, size_t datasize);
extern int sprint_oid(const void *, size_t, char *, size_t);
extern int sprint_OID(enum OID, char *, size_t);
#endif /* _LINUX_OID_REGISTRY_H */