linux_dsm_epyc7002/drivers/net/phy/phylink.c

1971 lines
53 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
/*
* phylink models the MAC to optional PHY connection, supporting
* technologies such as SFP cages where the PHY is hot-pluggable.
*
* Copyright (C) 2015 Russell King
*/
#include <linux/ethtool.h>
#include <linux/export.h>
#include <linux/gpio/consumer.h>
#include <linux/netdevice.h>
#include <linux/of.h>
#include <linux/of_mdio.h>
#include <linux/phy.h>
#include <linux/phy_fixed.h>
#include <linux/phylink.h>
#include <linux/rtnetlink.h>
#include <linux/spinlock.h>
#include <linux/timer.h>
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
#include <linux/workqueue.h>
#include "sfp.h"
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
#include "swphy.h"
#define SUPPORTED_INTERFACES \
(SUPPORTED_TP | SUPPORTED_MII | SUPPORTED_FIBRE | \
SUPPORTED_BNC | SUPPORTED_AUI | SUPPORTED_Backplane)
#define ADVERTISED_INTERFACES \
(ADVERTISED_TP | ADVERTISED_MII | ADVERTISED_FIBRE | \
ADVERTISED_BNC | ADVERTISED_AUI | ADVERTISED_Backplane)
enum {
PHYLINK_DISABLE_STOPPED,
PHYLINK_DISABLE_LINK,
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
};
/**
* struct phylink - internal data type for phylink
*/
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
struct phylink {
/* private: */
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
struct net_device *netdev;
const struct phylink_mac_ops *ops;
net: phylink: Add struct phylink_config to PHYLINK API The phylink_config structure will encapsulate a pointer to a struct device and the operation type requested for this instance of PHYLINK. This patch does not make any functional changes, it just transitions the PHYLINK internals and all its users to the new API. A pointer to a phylink_config structure will be passed to phylink_create() instead of the net_device directly. Also, the same phylink_config pointer will be passed back to all phylink_mac_ops callbacks instead of the net_device. Using this mechanism, a PHYLINK user can get the original net_device using a structure such as 'to_net_dev(config->dev)' or directly the structure containing the phylink_config using a container_of call. At the moment, only the PHYLINK_NETDEV is defined as a valid operation type for PHYLINK. In this mode, a valid reference to a struct device linked to the original net_device should be passed to PHYLINK through the phylink_config structure. This API changes is mainly driven by the necessity of adding a new operation type in PHYLINK that disconnects the phy_device from the net_device and also works when the net_device is lacking. Signed-off-by: Ioana Ciornei <ioana.ciornei@nxp.com> Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Reviewed-by: Maxime Chevallier <maxime.chevallier@bootlin.com> Tested-by: Maxime Chevallier <maxime.chevallier@bootlin.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-29 00:38:12 +07:00
struct phylink_config *config;
struct device *dev;
unsigned int old_link_state:1;
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
unsigned long phylink_disable_state; /* bitmask of disables */
struct phy_device *phydev;
phy_interface_t link_interface; /* PHY_INTERFACE_xxx */
u8 cfg_link_an_mode; /* MLO_AN_xxx */
u8 cur_link_an_mode;
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
u8 link_port; /* The current non-phy ethtool port */
__ETHTOOL_DECLARE_LINK_MODE_MASK(supported);
/* The link configuration settings */
struct phylink_link_state link_config;
/* The current settings */
phy_interface_t cur_interface;
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
struct gpio_desc *link_gpio;
unsigned int link_irq;
struct timer_list link_poll;
void (*get_fixed_state)(struct net_device *dev,
struct phylink_link_state *s);
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
struct mutex state_mutex;
struct phylink_link_state phy_state;
struct work_struct resolve;
bool mac_link_dropped;
struct sfp_bus *sfp_bus;
bool sfp_may_have_phy;
__ETHTOOL_DECLARE_LINK_MODE_MASK(sfp_support);
u8 sfp_port;
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
};
#define phylink_printk(level, pl, fmt, ...) \
do { \
if ((pl)->config->type == PHYLINK_NETDEV) \
netdev_printk(level, (pl)->netdev, fmt, ##__VA_ARGS__); \
else if ((pl)->config->type == PHYLINK_DEV) \
dev_printk(level, (pl)->dev, fmt, ##__VA_ARGS__); \
} while (0)
#define phylink_err(pl, fmt, ...) \
phylink_printk(KERN_ERR, pl, fmt, ##__VA_ARGS__)
#define phylink_warn(pl, fmt, ...) \
phylink_printk(KERN_WARNING, pl, fmt, ##__VA_ARGS__)
#define phylink_info(pl, fmt, ...) \
phylink_printk(KERN_INFO, pl, fmt, ##__VA_ARGS__)
#if defined(CONFIG_DYNAMIC_DEBUG)
#define phylink_dbg(pl, fmt, ...) \
do { \
if ((pl)->config->type == PHYLINK_NETDEV) \
netdev_dbg((pl)->netdev, fmt, ##__VA_ARGS__); \
else if ((pl)->config->type == PHYLINK_DEV) \
dev_dbg((pl)->dev, fmt, ##__VA_ARGS__); \
} while (0)
#elif defined(DEBUG)
#define phylink_dbg(pl, fmt, ...) \
phylink_printk(KERN_DEBUG, pl, fmt, ##__VA_ARGS__)
#else
#define phylink_dbg(pl, fmt, ...) \
({ \
if (0) \
phylink_printk(KERN_DEBUG, pl, fmt, ##__VA_ARGS__); \
})
#endif
/**
* phylink_set_port_modes() - set the port type modes in the ethtool mask
* @mask: ethtool link mode mask
*
* Sets all the port type modes in the ethtool mask. MAC drivers should
* use this in their 'validate' callback.
*/
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
void phylink_set_port_modes(unsigned long *mask)
{
phylink_set(mask, TP);
phylink_set(mask, AUI);
phylink_set(mask, MII);
phylink_set(mask, FIBRE);
phylink_set(mask, BNC);
phylink_set(mask, Backplane);
}
EXPORT_SYMBOL_GPL(phylink_set_port_modes);
static int phylink_is_empty_linkmode(const unsigned long *linkmode)
{
__ETHTOOL_DECLARE_LINK_MODE_MASK(tmp) = { 0, };
phylink_set_port_modes(tmp);
phylink_set(tmp, Autoneg);
phylink_set(tmp, Pause);
phylink_set(tmp, Asym_Pause);
return linkmode_subset(linkmode, tmp);
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
}
static const char *phylink_an_mode_str(unsigned int mode)
{
static const char *modestr[] = {
[MLO_AN_PHY] = "phy",
[MLO_AN_FIXED] = "fixed",
[MLO_AN_INBAND] = "inband",
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
};
return mode < ARRAY_SIZE(modestr) ? modestr[mode] : "unknown";
}
static int phylink_validate(struct phylink *pl, unsigned long *supported,
struct phylink_link_state *state)
{
net: phylink: Add struct phylink_config to PHYLINK API The phylink_config structure will encapsulate a pointer to a struct device and the operation type requested for this instance of PHYLINK. This patch does not make any functional changes, it just transitions the PHYLINK internals and all its users to the new API. A pointer to a phylink_config structure will be passed to phylink_create() instead of the net_device directly. Also, the same phylink_config pointer will be passed back to all phylink_mac_ops callbacks instead of the net_device. Using this mechanism, a PHYLINK user can get the original net_device using a structure such as 'to_net_dev(config->dev)' or directly the structure containing the phylink_config using a container_of call. At the moment, only the PHYLINK_NETDEV is defined as a valid operation type for PHYLINK. In this mode, a valid reference to a struct device linked to the original net_device should be passed to PHYLINK through the phylink_config structure. This API changes is mainly driven by the necessity of adding a new operation type in PHYLINK that disconnects the phy_device from the net_device and also works when the net_device is lacking. Signed-off-by: Ioana Ciornei <ioana.ciornei@nxp.com> Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Reviewed-by: Maxime Chevallier <maxime.chevallier@bootlin.com> Tested-by: Maxime Chevallier <maxime.chevallier@bootlin.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-29 00:38:12 +07:00
pl->ops->validate(pl->config, supported, state);
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
return phylink_is_empty_linkmode(supported) ? -EINVAL : 0;
}
static int phylink_parse_fixedlink(struct phylink *pl,
struct fwnode_handle *fwnode)
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
{
struct fwnode_handle *fixed_node;
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
const struct phy_setting *s;
struct gpio_desc *desc;
u32 speed;
int ret;
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
fixed_node = fwnode_get_named_child_node(fwnode, "fixed-link");
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
if (fixed_node) {
ret = fwnode_property_read_u32(fixed_node, "speed", &speed);
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
pl->link_config.speed = speed;
pl->link_config.duplex = DUPLEX_HALF;
if (fwnode_property_read_bool(fixed_node, "full-duplex"))
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
pl->link_config.duplex = DUPLEX_FULL;
/* We treat the "pause" and "asym-pause" terminology as
* defining the link partner's ability. */
if (fwnode_property_read_bool(fixed_node, "pause"))
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
pl->link_config.pause |= MLO_PAUSE_SYM;
if (fwnode_property_read_bool(fixed_node, "asym-pause"))
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
pl->link_config.pause |= MLO_PAUSE_ASYM;
if (ret == 0) {
desc = fwnode_gpiod_get_index(fixed_node, "link", 0,
GPIOD_IN, "?");
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
if (!IS_ERR(desc))
pl->link_gpio = desc;
else if (desc == ERR_PTR(-EPROBE_DEFER))
ret = -EPROBE_DEFER;
}
fwnode_handle_put(fixed_node);
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
if (ret)
return ret;
} else {
u32 prop[5];
ret = fwnode_property_read_u32_array(fwnode, "fixed-link",
NULL, 0);
if (ret != ARRAY_SIZE(prop)) {
phylink_err(pl, "broken fixed-link?\n");
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
return -EINVAL;
}
ret = fwnode_property_read_u32_array(fwnode, "fixed-link",
prop, ARRAY_SIZE(prop));
if (!ret) {
pl->link_config.duplex = prop[1] ?
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
DUPLEX_FULL : DUPLEX_HALF;
pl->link_config.speed = prop[2];
if (prop[3])
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
pl->link_config.pause |= MLO_PAUSE_SYM;
if (prop[4])
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
pl->link_config.pause |= MLO_PAUSE_ASYM;
}
}
if (pl->link_config.speed > SPEED_1000 &&
pl->link_config.duplex != DUPLEX_FULL)
phylink_warn(pl, "fixed link specifies half duplex for %dMbps link?\n",
pl->link_config.speed);
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
bitmap_fill(pl->supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
linkmode_copy(pl->link_config.advertising, pl->supported);
phylink_validate(pl, pl->supported, &pl->link_config);
s = phy_lookup_setting(pl->link_config.speed, pl->link_config.duplex,
pl->supported, true);
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
linkmode_zero(pl->supported);
phylink_set(pl->supported, MII);
phylink_set(pl->supported, Pause);
phylink_set(pl->supported, Asym_Pause);
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
if (s) {
__set_bit(s->bit, pl->supported);
} else {
phylink_warn(pl, "fixed link %s duplex %dMbps not recognised\n",
pl->link_config.duplex == DUPLEX_FULL ? "full" : "half",
pl->link_config.speed);
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
}
linkmode_and(pl->link_config.advertising, pl->link_config.advertising,
pl->supported);
pl->link_config.link = 1;
pl->link_config.an_complete = 1;
return 0;
}
static int phylink_parse_mode(struct phylink *pl, struct fwnode_handle *fwnode)
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
{
struct fwnode_handle *dn;
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
const char *managed;
dn = fwnode_get_named_child_node(fwnode, "fixed-link");
if (dn || fwnode_property_present(fwnode, "fixed-link"))
pl->cfg_link_an_mode = MLO_AN_FIXED;
fwnode_handle_put(dn);
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
if (fwnode_property_read_string(fwnode, "managed", &managed) == 0 &&
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
strcmp(managed, "in-band-status") == 0) {
if (pl->cfg_link_an_mode == MLO_AN_FIXED) {
phylink_err(pl,
"can't use both fixed-link and in-band-status\n");
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
return -EINVAL;
}
linkmode_zero(pl->supported);
phylink_set(pl->supported, MII);
phylink_set(pl->supported, Autoneg);
phylink_set(pl->supported, Asym_Pause);
phylink_set(pl->supported, Pause);
pl->link_config.an_enabled = true;
pl->cfg_link_an_mode = MLO_AN_INBAND;
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
switch (pl->link_config.interface) {
case PHY_INTERFACE_MODE_SGMII:
phylink_set(pl->supported, 10baseT_Half);
phylink_set(pl->supported, 10baseT_Full);
phylink_set(pl->supported, 100baseT_Half);
phylink_set(pl->supported, 100baseT_Full);
phylink_set(pl->supported, 1000baseT_Half);
phylink_set(pl->supported, 1000baseT_Full);
break;
case PHY_INTERFACE_MODE_1000BASEX:
phylink_set(pl->supported, 1000baseX_Full);
break;
case PHY_INTERFACE_MODE_2500BASEX:
phylink_set(pl->supported, 2500baseX_Full);
break;
case PHY_INTERFACE_MODE_10GKR:
phylink_set(pl->supported, 10baseT_Half);
phylink_set(pl->supported, 10baseT_Full);
phylink_set(pl->supported, 100baseT_Half);
phylink_set(pl->supported, 100baseT_Full);
phylink_set(pl->supported, 1000baseT_Half);
phylink_set(pl->supported, 1000baseT_Full);
phylink_set(pl->supported, 1000baseX_Full);
phylink_set(pl->supported, 10000baseKR_Full);
phylink_set(pl->supported, 10000baseCR_Full);
phylink_set(pl->supported, 10000baseSR_Full);
phylink_set(pl->supported, 10000baseLR_Full);
phylink_set(pl->supported, 10000baseLRM_Full);
phylink_set(pl->supported, 10000baseER_Full);
break;
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
default:
phylink_err(pl,
"incorrect link mode %s for in-band status\n",
phy_modes(pl->link_config.interface));
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
return -EINVAL;
}
linkmode_copy(pl->link_config.advertising, pl->supported);
if (phylink_validate(pl, pl->supported, &pl->link_config)) {
phylink_err(pl,
"failed to validate link configuration for in-band status\n");
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
return -EINVAL;
}
}
return 0;
}
static void phylink_mac_config(struct phylink *pl,
const struct phylink_link_state *state)
{
phylink_dbg(pl,
"%s: mode=%s/%s/%s/%s adv=%*pb pause=%02x link=%u an=%u\n",
__func__, phylink_an_mode_str(pl->cur_link_an_mode),
phy_modes(state->interface),
phy_speed_to_str(state->speed),
phy_duplex_to_str(state->duplex),
__ETHTOOL_LINK_MODE_MASK_NBITS, state->advertising,
state->pause, state->link, state->an_enabled);
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
pl->ops->mac_config(pl->config, pl->cur_link_an_mode, state);
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
}
static void phylink_mac_config_up(struct phylink *pl,
const struct phylink_link_state *state)
{
if (state->link)
phylink_mac_config(pl, state);
}
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
static void phylink_mac_an_restart(struct phylink *pl)
{
if (pl->link_config.an_enabled &&
phy_interface_mode_is_8023z(pl->link_config.interface))
net: phylink: Add struct phylink_config to PHYLINK API The phylink_config structure will encapsulate a pointer to a struct device and the operation type requested for this instance of PHYLINK. This patch does not make any functional changes, it just transitions the PHYLINK internals and all its users to the new API. A pointer to a phylink_config structure will be passed to phylink_create() instead of the net_device directly. Also, the same phylink_config pointer will be passed back to all phylink_mac_ops callbacks instead of the net_device. Using this mechanism, a PHYLINK user can get the original net_device using a structure such as 'to_net_dev(config->dev)' or directly the structure containing the phylink_config using a container_of call. At the moment, only the PHYLINK_NETDEV is defined as a valid operation type for PHYLINK. In this mode, a valid reference to a struct device linked to the original net_device should be passed to PHYLINK through the phylink_config structure. This API changes is mainly driven by the necessity of adding a new operation type in PHYLINK that disconnects the phy_device from the net_device and also works when the net_device is lacking. Signed-off-by: Ioana Ciornei <ioana.ciornei@nxp.com> Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Reviewed-by: Maxime Chevallier <maxime.chevallier@bootlin.com> Tested-by: Maxime Chevallier <maxime.chevallier@bootlin.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-29 00:38:12 +07:00
pl->ops->mac_an_restart(pl->config);
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
}
static void phylink_mac_pcs_get_state(struct phylink *pl,
struct phylink_link_state *state)
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
{
linkmode_copy(state->advertising, pl->link_config.advertising);
linkmode_zero(state->lp_advertising);
state->interface = pl->link_config.interface;
state->an_enabled = pl->link_config.an_enabled;
state->speed = SPEED_UNKNOWN;
state->duplex = DUPLEX_UNKNOWN;
state->pause = MLO_PAUSE_NONE;
state->an_complete = 0;
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
state->link = 1;
pl->ops->mac_pcs_get_state(pl->config, state);
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
}
/* The fixed state is... fixed except for the link state,
* which may be determined by a GPIO or a callback.
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
*/
static void phylink_get_fixed_state(struct phylink *pl, struct phylink_link_state *state)
{
*state = pl->link_config;
if (pl->get_fixed_state)
pl->get_fixed_state(pl->netdev, state);
else if (pl->link_gpio)
state->link = !!gpiod_get_value_cansleep(pl->link_gpio);
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
}
/* Flow control is resolved according to our and the link partners
* advertisements using the following drawn from the 802.3 specs:
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
* Local device Link partner
* Pause AsymDir Pause AsymDir Result
* 1 X 1 X TX+RX
* 0 1 1 1 TX
* 1 1 0 1 RX
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
*/
static void phylink_resolve_flow(struct phylink *pl,
struct phylink_link_state *state)
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
{
int new_pause = 0;
if (pl->link_config.pause & MLO_PAUSE_AN) {
int pause = 0;
if (phylink_test(pl->link_config.advertising, Pause))
pause |= MLO_PAUSE_SYM;
if (phylink_test(pl->link_config.advertising, Asym_Pause))
pause |= MLO_PAUSE_ASYM;
pause &= state->pause;
if (pause & MLO_PAUSE_SYM)
new_pause = MLO_PAUSE_TX | MLO_PAUSE_RX;
else if (pause & MLO_PAUSE_ASYM)
new_pause = state->pause & MLO_PAUSE_SYM ?
MLO_PAUSE_TX : MLO_PAUSE_RX;
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
} else {
new_pause = pl->link_config.pause & MLO_PAUSE_TXRX_MASK;
}
state->pause &= ~MLO_PAUSE_TXRX_MASK;
state->pause |= new_pause;
}
static const char *phylink_pause_to_str(int pause)
{
switch (pause & MLO_PAUSE_TXRX_MASK) {
case MLO_PAUSE_TX | MLO_PAUSE_RX:
return "rx/tx";
case MLO_PAUSE_TX:
return "tx";
case MLO_PAUSE_RX:
return "rx";
default:
return "off";
}
}
static void phylink_mac_link_up(struct phylink *pl,
struct phylink_link_state link_state)
{
struct net_device *ndev = pl->netdev;
pl->cur_interface = link_state.interface;
pl->ops->mac_link_up(pl->config, pl->cur_link_an_mode,
pl->cur_interface, pl->phydev);
if (ndev)
netif_carrier_on(ndev);
phylink_info(pl,
"Link is Up - %s/%s - flow control %s\n",
phy_speed_to_str(link_state.speed),
phy_duplex_to_str(link_state.duplex),
phylink_pause_to_str(link_state.pause));
}
static void phylink_mac_link_down(struct phylink *pl)
{
struct net_device *ndev = pl->netdev;
if (ndev)
netif_carrier_off(ndev);
pl->ops->mac_link_down(pl->config, pl->cur_link_an_mode,
pl->cur_interface);
phylink_info(pl, "Link is Down\n");
}
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
static void phylink_resolve(struct work_struct *w)
{
struct phylink *pl = container_of(w, struct phylink, resolve);
struct phylink_link_state link_state;
struct net_device *ndev = pl->netdev;
int link_changed;
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
mutex_lock(&pl->state_mutex);
if (pl->phylink_disable_state) {
pl->mac_link_dropped = false;
link_state.link = false;
} else if (pl->mac_link_dropped) {
link_state.link = false;
} else {
switch (pl->cur_link_an_mode) {
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
case MLO_AN_PHY:
link_state = pl->phy_state;
phylink_resolve_flow(pl, &link_state);
phylink_mac_config_up(pl, &link_state);
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
break;
case MLO_AN_FIXED:
phylink_get_fixed_state(pl, &link_state);
phylink_mac_config_up(pl, &link_state);
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
break;
case MLO_AN_INBAND:
phylink_mac_pcs_get_state(pl, &link_state);
/* If we have a phy, the "up" state is the union of
* both the PHY and the MAC */
if (pl->phydev)
link_state.link &= pl->phy_state.link;
/* Only update if the PHY link is up */
if (pl->phydev && pl->phy_state.link) {
link_state.interface = pl->phy_state.interface;
/* If we have a PHY, we need to update with
* the pause mode bits. */
link_state.pause |= pl->phy_state.pause;
phylink_resolve_flow(pl, &link_state);
phylink_mac_config(pl, &link_state);
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
}
break;
}
}
if (pl->netdev)
link_changed = (link_state.link != netif_carrier_ok(ndev));
else
link_changed = (link_state.link != pl->old_link_state);
if (link_changed) {
pl->old_link_state = link_state.link;
if (!link_state.link)
phylink_mac_link_down(pl);
else
phylink_mac_link_up(pl, link_state);
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
}
if (!link_state.link && pl->mac_link_dropped) {
pl->mac_link_dropped = false;
queue_work(system_power_efficient_wq, &pl->resolve);
}
mutex_unlock(&pl->state_mutex);
}
static void phylink_run_resolve(struct phylink *pl)
{
if (!pl->phylink_disable_state)
queue_work(system_power_efficient_wq, &pl->resolve);
}
static void phylink_run_resolve_and_disable(struct phylink *pl, int bit)
{
unsigned long state = pl->phylink_disable_state;
set_bit(bit, &pl->phylink_disable_state);
if (state == 0) {
queue_work(system_power_efficient_wq, &pl->resolve);
flush_work(&pl->resolve);
}
}
static void phylink_fixed_poll(struct timer_list *t)
{
struct phylink *pl = container_of(t, struct phylink, link_poll);
mod_timer(t, jiffies + HZ);
phylink_run_resolve(pl);
}
static const struct sfp_upstream_ops sfp_phylink_ops;
static int phylink_register_sfp(struct phylink *pl,
struct fwnode_handle *fwnode)
{
struct sfp_bus *bus;
int ret;
bus = sfp_bus_find_fwnode(fwnode);
if (IS_ERR(bus)) {
ret = PTR_ERR(bus);
phylink_err(pl, "unable to attach SFP bus: %d\n", ret);
return ret;
}
pl->sfp_bus = bus;
ret = sfp_bus_add_upstream(bus, pl, &sfp_phylink_ops);
sfp_bus_put(bus);
return ret;
}
/**
* phylink_create() - create a phylink instance
* @config: a pointer to the target &struct phylink_config
* @fwnode: a pointer to a &struct fwnode_handle describing the network
* interface
* @iface: the desired link mode defined by &typedef phy_interface_t
* @ops: a pointer to a &struct phylink_mac_ops for the MAC.
*
* Create a new phylink instance, and parse the link parameters found in @np.
* This will parse in-band modes, fixed-link or SFP configuration.
*
* Note: the rtnl lock must not be held when calling this function.
*
* Returns a pointer to a &struct phylink, or an error-pointer value. Users
* must use IS_ERR() to check for errors from this function.
*/
net: phylink: Add struct phylink_config to PHYLINK API The phylink_config structure will encapsulate a pointer to a struct device and the operation type requested for this instance of PHYLINK. This patch does not make any functional changes, it just transitions the PHYLINK internals and all its users to the new API. A pointer to a phylink_config structure will be passed to phylink_create() instead of the net_device directly. Also, the same phylink_config pointer will be passed back to all phylink_mac_ops callbacks instead of the net_device. Using this mechanism, a PHYLINK user can get the original net_device using a structure such as 'to_net_dev(config->dev)' or directly the structure containing the phylink_config using a container_of call. At the moment, only the PHYLINK_NETDEV is defined as a valid operation type for PHYLINK. In this mode, a valid reference to a struct device linked to the original net_device should be passed to PHYLINK through the phylink_config structure. This API changes is mainly driven by the necessity of adding a new operation type in PHYLINK that disconnects the phy_device from the net_device and also works when the net_device is lacking. Signed-off-by: Ioana Ciornei <ioana.ciornei@nxp.com> Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Reviewed-by: Maxime Chevallier <maxime.chevallier@bootlin.com> Tested-by: Maxime Chevallier <maxime.chevallier@bootlin.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-29 00:38:12 +07:00
struct phylink *phylink_create(struct phylink_config *config,
struct fwnode_handle *fwnode,
phy_interface_t iface,
const struct phylink_mac_ops *ops)
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
{
struct phylink *pl;
int ret;
pl = kzalloc(sizeof(*pl), GFP_KERNEL);
if (!pl)
return ERR_PTR(-ENOMEM);
mutex_init(&pl->state_mutex);
INIT_WORK(&pl->resolve, phylink_resolve);
net: phylink: Add struct phylink_config to PHYLINK API The phylink_config structure will encapsulate a pointer to a struct device and the operation type requested for this instance of PHYLINK. This patch does not make any functional changes, it just transitions the PHYLINK internals and all its users to the new API. A pointer to a phylink_config structure will be passed to phylink_create() instead of the net_device directly. Also, the same phylink_config pointer will be passed back to all phylink_mac_ops callbacks instead of the net_device. Using this mechanism, a PHYLINK user can get the original net_device using a structure such as 'to_net_dev(config->dev)' or directly the structure containing the phylink_config using a container_of call. At the moment, only the PHYLINK_NETDEV is defined as a valid operation type for PHYLINK. In this mode, a valid reference to a struct device linked to the original net_device should be passed to PHYLINK through the phylink_config structure. This API changes is mainly driven by the necessity of adding a new operation type in PHYLINK that disconnects the phy_device from the net_device and also works when the net_device is lacking. Signed-off-by: Ioana Ciornei <ioana.ciornei@nxp.com> Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Reviewed-by: Maxime Chevallier <maxime.chevallier@bootlin.com> Tested-by: Maxime Chevallier <maxime.chevallier@bootlin.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-29 00:38:12 +07:00
pl->config = config;
if (config->type == PHYLINK_NETDEV) {
pl->netdev = to_net_dev(config->dev);
} else if (config->type == PHYLINK_DEV) {
pl->dev = config->dev;
net: phylink: Add struct phylink_config to PHYLINK API The phylink_config structure will encapsulate a pointer to a struct device and the operation type requested for this instance of PHYLINK. This patch does not make any functional changes, it just transitions the PHYLINK internals and all its users to the new API. A pointer to a phylink_config structure will be passed to phylink_create() instead of the net_device directly. Also, the same phylink_config pointer will be passed back to all phylink_mac_ops callbacks instead of the net_device. Using this mechanism, a PHYLINK user can get the original net_device using a structure such as 'to_net_dev(config->dev)' or directly the structure containing the phylink_config using a container_of call. At the moment, only the PHYLINK_NETDEV is defined as a valid operation type for PHYLINK. In this mode, a valid reference to a struct device linked to the original net_device should be passed to PHYLINK through the phylink_config structure. This API changes is mainly driven by the necessity of adding a new operation type in PHYLINK that disconnects the phy_device from the net_device and also works when the net_device is lacking. Signed-off-by: Ioana Ciornei <ioana.ciornei@nxp.com> Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Reviewed-by: Maxime Chevallier <maxime.chevallier@bootlin.com> Tested-by: Maxime Chevallier <maxime.chevallier@bootlin.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-29 00:38:12 +07:00
} else {
kfree(pl);
return ERR_PTR(-EINVAL);
}
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
pl->phy_state.interface = iface;
pl->link_interface = iface;
if (iface == PHY_INTERFACE_MODE_MOCA)
pl->link_port = PORT_BNC;
else
pl->link_port = PORT_MII;
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
pl->link_config.interface = iface;
pl->link_config.pause = MLO_PAUSE_AN;
pl->link_config.speed = SPEED_UNKNOWN;
pl->link_config.duplex = DUPLEX_UNKNOWN;
pl->link_config.an_enabled = true;
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
pl->ops = ops;
__set_bit(PHYLINK_DISABLE_STOPPED, &pl->phylink_disable_state);
timer_setup(&pl->link_poll, phylink_fixed_poll, 0);
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
bitmap_fill(pl->supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
linkmode_copy(pl->link_config.advertising, pl->supported);
phylink_validate(pl, pl->supported, &pl->link_config);
ret = phylink_parse_mode(pl, fwnode);
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
if (ret < 0) {
kfree(pl);
return ERR_PTR(ret);
}
if (pl->cfg_link_an_mode == MLO_AN_FIXED) {
ret = phylink_parse_fixedlink(pl, fwnode);
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
if (ret < 0) {
kfree(pl);
return ERR_PTR(ret);
}
}
pl->cur_link_an_mode = pl->cfg_link_an_mode;
ret = phylink_register_sfp(pl, fwnode);
if (ret < 0) {
kfree(pl);
return ERR_PTR(ret);
}
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
return pl;
}
EXPORT_SYMBOL_GPL(phylink_create);
/**
* phylink_destroy() - cleanup and destroy the phylink instance
* @pl: a pointer to a &struct phylink returned from phylink_create()
*
* Destroy a phylink instance. Any PHY that has been attached must have been
* cleaned up via phylink_disconnect_phy() prior to calling this function.
*
* Note: the rtnl lock must not be held when calling this function.
*/
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
void phylink_destroy(struct phylink *pl)
{
sfp_bus_del_upstream(pl->sfp_bus);
if (pl->link_gpio)
gpiod_put(pl->link_gpio);
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
cancel_work_sync(&pl->resolve);
kfree(pl);
}
EXPORT_SYMBOL_GPL(phylink_destroy);
static void phylink_phy_change(struct phy_device *phydev, bool up,
bool do_carrier)
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
{
struct phylink *pl = phydev->phylink;
mutex_lock(&pl->state_mutex);
pl->phy_state.speed = phydev->speed;
pl->phy_state.duplex = phydev->duplex;
pl->phy_state.pause = MLO_PAUSE_NONE;
if (phydev->pause)
pl->phy_state.pause |= MLO_PAUSE_SYM;
if (phydev->asym_pause)
pl->phy_state.pause |= MLO_PAUSE_ASYM;
pl->phy_state.interface = phydev->interface;
pl->phy_state.link = up;
mutex_unlock(&pl->state_mutex);
phylink_run_resolve(pl);
phylink_dbg(pl, "phy link %s %s/%s/%s\n", up ? "up" : "down",
phy_modes(phydev->interface),
phy_speed_to_str(phydev->speed),
phy_duplex_to_str(phydev->duplex));
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
}
static int phylink_bringup_phy(struct phylink *pl, struct phy_device *phy,
phy_interface_t interface)
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
{
struct phylink_link_state config;
__ETHTOOL_DECLARE_LINK_MODE_MASK(supported);
int ret;
/*
* This is the new way of dealing with flow control for PHYs,
* as described by Timur Tabi in commit 529ed1275263 ("net: phy:
* phy drivers should not set SUPPORTED_[Asym_]Pause") except
* using our validate call to the MAC, we rely upon the MAC
* clearing the bits from both supported and advertising fields.
*/
phy_support_asym_pause(phy);
memset(&config, 0, sizeof(config));
linkmode_copy(supported, phy->supported);
linkmode_copy(config.advertising, phy->advertising);
net: phylink: extend clause 45 PHY validation workaround Commit e45d1f5288b8 ("net: phylink: support Clause 45 PHYs on SFP+ modules") added a workaround to support clause 45 PHYs which dynamically switch their interface mode on SFP+ modules. This was implemented by validating the PHYs supported/advertising using PHY_INTERFACE_MODE_NA, rather than the specific interface mode that we attached the PHY with. However, we already have a situation where phylink is used to connect a Marvell 88X3310 PHY which also behaves in exactly the same way, but which seemingly doesn't need this. The reason seems to be that the mvpp2 driver sets a whole bunch of link modes for PHY_INTERFACE_MODE_10GKR down to 10Mb/s, despite 10GBASE-R not actually supporting anything but 10Gb/s speeds. When testing with drivers that (correctly) take the mvneta approach, where the validate() method only returns what can be supported / advertised for the specified link mode, we find that Clause 45 PHYs do not behave as we expect: their advertisement is restricted to what the current link will support, rather than what the PHY supports through its dynamic switching. Extend this workaround to all such cases; if we have a Clause 45 PHY attaching via any means, except in USXGMII, XAUI and RXAUI which are all unable to support this dynamic switching or have other solutions to it, then we need to validate using PHY_INTERFACE_MODE_NA. This should allow mvpp2 to switch to a more conformant validate() implementation. Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-14 01:22:07 +07:00
/* Clause 45 PHYs switch their Serdes lane between several different
* modes, normally 10GBASE-R, SGMII. Some use 2500BASE-X for 2.5G
* speeds. We really need to know which interface modes the PHY and
* MAC supports to properly work out which linkmodes can be supported.
*/
if (phy->is_c45 &&
interface != PHY_INTERFACE_MODE_RXAUI &&
interface != PHY_INTERFACE_MODE_XAUI &&
interface != PHY_INTERFACE_MODE_USXGMII)
config.interface = PHY_INTERFACE_MODE_NA;
else
config.interface = interface;
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
ret = phylink_validate(pl, supported, &config);
if (ret)
return ret;
phy->phylink = pl;
phy->phy_link_change = phylink_phy_change;
phylink_info(pl,
"PHY [%s] driver [%s]\n", dev_name(&phy->mdio.dev),
phy->drv->name);
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
mutex_lock(&phy->lock);
mutex_lock(&pl->state_mutex);
pl->phydev = phy;
pl->phy_state.interface = interface;
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
linkmode_copy(pl->supported, supported);
linkmode_copy(pl->link_config.advertising, config.advertising);
/* Restrict the phy advertisement according to the MAC support. */
linkmode_copy(phy->advertising, config.advertising);
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
mutex_unlock(&pl->state_mutex);
mutex_unlock(&phy->lock);
phylink_dbg(pl,
"phy: setting supported %*pb advertising %*pb\n",
__ETHTOOL_LINK_MODE_MASK_NBITS, pl->supported,
__ETHTOOL_LINK_MODE_MASK_NBITS, phy->advertising);
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
if (phy_interrupt_is_valid(phy))
phy_request_interrupt(phy);
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
return 0;
}
static int phylink_attach_phy(struct phylink *pl, struct phy_device *phy,
phy_interface_t interface)
{
if (WARN_ON(pl->cfg_link_an_mode == MLO_AN_FIXED ||
(pl->cfg_link_an_mode == MLO_AN_INBAND &&
phy_interface_mode_is_8023z(interface))))
return -EINVAL;
if (pl->phydev)
return -EBUSY;
return phy_attach_direct(pl->netdev, phy, 0, interface);
}
/**
* phylink_connect_phy() - connect a PHY to the phylink instance
* @pl: a pointer to a &struct phylink returned from phylink_create()
* @phy: a pointer to a &struct phy_device.
*
* Connect @phy to the phylink instance specified by @pl by calling
* phy_attach_direct(). Configure the @phy according to the MAC driver's
* capabilities, start the PHYLIB state machine and enable any interrupts
* that the PHY supports.
*
* This updates the phylink's ethtool supported and advertising link mode
* masks.
*
* Returns 0 on success or a negative errno.
*/
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
int phylink_connect_phy(struct phylink *pl, struct phy_device *phy)
{
int ret;
/* Use PHY device/driver interface */
if (pl->link_interface == PHY_INTERFACE_MODE_NA) {
pl->link_interface = phy->interface;
pl->link_config.interface = pl->link_interface;
}
ret = phylink_attach_phy(pl, phy, pl->link_interface);
if (ret < 0)
return ret;
ret = phylink_bringup_phy(pl, phy, pl->link_config.interface);
if (ret)
phy_detach(phy);
return ret;
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
}
EXPORT_SYMBOL_GPL(phylink_connect_phy);
/**
* phylink_of_phy_connect() - connect the PHY specified in the DT mode.
* @pl: a pointer to a &struct phylink returned from phylink_create()
* @dn: a pointer to a &struct device_node.
* @flags: PHY-specific flags to communicate to the PHY device driver
*
* Connect the phy specified in the device node @dn to the phylink instance
* specified by @pl. Actions specified in phylink_connect_phy() will be
* performed.
*
* Returns 0 on success or a negative errno.
*/
int phylink_of_phy_connect(struct phylink *pl, struct device_node *dn,
u32 flags)
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
{
struct device_node *phy_node;
struct phy_device *phy_dev;
int ret;
/* Fixed links and 802.3z are handled without needing a PHY */
if (pl->cfg_link_an_mode == MLO_AN_FIXED ||
(pl->cfg_link_an_mode == MLO_AN_INBAND &&
phy_interface_mode_is_8023z(pl->link_interface)))
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
return 0;
phy_node = of_parse_phandle(dn, "phy-handle", 0);
if (!phy_node)
phy_node = of_parse_phandle(dn, "phy", 0);
if (!phy_node)
phy_node = of_parse_phandle(dn, "phy-device", 0);
if (!phy_node) {
if (pl->cfg_link_an_mode == MLO_AN_PHY)
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
return -ENODEV;
return 0;
}
phy_dev = of_phy_find_device(phy_node);
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
/* We're done with the phy_node handle */
of_node_put(phy_node);
if (!phy_dev)
return -ENODEV;
ret = phy_attach_direct(pl->netdev, phy_dev, flags,
pl->link_interface);
if (ret)
return ret;
ret = phylink_bringup_phy(pl, phy_dev, pl->link_config.interface);
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
if (ret)
phy_detach(phy_dev);
return ret;
}
EXPORT_SYMBOL_GPL(phylink_of_phy_connect);
/**
* phylink_disconnect_phy() - disconnect any PHY attached to the phylink
* instance.
* @pl: a pointer to a &struct phylink returned from phylink_create()
*
* Disconnect any current PHY from the phylink instance described by @pl.
*/
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
void phylink_disconnect_phy(struct phylink *pl)
{
struct phy_device *phy;
ASSERT_RTNL();
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
phy = pl->phydev;
if (phy) {
mutex_lock(&phy->lock);
mutex_lock(&pl->state_mutex);
pl->phydev = NULL;
mutex_unlock(&pl->state_mutex);
mutex_unlock(&phy->lock);
flush_work(&pl->resolve);
phy_disconnect(phy);
}
}
EXPORT_SYMBOL_GPL(phylink_disconnect_phy);
/**
* phylink_fixed_state_cb() - allow setting a fixed link callback
* @pl: a pointer to a &struct phylink returned from phylink_create()
* @cb: callback to execute to determine the fixed link state.
*
* The MAC driver should call this driver when the state of its link
* can be determined through e.g: an out of band MMIO register.
*/
int phylink_fixed_state_cb(struct phylink *pl,
void (*cb)(struct net_device *dev,
struct phylink_link_state *state))
{
/* It does not make sense to let the link be overriden unless we use
* MLO_AN_FIXED
*/
if (pl->cfg_link_an_mode != MLO_AN_FIXED)
return -EINVAL;
mutex_lock(&pl->state_mutex);
pl->get_fixed_state = cb;
mutex_unlock(&pl->state_mutex);
return 0;
}
EXPORT_SYMBOL_GPL(phylink_fixed_state_cb);
/**
* phylink_mac_change() - notify phylink of a change in MAC state
* @pl: a pointer to a &struct phylink returned from phylink_create()
* @up: indicates whether the link is currently up.
*
* The MAC driver should call this driver when the state of its link
* changes (eg, link failure, new negotiation results, etc.)
*/
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
void phylink_mac_change(struct phylink *pl, bool up)
{
if (!up)
pl->mac_link_dropped = true;
phylink_run_resolve(pl);
phylink_dbg(pl, "mac link %s\n", up ? "up" : "down");
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
}
EXPORT_SYMBOL_GPL(phylink_mac_change);
static irqreturn_t phylink_link_handler(int irq, void *data)
{
struct phylink *pl = data;
phylink_run_resolve(pl);
return IRQ_HANDLED;
}
/**
* phylink_start() - start a phylink instance
* @pl: a pointer to a &struct phylink returned from phylink_create()
*
* Start the phylink instance specified by @pl, configuring the MAC for the
* desired link mode(s) and negotiation style. This should be called from the
* network device driver's &struct net_device_ops ndo_open() method.
*/
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
void phylink_start(struct phylink *pl)
{
ASSERT_RTNL();
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
phylink_info(pl, "configuring for %s/%s link mode\n",
phylink_an_mode_str(pl->cur_link_an_mode),
phy_modes(pl->link_config.interface));
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
/* Always set the carrier off */
if (pl->netdev)
netif_carrier_off(pl->netdev);
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
/* Apply the link configuration to the MAC when starting. This allows
* a fixed-link to start with the correct parameters, and also
* ensures that we set the appropriate advertisement for Serdes links.
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
*/
phylink_resolve_flow(pl, &pl->link_config);
phylink_mac_config(pl, &pl->link_config);
/* Restart autonegotiation if using 802.3z to ensure that the link
* parameters are properly negotiated. This is necessary for DSA
* switches using 802.3z negotiation to ensure they see our modes.
*/
phylink_mac_an_restart(pl);
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
clear_bit(PHYLINK_DISABLE_STOPPED, &pl->phylink_disable_state);
phylink_run_resolve(pl);
if (pl->cfg_link_an_mode == MLO_AN_FIXED && pl->link_gpio) {
int irq = gpiod_to_irq(pl->link_gpio);
if (irq > 0) {
if (!request_irq(irq, phylink_link_handler,
IRQF_TRIGGER_RISING |
IRQF_TRIGGER_FALLING,
"netdev link", pl))
pl->link_irq = irq;
else
irq = 0;
}
if (irq <= 0)
mod_timer(&pl->link_poll, jiffies + HZ);
}
if (pl->cfg_link_an_mode == MLO_AN_FIXED && pl->get_fixed_state)
mod_timer(&pl->link_poll, jiffies + HZ);
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
if (pl->phydev)
phy_start(pl->phydev);
net: phylink: don't start and stop SGMII PHYs in SFP modules twice SFP modules connected using the SGMII interface have their own PHYs which are handled by the struct phylink's phydev field. On the other hand, for the modules connected using 1000Base-X interface that field is not set. Since commit ce0aa27ff3f6 ("sfp: add sfp-bus to bridge between network devices and sfp cages") phylink_start() ends up setting the phydev field using the sfp-bus infrastructure, which eventually calls phy_start() on it, and then calling phy_start() again on the same phydev from phylink_start() itself. Similar call sequence holds for phylink_stop(), only in the reverse order. This results in WARNs during network interface bringup and shutdown when a copper SFP module is connected, as phy_start() and phy_stop() are called twice in a row for the same phy_device: % ip link set up dev eth0 ------------[ cut here ]------------ called from state UP WARNING: CPU: 1 PID: 155 at drivers/net/phy/phy.c:895 phy_start+0x74/0xc0 Modules linked in: CPU: 1 PID: 155 Comm: backend Not tainted 5.2.0+ #1 NIP: c0227bf0 LR: c0227bf0 CTR: c004d224 REGS: df547720 TRAP: 0700 Not tainted (5.2.0+) MSR: 00029000 <CE,EE,ME> CR: 24002822 XER: 00000000 GPR00: c0227bf0 df5477d8 df5d7080 00000014 df9d2370 df9d5ac4 1f4eb000 00000001 GPR08: c061fe58 00000000 00000000 df5477d8 0000003c 100c8768 00000000 00000000 GPR16: df486a00 c046f1c8 c046eea0 00000000 c046e904 c0239604 db68449c 00000000 GPR24: e9083204 00000000 00000001 db684460 e9083404 00000000 db6dce00 db6dcc00 NIP [c0227bf0] phy_start+0x74/0xc0 LR [c0227bf0] phy_start+0x74/0xc0 Call Trace: [df5477d8] [c0227bf0] phy_start+0x74/0xc0 (unreliable) [df5477e8] [c023cad0] startup_gfar+0x398/0x3f4 [df547828] [c023cf08] gfar_enet_open+0x364/0x374 [df547898] [c029d870] __dev_open+0xe4/0x140 [df5478c8] [c029db70] __dev_change_flags+0xf0/0x188 [df5478f8] [c029dc28] dev_change_flags+0x20/0x54 [df547918] [c02ae304] do_setlink+0x310/0x818 [df547a08] [c02b1eb8] __rtnl_newlink+0x384/0x6b0 [df547c28] [c02b222c] rtnl_newlink+0x48/0x68 [df547c48] [c02ad7c8] rtnetlink_rcv_msg+0x240/0x27c [df547c98] [c02cc068] netlink_rcv_skb+0x8c/0xf0 [df547cd8] [c02cba3c] netlink_unicast+0x114/0x19c [df547d08] [c02cbd74] netlink_sendmsg+0x2b0/0x2c0 [df547d58] [c027b668] sock_sendmsg_nosec+0x20/0x40 [df547d68] [c027d080] ___sys_sendmsg+0x17c/0x1dc [df547e98] [c027df7c] __sys_sendmsg+0x68/0x84 [df547ef8] [c027e430] sys_socketcall+0x1a0/0x204 [df547f38] [c000d1d8] ret_from_syscall+0x0/0x38 --- interrupt: c01 at 0xfd4e030 LR = 0xfd4e010 Instruction dump: 813f0188 38800000 2b890005 419d0014 3d40c046 5529103a 394aa208 7c8a482e 3c60c046 3863a1b8 4cc63182 4be009a1 <0fe00000> 48000030 3c60c046 3863a1d0 ---[ end trace d4c095aeaf6ea998 ]--- and % ip link set down dev eth0 ------------[ cut here ]------------ called from state HALTED WARNING: CPU: 1 PID: 184 at drivers/net/phy/phy.c:858 phy_stop+0x3c/0x88 <...> Call Trace: [df581788] [c0228450] phy_stop+0x3c/0x88 (unreliable) [df581798] [c022d548] sfp_sm_phy_detach+0x1c/0x44 [df5817a8] [c022e8cc] sfp_sm_event+0x4b0/0x87c [df581848] [c022f04c] sfp_upstream_stop+0x34/0x44 [df581858] [c0225608] phylink_stop+0x7c/0xe4 [df581868] [c023c57c] stop_gfar+0x7c/0x94 [df581888] [c023c5b8] gfar_close+0x24/0x94 [df5818a8] [c0298688] __dev_close_many+0xdc/0xf8 [df5818c8] [c029db58] __dev_change_flags+0xd8/0x188 [df5818f8] [c029dc28] dev_change_flags+0x20/0x54 [df581918] [c02ae304] do_setlink+0x310/0x818 [df581a08] [c02b1eb8] __rtnl_newlink+0x384/0x6b0 [df581c28] [c02b222c] rtnl_newlink+0x48/0x68 [df581c48] [c02ad7c8] rtnetlink_rcv_msg+0x240/0x27c [df581c98] [c02cc068] netlink_rcv_skb+0x8c/0xf0 [df581cd8] [c02cba3c] netlink_unicast+0x114/0x19c [df581d08] [c02cbd74] netlink_sendmsg+0x2b0/0x2c0 [df581d58] [c027b668] sock_sendmsg_nosec+0x20/0x40 [df581d68] [c027d080] ___sys_sendmsg+0x17c/0x1dc [df581e98] [c027df7c] __sys_sendmsg+0x68/0x84 [df581ef8] [c027e430] sys_socketcall+0x1a0/0x204 [df581f38] [c000d1d8] ret_from_syscall+0x0/0x38 <...> ---[ end trace d4c095aeaf6ea999 ]--- SFP modules with the 1000Base-X interface are not affected. Place explicit calls to phy_start() and phy_stop() before enabling or after disabling an attached SFP module, where phydev is not yet set (or is already unset), so they will be made only from the inside of sfp-bus, if needed. Fixes: 217962615662 ("net: phy: warn if phy_start is called from invalid state") Signed-off-by: Arseny Solokha <asolokha@kb.kras.ru> Acked-by: Russell King <rmk+kernel@armlinux.org.uk> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-07-24 20:31:39 +07:00
if (pl->sfp_bus)
sfp_upstream_start(pl->sfp_bus);
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
}
EXPORT_SYMBOL_GPL(phylink_start);
/**
* phylink_stop() - stop a phylink instance
* @pl: a pointer to a &struct phylink returned from phylink_create()
*
* Stop the phylink instance specified by @pl. This should be called from the
* network device driver's &struct net_device_ops ndo_stop() method. The
* network device's carrier state should not be changed prior to calling this
* function.
*/
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
void phylink_stop(struct phylink *pl)
{
ASSERT_RTNL();
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
if (pl->sfp_bus)
sfp_upstream_stop(pl->sfp_bus);
net: phylink: don't start and stop SGMII PHYs in SFP modules twice SFP modules connected using the SGMII interface have their own PHYs which are handled by the struct phylink's phydev field. On the other hand, for the modules connected using 1000Base-X interface that field is not set. Since commit ce0aa27ff3f6 ("sfp: add sfp-bus to bridge between network devices and sfp cages") phylink_start() ends up setting the phydev field using the sfp-bus infrastructure, which eventually calls phy_start() on it, and then calling phy_start() again on the same phydev from phylink_start() itself. Similar call sequence holds for phylink_stop(), only in the reverse order. This results in WARNs during network interface bringup and shutdown when a copper SFP module is connected, as phy_start() and phy_stop() are called twice in a row for the same phy_device: % ip link set up dev eth0 ------------[ cut here ]------------ called from state UP WARNING: CPU: 1 PID: 155 at drivers/net/phy/phy.c:895 phy_start+0x74/0xc0 Modules linked in: CPU: 1 PID: 155 Comm: backend Not tainted 5.2.0+ #1 NIP: c0227bf0 LR: c0227bf0 CTR: c004d224 REGS: df547720 TRAP: 0700 Not tainted (5.2.0+) MSR: 00029000 <CE,EE,ME> CR: 24002822 XER: 00000000 GPR00: c0227bf0 df5477d8 df5d7080 00000014 df9d2370 df9d5ac4 1f4eb000 00000001 GPR08: c061fe58 00000000 00000000 df5477d8 0000003c 100c8768 00000000 00000000 GPR16: df486a00 c046f1c8 c046eea0 00000000 c046e904 c0239604 db68449c 00000000 GPR24: e9083204 00000000 00000001 db684460 e9083404 00000000 db6dce00 db6dcc00 NIP [c0227bf0] phy_start+0x74/0xc0 LR [c0227bf0] phy_start+0x74/0xc0 Call Trace: [df5477d8] [c0227bf0] phy_start+0x74/0xc0 (unreliable) [df5477e8] [c023cad0] startup_gfar+0x398/0x3f4 [df547828] [c023cf08] gfar_enet_open+0x364/0x374 [df547898] [c029d870] __dev_open+0xe4/0x140 [df5478c8] [c029db70] __dev_change_flags+0xf0/0x188 [df5478f8] [c029dc28] dev_change_flags+0x20/0x54 [df547918] [c02ae304] do_setlink+0x310/0x818 [df547a08] [c02b1eb8] __rtnl_newlink+0x384/0x6b0 [df547c28] [c02b222c] rtnl_newlink+0x48/0x68 [df547c48] [c02ad7c8] rtnetlink_rcv_msg+0x240/0x27c [df547c98] [c02cc068] netlink_rcv_skb+0x8c/0xf0 [df547cd8] [c02cba3c] netlink_unicast+0x114/0x19c [df547d08] [c02cbd74] netlink_sendmsg+0x2b0/0x2c0 [df547d58] [c027b668] sock_sendmsg_nosec+0x20/0x40 [df547d68] [c027d080] ___sys_sendmsg+0x17c/0x1dc [df547e98] [c027df7c] __sys_sendmsg+0x68/0x84 [df547ef8] [c027e430] sys_socketcall+0x1a0/0x204 [df547f38] [c000d1d8] ret_from_syscall+0x0/0x38 --- interrupt: c01 at 0xfd4e030 LR = 0xfd4e010 Instruction dump: 813f0188 38800000 2b890005 419d0014 3d40c046 5529103a 394aa208 7c8a482e 3c60c046 3863a1b8 4cc63182 4be009a1 <0fe00000> 48000030 3c60c046 3863a1d0 ---[ end trace d4c095aeaf6ea998 ]--- and % ip link set down dev eth0 ------------[ cut here ]------------ called from state HALTED WARNING: CPU: 1 PID: 184 at drivers/net/phy/phy.c:858 phy_stop+0x3c/0x88 <...> Call Trace: [df581788] [c0228450] phy_stop+0x3c/0x88 (unreliable) [df581798] [c022d548] sfp_sm_phy_detach+0x1c/0x44 [df5817a8] [c022e8cc] sfp_sm_event+0x4b0/0x87c [df581848] [c022f04c] sfp_upstream_stop+0x34/0x44 [df581858] [c0225608] phylink_stop+0x7c/0xe4 [df581868] [c023c57c] stop_gfar+0x7c/0x94 [df581888] [c023c5b8] gfar_close+0x24/0x94 [df5818a8] [c0298688] __dev_close_many+0xdc/0xf8 [df5818c8] [c029db58] __dev_change_flags+0xd8/0x188 [df5818f8] [c029dc28] dev_change_flags+0x20/0x54 [df581918] [c02ae304] do_setlink+0x310/0x818 [df581a08] [c02b1eb8] __rtnl_newlink+0x384/0x6b0 [df581c28] [c02b222c] rtnl_newlink+0x48/0x68 [df581c48] [c02ad7c8] rtnetlink_rcv_msg+0x240/0x27c [df581c98] [c02cc068] netlink_rcv_skb+0x8c/0xf0 [df581cd8] [c02cba3c] netlink_unicast+0x114/0x19c [df581d08] [c02cbd74] netlink_sendmsg+0x2b0/0x2c0 [df581d58] [c027b668] sock_sendmsg_nosec+0x20/0x40 [df581d68] [c027d080] ___sys_sendmsg+0x17c/0x1dc [df581e98] [c027df7c] __sys_sendmsg+0x68/0x84 [df581ef8] [c027e430] sys_socketcall+0x1a0/0x204 [df581f38] [c000d1d8] ret_from_syscall+0x0/0x38 <...> ---[ end trace d4c095aeaf6ea999 ]--- SFP modules with the 1000Base-X interface are not affected. Place explicit calls to phy_start() and phy_stop() before enabling or after disabling an attached SFP module, where phydev is not yet set (or is already unset), so they will be made only from the inside of sfp-bus, if needed. Fixes: 217962615662 ("net: phy: warn if phy_start is called from invalid state") Signed-off-by: Arseny Solokha <asolokha@kb.kras.ru> Acked-by: Russell King <rmk+kernel@armlinux.org.uk> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-07-24 20:31:39 +07:00
if (pl->phydev)
phy_stop(pl->phydev);
del_timer_sync(&pl->link_poll);
if (pl->link_irq) {
free_irq(pl->link_irq, pl);
pl->link_irq = 0;
}
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
phylink_run_resolve_and_disable(pl, PHYLINK_DISABLE_STOPPED);
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
}
EXPORT_SYMBOL_GPL(phylink_stop);
/**
* phylink_ethtool_get_wol() - get the wake on lan parameters for the PHY
* @pl: a pointer to a &struct phylink returned from phylink_create()
* @wol: a pointer to &struct ethtool_wolinfo to hold the read parameters
*
* Read the wake on lan parameters from the PHY attached to the phylink
* instance specified by @pl. If no PHY is currently attached, report no
* support for wake on lan.
*/
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
void phylink_ethtool_get_wol(struct phylink *pl, struct ethtool_wolinfo *wol)
{
ASSERT_RTNL();
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
wol->supported = 0;
wol->wolopts = 0;
if (pl->phydev)
phy_ethtool_get_wol(pl->phydev, wol);
}
EXPORT_SYMBOL_GPL(phylink_ethtool_get_wol);
/**
* phylink_ethtool_set_wol() - set wake on lan parameters
* @pl: a pointer to a &struct phylink returned from phylink_create()
* @wol: a pointer to &struct ethtool_wolinfo for the desired parameters
*
* Set the wake on lan parameters for the PHY attached to the phylink
* instance specified by @pl. If no PHY is attached, returns %EOPNOTSUPP
* error.
*
* Returns zero on success or negative errno code.
*/
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
int phylink_ethtool_set_wol(struct phylink *pl, struct ethtool_wolinfo *wol)
{
int ret = -EOPNOTSUPP;
ASSERT_RTNL();
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
if (pl->phydev)
ret = phy_ethtool_set_wol(pl->phydev, wol);
return ret;
}
EXPORT_SYMBOL_GPL(phylink_ethtool_set_wol);
static void phylink_merge_link_mode(unsigned long *dst, const unsigned long *b)
{
__ETHTOOL_DECLARE_LINK_MODE_MASK(mask);
linkmode_zero(mask);
phylink_set_port_modes(mask);
linkmode_and(dst, dst, mask);
linkmode_or(dst, dst, b);
}
static void phylink_get_ksettings(const struct phylink_link_state *state,
struct ethtool_link_ksettings *kset)
{
phylink_merge_link_mode(kset->link_modes.advertising, state->advertising);
linkmode_copy(kset->link_modes.lp_advertising, state->lp_advertising);
kset->base.speed = state->speed;
kset->base.duplex = state->duplex;
kset->base.autoneg = state->an_enabled ? AUTONEG_ENABLE :
AUTONEG_DISABLE;
}
/**
* phylink_ethtool_ksettings_get() - get the current link settings
* @pl: a pointer to a &struct phylink returned from phylink_create()
* @kset: a pointer to a &struct ethtool_link_ksettings to hold link settings
*
* Read the current link settings for the phylink instance specified by @pl.
* This will be the link settings read from the MAC, PHY or fixed link
* settings depending on the current negotiation mode.
*/
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
int phylink_ethtool_ksettings_get(struct phylink *pl,
struct ethtool_link_ksettings *kset)
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
{
struct phylink_link_state link_state;
ASSERT_RTNL();
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
if (pl->phydev) {
phy_ethtool_ksettings_get(pl->phydev, kset);
} else {
kset->base.port = pl->link_port;
}
linkmode_copy(kset->link_modes.supported, pl->supported);
switch (pl->cur_link_an_mode) {
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
case MLO_AN_FIXED:
/* We are using fixed settings. Report these as the
* current link settings - and note that these also
* represent the supported speeds/duplex/pause modes.
*/
phylink_get_fixed_state(pl, &link_state);
phylink_get_ksettings(&link_state, kset);
break;
case MLO_AN_INBAND:
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
/* If there is a phy attached, then use the reported
* settings from the phy with no modification.
*/
if (pl->phydev)
break;
phylink_mac_pcs_get_state(pl, &link_state);
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
/* The MAC is reporting the link results from its own PCS
* layer via in-band status. Report these as the current
* link settings.
*/
phylink_get_ksettings(&link_state, kset);
break;
}
return 0;
}
EXPORT_SYMBOL_GPL(phylink_ethtool_ksettings_get);
/**
* phylink_ethtool_ksettings_set() - set the link settings
* @pl: a pointer to a &struct phylink returned from phylink_create()
* @kset: a pointer to a &struct ethtool_link_ksettings for the desired modes
*/
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
int phylink_ethtool_ksettings_set(struct phylink *pl,
const struct ethtool_link_ksettings *kset)
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
{
__ETHTOOL_DECLARE_LINK_MODE_MASK(support);
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
struct ethtool_link_ksettings our_kset;
struct phylink_link_state config;
int ret;
ASSERT_RTNL();
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
if (kset->base.autoneg != AUTONEG_DISABLE &&
kset->base.autoneg != AUTONEG_ENABLE)
return -EINVAL;
linkmode_copy(support, pl->supported);
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
config = pl->link_config;
/* Mask out unsupported advertisements */
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
linkmode_and(config.advertising, kset->link_modes.advertising,
support);
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
/* FIXME: should we reject autoneg if phy/mac does not support it? */
if (kset->base.autoneg == AUTONEG_DISABLE) {
const struct phy_setting *s;
/* Autonegotiation disabled, select a suitable speed and
* duplex.
*/
s = phy_lookup_setting(kset->base.speed, kset->base.duplex,
support, false);
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
if (!s)
return -EINVAL;
/* If we have a fixed link (as specified by firmware), refuse
* to change link parameters.
*/
if (pl->cur_link_an_mode == MLO_AN_FIXED &&
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
(s->speed != pl->link_config.speed ||
s->duplex != pl->link_config.duplex))
return -EINVAL;
config.speed = s->speed;
config.duplex = s->duplex;
config.an_enabled = false;
__clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, config.advertising);
} else {
/* If we have a fixed link, refuse to enable autonegotiation */
if (pl->cur_link_an_mode == MLO_AN_FIXED)
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
return -EINVAL;
config.speed = SPEED_UNKNOWN;
config.duplex = DUPLEX_UNKNOWN;
config.an_enabled = true;
__set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, config.advertising);
}
if (pl->phydev) {
/* If we have a PHY, we process the kset change via phylib.
* phylib will call our link state function if the PHY
* parameters have changed, which will trigger a resolve
* and update the MAC configuration.
*/
our_kset = *kset;
linkmode_copy(our_kset.link_modes.advertising,
config.advertising);
our_kset.base.speed = config.speed;
our_kset.base.duplex = config.duplex;
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
ret = phy_ethtool_ksettings_set(pl->phydev, &our_kset);
if (ret)
return ret;
mutex_lock(&pl->state_mutex);
/* Save the new configuration */
linkmode_copy(pl->link_config.advertising,
our_kset.link_modes.advertising);
pl->link_config.interface = config.interface;
pl->link_config.speed = our_kset.base.speed;
pl->link_config.duplex = our_kset.base.duplex;
pl->link_config.an_enabled = our_kset.base.autoneg !=
AUTONEG_DISABLE;
mutex_unlock(&pl->state_mutex);
} else {
/* For a fixed link, this isn't able to change any parameters,
* which just leaves inband mode.
*/
if (phylink_validate(pl, support, &config))
return -EINVAL;
/* If autonegotiation is enabled, we must have an advertisement */
if (config.an_enabled &&
phylink_is_empty_linkmode(config.advertising))
return -EINVAL;
mutex_lock(&pl->state_mutex);
linkmode_copy(pl->link_config.advertising, config.advertising);
pl->link_config.interface = config.interface;
pl->link_config.speed = config.speed;
pl->link_config.duplex = config.duplex;
pl->link_config.an_enabled = kset->base.autoneg !=
AUTONEG_DISABLE;
if (pl->cur_link_an_mode == MLO_AN_INBAND &&
!test_bit(PHYLINK_DISABLE_STOPPED,
&pl->phylink_disable_state)) {
/* If in 802.3z mode, this updates the advertisement.
*
* If we are in SGMII mode without a PHY, there is no
* advertisement; the only thing we have is the pause
* modes which can only come from a PHY.
*/
phylink_mac_config(pl, &pl->link_config);
phylink_mac_an_restart(pl);
}
mutex_unlock(&pl->state_mutex);
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
}
return 0;
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
}
EXPORT_SYMBOL_GPL(phylink_ethtool_ksettings_set);
/**
* phylink_ethtool_nway_reset() - restart negotiation
* @pl: a pointer to a &struct phylink returned from phylink_create()
*
* Restart negotiation for the phylink instance specified by @pl. This will
* cause any attached phy to restart negotiation with the link partner, and
* if the MAC is in a BaseX mode, the MAC will also be requested to restart
* negotiation.
*
* Returns zero on success, or negative error code.
*/
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
int phylink_ethtool_nway_reset(struct phylink *pl)
{
int ret = 0;
ASSERT_RTNL();
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
if (pl->phydev)
ret = phy_restart_aneg(pl->phydev);
phylink_mac_an_restart(pl);
return ret;
}
EXPORT_SYMBOL_GPL(phylink_ethtool_nway_reset);
/**
* phylink_ethtool_get_pauseparam() - get the current pause parameters
* @pl: a pointer to a &struct phylink returned from phylink_create()
* @pause: a pointer to a &struct ethtool_pauseparam
*/
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
void phylink_ethtool_get_pauseparam(struct phylink *pl,
struct ethtool_pauseparam *pause)
{
ASSERT_RTNL();
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
pause->autoneg = !!(pl->link_config.pause & MLO_PAUSE_AN);
pause->rx_pause = !!(pl->link_config.pause & MLO_PAUSE_RX);
pause->tx_pause = !!(pl->link_config.pause & MLO_PAUSE_TX);
}
EXPORT_SYMBOL_GPL(phylink_ethtool_get_pauseparam);
/**
* phylink_ethtool_set_pauseparam() - set the current pause parameters
* @pl: a pointer to a &struct phylink returned from phylink_create()
* @pause: a pointer to a &struct ethtool_pauseparam
*/
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
int phylink_ethtool_set_pauseparam(struct phylink *pl,
struct ethtool_pauseparam *pause)
{
struct phylink_link_state *config = &pl->link_config;
ASSERT_RTNL();
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
if (!phylink_test(pl->supported, Pause) &&
!phylink_test(pl->supported, Asym_Pause))
return -EOPNOTSUPP;
if (!phylink_test(pl->supported, Asym_Pause) &&
!pause->autoneg && pause->rx_pause != pause->tx_pause)
return -EINVAL;
config->pause &= ~(MLO_PAUSE_AN | MLO_PAUSE_TXRX_MASK);
if (pause->autoneg)
config->pause |= MLO_PAUSE_AN;
if (pause->rx_pause)
config->pause |= MLO_PAUSE_RX;
if (pause->tx_pause)
config->pause |= MLO_PAUSE_TX;
/* If we have a PHY, phylib will call our link state function if the
* mode has changed, which will trigger a resolve and update the MAC
* configuration.
*/
if (pl->phydev) {
phy_set_asym_pause(pl->phydev, pause->rx_pause,
pause->tx_pause);
} else if (!test_bit(PHYLINK_DISABLE_STOPPED,
&pl->phylink_disable_state)) {
switch (pl->cur_link_an_mode) {
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
case MLO_AN_FIXED:
/* Should we allow fixed links to change against the config? */
phylink_resolve_flow(pl, config);
phylink_mac_config(pl, config);
break;
case MLO_AN_INBAND:
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
phylink_mac_config(pl, config);
phylink_mac_an_restart(pl);
break;
}
}
return 0;
}
EXPORT_SYMBOL_GPL(phylink_ethtool_set_pauseparam);
/**
* phylink_ethtool_get_eee_err() - read the energy efficient ethernet error
* counter
* @pl: a pointer to a &struct phylink returned from phylink_create().
*
* Read the Energy Efficient Ethernet error counter from the PHY associated
* with the phylink instance specified by @pl.
*
* Returns positive error counter value, or negative error code.
*/
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
int phylink_get_eee_err(struct phylink *pl)
{
int ret = 0;
ASSERT_RTNL();
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
if (pl->phydev)
ret = phy_get_eee_err(pl->phydev);
return ret;
}
EXPORT_SYMBOL_GPL(phylink_get_eee_err);
/**
* phylink_init_eee() - init and check the EEE features
* @pl: a pointer to a &struct phylink returned from phylink_create()
* @clk_stop_enable: allow PHY to stop receive clock
*
* Must be called either with RTNL held or within mac_link_up()
*/
int phylink_init_eee(struct phylink *pl, bool clk_stop_enable)
{
int ret = -EOPNOTSUPP;
if (pl->phydev)
ret = phy_init_eee(pl->phydev, clk_stop_enable);
return ret;
}
EXPORT_SYMBOL_GPL(phylink_init_eee);
/**
* phylink_ethtool_get_eee() - read the energy efficient ethernet parameters
* @pl: a pointer to a &struct phylink returned from phylink_create()
* @eee: a pointer to a &struct ethtool_eee for the read parameters
*/
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
int phylink_ethtool_get_eee(struct phylink *pl, struct ethtool_eee *eee)
{
int ret = -EOPNOTSUPP;
ASSERT_RTNL();
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
if (pl->phydev)
ret = phy_ethtool_get_eee(pl->phydev, eee);
return ret;
}
EXPORT_SYMBOL_GPL(phylink_ethtool_get_eee);
/**
* phylink_ethtool_set_eee() - set the energy efficient ethernet parameters
* @pl: a pointer to a &struct phylink returned from phylink_create()
* @eee: a pointer to a &struct ethtool_eee for the desired parameters
*/
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
int phylink_ethtool_set_eee(struct phylink *pl, struct ethtool_eee *eee)
{
int ret = -EOPNOTSUPP;
ASSERT_RTNL();
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
if (pl->phydev)
ret = phy_ethtool_set_eee(pl->phydev, eee);
return ret;
}
EXPORT_SYMBOL_GPL(phylink_ethtool_set_eee);
/* This emulates MII registers for a fixed-mode phy operating as per the
* passed in state. "aneg" defines if we report negotiation is possible.
*
* FIXME: should deal with negotiation state too.
*/
static int phylink_mii_emul_read(unsigned int reg,
struct phylink_link_state *state)
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
{
struct fixed_phy_status fs;
int val;
fs.link = state->link;
fs.speed = state->speed;
fs.duplex = state->duplex;
fs.pause = state->pause & MLO_PAUSE_SYM;
fs.asym_pause = state->pause & MLO_PAUSE_ASYM;
val = swphy_read_reg(reg, &fs);
if (reg == MII_BMSR) {
if (!state->an_complete)
val &= ~BMSR_ANEGCOMPLETE;
}
return val;
}
static int phylink_phy_read(struct phylink *pl, unsigned int phy_id,
unsigned int reg)
{
struct phy_device *phydev = pl->phydev;
int prtad, devad;
if (mdio_phy_id_is_c45(phy_id)) {
prtad = mdio_phy_id_prtad(phy_id);
devad = mdio_phy_id_devad(phy_id);
devad = MII_ADDR_C45 | devad << 16 | reg;
} else if (phydev->is_c45) {
switch (reg) {
case MII_BMCR:
case MII_BMSR:
case MII_PHYSID1:
case MII_PHYSID2:
devad = __ffs(phydev->c45_ids.devices_in_package);
break;
case MII_ADVERTISE:
case MII_LPA:
if (!(phydev->c45_ids.devices_in_package & MDIO_DEVS_AN))
return -EINVAL;
devad = MDIO_MMD_AN;
if (reg == MII_ADVERTISE)
reg = MDIO_AN_ADVERTISE;
else
reg = MDIO_AN_LPA;
break;
default:
return -EINVAL;
}
prtad = phy_id;
devad = MII_ADDR_C45 | devad << 16 | reg;
} else {
prtad = phy_id;
devad = reg;
}
return mdiobus_read(pl->phydev->mdio.bus, prtad, devad);
}
static int phylink_phy_write(struct phylink *pl, unsigned int phy_id,
unsigned int reg, unsigned int val)
{
struct phy_device *phydev = pl->phydev;
int prtad, devad;
if (mdio_phy_id_is_c45(phy_id)) {
prtad = mdio_phy_id_prtad(phy_id);
devad = mdio_phy_id_devad(phy_id);
devad = MII_ADDR_C45 | devad << 16 | reg;
} else if (phydev->is_c45) {
switch (reg) {
case MII_BMCR:
case MII_BMSR:
case MII_PHYSID1:
case MII_PHYSID2:
devad = __ffs(phydev->c45_ids.devices_in_package);
break;
case MII_ADVERTISE:
case MII_LPA:
if (!(phydev->c45_ids.devices_in_package & MDIO_DEVS_AN))
return -EINVAL;
devad = MDIO_MMD_AN;
if (reg == MII_ADVERTISE)
reg = MDIO_AN_ADVERTISE;
else
reg = MDIO_AN_LPA;
break;
default:
return -EINVAL;
}
prtad = phy_id;
devad = MII_ADDR_C45 | devad << 16 | reg;
} else {
prtad = phy_id;
devad = reg;
}
return mdiobus_write(phydev->mdio.bus, prtad, devad, val);
}
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
static int phylink_mii_read(struct phylink *pl, unsigned int phy_id,
unsigned int reg)
{
struct phylink_link_state state;
int val = 0xffff;
switch (pl->cur_link_an_mode) {
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
case MLO_AN_FIXED:
if (phy_id == 0) {
phylink_get_fixed_state(pl, &state);
val = phylink_mii_emul_read(reg, &state);
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
}
break;
case MLO_AN_PHY:
return -EOPNOTSUPP;
case MLO_AN_INBAND:
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
if (phy_id == 0) {
phylink_mac_pcs_get_state(pl, &state);
val = phylink_mii_emul_read(reg, &state);
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
}
break;
}
return val & 0xffff;
}
static int phylink_mii_write(struct phylink *pl, unsigned int phy_id,
unsigned int reg, unsigned int val)
{
switch (pl->cur_link_an_mode) {
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
case MLO_AN_FIXED:
break;
case MLO_AN_PHY:
return -EOPNOTSUPP;
case MLO_AN_INBAND:
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
break;
}
return 0;
}
/**
* phylink_mii_ioctl() - generic mii ioctl interface
* @pl: a pointer to a &struct phylink returned from phylink_create()
* @ifr: a pointer to a &struct ifreq for socket ioctls
* @cmd: ioctl cmd to execute
*
* Perform the specified MII ioctl on the PHY attached to the phylink instance
* specified by @pl. If no PHY is attached, emulate the presence of the PHY.
*
* Returns: zero on success or negative error code.
*
* %SIOCGMIIPHY:
* read register from the current PHY.
* %SIOCGMIIREG:
* read register from the specified PHY.
* %SIOCSMIIREG:
* set a register on the specified PHY.
*/
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
int phylink_mii_ioctl(struct phylink *pl, struct ifreq *ifr, int cmd)
{
struct mii_ioctl_data *mii = if_mii(ifr);
int ret;
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
ASSERT_RTNL();
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
if (pl->phydev) {
/* PHYs only exist for MLO_AN_PHY and SGMII */
switch (cmd) {
case SIOCGMIIPHY:
mii->phy_id = pl->phydev->mdio.addr;
/* fall through */
case SIOCGMIIREG:
ret = phylink_phy_read(pl, mii->phy_id, mii->reg_num);
if (ret >= 0) {
mii->val_out = ret;
ret = 0;
}
break;
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
case SIOCSMIIREG:
ret = phylink_phy_write(pl, mii->phy_id, mii->reg_num,
mii->val_in);
break;
default:
ret = phy_mii_ioctl(pl->phydev, ifr, cmd);
break;
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
}
} else {
switch (cmd) {
case SIOCGMIIPHY:
mii->phy_id = 0;
/* fall through */
case SIOCGMIIREG:
ret = phylink_mii_read(pl, mii->phy_id, mii->reg_num);
if (ret >= 0) {
mii->val_out = ret;
ret = 0;
}
break;
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
case SIOCSMIIREG:
ret = phylink_mii_write(pl, mii->phy_id, mii->reg_num,
mii->val_in);
break;
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
default:
ret = -EOPNOTSUPP;
break;
}
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 21:03:13 +07:00
}
return ret;
}
EXPORT_SYMBOL_GPL(phylink_mii_ioctl);
static void phylink_sfp_attach(void *upstream, struct sfp_bus *bus)
{
struct phylink *pl = upstream;
pl->netdev->sfp_bus = bus;
}
static void phylink_sfp_detach(void *upstream, struct sfp_bus *bus)
{
struct phylink *pl = upstream;
pl->netdev->sfp_bus = NULL;
}
static int phylink_sfp_config(struct phylink *pl, u8 mode,
const unsigned long *supported,
const unsigned long *advertising)
{
__ETHTOOL_DECLARE_LINK_MODE_MASK(support1);
__ETHTOOL_DECLARE_LINK_MODE_MASK(support);
struct phylink_link_state config;
phy_interface_t iface;
bool changed;
int ret;
linkmode_copy(support, supported);
memset(&config, 0, sizeof(config));
linkmode_copy(config.advertising, advertising);
config.interface = PHY_INTERFACE_MODE_NA;
config.speed = SPEED_UNKNOWN;
config.duplex = DUPLEX_UNKNOWN;
config.pause = MLO_PAUSE_AN;
config.an_enabled = pl->link_config.an_enabled;
/* Ignore errors if we're expecting a PHY to attach later */
ret = phylink_validate(pl, support, &config);
if (ret) {
phylink_err(pl, "validation with support %*pb failed: %d\n",
__ETHTOOL_LINK_MODE_MASK_NBITS, support, ret);
return ret;
}
iface = sfp_select_interface(pl->sfp_bus, config.advertising);
if (iface == PHY_INTERFACE_MODE_NA) {
phylink_err(pl,
"selection of interface failed, advertisement %*pb\n",
__ETHTOOL_LINK_MODE_MASK_NBITS, config.advertising);
return -EINVAL;
}
config.interface = iface;
linkmode_copy(support1, support);
ret = phylink_validate(pl, support1, &config);
if (ret) {
phylink_err(pl, "validation of %s/%s with support %*pb failed: %d\n",
phylink_an_mode_str(mode),
phy_modes(config.interface),
__ETHTOOL_LINK_MODE_MASK_NBITS, support, ret);
return ret;
}
phylink_dbg(pl, "requesting link mode %s/%s with support %*pb\n",
phylink_an_mode_str(mode), phy_modes(config.interface),
__ETHTOOL_LINK_MODE_MASK_NBITS, support);
if (phy_interface_mode_is_8023z(iface) && pl->phydev)
return -EINVAL;
changed = !linkmode_equal(pl->supported, support);
if (changed) {
linkmode_copy(pl->supported, support);
linkmode_copy(pl->link_config.advertising, config.advertising);
}
if (pl->cur_link_an_mode != mode ||
pl->link_config.interface != config.interface) {
pl->link_config.interface = config.interface;
pl->cur_link_an_mode = mode;
changed = true;
phylink_info(pl, "switched to %s/%s link mode\n",
phylink_an_mode_str(mode),
phy_modes(config.interface));
}
pl->link_port = pl->sfp_port;
if (changed && !test_bit(PHYLINK_DISABLE_STOPPED,
&pl->phylink_disable_state))
phylink_mac_config(pl, &pl->link_config);
return ret;
}
static int phylink_sfp_module_insert(void *upstream,
const struct sfp_eeprom_id *id)
{
struct phylink *pl = upstream;
unsigned long *support = pl->sfp_support;
ASSERT_RTNL();
linkmode_zero(support);
sfp_parse_support(pl->sfp_bus, id, support);
pl->sfp_port = sfp_parse_port(pl->sfp_bus, id, support);
/* If this module may have a PHY connecting later, defer until later */
pl->sfp_may_have_phy = sfp_may_have_phy(pl->sfp_bus, id);
if (pl->sfp_may_have_phy)
return 0;
return phylink_sfp_config(pl, MLO_AN_INBAND, support, support);
}
static int phylink_sfp_module_start(void *upstream)
{
struct phylink *pl = upstream;
/* If this SFP module has a PHY, start the PHY now. */
if (pl->phydev) {
phy_start(pl->phydev);
return 0;
}
/* If the module may have a PHY but we didn't detect one we
* need to configure the MAC here.
*/
if (!pl->sfp_may_have_phy)
return 0;
return phylink_sfp_config(pl, MLO_AN_INBAND,
pl->sfp_support, pl->sfp_support);
}
static void phylink_sfp_module_stop(void *upstream)
{
struct phylink *pl = upstream;
/* If this SFP module has a PHY, stop it. */
if (pl->phydev)
phy_stop(pl->phydev);
}
static void phylink_sfp_link_down(void *upstream)
{
struct phylink *pl = upstream;
ASSERT_RTNL();
phylink_run_resolve_and_disable(pl, PHYLINK_DISABLE_LINK);
}
static void phylink_sfp_link_up(void *upstream)
{
struct phylink *pl = upstream;
ASSERT_RTNL();
clear_bit(PHYLINK_DISABLE_LINK, &pl->phylink_disable_state);
phylink_run_resolve(pl);
}
/* The Broadcom BCM84881 in the Methode DM7052 is unable to provide a SGMII
* or 802.3z control word, so inband will not work.
*/
static bool phylink_phy_no_inband(struct phy_device *phy)
{
return phy->is_c45 &&
(phy->c45_ids.device_ids[1] & 0xfffffff0) == 0xae025150;
}
static int phylink_sfp_connect_phy(void *upstream, struct phy_device *phy)
{
struct phylink *pl = upstream;
phy_interface_t interface;
u8 mode;
int ret;
/*
* This is the new way of dealing with flow control for PHYs,
* as described by Timur Tabi in commit 529ed1275263 ("net: phy:
* phy drivers should not set SUPPORTED_[Asym_]Pause") except
* using our validate call to the MAC, we rely upon the MAC
* clearing the bits from both supported and advertising fields.
*/
phy_support_asym_pause(phy);
if (phylink_phy_no_inband(phy))
mode = MLO_AN_PHY;
else
mode = MLO_AN_INBAND;
/* Do the initial configuration */
ret = phylink_sfp_config(pl, mode, phy->supported, phy->advertising);
if (ret < 0)
return ret;
interface = pl->link_config.interface;
ret = phylink_attach_phy(pl, phy, interface);
if (ret < 0)
return ret;
ret = phylink_bringup_phy(pl, phy, interface);
if (ret)
phy_detach(phy);
return ret;
}
static void phylink_sfp_disconnect_phy(void *upstream)
{
phylink_disconnect_phy(upstream);
}
static const struct sfp_upstream_ops sfp_phylink_ops = {
.attach = phylink_sfp_attach,
.detach = phylink_sfp_detach,
.module_insert = phylink_sfp_module_insert,
.module_start = phylink_sfp_module_start,
.module_stop = phylink_sfp_module_stop,
.link_up = phylink_sfp_link_up,
.link_down = phylink_sfp_link_down,
.connect_phy = phylink_sfp_connect_phy,
.disconnect_phy = phylink_sfp_disconnect_phy,
};
/* Helpers for MAC drivers */
/**
* phylink_helper_basex_speed() - 1000BaseX/2500BaseX helper
* @state: a pointer to a &struct phylink_link_state
*
* Inspect the interface mode, advertising mask or forced speed and
* decide whether to run at 2.5Gbit or 1Gbit appropriately, switching
* the interface mode to suit. @state->interface is appropriately
* updated, and the advertising mask has the "other" baseX_Full flag
* cleared.
*/
void phylink_helper_basex_speed(struct phylink_link_state *state)
{
if (phy_interface_mode_is_8023z(state->interface)) {
bool want_2500 = state->an_enabled ?
phylink_test(state->advertising, 2500baseX_Full) :
state->speed == SPEED_2500;
if (want_2500) {
phylink_clear(state->advertising, 1000baseX_Full);
state->interface = PHY_INTERFACE_MODE_2500BASEX;
} else {
phylink_clear(state->advertising, 2500baseX_Full);
state->interface = PHY_INTERFACE_MODE_1000BASEX;
}
}
}
EXPORT_SYMBOL_GPL(phylink_helper_basex_speed);
MODULE_LICENSE("GPL v2");