linux_dsm_epyc7002/drivers/media/pci/pt1/pt1.c

1454 lines
30 KiB
C
Raw Normal View History

/*
* driver for Earthsoft PT1/PT2
*
* Copyright (C) 2009 HIRANO Takahito <hiranotaka@zng.info>
*
* based on pt1dvr - http://pt1dvr.sourceforge.jp/
* by Tomoaki Ishikawa <tomy@users.sourceforge.jp>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/sched/signal.h>
#include <linux/hrtimer.h>
#include <linux/delay.h>
#include <linux/module.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 15:04:11 +07:00
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/pci.h>
#include <linux/kthread.h>
#include <linux/freezer.h>
#include <linux/ratelimit.h>
#include <linux/string.h>
#include <linux/i2c.h>
#include <media/dvbdev.h>
#include <media/dvb_demux.h>
#include <media/dmxdev.h>
#include <media/dvb_net.h>
#include <media/dvb_frontend.h>
#include "tc90522.h"
#include "qm1d1b0004.h"
#include "dvb-pll.h"
#define DRIVER_NAME "earth-pt1"
#define PT1_PAGE_SHIFT 12
#define PT1_PAGE_SIZE (1 << PT1_PAGE_SHIFT)
#define PT1_NR_UPACKETS 1024
#define PT1_NR_BUFS 511
struct pt1_buffer_page {
__le32 upackets[PT1_NR_UPACKETS];
};
struct pt1_table_page {
__le32 next_pfn;
__le32 buf_pfns[PT1_NR_BUFS];
};
struct pt1_buffer {
struct pt1_buffer_page *page;
dma_addr_t addr;
};
struct pt1_table {
struct pt1_table_page *page;
dma_addr_t addr;
struct pt1_buffer bufs[PT1_NR_BUFS];
};
enum pt1_fe_clk {
PT1_FE_CLK_20MHZ, /* PT1 */
PT1_FE_CLK_25MHZ, /* PT2 */
};
#define PT1_NR_ADAPS 4
struct pt1_adapter;
struct pt1 {
struct pci_dev *pdev;
void __iomem *regs;
struct i2c_adapter i2c_adap;
int i2c_running;
struct pt1_adapter *adaps[PT1_NR_ADAPS];
struct pt1_table *tables;
struct task_struct *kthread;
int table_index;
int buf_index;
struct mutex lock;
int power;
int reset;
enum pt1_fe_clk fe_clk;
};
struct pt1_adapter {
struct pt1 *pt1;
int index;
u8 *buf;
int upacket_count;
int packet_count;
int st_count;
struct dvb_adapter adap;
struct dvb_demux demux;
int users;
struct dmxdev dmxdev;
struct dvb_frontend *fe;
struct i2c_client *demod_i2c_client;
struct i2c_client *tuner_i2c_client;
int (*orig_set_voltage)(struct dvb_frontend *fe,
enum fe_sec_voltage voltage);
int (*orig_sleep)(struct dvb_frontend *fe);
int (*orig_init)(struct dvb_frontend *fe);
enum fe_sec_voltage voltage;
int sleep;
};
union pt1_tuner_config {
struct qm1d1b0004_config qm1d1b0004;
struct dvb_pll_config tda6651;
};
struct pt1_config {
struct i2c_board_info demod_info;
struct tc90522_config demod_cfg;
struct i2c_board_info tuner_info;
union pt1_tuner_config tuner_cfg;
};
static const struct pt1_config pt1_configs[PT1_NR_ADAPS] = {
{
.demod_info = {
I2C_BOARD_INFO(TC90522_I2C_DEV_SAT, 0x1b),
},
.tuner_info = {
I2C_BOARD_INFO("qm1d1b0004", 0x60),
},
},
{
.demod_info = {
I2C_BOARD_INFO(TC90522_I2C_DEV_TER, 0x1a),
},
.tuner_info = {
I2C_BOARD_INFO("tda665x_earthpt1", 0x61),
},
},
{
.demod_info = {
I2C_BOARD_INFO(TC90522_I2C_DEV_SAT, 0x19),
},
.tuner_info = {
I2C_BOARD_INFO("qm1d1b0004", 0x60),
},
},
{
.demod_info = {
I2C_BOARD_INFO(TC90522_I2C_DEV_TER, 0x18),
},
.tuner_info = {
I2C_BOARD_INFO("tda665x_earthpt1", 0x61),
},
},
};
static const u8 va1j5jf8007s_20mhz_configs[][2] = {
{0x04, 0x02}, {0x0d, 0x55}, {0x11, 0x40}, {0x13, 0x80}, {0x17, 0x01},
{0x1c, 0x0a}, {0x1d, 0xaa}, {0x1e, 0x20}, {0x1f, 0x88}, {0x51, 0xb0},
{0x52, 0x89}, {0x53, 0xb3}, {0x5a, 0x2d}, {0x5b, 0xd3}, {0x85, 0x69},
{0x87, 0x04}, {0x8e, 0x02}, {0xa3, 0xf7}, {0xa5, 0xc0},
};
static const u8 va1j5jf8007s_25mhz_configs[][2] = {
{0x04, 0x02}, {0x11, 0x40}, {0x13, 0x80}, {0x17, 0x01}, {0x1c, 0x0a},
{0x1d, 0xaa}, {0x1e, 0x20}, {0x1f, 0x88}, {0x51, 0xb0}, {0x52, 0x89},
{0x53, 0xb3}, {0x5a, 0x2d}, {0x5b, 0xd3}, {0x85, 0x69}, {0x87, 0x04},
{0x8e, 0x26}, {0xa3, 0xf7}, {0xa5, 0xc0},
};
static const u8 va1j5jf8007t_20mhz_configs[][2] = {
{0x03, 0x90}, {0x14, 0x8f}, {0x1c, 0x2a}, {0x1d, 0xa8}, {0x1e, 0xa2},
{0x22, 0x83}, {0x31, 0x0d}, {0x32, 0xe0}, {0x39, 0xd3}, {0x3a, 0x00},
{0x3b, 0x11}, {0x3c, 0x3f},
{0x5c, 0x40}, {0x5f, 0x80}, {0x75, 0x02}, {0x76, 0x4e}, {0x77, 0x03},
{0xef, 0x01}
};
static const u8 va1j5jf8007t_25mhz_configs[][2] = {
{0x03, 0x90}, {0x1c, 0x2a}, {0x1d, 0xa8}, {0x1e, 0xa2}, {0x22, 0x83},
{0x3a, 0x04}, {0x3b, 0x11}, {0x3c, 0x3f}, {0x5c, 0x40}, {0x5f, 0x80},
{0x75, 0x0a}, {0x76, 0x4c}, {0x77, 0x03}, {0xef, 0x01}
};
static int config_demod(struct i2c_client *cl, enum pt1_fe_clk clk)
{
int ret;
u8 buf[2] = {0x01, 0x80};
bool is_sat;
const u8 (*cfg_data)[2];
int i, len;
ret = i2c_master_send(cl, buf, 2);
if (ret < 0)
return ret;
usleep_range(30000, 50000);
is_sat = !strncmp(cl->name, TC90522_I2C_DEV_SAT,
strlen(TC90522_I2C_DEV_SAT));
if (is_sat) {
struct i2c_msg msg[2];
u8 wbuf, rbuf;
wbuf = 0x07;
msg[0].addr = cl->addr;
msg[0].flags = 0;
msg[0].len = 1;
msg[0].buf = &wbuf;
msg[1].addr = cl->addr;
msg[1].flags = I2C_M_RD;
msg[1].len = 1;
msg[1].buf = &rbuf;
ret = i2c_transfer(cl->adapter, msg, 2);
if (ret < 0)
return ret;
if (rbuf != 0x41)
return -EIO;
}
/* frontend init */
if (clk == PT1_FE_CLK_20MHZ) {
if (is_sat) {
cfg_data = va1j5jf8007s_20mhz_configs;
len = ARRAY_SIZE(va1j5jf8007s_20mhz_configs);
} else {
cfg_data = va1j5jf8007t_20mhz_configs;
len = ARRAY_SIZE(va1j5jf8007t_20mhz_configs);
}
} else {
if (is_sat) {
cfg_data = va1j5jf8007s_25mhz_configs;
len = ARRAY_SIZE(va1j5jf8007s_25mhz_configs);
} else {
cfg_data = va1j5jf8007t_25mhz_configs;
len = ARRAY_SIZE(va1j5jf8007t_25mhz_configs);
}
}
for (i = 0; i < len; i++) {
ret = i2c_master_send(cl, cfg_data[i], 2);
if (ret < 0)
return ret;
}
return 0;
}
static void pt1_write_reg(struct pt1 *pt1, int reg, u32 data)
{
writel(data, pt1->regs + reg * 4);
}
static u32 pt1_read_reg(struct pt1 *pt1, int reg)
{
return readl(pt1->regs + reg * 4);
}
static unsigned int pt1_nr_tables = 8;
module_param_named(nr_tables, pt1_nr_tables, uint, 0);
static void pt1_increment_table_count(struct pt1 *pt1)
{
pt1_write_reg(pt1, 0, 0x00000020);
}
static void pt1_init_table_count(struct pt1 *pt1)
{
pt1_write_reg(pt1, 0, 0x00000010);
}
static void pt1_register_tables(struct pt1 *pt1, u32 first_pfn)
{
pt1_write_reg(pt1, 5, first_pfn);
pt1_write_reg(pt1, 0, 0x0c000040);
}
static void pt1_unregister_tables(struct pt1 *pt1)
{
pt1_write_reg(pt1, 0, 0x08080000);
}
static int pt1_sync(struct pt1 *pt1)
{
int i;
for (i = 0; i < 57; i++) {
if (pt1_read_reg(pt1, 0) & 0x20000000)
return 0;
pt1_write_reg(pt1, 0, 0x00000008);
}
dev_err(&pt1->pdev->dev, "could not sync\n");
return -EIO;
}
static u64 pt1_identify(struct pt1 *pt1)
{
int i;
u64 id;
id = 0;
for (i = 0; i < 57; i++) {
id |= (u64)(pt1_read_reg(pt1, 0) >> 30 & 1) << i;
pt1_write_reg(pt1, 0, 0x00000008);
}
return id;
}
static int pt1_unlock(struct pt1 *pt1)
{
int i;
pt1_write_reg(pt1, 0, 0x00000008);
for (i = 0; i < 3; i++) {
if (pt1_read_reg(pt1, 0) & 0x80000000)
return 0;
usleep_range(1000, 2000);
}
dev_err(&pt1->pdev->dev, "could not unlock\n");
return -EIO;
}
static int pt1_reset_pci(struct pt1 *pt1)
{
int i;
pt1_write_reg(pt1, 0, 0x01010000);
pt1_write_reg(pt1, 0, 0x01000000);
for (i = 0; i < 10; i++) {
if (pt1_read_reg(pt1, 0) & 0x00000001)
return 0;
usleep_range(1000, 2000);
}
dev_err(&pt1->pdev->dev, "could not reset PCI\n");
return -EIO;
}
static int pt1_reset_ram(struct pt1 *pt1)
{
int i;
pt1_write_reg(pt1, 0, 0x02020000);
pt1_write_reg(pt1, 0, 0x02000000);
for (i = 0; i < 10; i++) {
if (pt1_read_reg(pt1, 0) & 0x00000002)
return 0;
usleep_range(1000, 2000);
}
dev_err(&pt1->pdev->dev, "could not reset RAM\n");
return -EIO;
}
static int pt1_do_enable_ram(struct pt1 *pt1)
{
int i, j;
u32 status;
status = pt1_read_reg(pt1, 0) & 0x00000004;
pt1_write_reg(pt1, 0, 0x00000002);
for (i = 0; i < 10; i++) {
for (j = 0; j < 1024; j++) {
if ((pt1_read_reg(pt1, 0) & 0x00000004) != status)
return 0;
}
usleep_range(1000, 2000);
}
dev_err(&pt1->pdev->dev, "could not enable RAM\n");
return -EIO;
}
static int pt1_enable_ram(struct pt1 *pt1)
{
int i, ret;
int phase;
usleep_range(1000, 2000);
phase = pt1->pdev->device == 0x211a ? 128 : 166;
for (i = 0; i < phase; i++) {
ret = pt1_do_enable_ram(pt1);
if (ret < 0)
return ret;
}
return 0;
}
static void pt1_disable_ram(struct pt1 *pt1)
{
pt1_write_reg(pt1, 0, 0x0b0b0000);
}
static void pt1_set_stream(struct pt1 *pt1, int index, int enabled)
{
pt1_write_reg(pt1, 2, 1 << (index + 8) | enabled << index);
}
static void pt1_init_streams(struct pt1 *pt1)
{
int i;
for (i = 0; i < PT1_NR_ADAPS; i++)
pt1_set_stream(pt1, i, 0);
}
static int pt1_filter(struct pt1 *pt1, struct pt1_buffer_page *page)
{
u32 upacket;
int i;
int index;
struct pt1_adapter *adap;
int offset;
u8 *buf;
int sc;
if (!page->upackets[PT1_NR_UPACKETS - 1])
return 0;
for (i = 0; i < PT1_NR_UPACKETS; i++) {
upacket = le32_to_cpu(page->upackets[i]);
index = (upacket >> 29) - 1;
if (index < 0 || index >= PT1_NR_ADAPS)
continue;
adap = pt1->adaps[index];
if (upacket >> 25 & 1)
adap->upacket_count = 0;
else if (!adap->upacket_count)
continue;
if (upacket >> 24 & 1)
printk_ratelimited(KERN_INFO "earth-pt1: device buffer overflowing. table[%d] buf[%d]\n",
pt1->table_index, pt1->buf_index);
sc = upacket >> 26 & 0x7;
if (adap->st_count != -1 && sc != ((adap->st_count + 1) & 0x7))
printk_ratelimited(KERN_INFO "earth-pt1: data loss in streamID(adapter)[%d]\n",
index);
adap->st_count = sc;
buf = adap->buf;
offset = adap->packet_count * 188 + adap->upacket_count * 3;
buf[offset] = upacket >> 16;
buf[offset + 1] = upacket >> 8;
if (adap->upacket_count != 62)
buf[offset + 2] = upacket;
if (++adap->upacket_count >= 63) {
adap->upacket_count = 0;
if (++adap->packet_count >= 21) {
dvb_dmx_swfilter_packets(&adap->demux, buf, 21);
adap->packet_count = 0;
}
}
}
page->upackets[PT1_NR_UPACKETS - 1] = 0;
return 1;
}
static int pt1_thread(void *data)
{
struct pt1 *pt1;
struct pt1_buffer_page *page;
bool was_frozen;
#define PT1_FETCH_DELAY 10
#define PT1_FETCH_DELAY_DELTA 2
pt1 = data;
set_freezable();
while (!kthread_freezable_should_stop(&was_frozen)) {
if (was_frozen) {
int i;
for (i = 0; i < PT1_NR_ADAPS; i++)
pt1_set_stream(pt1, i, !!pt1->adaps[i]->users);
}
page = pt1->tables[pt1->table_index].bufs[pt1->buf_index].page;
if (!pt1_filter(pt1, page)) {
ktime_t delay;
delay = ktime_set(0, PT1_FETCH_DELAY * NSEC_PER_MSEC);
set_current_state(TASK_INTERRUPTIBLE);
schedule_hrtimeout_range(&delay,
PT1_FETCH_DELAY_DELTA * NSEC_PER_MSEC,
HRTIMER_MODE_REL);
continue;
}
if (++pt1->buf_index >= PT1_NR_BUFS) {
pt1_increment_table_count(pt1);
pt1->buf_index = 0;
if (++pt1->table_index >= pt1_nr_tables)
pt1->table_index = 0;
}
}
return 0;
}
static void pt1_free_page(struct pt1 *pt1, void *page, dma_addr_t addr)
{
dma_free_coherent(&pt1->pdev->dev, PT1_PAGE_SIZE, page, addr);
}
static void *pt1_alloc_page(struct pt1 *pt1, dma_addr_t *addrp, u32 *pfnp)
{
void *page;
dma_addr_t addr;
page = dma_alloc_coherent(&pt1->pdev->dev, PT1_PAGE_SIZE, &addr,
GFP_KERNEL);
if (page == NULL)
return NULL;
BUG_ON(addr & (PT1_PAGE_SIZE - 1));
BUG_ON(addr >> PT1_PAGE_SHIFT >> 31 >> 1);
*addrp = addr;
*pfnp = addr >> PT1_PAGE_SHIFT;
return page;
}
static void pt1_cleanup_buffer(struct pt1 *pt1, struct pt1_buffer *buf)
{
pt1_free_page(pt1, buf->page, buf->addr);
}
static int
pt1_init_buffer(struct pt1 *pt1, struct pt1_buffer *buf, u32 *pfnp)
{
struct pt1_buffer_page *page;
dma_addr_t addr;
page = pt1_alloc_page(pt1, &addr, pfnp);
if (page == NULL)
return -ENOMEM;
page->upackets[PT1_NR_UPACKETS - 1] = 0;
buf->page = page;
buf->addr = addr;
return 0;
}
static void pt1_cleanup_table(struct pt1 *pt1, struct pt1_table *table)
{
int i;
for (i = 0; i < PT1_NR_BUFS; i++)
pt1_cleanup_buffer(pt1, &table->bufs[i]);
pt1_free_page(pt1, table->page, table->addr);
}
static int
pt1_init_table(struct pt1 *pt1, struct pt1_table *table, u32 *pfnp)
{
struct pt1_table_page *page;
dma_addr_t addr;
int i, ret;
u32 buf_pfn;
page = pt1_alloc_page(pt1, &addr, pfnp);
if (page == NULL)
return -ENOMEM;
for (i = 0; i < PT1_NR_BUFS; i++) {
ret = pt1_init_buffer(pt1, &table->bufs[i], &buf_pfn);
if (ret < 0)
goto err;
page->buf_pfns[i] = cpu_to_le32(buf_pfn);
}
pt1_increment_table_count(pt1);
table->page = page;
table->addr = addr;
return 0;
err:
while (i--)
pt1_cleanup_buffer(pt1, &table->bufs[i]);
pt1_free_page(pt1, page, addr);
return ret;
}
static void pt1_cleanup_tables(struct pt1 *pt1)
{
struct pt1_table *tables;
int i;
tables = pt1->tables;
pt1_unregister_tables(pt1);
for (i = 0; i < pt1_nr_tables; i++)
pt1_cleanup_table(pt1, &tables[i]);
vfree(tables);
}
static int pt1_init_tables(struct pt1 *pt1)
{
struct pt1_table *tables;
int i, ret;
u32 first_pfn, pfn;
if (!pt1_nr_tables)
return 0;
treewide: Use array_size() in vmalloc() The vmalloc() function has no 2-factor argument form, so multiplication factors need to be wrapped in array_size(). This patch replaces cases of: vmalloc(a * b) with: vmalloc(array_size(a, b)) as well as handling cases of: vmalloc(a * b * c) with: vmalloc(array3_size(a, b, c)) This does, however, attempt to ignore constant size factors like: vmalloc(4 * 1024) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( vmalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | vmalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( vmalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | vmalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | vmalloc( - sizeof(char) * (COUNT) + COUNT , ...) | vmalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | vmalloc( - sizeof(u8) * COUNT + COUNT , ...) | vmalloc( - sizeof(__u8) * COUNT + COUNT , ...) | vmalloc( - sizeof(char) * COUNT + COUNT , ...) | vmalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( vmalloc( - sizeof(TYPE) * (COUNT_ID) + array_size(COUNT_ID, sizeof(TYPE)) , ...) | vmalloc( - sizeof(TYPE) * COUNT_ID + array_size(COUNT_ID, sizeof(TYPE)) , ...) | vmalloc( - sizeof(TYPE) * (COUNT_CONST) + array_size(COUNT_CONST, sizeof(TYPE)) , ...) | vmalloc( - sizeof(TYPE) * COUNT_CONST + array_size(COUNT_CONST, sizeof(TYPE)) , ...) | vmalloc( - sizeof(THING) * (COUNT_ID) + array_size(COUNT_ID, sizeof(THING)) , ...) | vmalloc( - sizeof(THING) * COUNT_ID + array_size(COUNT_ID, sizeof(THING)) , ...) | vmalloc( - sizeof(THING) * (COUNT_CONST) + array_size(COUNT_CONST, sizeof(THING)) , ...) | vmalloc( - sizeof(THING) * COUNT_CONST + array_size(COUNT_CONST, sizeof(THING)) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ vmalloc( - SIZE * COUNT + array_size(COUNT, SIZE) , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( vmalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | vmalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | vmalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | vmalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | vmalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | vmalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | vmalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | vmalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( vmalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | vmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | vmalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | vmalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | vmalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | vmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( vmalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | vmalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | vmalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | vmalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | vmalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | vmalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | vmalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | vmalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( vmalloc(C1 * C2 * C3, ...) | vmalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants. @@ expression E1, E2; constant C1, C2; @@ ( vmalloc(C1 * C2, ...) | vmalloc( - E1 * E2 + array_size(E1, E2) , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-13 04:27:11 +07:00
tables = vmalloc(array_size(pt1_nr_tables, sizeof(struct pt1_table)));
if (tables == NULL)
return -ENOMEM;
pt1_init_table_count(pt1);
i = 0;
ret = pt1_init_table(pt1, &tables[0], &first_pfn);
if (ret)
goto err;
i++;
while (i < pt1_nr_tables) {
ret = pt1_init_table(pt1, &tables[i], &pfn);
if (ret)
goto err;
tables[i - 1].page->next_pfn = cpu_to_le32(pfn);
i++;
}
tables[pt1_nr_tables - 1].page->next_pfn = cpu_to_le32(first_pfn);
pt1_register_tables(pt1, first_pfn);
pt1->tables = tables;
return 0;
err:
while (i--)
pt1_cleanup_table(pt1, &tables[i]);
vfree(tables);
return ret;
}
static int pt1_start_polling(struct pt1 *pt1)
{
int ret = 0;
mutex_lock(&pt1->lock);
if (!pt1->kthread) {
pt1->kthread = kthread_run(pt1_thread, pt1, "earth-pt1");
if (IS_ERR(pt1->kthread)) {
ret = PTR_ERR(pt1->kthread);
pt1->kthread = NULL;
}
}
mutex_unlock(&pt1->lock);
return ret;
}
static int pt1_start_feed(struct dvb_demux_feed *feed)
{
struct pt1_adapter *adap;
adap = container_of(feed->demux, struct pt1_adapter, demux);
if (!adap->users++) {
int ret;
ret = pt1_start_polling(adap->pt1);
if (ret)
return ret;
pt1_set_stream(adap->pt1, adap->index, 1);
}
return 0;
}
static void pt1_stop_polling(struct pt1 *pt1)
{
int i, count;
mutex_lock(&pt1->lock);
for (i = 0, count = 0; i < PT1_NR_ADAPS; i++)
count += pt1->adaps[i]->users;
if (count == 0 && pt1->kthread) {
kthread_stop(pt1->kthread);
pt1->kthread = NULL;
}
mutex_unlock(&pt1->lock);
}
static int pt1_stop_feed(struct dvb_demux_feed *feed)
{
struct pt1_adapter *adap;
adap = container_of(feed->demux, struct pt1_adapter, demux);
if (!--adap->users) {
pt1_set_stream(adap->pt1, adap->index, 0);
pt1_stop_polling(adap->pt1);
}
return 0;
}
static void
pt1_update_power(struct pt1 *pt1)
{
int bits;
int i;
struct pt1_adapter *adap;
static const int sleep_bits[] = {
1 << 4,
1 << 6 | 1 << 7,
1 << 5,
1 << 6 | 1 << 8,
};
bits = pt1->power | !pt1->reset << 3;
mutex_lock(&pt1->lock);
for (i = 0; i < PT1_NR_ADAPS; i++) {
adap = pt1->adaps[i];
switch (adap->voltage) {
case SEC_VOLTAGE_13: /* actually 11V */
bits |= 1 << 2;
break;
case SEC_VOLTAGE_18: /* actually 15V */
bits |= 1 << 1 | 1 << 2;
break;
default:
break;
}
/* XXX: The bits should be changed depending on adap->sleep. */
bits |= sleep_bits[i];
}
pt1_write_reg(pt1, 1, bits);
mutex_unlock(&pt1->lock);
}
static int pt1_set_voltage(struct dvb_frontend *fe, enum fe_sec_voltage voltage)
{
struct pt1_adapter *adap;
adap = container_of(fe->dvb, struct pt1_adapter, adap);
adap->voltage = voltage;
pt1_update_power(adap->pt1);
if (adap->orig_set_voltage)
return adap->orig_set_voltage(fe, voltage);
else
return 0;
}
static int pt1_sleep(struct dvb_frontend *fe)
{
struct pt1_adapter *adap;
int ret;
adap = container_of(fe->dvb, struct pt1_adapter, adap);
ret = 0;
if (adap->orig_sleep)
ret = adap->orig_sleep(fe);
adap->sleep = 1;
pt1_update_power(adap->pt1);
return ret;
}
static int pt1_wakeup(struct dvb_frontend *fe)
{
struct pt1_adapter *adap;
int ret;
adap = container_of(fe->dvb, struct pt1_adapter, adap);
adap->sleep = 0;
pt1_update_power(adap->pt1);
usleep_range(1000, 2000);
ret = config_demod(adap->demod_i2c_client, adap->pt1->fe_clk);
if (ret == 0 && adap->orig_init)
ret = adap->orig_init(fe);
return ret;
}
static void pt1_free_adapter(struct pt1_adapter *adap)
{
adap->demux.dmx.close(&adap->demux.dmx);
dvb_dmxdev_release(&adap->dmxdev);
dvb_dmx_release(&adap->demux);
dvb_unregister_adapter(&adap->adap);
free_page((unsigned long)adap->buf);
kfree(adap);
}
DVB_DEFINE_MOD_OPT_ADAPTER_NR(adapter_nr);
static struct pt1_adapter *
pt1_alloc_adapter(struct pt1 *pt1)
{
struct pt1_adapter *adap;
void *buf;
struct dvb_adapter *dvb_adap;
struct dvb_demux *demux;
struct dmxdev *dmxdev;
int ret;
adap = kzalloc(sizeof(struct pt1_adapter), GFP_KERNEL);
if (!adap) {
ret = -ENOMEM;
goto err;
}
adap->pt1 = pt1;
adap->voltage = SEC_VOLTAGE_OFF;
adap->sleep = 1;
buf = (u8 *)__get_free_page(GFP_KERNEL);
if (!buf) {
ret = -ENOMEM;
goto err_kfree;
}
adap->buf = buf;
adap->upacket_count = 0;
adap->packet_count = 0;
adap->st_count = -1;
dvb_adap = &adap->adap;
dvb_adap->priv = adap;
ret = dvb_register_adapter(dvb_adap, DRIVER_NAME, THIS_MODULE,
&pt1->pdev->dev, adapter_nr);
if (ret < 0)
goto err_free_page;
demux = &adap->demux;
demux->dmx.capabilities = DMX_TS_FILTERING | DMX_SECTION_FILTERING;
demux->priv = adap;
demux->feednum = 256;
demux->filternum = 256;
demux->start_feed = pt1_start_feed;
demux->stop_feed = pt1_stop_feed;
demux->write_to_decoder = NULL;
ret = dvb_dmx_init(demux);
if (ret < 0)
goto err_unregister_adapter;
dmxdev = &adap->dmxdev;
dmxdev->filternum = 256;
dmxdev->demux = &demux->dmx;
dmxdev->capabilities = 0;
ret = dvb_dmxdev_init(dmxdev, dvb_adap);
if (ret < 0)
goto err_dmx_release;
return adap;
err_dmx_release:
dvb_dmx_release(demux);
err_unregister_adapter:
dvb_unregister_adapter(dvb_adap);
err_free_page:
free_page((unsigned long)buf);
err_kfree:
kfree(adap);
err:
return ERR_PTR(ret);
}
static void pt1_cleanup_adapters(struct pt1 *pt1)
{
int i;
for (i = 0; i < PT1_NR_ADAPS; i++)
pt1_free_adapter(pt1->adaps[i]);
}
static int pt1_init_adapters(struct pt1 *pt1)
{
int i;
struct pt1_adapter *adap;
int ret;
for (i = 0; i < PT1_NR_ADAPS; i++) {
adap = pt1_alloc_adapter(pt1);
if (IS_ERR(adap)) {
ret = PTR_ERR(adap);
goto err;
}
adap->index = i;
pt1->adaps[i] = adap;
}
return 0;
err:
while (i--)
pt1_free_adapter(pt1->adaps[i]);
return ret;
}
static void pt1_cleanup_frontend(struct pt1_adapter *adap)
{
dvb_unregister_frontend(adap->fe);
dvb_module_release(adap->tuner_i2c_client);
dvb_module_release(adap->demod_i2c_client);
}
static int pt1_init_frontend(struct pt1_adapter *adap, struct dvb_frontend *fe)
{
int ret;
adap->orig_set_voltage = fe->ops.set_voltage;
adap->orig_sleep = fe->ops.sleep;
adap->orig_init = fe->ops.init;
fe->ops.set_voltage = pt1_set_voltage;
fe->ops.sleep = pt1_sleep;
fe->ops.init = pt1_wakeup;
ret = dvb_register_frontend(&adap->adap, fe);
if (ret < 0)
return ret;
adap->fe = fe;
return 0;
}
static void pt1_cleanup_frontends(struct pt1 *pt1)
{
int i;
for (i = 0; i < PT1_NR_ADAPS; i++)
pt1_cleanup_frontend(pt1->adaps[i]);
}
static int pt1_init_frontends(struct pt1 *pt1)
{
int i;
int ret;
for (i = 0; i < ARRAY_SIZE(pt1_configs); i++) {
const struct i2c_board_info *info;
struct tc90522_config dcfg;
struct i2c_client *cl;
info = &pt1_configs[i].demod_info;
dcfg = pt1_configs[i].demod_cfg;
dcfg.tuner_i2c = NULL;
ret = -ENODEV;
cl = dvb_module_probe("tc90522", info->type, &pt1->i2c_adap,
info->addr, &dcfg);
if (!cl)
goto fe_unregister;
pt1->adaps[i]->demod_i2c_client = cl;
if (!strncmp(cl->name, TC90522_I2C_DEV_SAT,
strlen(TC90522_I2C_DEV_SAT))) {
struct qm1d1b0004_config tcfg;
info = &pt1_configs[i].tuner_info;
tcfg = pt1_configs[i].tuner_cfg.qm1d1b0004;
tcfg.fe = dcfg.fe;
cl = dvb_module_probe("qm1d1b0004",
info->type, dcfg.tuner_i2c,
info->addr, &tcfg);
} else {
struct dvb_pll_config tcfg;
info = &pt1_configs[i].tuner_info;
tcfg = pt1_configs[i].tuner_cfg.tda6651;
tcfg.fe = dcfg.fe;
cl = dvb_module_probe("dvb_pll",
info->type, dcfg.tuner_i2c,
info->addr, &tcfg);
}
if (!cl)
goto demod_release;
pt1->adaps[i]->tuner_i2c_client = cl;
ret = pt1_init_frontend(pt1->adaps[i], dcfg.fe);
if (ret < 0)
goto tuner_release;
}
return 0;
tuner_release:
dvb_module_release(pt1->adaps[i]->tuner_i2c_client);
demod_release:
dvb_module_release(pt1->adaps[i]->demod_i2c_client);
fe_unregister:
dev_warn(&pt1->pdev->dev, "failed to init FE(%d).\n", i);
i--;
for (; i >= 0; i--) {
dvb_unregister_frontend(pt1->adaps[i]->fe);
dvb_module_release(pt1->adaps[i]->tuner_i2c_client);
dvb_module_release(pt1->adaps[i]->demod_i2c_client);
}
return ret;
}
static void pt1_i2c_emit(struct pt1 *pt1, int addr, int busy, int read_enable,
int clock, int data, int next_addr)
{
pt1_write_reg(pt1, 4, addr << 18 | busy << 13 | read_enable << 12 |
!clock << 11 | !data << 10 | next_addr);
}
static void pt1_i2c_write_bit(struct pt1 *pt1, int addr, int *addrp, int data)
{
pt1_i2c_emit(pt1, addr, 1, 0, 0, data, addr + 1);
pt1_i2c_emit(pt1, addr + 1, 1, 0, 1, data, addr + 2);
pt1_i2c_emit(pt1, addr + 2, 1, 0, 0, data, addr + 3);
*addrp = addr + 3;
}
static void pt1_i2c_read_bit(struct pt1 *pt1, int addr, int *addrp)
{
pt1_i2c_emit(pt1, addr, 1, 0, 0, 1, addr + 1);
pt1_i2c_emit(pt1, addr + 1, 1, 0, 1, 1, addr + 2);
pt1_i2c_emit(pt1, addr + 2, 1, 1, 1, 1, addr + 3);
pt1_i2c_emit(pt1, addr + 3, 1, 0, 0, 1, addr + 4);
*addrp = addr + 4;
}
static void pt1_i2c_write_byte(struct pt1 *pt1, int addr, int *addrp, int data)
{
int i;
for (i = 0; i < 8; i++)
pt1_i2c_write_bit(pt1, addr, &addr, data >> (7 - i) & 1);
pt1_i2c_write_bit(pt1, addr, &addr, 1);
*addrp = addr;
}
static void pt1_i2c_read_byte(struct pt1 *pt1, int addr, int *addrp, int last)
{
int i;
for (i = 0; i < 8; i++)
pt1_i2c_read_bit(pt1, addr, &addr);
pt1_i2c_write_bit(pt1, addr, &addr, last);
*addrp = addr;
}
static void pt1_i2c_prepare(struct pt1 *pt1, int addr, int *addrp)
{
pt1_i2c_emit(pt1, addr, 1, 0, 1, 1, addr + 1);
pt1_i2c_emit(pt1, addr + 1, 1, 0, 1, 0, addr + 2);
pt1_i2c_emit(pt1, addr + 2, 1, 0, 0, 0, addr + 3);
*addrp = addr + 3;
}
static void
pt1_i2c_write_msg(struct pt1 *pt1, int addr, int *addrp, struct i2c_msg *msg)
{
int i;
pt1_i2c_prepare(pt1, addr, &addr);
pt1_i2c_write_byte(pt1, addr, &addr, msg->addr << 1);
for (i = 0; i < msg->len; i++)
pt1_i2c_write_byte(pt1, addr, &addr, msg->buf[i]);
*addrp = addr;
}
static void
pt1_i2c_read_msg(struct pt1 *pt1, int addr, int *addrp, struct i2c_msg *msg)
{
int i;
pt1_i2c_prepare(pt1, addr, &addr);
pt1_i2c_write_byte(pt1, addr, &addr, msg->addr << 1 | 1);
for (i = 0; i < msg->len; i++)
pt1_i2c_read_byte(pt1, addr, &addr, i == msg->len - 1);
*addrp = addr;
}
static int pt1_i2c_end(struct pt1 *pt1, int addr)
{
pt1_i2c_emit(pt1, addr, 1, 0, 0, 0, addr + 1);
pt1_i2c_emit(pt1, addr + 1, 1, 0, 1, 0, addr + 2);
pt1_i2c_emit(pt1, addr + 2, 1, 0, 1, 1, 0);
pt1_write_reg(pt1, 0, 0x00000004);
do {
if (signal_pending(current))
return -EINTR;
usleep_range(1000, 2000);
} while (pt1_read_reg(pt1, 0) & 0x00000080);
return 0;
}
static void pt1_i2c_begin(struct pt1 *pt1, int *addrp)
{
int addr;
addr = 0;
pt1_i2c_emit(pt1, addr, 0, 0, 1, 1, addr /* itself */);
addr = addr + 1;
if (!pt1->i2c_running) {
pt1_i2c_emit(pt1, addr, 1, 0, 1, 1, addr + 1);
pt1_i2c_emit(pt1, addr + 1, 1, 0, 1, 0, addr + 2);
addr = addr + 2;
pt1->i2c_running = 1;
}
*addrp = addr;
}
static int pt1_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
{
struct pt1 *pt1;
int i;
struct i2c_msg *msg, *next_msg;
int addr, ret;
u16 len;
u32 word;
pt1 = i2c_get_adapdata(adap);
for (i = 0; i < num; i++) {
msg = &msgs[i];
if (msg->flags & I2C_M_RD)
return -ENOTSUPP;
if (i + 1 < num)
next_msg = &msgs[i + 1];
else
next_msg = NULL;
if (next_msg && next_msg->flags & I2C_M_RD) {
i++;
len = next_msg->len;
if (len > 4)
return -ENOTSUPP;
pt1_i2c_begin(pt1, &addr);
pt1_i2c_write_msg(pt1, addr, &addr, msg);
pt1_i2c_read_msg(pt1, addr, &addr, next_msg);
ret = pt1_i2c_end(pt1, addr);
if (ret < 0)
return ret;
word = pt1_read_reg(pt1, 2);
while (len--) {
next_msg->buf[len] = word;
word >>= 8;
}
} else {
pt1_i2c_begin(pt1, &addr);
pt1_i2c_write_msg(pt1, addr, &addr, msg);
ret = pt1_i2c_end(pt1, addr);
if (ret < 0)
return ret;
}
}
return num;
}
static u32 pt1_i2c_func(struct i2c_adapter *adap)
{
return I2C_FUNC_I2C;
}
static const struct i2c_algorithm pt1_i2c_algo = {
.master_xfer = pt1_i2c_xfer,
.functionality = pt1_i2c_func,
};
static void pt1_i2c_wait(struct pt1 *pt1)
{
int i;
for (i = 0; i < 128; i++)
pt1_i2c_emit(pt1, 0, 0, 0, 1, 1, 0);
}
static void pt1_i2c_init(struct pt1 *pt1)
{
int i;
for (i = 0; i < 1024; i++)
pt1_i2c_emit(pt1, i, 0, 0, 1, 1, 0);
}
#ifdef CONFIG_PM_SLEEP
static int pt1_suspend(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct pt1 *pt1 = pci_get_drvdata(pdev);
pt1_init_streams(pt1);
pt1_disable_ram(pt1);
pt1->power = 0;
pt1->reset = 1;
pt1_update_power(pt1);
return 0;
}
static int pt1_resume(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct pt1 *pt1 = pci_get_drvdata(pdev);
int ret;
int i;
pt1->power = 0;
pt1->reset = 1;
pt1_update_power(pt1);
pt1_i2c_init(pt1);
pt1_i2c_wait(pt1);
ret = pt1_sync(pt1);
if (ret < 0)
goto resume_err;
pt1_identify(pt1);
ret = pt1_unlock(pt1);
if (ret < 0)
goto resume_err;
ret = pt1_reset_pci(pt1);
if (ret < 0)
goto resume_err;
ret = pt1_reset_ram(pt1);
if (ret < 0)
goto resume_err;
ret = pt1_enable_ram(pt1);
if (ret < 0)
goto resume_err;
pt1_init_streams(pt1);
pt1->power = 1;
pt1_update_power(pt1);
msleep(20);
pt1->reset = 0;
pt1_update_power(pt1);
usleep_range(1000, 2000);
for (i = 0; i < PT1_NR_ADAPS; i++)
dvb_frontend_reinitialise(pt1->adaps[i]->fe);
pt1_init_table_count(pt1);
for (i = 0; i < pt1_nr_tables; i++) {
int j;
for (j = 0; j < PT1_NR_BUFS; j++)
pt1->tables[i].bufs[j].page->upackets[PT1_NR_UPACKETS-1]
= 0;
pt1_increment_table_count(pt1);
}
pt1_register_tables(pt1, pt1->tables[0].addr >> PT1_PAGE_SHIFT);
pt1->table_index = 0;
pt1->buf_index = 0;
for (i = 0; i < PT1_NR_ADAPS; i++) {
pt1->adaps[i]->upacket_count = 0;
pt1->adaps[i]->packet_count = 0;
pt1->adaps[i]->st_count = -1;
}
return 0;
resume_err:
dev_info(&pt1->pdev->dev, "failed to resume PT1/PT2.");
return 0; /* resume anyway */
}
#endif /* CONFIG_PM_SLEEP */
static void pt1_remove(struct pci_dev *pdev)
{
struct pt1 *pt1;
void __iomem *regs;
pt1 = pci_get_drvdata(pdev);
regs = pt1->regs;
if (pt1->kthread)
kthread_stop(pt1->kthread);
pt1_cleanup_tables(pt1);
pt1_cleanup_frontends(pt1);
pt1_disable_ram(pt1);
pt1->power = 0;
pt1->reset = 1;
pt1_update_power(pt1);
pt1_cleanup_adapters(pt1);
i2c_del_adapter(&pt1->i2c_adap);
kfree(pt1);
pci_iounmap(pdev, regs);
pci_release_regions(pdev);
pci_disable_device(pdev);
}
static int pt1_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
int ret;
void __iomem *regs;
struct pt1 *pt1;
struct i2c_adapter *i2c_adap;
ret = pci_enable_device(pdev);
if (ret < 0)
goto err;
ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
if (ret < 0)
goto err_pci_disable_device;
pci_set_master(pdev);
ret = pci_request_regions(pdev, DRIVER_NAME);
if (ret < 0)
goto err_pci_disable_device;
regs = pci_iomap(pdev, 0, 0);
if (!regs) {
ret = -EIO;
goto err_pci_release_regions;
}
pt1 = kzalloc(sizeof(struct pt1), GFP_KERNEL);
if (!pt1) {
ret = -ENOMEM;
goto err_pci_iounmap;
}
mutex_init(&pt1->lock);
pt1->pdev = pdev;
pt1->regs = regs;
pt1->fe_clk = (pdev->device == 0x211a) ?
PT1_FE_CLK_20MHZ : PT1_FE_CLK_25MHZ;
pci_set_drvdata(pdev, pt1);
ret = pt1_init_adapters(pt1);
if (ret < 0)
goto err_kfree;
mutex_init(&pt1->lock);
pt1->power = 0;
pt1->reset = 1;
pt1_update_power(pt1);
i2c_adap = &pt1->i2c_adap;
i2c_adap->algo = &pt1_i2c_algo;
i2c_adap->algo_data = NULL;
i2c_adap->dev.parent = &pdev->dev;
strcpy(i2c_adap->name, DRIVER_NAME);
i2c_set_adapdata(i2c_adap, pt1);
ret = i2c_add_adapter(i2c_adap);
if (ret < 0)
goto err_pt1_cleanup_adapters;
pt1_i2c_init(pt1);
pt1_i2c_wait(pt1);
ret = pt1_sync(pt1);
if (ret < 0)
goto err_i2c_del_adapter;
pt1_identify(pt1);
ret = pt1_unlock(pt1);
if (ret < 0)
goto err_i2c_del_adapter;
ret = pt1_reset_pci(pt1);
if (ret < 0)
goto err_i2c_del_adapter;
ret = pt1_reset_ram(pt1);
if (ret < 0)
goto err_i2c_del_adapter;
ret = pt1_enable_ram(pt1);
if (ret < 0)
goto err_i2c_del_adapter;
pt1_init_streams(pt1);
pt1->power = 1;
pt1_update_power(pt1);
msleep(20);
pt1->reset = 0;
pt1_update_power(pt1);
usleep_range(1000, 2000);
ret = pt1_init_frontends(pt1);
if (ret < 0)
goto err_pt1_disable_ram;
ret = pt1_init_tables(pt1);
if (ret < 0)
goto err_pt1_cleanup_frontends;
return 0;
err_pt1_cleanup_frontends:
pt1_cleanup_frontends(pt1);
err_pt1_disable_ram:
pt1_disable_ram(pt1);
pt1->power = 0;
pt1->reset = 1;
pt1_update_power(pt1);
err_i2c_del_adapter:
i2c_del_adapter(i2c_adap);
err_pt1_cleanup_adapters:
pt1_cleanup_adapters(pt1);
err_kfree:
kfree(pt1);
err_pci_iounmap:
pci_iounmap(pdev, regs);
err_pci_release_regions:
pci_release_regions(pdev);
err_pci_disable_device:
pci_disable_device(pdev);
err:
return ret;
}
static const struct pci_device_id pt1_id_table[] = {
{ PCI_DEVICE(0x10ee, 0x211a) },
{ PCI_DEVICE(0x10ee, 0x222a) },
{ },
};
MODULE_DEVICE_TABLE(pci, pt1_id_table);
static SIMPLE_DEV_PM_OPS(pt1_pm_ops, pt1_suspend, pt1_resume);
static struct pci_driver pt1_driver = {
.name = DRIVER_NAME,
.probe = pt1_probe,
.remove = pt1_remove,
.id_table = pt1_id_table,
.driver.pm = &pt1_pm_ops,
};
module_pci_driver(pt1_driver);
MODULE_AUTHOR("Takahito HIRANO <hiranotaka@zng.info>");
MODULE_DESCRIPTION("Earthsoft PT1/PT2 Driver");
MODULE_LICENSE("GPL");