linux_dsm_epyc7002/arch/cris/arch-v32/drivers/sync_serial.c

1557 lines
44 KiB
C
Raw Normal View History

/*
* Simple synchronous serial port driver for ETRAX FS and Artpec-3.
*
* Copyright (c) 2005 Axis Communications AB
*
* Author: Mikael Starvik
*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/major.h>
#include <linux/sched.h>
#include <linux/mutex.h>
#include <linux/interrupt.h>
#include <linux/poll.h>
#include <linux/init.h>
#include <linux/timer.h>
#include <linux/spinlock.h>
#include <asm/io.h>
#include <dma.h>
#include <pinmux.h>
#include <hwregs/reg_rdwr.h>
#include <hwregs/sser_defs.h>
#include <hwregs/dma_defs.h>
#include <hwregs/dma.h>
#include <hwregs/intr_vect_defs.h>
#include <hwregs/intr_vect.h>
#include <hwregs/reg_map.h>
#include <asm/sync_serial.h>
/* The receiver is a bit tricky beacuse of the continuous stream of data.*/
/* */
/* Three DMA descriptors are linked together. Each DMA descriptor is */
/* responsible for port->bufchunk of a common buffer. */
/* */
/* +---------------------------------------------+ */
/* | +----------+ +----------+ +----------+ | */
/* +-> | Descr[0] |-->| Descr[1] |-->| Descr[2] |-+ */
/* +----------+ +----------+ +----------+ */
/* | | | */
/* v v v */
/* +-------------------------------------+ */
/* | BUFFER | */
/* +-------------------------------------+ */
/* |<- data_avail ->| */
/* readp writep */
/* */
/* If the application keeps up the pace readp will be right after writep.*/
/* If the application can't keep the pace we have to throw away data. */
/* The idea is that readp should be ready with the data pointed out by */
/* Descr[i] when the DMA has filled in Descr[i+1]. */
/* Otherwise we will discard */
/* the rest of the data pointed out by Descr1 and set readp to the start */
/* of Descr2 */
#define SYNC_SERIAL_MAJOR 125
/* IN_BUFFER_SIZE should be a multiple of 6 to make sure that 24 bit */
/* words can be handled */
#define IN_BUFFER_SIZE 12288
#define IN_DESCR_SIZE 256
#define NBR_IN_DESCR (IN_BUFFER_SIZE/IN_DESCR_SIZE)
#define OUT_BUFFER_SIZE 1024*8
#define NBR_OUT_DESCR 8
#define DEFAULT_FRAME_RATE 0
#define DEFAULT_WORD_RATE 7
/* NOTE: Enabling some debug will likely cause overrun or underrun,
* especially if manual mode is use.
*/
#define DEBUG(x)
#define DEBUGREAD(x)
#define DEBUGWRITE(x)
#define DEBUGPOLL(x)
#define DEBUGRXINT(x)
#define DEBUGTXINT(x)
#define DEBUGTRDMA(x)
#define DEBUGOUTBUF(x)
typedef struct sync_port
{
reg_scope_instances regi_sser;
reg_scope_instances regi_dmain;
reg_scope_instances regi_dmaout;
char started; /* 1 if port has been started */
char port_nbr; /* Port 0 or 1 */
char busy; /* 1 if port is busy */
char enabled; /* 1 if port is enabled */
char use_dma; /* 1 if port uses dma */
char tr_running;
char init_irqs;
int output;
int input;
/* Next byte to be read by application */
volatile unsigned char *volatile readp;
/* Next byte to be written by etrax */
volatile unsigned char *volatile writep;
unsigned int in_buffer_size;
unsigned int inbufchunk;
unsigned char out_buffer[OUT_BUFFER_SIZE] __attribute__ ((aligned(32)));
unsigned char in_buffer[IN_BUFFER_SIZE]__attribute__ ((aligned(32)));
unsigned char flip[IN_BUFFER_SIZE] __attribute__ ((aligned(32)));
struct dma_descr_data* next_rx_desc;
struct dma_descr_data* prev_rx_desc;
/* Pointer to the first available descriptor in the ring,
* unless active_tr_descr == catch_tr_descr and a dma
* transfer is active */
struct dma_descr_data *active_tr_descr;
/* Pointer to the first allocated descriptor in the ring */
struct dma_descr_data *catch_tr_descr;
/* Pointer to the descriptor with the current end-of-list */
struct dma_descr_data *prev_tr_descr;
int full;
/* Pointer to the first byte being read by DMA
* or current position in out_buffer if not using DMA. */
unsigned char *out_rd_ptr;
/* Number of bytes currently locked for being read by DMA */
int out_buf_count;
dma_descr_data in_descr[NBR_IN_DESCR] __attribute__ ((__aligned__(16)));
dma_descr_context in_context __attribute__ ((__aligned__(32)));
dma_descr_data out_descr[NBR_OUT_DESCR]
__attribute__ ((__aligned__(16)));
dma_descr_context out_context __attribute__ ((__aligned__(32)));
wait_queue_head_t out_wait_q;
wait_queue_head_t in_wait_q;
spinlock_t lock;
} sync_port;
static DEFINE_MUTEX(sync_serial_mutex);
static int etrax_sync_serial_init(void);
static void initialize_port(int portnbr);
static inline int sync_data_avail(struct sync_port *port);
static int sync_serial_open(struct inode *, struct file*);
static int sync_serial_release(struct inode*, struct file*);
static unsigned int sync_serial_poll(struct file *filp, poll_table *wait);
static int sync_serial_ioctl(struct file *,
unsigned int cmd, unsigned long arg);
static ssize_t sync_serial_write(struct file * file, const char * buf,
size_t count, loff_t *ppos);
static ssize_t sync_serial_read(struct file *file, char *buf,
size_t count, loff_t *ppos);
#if (defined(CONFIG_ETRAX_SYNCHRONOUS_SERIAL_PORT0) && \
defined(CONFIG_ETRAX_SYNCHRONOUS_SERIAL0_DMA)) || \
(defined(CONFIG_ETRAX_SYNCHRONOUS_SERIAL_PORT1) && \
defined(CONFIG_ETRAX_SYNCHRONOUS_SERIAL1_DMA))
#define SYNC_SER_DMA
#endif
static void send_word(sync_port* port);
static void start_dma_out(struct sync_port *port, const char *data, int count);
static void start_dma_in(sync_port* port);
#ifdef SYNC_SER_DMA
static irqreturn_t tr_interrupt(int irq, void *dev_id);
static irqreturn_t rx_interrupt(int irq, void *dev_id);
#endif
#if (defined(CONFIG_ETRAX_SYNCHRONOUS_SERIAL_PORT0) && \
!defined(CONFIG_ETRAX_SYNCHRONOUS_SERIAL0_DMA)) || \
(defined(CONFIG_ETRAX_SYNCHRONOUS_SERIAL_PORT1) && \
!defined(CONFIG_ETRAX_SYNCHRONOUS_SERIAL1_DMA))
#define SYNC_SER_MANUAL
#endif
#ifdef SYNC_SER_MANUAL
static irqreturn_t manual_interrupt(int irq, void *dev_id);
#endif
#ifdef CONFIG_ETRAXFS /* ETRAX FS */
#define OUT_DMA_NBR 4
#define IN_DMA_NBR 5
#define PINMUX_SSER pinmux_sser0
#define SYNCSER_INST regi_sser0
#define SYNCSER_INTR_VECT SSER0_INTR_VECT
#define OUT_DMA_INST regi_dma4
#define IN_DMA_INST regi_dma5
#define DMA_OUT_INTR_VECT DMA4_INTR_VECT
#define DMA_IN_INTR_VECT DMA5_INTR_VECT
#define REQ_DMA_SYNCSER dma_sser0
#else /* Artpec-3 */
#define OUT_DMA_NBR 6
#define IN_DMA_NBR 7
#define PINMUX_SSER pinmux_sser
#define SYNCSER_INST regi_sser
#define SYNCSER_INTR_VECT SSER_INTR_VECT
#define OUT_DMA_INST regi_dma6
#define IN_DMA_INST regi_dma7
#define DMA_OUT_INTR_VECT DMA6_INTR_VECT
#define DMA_IN_INTR_VECT DMA7_INTR_VECT
#define REQ_DMA_SYNCSER dma_sser
#endif
/* The ports */
static struct sync_port ports[]=
{
{
.regi_sser = SYNCSER_INST,
.regi_dmaout = OUT_DMA_INST,
.regi_dmain = IN_DMA_INST,
#if defined(CONFIG_ETRAX_SYNCHRONOUS_SERIAL0_DMA)
.use_dma = 1,
#else
.use_dma = 0,
#endif
}
#ifdef CONFIG_ETRAXFS
,
{
.regi_sser = regi_sser1,
.regi_dmaout = regi_dma6,
.regi_dmain = regi_dma7,
#if defined(CONFIG_ETRAX_SYNCHRONOUS_SERIAL1_DMA)
.use_dma = 1,
#else
.use_dma = 0,
#endif
}
#endif
};
#define NBR_PORTS ARRAY_SIZE(ports)
static const struct file_operations sync_serial_fops = {
.owner = THIS_MODULE,
.write = sync_serial_write,
.read = sync_serial_read,
.poll = sync_serial_poll,
.unlocked_ioctl = sync_serial_ioctl,
.open = sync_serial_open,
llseek: automatically add .llseek fop All file_operations should get a .llseek operation so we can make nonseekable_open the default for future file operations without a .llseek pointer. The three cases that we can automatically detect are no_llseek, seq_lseek and default_llseek. For cases where we can we can automatically prove that the file offset is always ignored, we use noop_llseek, which maintains the current behavior of not returning an error from a seek. New drivers should normally not use noop_llseek but instead use no_llseek and call nonseekable_open at open time. Existing drivers can be converted to do the same when the maintainer knows for certain that no user code relies on calling seek on the device file. The generated code is often incorrectly indented and right now contains comments that clarify for each added line why a specific variant was chosen. In the version that gets submitted upstream, the comments will be gone and I will manually fix the indentation, because there does not seem to be a way to do that using coccinelle. Some amount of new code is currently sitting in linux-next that should get the same modifications, which I will do at the end of the merge window. Many thanks to Julia Lawall for helping me learn to write a semantic patch that does all this. ===== begin semantic patch ===== // This adds an llseek= method to all file operations, // as a preparation for making no_llseek the default. // // The rules are // - use no_llseek explicitly if we do nonseekable_open // - use seq_lseek for sequential files // - use default_llseek if we know we access f_pos // - use noop_llseek if we know we don't access f_pos, // but we still want to allow users to call lseek // @ open1 exists @ identifier nested_open; @@ nested_open(...) { <+... nonseekable_open(...) ...+> } @ open exists@ identifier open_f; identifier i, f; identifier open1.nested_open; @@ int open_f(struct inode *i, struct file *f) { <+... ( nonseekable_open(...) | nested_open(...) ) ...+> } @ read disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ read_no_fpos disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { ... when != off } @ write @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ write_no_fpos @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { ... when != off } @ fops0 @ identifier fops; @@ struct file_operations fops = { ... }; @ has_llseek depends on fops0 @ identifier fops0.fops; identifier llseek_f; @@ struct file_operations fops = { ... .llseek = llseek_f, ... }; @ has_read depends on fops0 @ identifier fops0.fops; identifier read_f; @@ struct file_operations fops = { ... .read = read_f, ... }; @ has_write depends on fops0 @ identifier fops0.fops; identifier write_f; @@ struct file_operations fops = { ... .write = write_f, ... }; @ has_open depends on fops0 @ identifier fops0.fops; identifier open_f; @@ struct file_operations fops = { ... .open = open_f, ... }; // use no_llseek if we call nonseekable_open //////////////////////////////////////////// @ nonseekable1 depends on !has_llseek && has_open @ identifier fops0.fops; identifier nso ~= "nonseekable_open"; @@ struct file_operations fops = { ... .open = nso, ... +.llseek = no_llseek, /* nonseekable */ }; @ nonseekable2 depends on !has_llseek @ identifier fops0.fops; identifier open.open_f; @@ struct file_operations fops = { ... .open = open_f, ... +.llseek = no_llseek, /* open uses nonseekable */ }; // use seq_lseek for sequential files ///////////////////////////////////// @ seq depends on !has_llseek @ identifier fops0.fops; identifier sr ~= "seq_read"; @@ struct file_operations fops = { ... .read = sr, ... +.llseek = seq_lseek, /* we have seq_read */ }; // use default_llseek if there is a readdir /////////////////////////////////////////// @ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier readdir_e; @@ // any other fop is used that changes pos struct file_operations fops = { ... .readdir = readdir_e, ... +.llseek = default_llseek, /* readdir is present */ }; // use default_llseek if at least one of read/write touches f_pos ///////////////////////////////////////////////////////////////// @ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read.read_f; @@ // read fops use offset struct file_operations fops = { ... .read = read_f, ... +.llseek = default_llseek, /* read accesses f_pos */ }; @ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, ... + .llseek = default_llseek, /* write accesses f_pos */ }; // Use noop_llseek if neither read nor write accesses f_pos /////////////////////////////////////////////////////////// @ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; identifier write_no_fpos.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, .read = read_f, ... +.llseek = noop_llseek, /* read and write both use no f_pos */ }; @ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write_no_fpos.write_f; @@ struct file_operations fops = { ... .write = write_f, ... +.llseek = noop_llseek, /* write uses no f_pos */ }; @ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; @@ struct file_operations fops = { ... .read = read_f, ... +.llseek = noop_llseek, /* read uses no f_pos */ }; @ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; @@ struct file_operations fops = { ... +.llseek = noop_llseek, /* no read or write fn */ }; ===== End semantic patch ===== Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Julia Lawall <julia@diku.dk> Cc: Christoph Hellwig <hch@infradead.org>
2010-08-15 23:52:59 +07:00
.release = sync_serial_release,
.llseek = noop_llseek,
};
static int __init etrax_sync_serial_init(void)
{
ports[0].enabled = 0;
#ifdef CONFIG_ETRAXFS
ports[1].enabled = 0;
#endif
if (register_chrdev(SYNC_SERIAL_MAJOR, "sync serial",
&sync_serial_fops) < 0) {
printk(KERN_WARNING
"Unable to get major for synchronous serial port\n");
return -EBUSY;
}
/* Initialize Ports */
#if defined(CONFIG_ETRAX_SYNCHRONOUS_SERIAL_PORT0)
if (crisv32_pinmux_alloc_fixed(PINMUX_SSER)) {
printk(KERN_WARNING
"Unable to alloc pins for synchronous serial port 0\n");
return -EIO;
}
ports[0].enabled = 1;
initialize_port(0);
#endif
#if defined(CONFIG_ETRAX_SYNCHRONOUS_SERIAL_PORT1)
if (crisv32_pinmux_alloc_fixed(pinmux_sser1)) {
printk(KERN_WARNING
"Unable to alloc pins for synchronous serial port 0\n");
return -EIO;
}
ports[1].enabled = 1;
initialize_port(1);
#endif
#ifdef CONFIG_ETRAXFS
printk(KERN_INFO "ETRAX FS synchronous serial port driver\n");
#else
printk(KERN_INFO "Artpec-3 synchronous serial port driver\n");
#endif
return 0;
}
static void __init initialize_port(int portnbr)
{
int __attribute__((unused)) i;
struct sync_port *port = &ports[portnbr];
reg_sser_rw_cfg cfg = {0};
reg_sser_rw_frm_cfg frm_cfg = {0};
reg_sser_rw_tr_cfg tr_cfg = {0};
reg_sser_rw_rec_cfg rec_cfg = {0};
DEBUG(printk(KERN_DEBUG "Init sync serial port %d\n", portnbr));
port->port_nbr = portnbr;
port->init_irqs = 1;
port->out_rd_ptr = port->out_buffer;
port->out_buf_count = 0;
port->output = 1;
port->input = 0;
port->readp = port->flip;
port->writep = port->flip;
port->in_buffer_size = IN_BUFFER_SIZE;
port->inbufchunk = IN_DESCR_SIZE;
port->next_rx_desc = &port->in_descr[0];
port->prev_rx_desc = &port->in_descr[NBR_IN_DESCR-1];
port->prev_rx_desc->eol = 1;
init_waitqueue_head(&port->out_wait_q);
init_waitqueue_head(&port->in_wait_q);
spin_lock_init(&port->lock);
cfg.out_clk_src = regk_sser_intern_clk;
cfg.out_clk_pol = regk_sser_pos;
cfg.clk_od_mode = regk_sser_no;
cfg.clk_dir = regk_sser_out;
cfg.gate_clk = regk_sser_no;
cfg.base_freq = regk_sser_f29_493;
cfg.clk_div = 256;
REG_WR(sser, port->regi_sser, rw_cfg, cfg);
frm_cfg.wordrate = DEFAULT_WORD_RATE;
frm_cfg.type = regk_sser_edge;
frm_cfg.frame_pin_dir = regk_sser_out;
frm_cfg.frame_pin_use = regk_sser_frm;
frm_cfg.status_pin_dir = regk_sser_in;
frm_cfg.status_pin_use = regk_sser_hold;
frm_cfg.out_on = regk_sser_tr;
frm_cfg.tr_delay = 1;
REG_WR(sser, port->regi_sser, rw_frm_cfg, frm_cfg);
tr_cfg.urun_stop = regk_sser_no;
tr_cfg.sample_size = 7;
tr_cfg.sh_dir = regk_sser_msbfirst;
tr_cfg.use_dma = port->use_dma ? regk_sser_yes : regk_sser_no;
#if 0
tr_cfg.rate_ctrl = regk_sser_bulk;
tr_cfg.data_pin_use = regk_sser_dout;
#else
tr_cfg.rate_ctrl = regk_sser_iso;
tr_cfg.data_pin_use = regk_sser_dout;
#endif
tr_cfg.bulk_wspace = 1;
REG_WR(sser, port->regi_sser, rw_tr_cfg, tr_cfg);
rec_cfg.sample_size = 7;
rec_cfg.sh_dir = regk_sser_msbfirst;
rec_cfg.use_dma = port->use_dma ? regk_sser_yes : regk_sser_no;
rec_cfg.fifo_thr = regk_sser_inf;
REG_WR(sser, port->regi_sser, rw_rec_cfg, rec_cfg);
#ifdef SYNC_SER_DMA
/* Setup the descriptor ring for dma out/transmit. */
for (i = 0; i < NBR_OUT_DESCR; i++) {
port->out_descr[i].wait = 0;
port->out_descr[i].intr = 1;
port->out_descr[i].eol = 0;
port->out_descr[i].out_eop = 0;
port->out_descr[i].next =
(dma_descr_data *)virt_to_phys(&port->out_descr[i+1]);
}
/* Create a ring from the list. */
port->out_descr[NBR_OUT_DESCR-1].next =
(dma_descr_data *)virt_to_phys(&port->out_descr[0]);
/* Setup context for traversing the ring. */
port->active_tr_descr = &port->out_descr[0];
port->prev_tr_descr = &port->out_descr[NBR_OUT_DESCR-1];
port->catch_tr_descr = &port->out_descr[0];
#endif
}
static inline int sync_data_avail(struct sync_port *port)
{
int avail;
unsigned char *start;
unsigned char *end;
start = (unsigned char*)port->readp; /* cast away volatile */
end = (unsigned char*)port->writep; /* cast away volatile */
/* 0123456789 0123456789
* ----- - -----
* ^rp ^wp ^wp ^rp
*/
if (end >= start)
avail = end - start;
else
avail = port->in_buffer_size - (start - end);
return avail;
}
static inline int sync_data_avail_to_end(struct sync_port *port)
{
int avail;
unsigned char *start;
unsigned char *end;
start = (unsigned char*)port->readp; /* cast away volatile */
end = (unsigned char*)port->writep; /* cast away volatile */
/* 0123456789 0123456789
* ----- -----
* ^rp ^wp ^wp ^rp
*/
if (end >= start)
avail = end - start;
else
avail = port->flip + port->in_buffer_size - start;
return avail;
}
static int sync_serial_open(struct inode *inode, struct file *file)
{
int dev = iminor(inode);
int ret = -EBUSY;
sync_port *port;
reg_dma_rw_cfg cfg = {.en = regk_dma_yes};
reg_dma_rw_intr_mask intr_mask = {.data = regk_dma_yes};
mutex_lock(&sync_serial_mutex);
DEBUG(printk(KERN_DEBUG "Open sync serial port %d\n", dev));
if (dev < 0 || dev >= NBR_PORTS || !ports[dev].enabled)
{
DEBUG(printk(KERN_DEBUG "Invalid minor %d\n", dev));
ret = -ENODEV;
goto out;
}
port = &ports[dev];
/* Allow open this device twice (assuming one reader and one writer) */
if (port->busy == 2)
{
DEBUG(printk(KERN_DEBUG "Device is busy.. \n"));
goto out;
}
if (port->init_irqs) {
if (port->use_dma) {
if (port == &ports[0]) {
#ifdef SYNC_SER_DMA
if (request_irq(DMA_OUT_INTR_VECT,
tr_interrupt,
0,
"synchronous serial 0 dma tr",
&ports[0])) {
printk(KERN_CRIT "Can't allocate sync serial port 0 IRQ");
goto out;
} else if (request_irq(DMA_IN_INTR_VECT,
rx_interrupt,
0,
"synchronous serial 1 dma rx",
&ports[0])) {
free_irq(DMA_OUT_INTR_VECT, &port[0]);
printk(KERN_CRIT "Can't allocate sync serial port 0 IRQ");
goto out;
} else if (crisv32_request_dma(OUT_DMA_NBR,
"synchronous serial 0 dma tr",
DMA_VERBOSE_ON_ERROR,
0,
REQ_DMA_SYNCSER)) {
free_irq(DMA_OUT_INTR_VECT, &port[0]);
free_irq(DMA_IN_INTR_VECT, &port[0]);
printk(KERN_CRIT "Can't allocate sync serial port 0 TX DMA channel");
goto out;
} else if (crisv32_request_dma(IN_DMA_NBR,
"synchronous serial 0 dma rec",
DMA_VERBOSE_ON_ERROR,
0,
REQ_DMA_SYNCSER)) {
crisv32_free_dma(OUT_DMA_NBR);
free_irq(DMA_OUT_INTR_VECT, &port[0]);
free_irq(DMA_IN_INTR_VECT, &port[0]);
printk(KERN_CRIT "Can't allocate sync serial port 1 RX DMA channel");
goto out;
}
#endif
}
#ifdef CONFIG_ETRAXFS
else if (port == &ports[1]) {
#ifdef SYNC_SER_DMA
if (request_irq(DMA6_INTR_VECT,
tr_interrupt,
0,
"synchronous serial 1 dma tr",
&ports[1])) {
printk(KERN_CRIT "Can't allocate sync serial port 1 IRQ");
goto out;
} else if (request_irq(DMA7_INTR_VECT,
rx_interrupt,
0,
"synchronous serial 1 dma rx",
&ports[1])) {
free_irq(DMA6_INTR_VECT, &ports[1]);
printk(KERN_CRIT "Can't allocate sync serial port 3 IRQ");
goto out;
} else if (crisv32_request_dma(
SYNC_SER1_TX_DMA_NBR,
"synchronous serial 1 dma tr",
DMA_VERBOSE_ON_ERROR,
0,
dma_sser1)) {
free_irq(DMA6_INTR_VECT, &ports[1]);
free_irq(DMA7_INTR_VECT, &ports[1]);
printk(KERN_CRIT "Can't allocate sync serial port 3 TX DMA channel");
goto out;
} else if (crisv32_request_dma(
SYNC_SER1_RX_DMA_NBR,
"synchronous serial 3 dma rec",
DMA_VERBOSE_ON_ERROR,
0,
dma_sser1)) {
crisv32_free_dma(SYNC_SER1_TX_DMA_NBR);
free_irq(DMA6_INTR_VECT, &ports[1]);
free_irq(DMA7_INTR_VECT, &ports[1]);
printk(KERN_CRIT "Can't allocate sync serial port 3 RX DMA channel");
goto out;
}
#endif
}
#endif
/* Enable DMAs */
REG_WR(dma, port->regi_dmain, rw_cfg, cfg);
REG_WR(dma, port->regi_dmaout, rw_cfg, cfg);
/* Enable DMA IRQs */
REG_WR(dma, port->regi_dmain, rw_intr_mask, intr_mask);
REG_WR(dma, port->regi_dmaout, rw_intr_mask, intr_mask);
/* Set up wordsize = 1 for DMAs. */
DMA_WR_CMD (port->regi_dmain, regk_dma_set_w_size1);
DMA_WR_CMD (port->regi_dmaout, regk_dma_set_w_size1);
start_dma_in(port);
port->init_irqs = 0;
} else { /* !port->use_dma */
#ifdef SYNC_SER_MANUAL
if (port == &ports[0]) {
if (request_irq(SYNCSER_INTR_VECT,
manual_interrupt,
0,
"synchronous serial manual irq",
&ports[0])) {
printk("Can't allocate sync serial manual irq");
goto out;
}
}
#ifdef CONFIG_ETRAXFS
else if (port == &ports[1]) {
if (request_irq(SSER1_INTR_VECT,
manual_interrupt,
0,
"synchronous serial manual irq",
&ports[1])) {
printk(KERN_CRIT "Can't allocate sync serial manual irq");
goto out;
}
}
#endif
port->init_irqs = 0;
#else
panic("sync_serial: Manual mode not supported.\n");
#endif /* SYNC_SER_MANUAL */
}
} /* port->init_irqs */
port->busy++;
ret = 0;
out:
mutex_unlock(&sync_serial_mutex);
return ret;
}
static int sync_serial_release(struct inode *inode, struct file *file)
{
int dev = iminor(inode);
sync_port *port;
if (dev < 0 || dev >= NBR_PORTS || !ports[dev].enabled)
{
DEBUG(printk("Invalid minor %d\n", dev));
return -ENODEV;
}
port = &ports[dev];
if (port->busy)
port->busy--;
if (!port->busy)
/* XXX */ ;
return 0;
}
static unsigned int sync_serial_poll(struct file *file, poll_table *wait)
{
int dev = iminor(file->f_path.dentry->d_inode);
unsigned int mask = 0;
sync_port *port;
DEBUGPOLL( static unsigned int prev_mask = 0; );
port = &ports[dev];
if (!port->started) {
reg_sser_rw_cfg cfg = REG_RD(sser, port->regi_sser, rw_cfg);
reg_sser_rw_rec_cfg rec_cfg =
REG_RD(sser, port->regi_sser, rw_rec_cfg);
cfg.en = regk_sser_yes;
rec_cfg.rec_en = port->input;
REG_WR(sser, port->regi_sser, rw_cfg, cfg);
REG_WR(sser, port->regi_sser, rw_rec_cfg, rec_cfg);
port->started = 1;
}
poll_wait(file, &port->out_wait_q, wait);
poll_wait(file, &port->in_wait_q, wait);
/* No active transfer, descriptors are available */
if (port->output && !port->tr_running)
mask |= POLLOUT | POLLWRNORM;
/* Descriptor and buffer space available. */
if (port->output &&
port->active_tr_descr != port->catch_tr_descr &&
port->out_buf_count < OUT_BUFFER_SIZE)
mask |= POLLOUT | POLLWRNORM;
/* At least an inbufchunk of data */
if (port->input && sync_data_avail(port) >= port->inbufchunk)
mask |= POLLIN | POLLRDNORM;
DEBUGPOLL(if (mask != prev_mask)
printk("sync_serial_poll: mask 0x%08X %s %s\n", mask,
mask&POLLOUT?"POLLOUT":"", mask&POLLIN?"POLLIN":"");
prev_mask = mask;
);
return mask;
}
static int sync_serial_ioctl(struct file *file,
unsigned int cmd, unsigned long arg)
{
int return_val = 0;
int dma_w_size = regk_dma_set_w_size1;
int dev = iminor(file->f_path.dentry->d_inode);
sync_port *port;
reg_sser_rw_tr_cfg tr_cfg;
reg_sser_rw_rec_cfg rec_cfg;
reg_sser_rw_frm_cfg frm_cfg;
reg_sser_rw_cfg gen_cfg;
reg_sser_rw_intr_mask intr_mask;
if (dev < 0 || dev >= NBR_PORTS || !ports[dev].enabled)
{
DEBUG(printk("Invalid minor %d\n", dev));
return -1;
}
port = &ports[dev];
spin_lock_irq(&port->lock);
tr_cfg = REG_RD(sser, port->regi_sser, rw_tr_cfg);
rec_cfg = REG_RD(sser, port->regi_sser, rw_rec_cfg);
frm_cfg = REG_RD(sser, port->regi_sser, rw_frm_cfg);
gen_cfg = REG_RD(sser, port->regi_sser, rw_cfg);
intr_mask = REG_RD(sser, port->regi_sser, rw_intr_mask);
switch(cmd)
{
case SSP_SPEED:
if (GET_SPEED(arg) == CODEC)
{
unsigned int freq;
gen_cfg.base_freq = regk_sser_f32;
/* Clock divider will internally be
* gen_cfg.clk_div + 1.
*/
freq = GET_FREQ(arg);
switch (freq) {
case FREQ_32kHz:
case FREQ_64kHz:
case FREQ_128kHz:
case FREQ_256kHz:
gen_cfg.clk_div = 125 *
(1 << (freq - FREQ_256kHz)) - 1;
break;
case FREQ_512kHz:
gen_cfg.clk_div = 62;
break;
case FREQ_1MHz:
case FREQ_2MHz:
case FREQ_4MHz:
gen_cfg.clk_div = 8 * (1 << freq) - 1;
break;
}
} else {
gen_cfg.base_freq = regk_sser_f29_493;
switch (GET_SPEED(arg)) {
case SSP150:
gen_cfg.clk_div = 29493000 / (150 * 8) - 1;
break;
case SSP300:
gen_cfg.clk_div = 29493000 / (300 * 8) - 1;
break;
case SSP600:
gen_cfg.clk_div = 29493000 / (600 * 8) - 1;
break;
case SSP1200:
gen_cfg.clk_div = 29493000 / (1200 * 8) - 1;
break;
case SSP2400:
gen_cfg.clk_div = 29493000 / (2400 * 8) - 1;
break;
case SSP4800:
gen_cfg.clk_div = 29493000 / (4800 * 8) - 1;
break;
case SSP9600:
gen_cfg.clk_div = 29493000 / (9600 * 8) - 1;
break;
case SSP19200:
gen_cfg.clk_div = 29493000 / (19200 * 8) - 1;
break;
case SSP28800:
gen_cfg.clk_div = 29493000 / (28800 * 8) - 1;
break;
case SSP57600:
gen_cfg.clk_div = 29493000 / (57600 * 8) - 1;
break;
case SSP115200:
gen_cfg.clk_div = 29493000 / (115200 * 8) - 1;
break;
case SSP230400:
gen_cfg.clk_div = 29493000 / (230400 * 8) - 1;
break;
case SSP460800:
gen_cfg.clk_div = 29493000 / (460800 * 8) - 1;
break;
case SSP921600:
gen_cfg.clk_div = 29493000 / (921600 * 8) - 1;
break;
case SSP3125000:
gen_cfg.base_freq = regk_sser_f100;
gen_cfg.clk_div = 100000000 / (3125000 * 8) - 1;
break;
}
}
frm_cfg.wordrate = GET_WORD_RATE(arg);
break;
case SSP_MODE:
switch(arg)
{
case MASTER_OUTPUT:
port->output = 1;
port->input = 0;
frm_cfg.out_on = regk_sser_tr;
frm_cfg.frame_pin_dir = regk_sser_out;
gen_cfg.clk_dir = regk_sser_out;
break;
case SLAVE_OUTPUT:
port->output = 1;
port->input = 0;
frm_cfg.frame_pin_dir = regk_sser_in;
gen_cfg.clk_dir = regk_sser_in;
break;
case MASTER_INPUT:
port->output = 0;
port->input = 1;
frm_cfg.frame_pin_dir = regk_sser_out;
frm_cfg.out_on = regk_sser_intern_tb;
gen_cfg.clk_dir = regk_sser_out;
break;
case SLAVE_INPUT:
port->output = 0;
port->input = 1;
frm_cfg.frame_pin_dir = regk_sser_in;
gen_cfg.clk_dir = regk_sser_in;
break;
case MASTER_BIDIR:
port->output = 1;
port->input = 1;
frm_cfg.frame_pin_dir = regk_sser_out;
frm_cfg.out_on = regk_sser_intern_tb;
gen_cfg.clk_dir = regk_sser_out;
break;
case SLAVE_BIDIR:
port->output = 1;
port->input = 1;
frm_cfg.frame_pin_dir = regk_sser_in;
gen_cfg.clk_dir = regk_sser_in;
break;
default:
spin_unlock_irq(&port->lock);
return -EINVAL;
}
if (!port->use_dma || (arg == MASTER_OUTPUT || arg == SLAVE_OUTPUT))
intr_mask.rdav = regk_sser_yes;
break;
case SSP_FRAME_SYNC:
if (arg & NORMAL_SYNC) {
frm_cfg.rec_delay = 1;
frm_cfg.tr_delay = 1;
}
else if (arg & EARLY_SYNC)
frm_cfg.rec_delay = frm_cfg.tr_delay = 0;
else if (arg & SECOND_WORD_SYNC) {
frm_cfg.rec_delay = 7;
frm_cfg.tr_delay = 1;
}
tr_cfg.bulk_wspace = frm_cfg.tr_delay;
frm_cfg.early_wend = regk_sser_yes;
if (arg & BIT_SYNC)
frm_cfg.type = regk_sser_edge;
else if (arg & WORD_SYNC)
frm_cfg.type = regk_sser_level;
else if (arg & EXTENDED_SYNC)
frm_cfg.early_wend = regk_sser_no;
if (arg & SYNC_ON)
frm_cfg.frame_pin_use = regk_sser_frm;
else if (arg & SYNC_OFF)
frm_cfg.frame_pin_use = regk_sser_gio0;
dma_w_size = regk_dma_set_w_size2;
if (arg & WORD_SIZE_8) {
rec_cfg.sample_size = tr_cfg.sample_size = 7;
dma_w_size = regk_dma_set_w_size1;
} else if (arg & WORD_SIZE_12)
rec_cfg.sample_size = tr_cfg.sample_size = 11;
else if (arg & WORD_SIZE_16)
rec_cfg.sample_size = tr_cfg.sample_size = 15;
else if (arg & WORD_SIZE_24)
rec_cfg.sample_size = tr_cfg.sample_size = 23;
else if (arg & WORD_SIZE_32)
rec_cfg.sample_size = tr_cfg.sample_size = 31;
if (arg & BIT_ORDER_MSB)
rec_cfg.sh_dir = tr_cfg.sh_dir = regk_sser_msbfirst;
else if (arg & BIT_ORDER_LSB)
rec_cfg.sh_dir = tr_cfg.sh_dir = regk_sser_lsbfirst;
if (arg & FLOW_CONTROL_ENABLE) {
frm_cfg.status_pin_use = regk_sser_frm;
rec_cfg.fifo_thr = regk_sser_thr16;
} else if (arg & FLOW_CONTROL_DISABLE) {
frm_cfg.status_pin_use = regk_sser_gio0;
rec_cfg.fifo_thr = regk_sser_inf;
}
if (arg & CLOCK_NOT_GATED)
gen_cfg.gate_clk = regk_sser_no;
else if (arg & CLOCK_GATED)
gen_cfg.gate_clk = regk_sser_yes;
break;
case SSP_IPOLARITY:
/* NOTE!! negedge is considered NORMAL */
if (arg & CLOCK_NORMAL)
rec_cfg.clk_pol = regk_sser_neg;
else if (arg & CLOCK_INVERT)
rec_cfg.clk_pol = regk_sser_pos;
if (arg & FRAME_NORMAL)
frm_cfg.level = regk_sser_pos_hi;
else if (arg & FRAME_INVERT)
frm_cfg.level = regk_sser_neg_lo;
if (arg & STATUS_NORMAL)
gen_cfg.hold_pol = regk_sser_pos;
else if (arg & STATUS_INVERT)
gen_cfg.hold_pol = regk_sser_neg;
break;
case SSP_OPOLARITY:
if (arg & CLOCK_NORMAL)
gen_cfg.out_clk_pol = regk_sser_pos;
else if (arg & CLOCK_INVERT)
gen_cfg.out_clk_pol = regk_sser_neg;
if (arg & FRAME_NORMAL)
frm_cfg.level = regk_sser_pos_hi;
else if (arg & FRAME_INVERT)
frm_cfg.level = regk_sser_neg_lo;
if (arg & STATUS_NORMAL)
gen_cfg.hold_pol = regk_sser_pos;
else if (arg & STATUS_INVERT)
gen_cfg.hold_pol = regk_sser_neg;
break;
case SSP_SPI:
rec_cfg.fifo_thr = regk_sser_inf;
rec_cfg.sh_dir = tr_cfg.sh_dir = regk_sser_msbfirst;
rec_cfg.sample_size = tr_cfg.sample_size = 7;
frm_cfg.frame_pin_use = regk_sser_frm;
frm_cfg.type = regk_sser_level;
frm_cfg.tr_delay = 1;
frm_cfg.level = regk_sser_neg_lo;
if (arg & SPI_SLAVE)
{
rec_cfg.clk_pol = regk_sser_neg;
gen_cfg.clk_dir = regk_sser_in;
port->input = 1;
port->output = 0;
}
else
{
gen_cfg.out_clk_pol = regk_sser_pos;
port->input = 0;
port->output = 1;
gen_cfg.clk_dir = regk_sser_out;
}
break;
case SSP_INBUFCHUNK:
break;
default:
return_val = -1;
}
if (port->started) {
rec_cfg.rec_en = port->input;
gen_cfg.en = (port->output | port->input);
}
REG_WR(sser, port->regi_sser, rw_tr_cfg, tr_cfg);
REG_WR(sser, port->regi_sser, rw_rec_cfg, rec_cfg);
REG_WR(sser, port->regi_sser, rw_frm_cfg, frm_cfg);
REG_WR(sser, port->regi_sser, rw_intr_mask, intr_mask);
REG_WR(sser, port->regi_sser, rw_cfg, gen_cfg);
if (cmd == SSP_FRAME_SYNC && (arg & (WORD_SIZE_8 | WORD_SIZE_12 |
WORD_SIZE_16 | WORD_SIZE_24 | WORD_SIZE_32))) {
int en = gen_cfg.en;
gen_cfg.en = 0;
REG_WR(sser, port->regi_sser, rw_cfg, gen_cfg);
/* ##### Should DMA be stoped before we change dma size? */
DMA_WR_CMD(port->regi_dmain, dma_w_size);
DMA_WR_CMD(port->regi_dmaout, dma_w_size);
gen_cfg.en = en;
REG_WR(sser, port->regi_sser, rw_cfg, gen_cfg);
}
spin_unlock_irq(&port->lock);
return return_val;
}
static long sync_serial_ioctl(struct file *file,
unsigned int cmd, unsigned long arg)
{
long ret;
mutex_lock(&sync_serial_mutex);
ret = sync_serial_ioctl_unlocked(file, cmd, arg);
mutex_unlock(&sync_serial_mutex);
return ret;
}
/* NOTE: sync_serial_write does not support concurrency */
static ssize_t sync_serial_write(struct file *file, const char *buf,
size_t count, loff_t *ppos)
{
int dev = iminor(file->f_path.dentry->d_inode);
DECLARE_WAITQUEUE(wait, current);
struct sync_port *port;
int trunc_count;
unsigned long flags;
int bytes_free;
int out_buf_count;
unsigned char *rd_ptr; /* First allocated byte in the buffer */
unsigned char *wr_ptr; /* First free byte in the buffer */
unsigned char *buf_stop_ptr; /* Last byte + 1 */
if (dev < 0 || dev >= NBR_PORTS || !ports[dev].enabled) {
DEBUG(printk("Invalid minor %d\n", dev));
return -ENODEV;
}
port = &ports[dev];
/* |<- OUT_BUFFER_SIZE ->|
* |<- out_buf_count ->|
* |<- trunc_count ->| ...->|
* ______________________________________________________
* | free | data | free |
* |_________|___________________|________________________|
* ^ rd_ptr ^ wr_ptr
*/
DEBUGWRITE(printk(KERN_DEBUG "W d%d c %lu a: %p c: %p\n",
port->port_nbr, count, port->active_tr_descr,
port->catch_tr_descr));
/* Read variables that may be updated by interrupts */
spin_lock_irqsave(&port->lock, flags);
rd_ptr = port->out_rd_ptr;
out_buf_count = port->out_buf_count;
spin_unlock_irqrestore(&port->lock, flags);
/* Check if resources are available */
if (port->tr_running &&
((port->use_dma && port->active_tr_descr == port->catch_tr_descr) ||
out_buf_count >= OUT_BUFFER_SIZE)) {
DEBUGWRITE(printk(KERN_DEBUG "sser%d full\n", dev));
return -EAGAIN;
}
buf_stop_ptr = port->out_buffer + OUT_BUFFER_SIZE;
/* Determine pointer to the first free byte, before copying. */
wr_ptr = rd_ptr + out_buf_count;
if (wr_ptr >= buf_stop_ptr)
wr_ptr -= OUT_BUFFER_SIZE;
/* If we wrap the ring buffer, let the user space program handle it by
* truncating the data. This could be more elegant, small buffer
* fragments may occur.
*/
bytes_free = OUT_BUFFER_SIZE - out_buf_count;
if (wr_ptr + bytes_free > buf_stop_ptr)
bytes_free = buf_stop_ptr - wr_ptr;
trunc_count = (count < bytes_free) ? count : bytes_free;
if (copy_from_user(wr_ptr, buf, trunc_count))
return -EFAULT;
DEBUGOUTBUF(printk(KERN_DEBUG "%-4d + %-4d = %-4d %p %p %p\n",
out_buf_count, trunc_count,
port->out_buf_count, port->out_buffer,
wr_ptr, buf_stop_ptr));
/* Make sure transmitter/receiver is running */
if (!port->started) {
reg_sser_rw_cfg cfg = REG_RD(sser, port->regi_sser, rw_cfg);
reg_sser_rw_rec_cfg rec_cfg = REG_RD(sser, port->regi_sser, rw_rec_cfg);
cfg.en = regk_sser_yes;
rec_cfg.rec_en = port->input;
REG_WR(sser, port->regi_sser, rw_cfg, cfg);
REG_WR(sser, port->regi_sser, rw_rec_cfg, rec_cfg);
port->started = 1;
}
/* Setup wait if blocking */
if (!(file->f_flags & O_NONBLOCK)) {
add_wait_queue(&port->out_wait_q, &wait);
set_current_state(TASK_INTERRUPTIBLE);
}
spin_lock_irqsave(&port->lock, flags);
port->out_buf_count += trunc_count;
if (port->use_dma) {
start_dma_out(port, wr_ptr, trunc_count);
} else if (!port->tr_running) {
reg_sser_rw_intr_mask intr_mask;
intr_mask = REG_RD(sser, port->regi_sser, rw_intr_mask);
/* Start sender by writing data */
send_word(port);
/* and enable transmitter ready IRQ */
intr_mask.trdy = 1;
REG_WR(sser, port->regi_sser, rw_intr_mask, intr_mask);
}
spin_unlock_irqrestore(&port->lock, flags);
/* Exit if non blocking */
if (file->f_flags & O_NONBLOCK) {
DEBUGWRITE(printk(KERN_DEBUG "w d%d c %lu %08x\n",
port->port_nbr, trunc_count,
REG_RD_INT(dma, port->regi_dmaout, r_intr)));
return trunc_count;
}
schedule();
set_current_state(TASK_RUNNING);
remove_wait_queue(&port->out_wait_q, &wait);
if (signal_pending(current))
return -EINTR;
DEBUGWRITE(printk(KERN_DEBUG "w d%d c %lu\n",
port->port_nbr, trunc_count));
return trunc_count;
}
static ssize_t sync_serial_read(struct file * file, char * buf,
size_t count, loff_t *ppos)
{
int dev = iminor(file->f_path.dentry->d_inode);
int avail;
sync_port *port;
unsigned char* start;
unsigned char* end;
unsigned long flags;
if (dev < 0 || dev >= NBR_PORTS || !ports[dev].enabled)
{
DEBUG(printk("Invalid minor %d\n", dev));
return -ENODEV;
}
port = &ports[dev];
DEBUGREAD(printk("R%d c %d ri %lu wi %lu /%lu\n", dev, count, port->readp - port->flip, port->writep - port->flip, port->in_buffer_size));
if (!port->started)
{
reg_sser_rw_cfg cfg = REG_RD(sser, port->regi_sser, rw_cfg);
reg_sser_rw_tr_cfg tr_cfg = REG_RD(sser, port->regi_sser, rw_tr_cfg);
reg_sser_rw_rec_cfg rec_cfg = REG_RD(sser, port->regi_sser, rw_rec_cfg);
cfg.en = regk_sser_yes;
tr_cfg.tr_en = regk_sser_yes;
rec_cfg.rec_en = regk_sser_yes;
REG_WR(sser, port->regi_sser, rw_cfg, cfg);
REG_WR(sser, port->regi_sser, rw_tr_cfg, tr_cfg);
REG_WR(sser, port->regi_sser, rw_rec_cfg, rec_cfg);
port->started = 1;
}
/* Calculate number of available bytes */
/* Save pointers to avoid that they are modified by interrupt */
spin_lock_irqsave(&port->lock, flags);
start = (unsigned char*)port->readp; /* cast away volatile */
end = (unsigned char*)port->writep; /* cast away volatile */
spin_unlock_irqrestore(&port->lock, flags);
while ((start == end) && !port->full) /* No data */
{
DEBUGREAD(printk(KERN_DEBUG "&"));
if (file->f_flags & O_NONBLOCK)
return -EAGAIN;
interruptible_sleep_on(&port->in_wait_q);
if (signal_pending(current))
return -EINTR;
spin_lock_irqsave(&port->lock, flags);
start = (unsigned char*)port->readp; /* cast away volatile */
end = (unsigned char*)port->writep; /* cast away volatile */
spin_unlock_irqrestore(&port->lock, flags);
}
/* Lazy read, never return wrapped data. */
if (port->full)
avail = port->in_buffer_size;
else if (end > start)
avail = end - start;
else
avail = port->flip + port->in_buffer_size - start;
count = count > avail ? avail : count;
if (copy_to_user(buf, start, count))
return -EFAULT;
/* Disable interrupts while updating readp */
spin_lock_irqsave(&port->lock, flags);
port->readp += count;
if (port->readp >= port->flip + port->in_buffer_size) /* Wrap? */
port->readp = port->flip;
port->full = 0;
spin_unlock_irqrestore(&port->lock, flags);
DEBUGREAD(printk("r %d\n", count));
return count;
}
static void send_word(sync_port* port)
{
reg_sser_rw_tr_cfg tr_cfg = REG_RD(sser, port->regi_sser, rw_tr_cfg);
reg_sser_rw_tr_data tr_data = {0};
switch(tr_cfg.sample_size)
{
case 8:
port->out_buf_count--;
tr_data.data = *port->out_rd_ptr++;
REG_WR(sser, port->regi_sser, rw_tr_data, tr_data);
if (port->out_rd_ptr >= port->out_buffer + OUT_BUFFER_SIZE)
port->out_rd_ptr = port->out_buffer;
break;
case 12:
{
int data = (*port->out_rd_ptr++) << 8;
data |= *port->out_rd_ptr++;
port->out_buf_count -= 2;
tr_data.data = data;
REG_WR(sser, port->regi_sser, rw_tr_data, tr_data);
if (port->out_rd_ptr >= port->out_buffer + OUT_BUFFER_SIZE)
port->out_rd_ptr = port->out_buffer;
}
break;
case 16:
port->out_buf_count -= 2;
tr_data.data = *(unsigned short *)port->out_rd_ptr;
REG_WR(sser, port->regi_sser, rw_tr_data, tr_data);
port->out_rd_ptr += 2;
if (port->out_rd_ptr >= port->out_buffer + OUT_BUFFER_SIZE)
port->out_rd_ptr = port->out_buffer;
break;
case 24:
port->out_buf_count -= 3;
tr_data.data = *(unsigned short *)port->out_rd_ptr;
REG_WR(sser, port->regi_sser, rw_tr_data, tr_data);
port->out_rd_ptr += 2;
tr_data.data = *port->out_rd_ptr++;
REG_WR(sser, port->regi_sser, rw_tr_data, tr_data);
if (port->out_rd_ptr >= port->out_buffer + OUT_BUFFER_SIZE)
port->out_rd_ptr = port->out_buffer;
break;
case 32:
port->out_buf_count -= 4;
tr_data.data = *(unsigned short *)port->out_rd_ptr;
REG_WR(sser, port->regi_sser, rw_tr_data, tr_data);
port->out_rd_ptr += 2;
tr_data.data = *(unsigned short *)port->out_rd_ptr;
REG_WR(sser, port->regi_sser, rw_tr_data, tr_data);
port->out_rd_ptr += 2;
if (port->out_rd_ptr >= port->out_buffer + OUT_BUFFER_SIZE)
port->out_rd_ptr = port->out_buffer;
break;
}
}
static void start_dma_out(struct sync_port *port,
const char *data, int count)
{
port->active_tr_descr->buf = (char *) virt_to_phys((char *) data);
port->active_tr_descr->after = port->active_tr_descr->buf + count;
port->active_tr_descr->intr = 1;
port->active_tr_descr->eol = 1;
port->prev_tr_descr->eol = 0;
DEBUGTRDMA(printk(KERN_DEBUG "Inserting eolr:%p eol@:%p\n",
port->prev_tr_descr, port->active_tr_descr));
port->prev_tr_descr = port->active_tr_descr;
port->active_tr_descr = phys_to_virt((int) port->active_tr_descr->next);
if (!port->tr_running) {
reg_sser_rw_tr_cfg tr_cfg = REG_RD(sser, port->regi_sser,
rw_tr_cfg);
port->out_context.next = 0;
port->out_context.saved_data =
(dma_descr_data *)virt_to_phys(port->prev_tr_descr);
port->out_context.saved_data_buf = port->prev_tr_descr->buf;
DMA_START_CONTEXT(port->regi_dmaout,
virt_to_phys((char *)&port->out_context));
tr_cfg.tr_en = regk_sser_yes;
REG_WR(sser, port->regi_sser, rw_tr_cfg, tr_cfg);
DEBUGTRDMA(printk(KERN_DEBUG "dma s\n"););
} else {
DMA_CONTINUE_DATA(port->regi_dmaout);
DEBUGTRDMA(printk(KERN_DEBUG "dma c\n"););
}
port->tr_running = 1;
}
static void start_dma_in(sync_port *port)
{
int i;
char *buf;
port->writep = port->flip;
if (port->writep > port->flip + port->in_buffer_size) {
panic("Offset too large in sync serial driver\n");
return;
}
buf = (char*)virt_to_phys(port->in_buffer);
for (i = 0; i < NBR_IN_DESCR; i++) {
port->in_descr[i].buf = buf;
port->in_descr[i].after = buf + port->inbufchunk;
port->in_descr[i].intr = 1;
port->in_descr[i].next = (dma_descr_data*)virt_to_phys(&port->in_descr[i+1]);
port->in_descr[i].buf = buf;
buf += port->inbufchunk;
}
/* Link the last descriptor to the first */
port->in_descr[i-1].next = (dma_descr_data*)virt_to_phys(&port->in_descr[0]);
port->in_descr[i-1].eol = regk_sser_yes;
port->next_rx_desc = &port->in_descr[0];
port->prev_rx_desc = &port->in_descr[NBR_IN_DESCR - 1];
port->in_context.saved_data = (dma_descr_data*)virt_to_phys(&port->in_descr[0]);
port->in_context.saved_data_buf = port->in_descr[0].buf;
DMA_START_CONTEXT(port->regi_dmain, virt_to_phys(&port->in_context));
}
#ifdef SYNC_SER_DMA
static irqreturn_t tr_interrupt(int irq, void *dev_id)
{
reg_dma_r_masked_intr masked;
reg_dma_rw_ack_intr ack_intr = {.data = regk_dma_yes};
reg_dma_rw_stat stat;
int i;
int found = 0;
int stop_sser = 0;
for (i = 0; i < NBR_PORTS; i++) {
sync_port *port = &ports[i];
if (!port->enabled || !port->use_dma)
continue;
/* IRQ active for the port? */
masked = REG_RD(dma, port->regi_dmaout, r_masked_intr);
if (!masked.data)
continue;
found = 1;
/* Check if we should stop the DMA transfer */
stat = REG_RD(dma, port->regi_dmaout, rw_stat);
if (stat.list_state == regk_dma_data_at_eol)
stop_sser = 1;
/* Clear IRQ */
REG_WR(dma, port->regi_dmaout, rw_ack_intr, ack_intr);
if (!stop_sser) {
/* The DMA has completed a descriptor, EOL was not
* encountered, so step relevant descriptor and
* datapointers forward. */
int sent;
sent = port->catch_tr_descr->after -
port->catch_tr_descr->buf;
DEBUGTXINT(printk(KERN_DEBUG "%-4d - %-4d = %-4d\t"
"in descr %p (ac: %p)\n",
port->out_buf_count, sent,
port->out_buf_count - sent,
port->catch_tr_descr,
port->active_tr_descr););
port->out_buf_count -= sent;
port->catch_tr_descr =
phys_to_virt((int) port->catch_tr_descr->next);
port->out_rd_ptr =
phys_to_virt((int) port->catch_tr_descr->buf);
} else {
int i, sent;
/* EOL handler.
* Note that if an EOL was encountered during the irq
* locked section of sync_ser_write the DMA will be
* restarted and the eol flag will be cleared.
* The remaining descriptors will be traversed by
* the descriptor interrupts as usual.
*/
i = 0;
while (!port->catch_tr_descr->eol) {
sent = port->catch_tr_descr->after -
port->catch_tr_descr->buf;
DEBUGOUTBUF(printk(KERN_DEBUG
"traversing descr %p -%d (%d)\n",
port->catch_tr_descr,
sent,
port->out_buf_count));
port->out_buf_count -= sent;
port->catch_tr_descr = phys_to_virt(
(int)port->catch_tr_descr->next);
i++;
if (i >= NBR_OUT_DESCR) {
/* TODO: Reset and recover */
panic("sync_serial: missing eol");
}
}
sent = port->catch_tr_descr->after -
port->catch_tr_descr->buf;
DEBUGOUTBUF(printk(KERN_DEBUG
"eol at descr %p -%d (%d)\n",
port->catch_tr_descr,
sent,
port->out_buf_count));
port->out_buf_count -= sent;
/* Update read pointer to first free byte, we
* may already be writing data there. */
port->out_rd_ptr =
phys_to_virt((int) port->catch_tr_descr->after);
if (port->out_rd_ptr > port->out_buffer +
OUT_BUFFER_SIZE)
port->out_rd_ptr = port->out_buffer;
reg_sser_rw_tr_cfg tr_cfg =
REG_RD(sser, port->regi_sser, rw_tr_cfg);
DEBUGTXINT(printk(KERN_DEBUG
"tr_int DMA stop %d, set catch @ %p\n",
port->out_buf_count,
port->active_tr_descr));
if (port->out_buf_count != 0)
printk(KERN_CRIT "sync_ser: buffer not "
"empty after eol.\n");
port->catch_tr_descr = port->active_tr_descr;
port->tr_running = 0;
tr_cfg.tr_en = regk_sser_no;
REG_WR(sser, port->regi_sser, rw_tr_cfg, tr_cfg);
}
/* wake up the waiting process */
wake_up_interruptible(&port->out_wait_q);
}
return IRQ_RETVAL(found);
} /* tr_interrupt */
static irqreturn_t rx_interrupt(int irq, void *dev_id)
{
reg_dma_r_masked_intr masked;
reg_dma_rw_ack_intr ack_intr = {.data = regk_dma_yes};
int i;
int found = 0;
for (i = 0; i < NBR_PORTS; i++)
{
sync_port *port = &ports[i];
if (!port->enabled || !port->use_dma )
continue;
masked = REG_RD(dma, port->regi_dmain, r_masked_intr);
if (masked.data) /* Descriptor interrupt */
{
found = 1;
while (REG_RD(dma, port->regi_dmain, rw_data) !=
virt_to_phys(port->next_rx_desc)) {
DEBUGRXINT(printk(KERN_DEBUG "!"));
if (port->writep + port->inbufchunk > port->flip + port->in_buffer_size) {
int first_size = port->flip + port->in_buffer_size - port->writep;
memcpy((char*)port->writep, phys_to_virt((unsigned)port->next_rx_desc->buf), first_size);
memcpy(port->flip, phys_to_virt((unsigned)port->next_rx_desc->buf+first_size), port->inbufchunk - first_size);
port->writep = port->flip + port->inbufchunk - first_size;
} else {
memcpy((char*)port->writep,
phys_to_virt((unsigned)port->next_rx_desc->buf),
port->inbufchunk);
port->writep += port->inbufchunk;
if (port->writep >= port->flip + port->in_buffer_size)
port->writep = port->flip;
}
if (port->writep == port->readp)
{
port->full = 1;
}
port->next_rx_desc->eol = 1;
port->prev_rx_desc->eol = 0;
/* Cache bug workaround */
flush_dma_descr(port->prev_rx_desc, 0);
port->prev_rx_desc = port->next_rx_desc;
port->next_rx_desc = phys_to_virt((unsigned)port->next_rx_desc->next);
/* Cache bug workaround */
flush_dma_descr(port->prev_rx_desc, 1);
/* wake up the waiting process */
wake_up_interruptible(&port->in_wait_q);
DMA_CONTINUE(port->regi_dmain);
REG_WR(dma, port->regi_dmain, rw_ack_intr, ack_intr);
}
}
}
return IRQ_RETVAL(found);
} /* rx_interrupt */
#endif /* SYNC_SER_DMA */
#ifdef SYNC_SER_MANUAL
static irqreturn_t manual_interrupt(int irq, void *dev_id)
{
int i;
int found = 0;
reg_sser_r_masked_intr masked;
for (i = 0; i < NBR_PORTS; i++)
{
sync_port *port = &ports[i];
if (!port->enabled || port->use_dma)
{
continue;
}
masked = REG_RD(sser, port->regi_sser, r_masked_intr);
if (masked.rdav) /* Data received? */
{
reg_sser_rw_rec_cfg rec_cfg = REG_RD(sser, port->regi_sser, rw_rec_cfg);
reg_sser_r_rec_data data = REG_RD(sser, port->regi_sser, r_rec_data);
found = 1;
/* Read data */
switch(rec_cfg.sample_size)
{
case 8:
*port->writep++ = data.data & 0xff;
break;
case 12:
*port->writep = (data.data & 0x0ff0) >> 4;
*(port->writep + 1) = data.data & 0x0f;
port->writep+=2;
break;
case 16:
*(unsigned short*)port->writep = data.data;
port->writep+=2;
break;
case 24:
*(unsigned int*)port->writep = data.data;
port->writep+=3;
break;
case 32:
*(unsigned int*)port->writep = data.data;
port->writep+=4;
break;
}
if (port->writep >= port->flip + port->in_buffer_size) /* Wrap? */
port->writep = port->flip;
if (port->writep == port->readp) {
/* receive buffer overrun, discard oldest data
*/
port->readp++;
if (port->readp >= port->flip + port->in_buffer_size) /* Wrap? */
port->readp = port->flip;
}
if (sync_data_avail(port) >= port->inbufchunk)
wake_up_interruptible(&port->in_wait_q); /* Wake up application */
}
if (masked.trdy) /* Transmitter ready? */
{
found = 1;
if (port->out_buf_count > 0) /* More data to send */
send_word(port);
else /* transmission finished */
{
reg_sser_rw_intr_mask intr_mask;
intr_mask = REG_RD(sser, port->regi_sser, rw_intr_mask);
intr_mask.trdy = 0;
REG_WR(sser, port->regi_sser, rw_intr_mask, intr_mask);
wake_up_interruptible(&port->out_wait_q); /* Wake up application */
}
}
}
return IRQ_RETVAL(found);
}
#endif
module_init(etrax_sync_serial_init);