linux_dsm_epyc7002/drivers/net/ethernet/sfc/mcdi.c

2378 lines
64 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/****************************************************************************
* Driver for Solarflare network controllers and boards
* Copyright 2008-2013 Solarflare Communications Inc.
*/
#include <linux/delay.h>
#include <linux/moduleparam.h>
locking/atomics, cmpxchg: Privatize the inclusion of asm/cmpxchg.h After commit: 654672d4ba1a ("locking/atomics: Add _{acquire|release|relaxed}() variants of some atomic operations") Architectures may only provide {cmp,}xchg_relaxed definitions in asm/cmpxchg.h. Other variants, such as {cmp,}xchg, may be built in linux/atomic.h, which means simply including asm/cmpxchg.h may not get the definitions of all the{cmp,}xchg variants. Therefore, we should privatize the inclusions of asm/cmpxchg.h to keep it only included in arch/* and replace the inclusions outside with linux/atomic.h Signed-off-by: Boqun Feng <boqun.feng@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: Will Deacon <will.deacon@arm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Aybuke Ozdemir <aybuke.147@gmail.com> Cc: Chris Brannon <chris@the-brannons.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kirk Reiser <kirk@reisers.ca> Cc: Kishon Vijay Abraham I <kishon@ti.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Samuel Thibault <samuel.thibault@ens-lyon.org> Cc: Shradha Shah <sshah@solarflare.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: William Hubbs <w.d.hubbs@gmail.com> Cc: devel@driverdev.osuosl.org Cc: linux-net-drivers@solarflare.com Cc: speakup@linux-speakup.org Link: http://lkml.kernel.org/r/1440589966-26280-1-git-send-email-boqun.feng@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-08-26 18:52:46 +07:00
#include <linux/atomic.h>
#include "net_driver.h"
#include "nic.h"
#include "io.h"
#include "farch_regs.h"
#include "mcdi_pcol.h"
/**************************************************************************
*
* Management-Controller-to-Driver Interface
*
**************************************************************************
*/
#define MCDI_RPC_TIMEOUT (10 * HZ)
/* A reboot/assertion causes the MCDI status word to be set after the
* command word is set or a REBOOT event is sent. If we notice a reboot
* via these mechanisms then wait 250ms for the status word to be set.
*/
#define MCDI_STATUS_DELAY_US 100
#define MCDI_STATUS_DELAY_COUNT 2500
#define MCDI_STATUS_SLEEP_MS \
(MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000)
#define SEQ_MASK \
EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ))
struct efx_mcdi_async_param {
struct list_head list;
unsigned int cmd;
size_t inlen;
size_t outlen;
bool quiet;
efx_mcdi_async_completer *complete;
unsigned long cookie;
/* followed by request/response buffer */
};
static void efx_mcdi_timeout_async(struct timer_list *t);
static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
bool *was_attached_out);
static bool efx_mcdi_poll_once(struct efx_nic *efx);
static void efx_mcdi_abandon(struct efx_nic *efx);
#ifdef CONFIG_SFC_MCDI_LOGGING
static bool mcdi_logging_default;
module_param(mcdi_logging_default, bool, 0644);
MODULE_PARM_DESC(mcdi_logging_default,
"Enable MCDI logging on newly-probed functions");
#endif
int efx_mcdi_init(struct efx_nic *efx)
{
struct efx_mcdi_iface *mcdi;
bool already_attached;
int rc = -ENOMEM;
efx->mcdi = kzalloc(sizeof(*efx->mcdi), GFP_KERNEL);
if (!efx->mcdi)
goto fail;
mcdi = efx_mcdi(efx);
mcdi->efx = efx;
#ifdef CONFIG_SFC_MCDI_LOGGING
/* consuming code assumes buffer is page-sized */
mcdi->logging_buffer = (char *)__get_free_page(GFP_KERNEL);
if (!mcdi->logging_buffer)
goto fail1;
mcdi->logging_enabled = mcdi_logging_default;
#endif
init_waitqueue_head(&mcdi->wq);
init_waitqueue_head(&mcdi->proxy_rx_wq);
spin_lock_init(&mcdi->iface_lock);
mcdi->state = MCDI_STATE_QUIESCENT;
mcdi->mode = MCDI_MODE_POLL;
spin_lock_init(&mcdi->async_lock);
INIT_LIST_HEAD(&mcdi->async_list);
timer_setup(&mcdi->async_timer, efx_mcdi_timeout_async, 0);
(void) efx_mcdi_poll_reboot(efx);
mcdi->new_epoch = true;
/* Recover from a failed assertion before probing */
rc = efx_mcdi_handle_assertion(efx);
if (rc)
goto fail2;
/* Let the MC (and BMC, if this is a LOM) know that the driver
* is loaded. We should do this before we reset the NIC.
*/
rc = efx_mcdi_drv_attach(efx, true, &already_attached);
if (rc) {
netif_err(efx, probe, efx->net_dev,
"Unable to register driver with MCPU\n");
goto fail2;
}
if (already_attached)
/* Not a fatal error */
netif_err(efx, probe, efx->net_dev,
"Host already registered with MCPU\n");
if (efx->mcdi->fn_flags &
(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
efx->primary = efx;
return 0;
fail2:
#ifdef CONFIG_SFC_MCDI_LOGGING
free_page((unsigned long)mcdi->logging_buffer);
fail1:
#endif
kfree(efx->mcdi);
efx->mcdi = NULL;
fail:
return rc;
}
void efx_mcdi_detach(struct efx_nic *efx)
{
if (!efx->mcdi)
return;
BUG_ON(efx->mcdi->iface.state != MCDI_STATE_QUIESCENT);
/* Relinquish the device (back to the BMC, if this is a LOM) */
efx_mcdi_drv_attach(efx, false, NULL);
}
void efx_mcdi_fini(struct efx_nic *efx)
{
if (!efx->mcdi)
return;
#ifdef CONFIG_SFC_MCDI_LOGGING
free_page((unsigned long)efx->mcdi->iface.logging_buffer);
#endif
kfree(efx->mcdi);
}
static void efx_mcdi_send_request(struct efx_nic *efx, unsigned cmd,
const efx_dword_t *inbuf, size_t inlen)
{
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
#ifdef CONFIG_SFC_MCDI_LOGGING
char *buf = mcdi->logging_buffer; /* page-sized */
#endif
efx_dword_t hdr[2];
size_t hdr_len;
u32 xflags, seqno;
BUG_ON(mcdi->state == MCDI_STATE_QUIESCENT);
/* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */
spin_lock_bh(&mcdi->iface_lock);
++mcdi->seqno;
spin_unlock_bh(&mcdi->iface_lock);
seqno = mcdi->seqno & SEQ_MASK;
xflags = 0;
if (mcdi->mode == MCDI_MODE_EVENTS)
xflags |= MCDI_HEADER_XFLAGS_EVREQ;
if (efx->type->mcdi_max_ver == 1) {
/* MCDI v1 */
EFX_POPULATE_DWORD_7(hdr[0],
MCDI_HEADER_RESPONSE, 0,
MCDI_HEADER_RESYNC, 1,
MCDI_HEADER_CODE, cmd,
MCDI_HEADER_DATALEN, inlen,
MCDI_HEADER_SEQ, seqno,
MCDI_HEADER_XFLAGS, xflags,
MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
hdr_len = 4;
} else {
/* MCDI v2 */
BUG_ON(inlen > MCDI_CTL_SDU_LEN_MAX_V2);
EFX_POPULATE_DWORD_7(hdr[0],
MCDI_HEADER_RESPONSE, 0,
MCDI_HEADER_RESYNC, 1,
MCDI_HEADER_CODE, MC_CMD_V2_EXTN,
MCDI_HEADER_DATALEN, 0,
MCDI_HEADER_SEQ, seqno,
MCDI_HEADER_XFLAGS, xflags,
MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
EFX_POPULATE_DWORD_2(hdr[1],
MC_CMD_V2_EXTN_IN_EXTENDED_CMD, cmd,
MC_CMD_V2_EXTN_IN_ACTUAL_LEN, inlen);
hdr_len = 8;
}
#ifdef CONFIG_SFC_MCDI_LOGGING
if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
int bytes = 0;
int i;
/* Lengths should always be a whole number of dwords, so scream
* if they're not.
*/
WARN_ON_ONCE(hdr_len % 4);
WARN_ON_ONCE(inlen % 4);
/* We own the logging buffer, as only one MCDI can be in
* progress on a NIC at any one time. So no need for locking.
*/
for (i = 0; i < hdr_len / 4 && bytes < PAGE_SIZE; i++)
bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
" %08x",
le32_to_cpu(hdr[i].u32[0]));
for (i = 0; i < inlen / 4 && bytes < PAGE_SIZE; i++)
bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
" %08x",
le32_to_cpu(inbuf[i].u32[0]));
netif_info(efx, hw, efx->net_dev, "MCDI RPC REQ:%s\n", buf);
}
#endif
efx->type->mcdi_request(efx, hdr, hdr_len, inbuf, inlen);
mcdi->new_epoch = false;
}
static int efx_mcdi_errno(unsigned int mcdi_err)
{
switch (mcdi_err) {
case 0:
return 0;
#define TRANSLATE_ERROR(name) \
case MC_CMD_ERR_ ## name: \
return -name;
TRANSLATE_ERROR(EPERM);
TRANSLATE_ERROR(ENOENT);
TRANSLATE_ERROR(EINTR);
TRANSLATE_ERROR(EAGAIN);
TRANSLATE_ERROR(EACCES);
TRANSLATE_ERROR(EBUSY);
TRANSLATE_ERROR(EINVAL);
TRANSLATE_ERROR(EDEADLK);
TRANSLATE_ERROR(ENOSYS);
TRANSLATE_ERROR(ETIME);
TRANSLATE_ERROR(EALREADY);
TRANSLATE_ERROR(ENOSPC);
#undef TRANSLATE_ERROR
case MC_CMD_ERR_ENOTSUP:
return -EOPNOTSUPP;
case MC_CMD_ERR_ALLOC_FAIL:
return -ENOBUFS;
case MC_CMD_ERR_MAC_EXIST:
return -EADDRINUSE;
default:
return -EPROTO;
}
}
static void efx_mcdi_read_response_header(struct efx_nic *efx)
{
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
unsigned int respseq, respcmd, error;
#ifdef CONFIG_SFC_MCDI_LOGGING
char *buf = mcdi->logging_buffer; /* page-sized */
#endif
efx_dword_t hdr;
efx->type->mcdi_read_response(efx, &hdr, 0, 4);
respseq = EFX_DWORD_FIELD(hdr, MCDI_HEADER_SEQ);
respcmd = EFX_DWORD_FIELD(hdr, MCDI_HEADER_CODE);
error = EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR);
if (respcmd != MC_CMD_V2_EXTN) {
mcdi->resp_hdr_len = 4;
mcdi->resp_data_len = EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN);
} else {
efx->type->mcdi_read_response(efx, &hdr, 4, 4);
mcdi->resp_hdr_len = 8;
mcdi->resp_data_len =
EFX_DWORD_FIELD(hdr, MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
}
#ifdef CONFIG_SFC_MCDI_LOGGING
if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
size_t hdr_len, data_len;
int bytes = 0;
int i;
WARN_ON_ONCE(mcdi->resp_hdr_len % 4);
hdr_len = mcdi->resp_hdr_len / 4;
/* MCDI_DECLARE_BUF ensures that underlying buffer is padded
* to dword size, and the MCDI buffer is always dword size
*/
data_len = DIV_ROUND_UP(mcdi->resp_data_len, 4);
/* We own the logging buffer, as only one MCDI can be in
* progress on a NIC at any one time. So no need for locking.
*/
for (i = 0; i < hdr_len && bytes < PAGE_SIZE; i++) {
efx->type->mcdi_read_response(efx, &hdr, (i * 4), 4);
bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
" %08x", le32_to_cpu(hdr.u32[0]));
}
for (i = 0; i < data_len && bytes < PAGE_SIZE; i++) {
efx->type->mcdi_read_response(efx, &hdr,
mcdi->resp_hdr_len + (i * 4), 4);
bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
" %08x", le32_to_cpu(hdr.u32[0]));
}
netif_info(efx, hw, efx->net_dev, "MCDI RPC RESP:%s\n", buf);
}
#endif
mcdi->resprc_raw = 0;
if (error && mcdi->resp_data_len == 0) {
netif_err(efx, hw, efx->net_dev, "MC rebooted\n");
mcdi->resprc = -EIO;
} else if ((respseq ^ mcdi->seqno) & SEQ_MASK) {
netif_err(efx, hw, efx->net_dev,
"MC response mismatch tx seq 0x%x rx seq 0x%x\n",
respseq, mcdi->seqno);
mcdi->resprc = -EIO;
} else if (error) {
efx->type->mcdi_read_response(efx, &hdr, mcdi->resp_hdr_len, 4);
mcdi->resprc_raw = EFX_DWORD_FIELD(hdr, EFX_DWORD_0);
mcdi->resprc = efx_mcdi_errno(mcdi->resprc_raw);
} else {
mcdi->resprc = 0;
}
}
static bool efx_mcdi_poll_once(struct efx_nic *efx)
{
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
rmb();
if (!efx->type->mcdi_poll_response(efx))
return false;
spin_lock_bh(&mcdi->iface_lock);
efx_mcdi_read_response_header(efx);
spin_unlock_bh(&mcdi->iface_lock);
return true;
}
static int efx_mcdi_poll(struct efx_nic *efx)
{
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
unsigned long time, finish;
unsigned int spins;
int rc;
/* Check for a reboot atomically with respect to efx_mcdi_copyout() */
rc = efx_mcdi_poll_reboot(efx);
if (rc) {
spin_lock_bh(&mcdi->iface_lock);
mcdi->resprc = rc;
mcdi->resp_hdr_len = 0;
mcdi->resp_data_len = 0;
spin_unlock_bh(&mcdi->iface_lock);
return 0;
}
/* Poll for completion. Poll quickly (once a us) for the 1st jiffy,
* because generally mcdi responses are fast. After that, back off
* and poll once a jiffy (approximately)
*/
spins = USER_TICK_USEC;
finish = jiffies + MCDI_RPC_TIMEOUT;
while (1) {
if (spins != 0) {
--spins;
udelay(1);
} else {
schedule_timeout_uninterruptible(1);
}
time = jiffies;
if (efx_mcdi_poll_once(efx))
break;
if (time_after(time, finish))
return -ETIMEDOUT;
}
/* Return rc=0 like wait_event_timeout() */
return 0;
}
/* Test and clear MC-rebooted flag for this port/function; reset
* software state as necessary.
*/
int efx_mcdi_poll_reboot(struct efx_nic *efx)
{
if (!efx->mcdi)
return 0;
return efx->type->mcdi_poll_reboot(efx);
}
static bool efx_mcdi_acquire_async(struct efx_mcdi_iface *mcdi)
{
return cmpxchg(&mcdi->state,
MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_ASYNC) ==
MCDI_STATE_QUIESCENT;
}
static void efx_mcdi_acquire_sync(struct efx_mcdi_iface *mcdi)
{
/* Wait until the interface becomes QUIESCENT and we win the race
* to mark it RUNNING_SYNC.
*/
wait_event(mcdi->wq,
cmpxchg(&mcdi->state,
MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_SYNC) ==
MCDI_STATE_QUIESCENT);
}
static int efx_mcdi_await_completion(struct efx_nic *efx)
{
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
if (wait_event_timeout(mcdi->wq, mcdi->state == MCDI_STATE_COMPLETED,
MCDI_RPC_TIMEOUT) == 0)
return -ETIMEDOUT;
/* Check if efx_mcdi_set_mode() switched us back to polled completions.
* In which case, poll for completions directly. If efx_mcdi_ev_cpl()
* completed the request first, then we'll just end up completing the
* request again, which is safe.
*
* We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which
* wait_event_timeout() implicitly provides.
*/
if (mcdi->mode == MCDI_MODE_POLL)
return efx_mcdi_poll(efx);
return 0;
}
/* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the
* requester. Return whether this was done. Does not take any locks.
*/
static bool efx_mcdi_complete_sync(struct efx_mcdi_iface *mcdi)
{
if (cmpxchg(&mcdi->state,
MCDI_STATE_RUNNING_SYNC, MCDI_STATE_COMPLETED) ==
MCDI_STATE_RUNNING_SYNC) {
wake_up(&mcdi->wq);
return true;
}
return false;
}
static void efx_mcdi_release(struct efx_mcdi_iface *mcdi)
{
if (mcdi->mode == MCDI_MODE_EVENTS) {
struct efx_mcdi_async_param *async;
struct efx_nic *efx = mcdi->efx;
/* Process the asynchronous request queue */
spin_lock_bh(&mcdi->async_lock);
async = list_first_entry_or_null(
&mcdi->async_list, struct efx_mcdi_async_param, list);
if (async) {
mcdi->state = MCDI_STATE_RUNNING_ASYNC;
efx_mcdi_send_request(efx, async->cmd,
(const efx_dword_t *)(async + 1),
async->inlen);
mod_timer(&mcdi->async_timer,
jiffies + MCDI_RPC_TIMEOUT);
}
spin_unlock_bh(&mcdi->async_lock);
if (async)
return;
}
mcdi->state = MCDI_STATE_QUIESCENT;
wake_up(&mcdi->wq);
}
/* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the
* asynchronous completion function, and release the interface.
* Return whether this was done. Must be called in bh-disabled
* context. Will take iface_lock and async_lock.
*/
static bool efx_mcdi_complete_async(struct efx_mcdi_iface *mcdi, bool timeout)
{
struct efx_nic *efx = mcdi->efx;
struct efx_mcdi_async_param *async;
size_t hdr_len, data_len, err_len;
efx_dword_t *outbuf;
MCDI_DECLARE_BUF_ERR(errbuf);
int rc;
if (cmpxchg(&mcdi->state,
MCDI_STATE_RUNNING_ASYNC, MCDI_STATE_COMPLETED) !=
MCDI_STATE_RUNNING_ASYNC)
return false;
spin_lock(&mcdi->iface_lock);
if (timeout) {
/* Ensure that if the completion event arrives later,
* the seqno check in efx_mcdi_ev_cpl() will fail
*/
++mcdi->seqno;
++mcdi->credits;
rc = -ETIMEDOUT;
hdr_len = 0;
data_len = 0;
} else {
rc = mcdi->resprc;
hdr_len = mcdi->resp_hdr_len;
data_len = mcdi->resp_data_len;
}
spin_unlock(&mcdi->iface_lock);
/* Stop the timer. In case the timer function is running, we
* must wait for it to return so that there is no possibility
* of it aborting the next request.
*/
if (!timeout)
del_timer_sync(&mcdi->async_timer);
spin_lock(&mcdi->async_lock);
async = list_first_entry(&mcdi->async_list,
struct efx_mcdi_async_param, list);
list_del(&async->list);
spin_unlock(&mcdi->async_lock);
outbuf = (efx_dword_t *)(async + 1);
efx->type->mcdi_read_response(efx, outbuf, hdr_len,
min(async->outlen, data_len));
if (!timeout && rc && !async->quiet) {
err_len = min(sizeof(errbuf), data_len);
efx->type->mcdi_read_response(efx, errbuf, hdr_len,
sizeof(errbuf));
efx_mcdi_display_error(efx, async->cmd, async->inlen, errbuf,
err_len, rc);
}
if (async->complete)
async->complete(efx, async->cookie, rc, outbuf,
min(async->outlen, data_len));
kfree(async);
efx_mcdi_release(mcdi);
return true;
}
static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno,
unsigned int datalen, unsigned int mcdi_err)
{
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
bool wake = false;
spin_lock(&mcdi->iface_lock);
if ((seqno ^ mcdi->seqno) & SEQ_MASK) {
if (mcdi->credits)
/* The request has been cancelled */
--mcdi->credits;
else
netif_err(efx, hw, efx->net_dev,
"MC response mismatch tx seq 0x%x rx "
"seq 0x%x\n", seqno, mcdi->seqno);
} else {
if (efx->type->mcdi_max_ver >= 2) {
/* MCDI v2 responses don't fit in an event */
efx_mcdi_read_response_header(efx);
} else {
mcdi->resprc = efx_mcdi_errno(mcdi_err);
mcdi->resp_hdr_len = 4;
mcdi->resp_data_len = datalen;
}
wake = true;
}
spin_unlock(&mcdi->iface_lock);
if (wake) {
if (!efx_mcdi_complete_async(mcdi, false))
(void) efx_mcdi_complete_sync(mcdi);
/* If the interface isn't RUNNING_ASYNC or
* RUNNING_SYNC then we've received a duplicate
* completion after we've already transitioned back to
* QUIESCENT. [A subsequent invocation would increment
* seqno, so would have failed the seqno check].
*/
}
}
static void efx_mcdi_timeout_async(struct timer_list *t)
{
struct efx_mcdi_iface *mcdi = from_timer(mcdi, t, async_timer);
efx_mcdi_complete_async(mcdi, true);
}
static int
efx_mcdi_check_supported(struct efx_nic *efx, unsigned int cmd, size_t inlen)
{
if (efx->type->mcdi_max_ver < 0 ||
(efx->type->mcdi_max_ver < 2 &&
cmd > MC_CMD_CMD_SPACE_ESCAPE_7))
return -EINVAL;
if (inlen > MCDI_CTL_SDU_LEN_MAX_V2 ||
(efx->type->mcdi_max_ver < 2 &&
inlen > MCDI_CTL_SDU_LEN_MAX_V1))
return -EMSGSIZE;
return 0;
}
static bool efx_mcdi_get_proxy_handle(struct efx_nic *efx,
size_t hdr_len, size_t data_len,
u32 *proxy_handle)
{
MCDI_DECLARE_BUF_ERR(testbuf);
const size_t buflen = sizeof(testbuf);
if (!proxy_handle || data_len < buflen)
return false;
efx->type->mcdi_read_response(efx, testbuf, hdr_len, buflen);
if (MCDI_DWORD(testbuf, ERR_CODE) == MC_CMD_ERR_PROXY_PENDING) {
*proxy_handle = MCDI_DWORD(testbuf, ERR_PROXY_PENDING_HANDLE);
return true;
}
return false;
}
static int _efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned int cmd,
size_t inlen,
efx_dword_t *outbuf, size_t outlen,
size_t *outlen_actual, bool quiet,
u32 *proxy_handle, int *raw_rc)
{
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
MCDI_DECLARE_BUF_ERR(errbuf);
int rc;
if (mcdi->mode == MCDI_MODE_POLL)
rc = efx_mcdi_poll(efx);
else
rc = efx_mcdi_await_completion(efx);
if (rc != 0) {
netif_err(efx, hw, efx->net_dev,
"MC command 0x%x inlen %d mode %d timed out\n",
cmd, (int)inlen, mcdi->mode);
if (mcdi->mode == MCDI_MODE_EVENTS && efx_mcdi_poll_once(efx)) {
netif_err(efx, hw, efx->net_dev,
"MCDI request was completed without an event\n");
rc = 0;
}
efx_mcdi_abandon(efx);
/* Close the race with efx_mcdi_ev_cpl() executing just too late
* and completing a request we've just cancelled, by ensuring
* that the seqno check therein fails.
*/
spin_lock_bh(&mcdi->iface_lock);
++mcdi->seqno;
++mcdi->credits;
spin_unlock_bh(&mcdi->iface_lock);
}
if (proxy_handle)
*proxy_handle = 0;
if (rc != 0) {
if (outlen_actual)
*outlen_actual = 0;
} else {
size_t hdr_len, data_len, err_len;
/* At the very least we need a memory barrier here to ensure
* we pick up changes from efx_mcdi_ev_cpl(). Protect against
* a spurious efx_mcdi_ev_cpl() running concurrently by
* acquiring the iface_lock. */
spin_lock_bh(&mcdi->iface_lock);
rc = mcdi->resprc;
if (raw_rc)
*raw_rc = mcdi->resprc_raw;
hdr_len = mcdi->resp_hdr_len;
data_len = mcdi->resp_data_len;
err_len = min(sizeof(errbuf), data_len);
spin_unlock_bh(&mcdi->iface_lock);
BUG_ON(rc > 0);
efx->type->mcdi_read_response(efx, outbuf, hdr_len,
min(outlen, data_len));
if (outlen_actual)
*outlen_actual = data_len;
efx->type->mcdi_read_response(efx, errbuf, hdr_len, err_len);
if (cmd == MC_CMD_REBOOT && rc == -EIO) {
/* Don't reset if MC_CMD_REBOOT returns EIO */
} else if (rc == -EIO || rc == -EINTR) {
netif_err(efx, hw, efx->net_dev, "MC reboot detected\n");
netif_dbg(efx, hw, efx->net_dev, "MC rebooted during command %d rc %d\n",
cmd, -rc);
if (efx->type->mcdi_reboot_detected)
efx->type->mcdi_reboot_detected(efx);
efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
} else if (proxy_handle && (rc == -EPROTO) &&
efx_mcdi_get_proxy_handle(efx, hdr_len, data_len,
proxy_handle)) {
mcdi->proxy_rx_status = 0;
mcdi->proxy_rx_handle = 0;
mcdi->state = MCDI_STATE_PROXY_WAIT;
} else if (rc && !quiet) {
efx_mcdi_display_error(efx, cmd, inlen, errbuf, err_len,
rc);
}
if (rc == -EIO || rc == -EINTR) {
msleep(MCDI_STATUS_SLEEP_MS);
efx_mcdi_poll_reboot(efx);
mcdi->new_epoch = true;
}
}
if (!proxy_handle || !*proxy_handle)
efx_mcdi_release(mcdi);
return rc;
}
static void efx_mcdi_proxy_abort(struct efx_mcdi_iface *mcdi)
{
if (mcdi->state == MCDI_STATE_PROXY_WAIT) {
/* Interrupt the proxy wait. */
mcdi->proxy_rx_status = -EINTR;
wake_up(&mcdi->proxy_rx_wq);
}
}
static void efx_mcdi_ev_proxy_response(struct efx_nic *efx,
u32 handle, int status)
{
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
WARN_ON(mcdi->state != MCDI_STATE_PROXY_WAIT);
mcdi->proxy_rx_status = efx_mcdi_errno(status);
/* Ensure the status is written before we update the handle, since the
* latter is used to check if we've finished.
*/
wmb();
mcdi->proxy_rx_handle = handle;
wake_up(&mcdi->proxy_rx_wq);
}
static int efx_mcdi_proxy_wait(struct efx_nic *efx, u32 handle, bool quiet)
{
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
int rc;
/* Wait for a proxy event, or timeout. */
rc = wait_event_timeout(mcdi->proxy_rx_wq,
mcdi->proxy_rx_handle != 0 ||
mcdi->proxy_rx_status == -EINTR,
MCDI_RPC_TIMEOUT);
if (rc <= 0) {
netif_dbg(efx, hw, efx->net_dev,
"MCDI proxy timeout %d\n", handle);
return -ETIMEDOUT;
} else if (mcdi->proxy_rx_handle != handle) {
netif_warn(efx, hw, efx->net_dev,
"MCDI proxy unexpected handle %d (expected %d)\n",
mcdi->proxy_rx_handle, handle);
return -EINVAL;
}
return mcdi->proxy_rx_status;
}
static int _efx_mcdi_rpc(struct efx_nic *efx, unsigned int cmd,
const efx_dword_t *inbuf, size_t inlen,
efx_dword_t *outbuf, size_t outlen,
size_t *outlen_actual, bool quiet, int *raw_rc)
{
u32 proxy_handle = 0; /* Zero is an invalid proxy handle. */
int rc;
if (inbuf && inlen && (inbuf == outbuf)) {
/* The input buffer can't be aliased with the output. */
WARN_ON(1);
return -EINVAL;
}
rc = efx_mcdi_rpc_start(efx, cmd, inbuf, inlen);
if (rc)
return rc;
rc = _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
outlen_actual, quiet, &proxy_handle, raw_rc);
if (proxy_handle) {
/* Handle proxy authorisation. This allows approval of MCDI
* operations to be delegated to the admin function, allowing
* fine control over (eg) multicast subscriptions.
*/
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
netif_dbg(efx, hw, efx->net_dev,
"MCDI waiting for proxy auth %d\n",
proxy_handle);
rc = efx_mcdi_proxy_wait(efx, proxy_handle, quiet);
if (rc == 0) {
netif_dbg(efx, hw, efx->net_dev,
"MCDI proxy retry %d\n", proxy_handle);
/* We now retry the original request. */
mcdi->state = MCDI_STATE_RUNNING_SYNC;
efx_mcdi_send_request(efx, cmd, inbuf, inlen);
rc = _efx_mcdi_rpc_finish(efx, cmd, inlen,
outbuf, outlen, outlen_actual,
quiet, NULL, raw_rc);
} else {
netif_cond_dbg(efx, hw, efx->net_dev, rc == -EPERM, err,
"MC command 0x%x failed after proxy auth rc=%d\n",
cmd, rc);
if (rc == -EINTR || rc == -EIO)
efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
efx_mcdi_release(mcdi);
}
}
return rc;
}
static int _efx_mcdi_rpc_evb_retry(struct efx_nic *efx, unsigned cmd,
const efx_dword_t *inbuf, size_t inlen,
efx_dword_t *outbuf, size_t outlen,
size_t *outlen_actual, bool quiet)
{
int raw_rc = 0;
int rc;
rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen,
outbuf, outlen, outlen_actual, true, &raw_rc);
if ((rc == -EPROTO) && (raw_rc == MC_CMD_ERR_NO_EVB_PORT) &&
efx->type->is_vf) {
/* If the EVB port isn't available within a VF this may
* mean the PF is still bringing the switch up. We should
* retry our request shortly.
*/
unsigned long abort_time = jiffies + MCDI_RPC_TIMEOUT;
unsigned int delay_us = 10000;
netif_dbg(efx, hw, efx->net_dev,
"%s: NO_EVB_PORT; will retry request\n",
__func__);
do {
usleep_range(delay_us, delay_us + 10000);
rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen,
outbuf, outlen, outlen_actual,
true, &raw_rc);
if (delay_us < 100000)
delay_us <<= 1;
} while ((rc == -EPROTO) &&
(raw_rc == MC_CMD_ERR_NO_EVB_PORT) &&
time_before(jiffies, abort_time));
}
if (rc && !quiet && !(cmd == MC_CMD_REBOOT && rc == -EIO))
efx_mcdi_display_error(efx, cmd, inlen,
outbuf, outlen, rc);
return rc;
}
/**
* efx_mcdi_rpc - Issue an MCDI command and wait for completion
* @efx: NIC through which to issue the command
* @cmd: Command type number
* @inbuf: Command parameters
* @inlen: Length of command parameters, in bytes. Must be a multiple
* of 4 and no greater than %MCDI_CTL_SDU_LEN_MAX_V1.
* @outbuf: Response buffer. May be %NULL if @outlen is 0.
* @outlen: Length of response buffer, in bytes. If the actual
* response is longer than @outlen & ~3, it will be truncated
* to that length.
* @outlen_actual: Pointer through which to return the actual response
* length. May be %NULL if this is not needed.
*
* This function may sleep and therefore must be called in an appropriate
* context.
*
* Return: A negative error code, or zero if successful. The error
* code may come from the MCDI response or may indicate a failure
* to communicate with the MC. In the former case, the response
* will still be copied to @outbuf and *@outlen_actual will be
* set accordingly. In the latter case, *@outlen_actual will be
* set to zero.
*/
int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd,
const efx_dword_t *inbuf, size_t inlen,
efx_dword_t *outbuf, size_t outlen,
size_t *outlen_actual)
{
return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen,
outlen_actual, false);
}
/* Normally, on receiving an error code in the MCDI response,
* efx_mcdi_rpc will log an error message containing (among other
* things) the raw error code, by means of efx_mcdi_display_error.
* This _quiet version suppresses that; if the caller wishes to log
* the error conditionally on the return code, it should call this
* function and is then responsible for calling efx_mcdi_display_error
* as needed.
*/
int efx_mcdi_rpc_quiet(struct efx_nic *efx, unsigned cmd,
const efx_dword_t *inbuf, size_t inlen,
efx_dword_t *outbuf, size_t outlen,
size_t *outlen_actual)
{
return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen,
outlen_actual, true);
}
int efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd,
const efx_dword_t *inbuf, size_t inlen)
{
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
int rc;
rc = efx_mcdi_check_supported(efx, cmd, inlen);
if (rc)
return rc;
if (efx->mc_bist_for_other_fn)
return -ENETDOWN;
if (mcdi->mode == MCDI_MODE_FAIL)
return -ENETDOWN;
efx_mcdi_acquire_sync(mcdi);
efx_mcdi_send_request(efx, cmd, inbuf, inlen);
return 0;
}
static int _efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
const efx_dword_t *inbuf, size_t inlen,
size_t outlen,
efx_mcdi_async_completer *complete,
unsigned long cookie, bool quiet)
{
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
struct efx_mcdi_async_param *async;
int rc;
rc = efx_mcdi_check_supported(efx, cmd, inlen);
if (rc)
return rc;
if (efx->mc_bist_for_other_fn)
return -ENETDOWN;
async = kmalloc(sizeof(*async) + ALIGN(max(inlen, outlen), 4),
GFP_ATOMIC);
if (!async)
return -ENOMEM;
async->cmd = cmd;
async->inlen = inlen;
async->outlen = outlen;
async->quiet = quiet;
async->complete = complete;
async->cookie = cookie;
memcpy(async + 1, inbuf, inlen);
spin_lock_bh(&mcdi->async_lock);
if (mcdi->mode == MCDI_MODE_EVENTS) {
list_add_tail(&async->list, &mcdi->async_list);
/* If this is at the front of the queue, try to start it
* immediately
*/
if (mcdi->async_list.next == &async->list &&
efx_mcdi_acquire_async(mcdi)) {
efx_mcdi_send_request(efx, cmd, inbuf, inlen);
mod_timer(&mcdi->async_timer,
jiffies + MCDI_RPC_TIMEOUT);
}
} else {
kfree(async);
rc = -ENETDOWN;
}
spin_unlock_bh(&mcdi->async_lock);
return rc;
}
/**
* efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously
* @efx: NIC through which to issue the command
* @cmd: Command type number
* @inbuf: Command parameters
* @inlen: Length of command parameters, in bytes
* @outlen: Length to allocate for response buffer, in bytes
* @complete: Function to be called on completion or cancellation.
* @cookie: Arbitrary value to be passed to @complete.
*
* This function does not sleep and therefore may be called in atomic
* context. It will fail if event queues are disabled or if MCDI
* event completions have been disabled due to an error.
*
* If it succeeds, the @complete function will be called exactly once
* in atomic context, when one of the following occurs:
* (a) the completion event is received (in NAPI context)
* (b) event queues are disabled (in the process that disables them)
* (c) the request times-out (in timer context)
*/
int
efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
const efx_dword_t *inbuf, size_t inlen, size_t outlen,
efx_mcdi_async_completer *complete, unsigned long cookie)
{
return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
cookie, false);
}
int efx_mcdi_rpc_async_quiet(struct efx_nic *efx, unsigned int cmd,
const efx_dword_t *inbuf, size_t inlen,
size_t outlen, efx_mcdi_async_completer *complete,
unsigned long cookie)
{
return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
cookie, true);
}
int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen,
efx_dword_t *outbuf, size_t outlen,
size_t *outlen_actual)
{
return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
outlen_actual, false, NULL, NULL);
}
int efx_mcdi_rpc_finish_quiet(struct efx_nic *efx, unsigned cmd, size_t inlen,
efx_dword_t *outbuf, size_t outlen,
size_t *outlen_actual)
{
return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
outlen_actual, true, NULL, NULL);
}
void efx_mcdi_display_error(struct efx_nic *efx, unsigned cmd,
size_t inlen, efx_dword_t *outbuf,
size_t outlen, int rc)
{
int code = 0, err_arg = 0;
if (outlen >= MC_CMD_ERR_CODE_OFST + 4)
code = MCDI_DWORD(outbuf, ERR_CODE);
if (outlen >= MC_CMD_ERR_ARG_OFST + 4)
err_arg = MCDI_DWORD(outbuf, ERR_ARG);
netif_cond_dbg(efx, hw, efx->net_dev, rc == -EPERM, err,
"MC command 0x%x inlen %zu failed rc=%d (raw=%d) arg=%d\n",
cmd, inlen, rc, code, err_arg);
}
/* Switch to polled MCDI completions. This can be called in various
* error conditions with various locks held, so it must be lockless.
* Caller is responsible for flushing asynchronous requests later.
*/
void efx_mcdi_mode_poll(struct efx_nic *efx)
{
struct efx_mcdi_iface *mcdi;
if (!efx->mcdi)
return;
mcdi = efx_mcdi(efx);
/* If already in polling mode, nothing to do.
* If in fail-fast state, don't switch to polled completion.
* FLR recovery will do that later.
*/
if (mcdi->mode == MCDI_MODE_POLL || mcdi->mode == MCDI_MODE_FAIL)
return;
/* We can switch from event completion to polled completion, because
* mcdi requests are always completed in shared memory. We do this by
* switching the mode to POLL'd then completing the request.
* efx_mcdi_await_completion() will then call efx_mcdi_poll().
*
* We need an smp_wmb() to synchronise with efx_mcdi_await_completion(),
* which efx_mcdi_complete_sync() provides for us.
*/
mcdi->mode = MCDI_MODE_POLL;
efx_mcdi_complete_sync(mcdi);
}
/* Flush any running or queued asynchronous requests, after event processing
* is stopped
*/
void efx_mcdi_flush_async(struct efx_nic *efx)
{
struct efx_mcdi_async_param *async, *next;
struct efx_mcdi_iface *mcdi;
if (!efx->mcdi)
return;
mcdi = efx_mcdi(efx);
/* We must be in poll or fail mode so no more requests can be queued */
BUG_ON(mcdi->mode == MCDI_MODE_EVENTS);
del_timer_sync(&mcdi->async_timer);
/* If a request is still running, make sure we give the MC
* time to complete it so that the response won't overwrite our
* next request.
*/
if (mcdi->state == MCDI_STATE_RUNNING_ASYNC) {
efx_mcdi_poll(efx);
mcdi->state = MCDI_STATE_QUIESCENT;
}
/* Nothing else will access the async list now, so it is safe
* to walk it without holding async_lock. If we hold it while
* calling a completer then lockdep may warn that we have
* acquired locks in the wrong order.
*/
list_for_each_entry_safe(async, next, &mcdi->async_list, list) {
if (async->complete)
async->complete(efx, async->cookie, -ENETDOWN, NULL, 0);
list_del(&async->list);
kfree(async);
}
}
void efx_mcdi_mode_event(struct efx_nic *efx)
{
struct efx_mcdi_iface *mcdi;
if (!efx->mcdi)
return;
mcdi = efx_mcdi(efx);
/* If already in event completion mode, nothing to do.
* If in fail-fast state, don't switch to event completion. FLR
* recovery will do that later.
*/
if (mcdi->mode == MCDI_MODE_EVENTS || mcdi->mode == MCDI_MODE_FAIL)
return;
/* We can't switch from polled to event completion in the middle of a
* request, because the completion method is specified in the request.
* So acquire the interface to serialise the requestors. We don't need
* to acquire the iface_lock to change the mode here, but we do need a
* write memory barrier ensure that efx_mcdi_rpc() sees it, which
* efx_mcdi_acquire() provides.
*/
efx_mcdi_acquire_sync(mcdi);
mcdi->mode = MCDI_MODE_EVENTS;
efx_mcdi_release(mcdi);
}
static void efx_mcdi_ev_death(struct efx_nic *efx, int rc)
{
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
/* If there is an outstanding MCDI request, it has been terminated
* either by a BADASSERT or REBOOT event. If the mcdi interface is
* in polled mode, then do nothing because the MC reboot handler will
* set the header correctly. However, if the mcdi interface is waiting
* for a CMDDONE event it won't receive it [and since all MCDI events
* are sent to the same queue, we can't be racing with
* efx_mcdi_ev_cpl()]
*
* If there is an outstanding asynchronous request, we can't
* complete it now (efx_mcdi_complete() would deadlock). The
* reset process will take care of this.
*
* There's a race here with efx_mcdi_send_request(), because
* we might receive a REBOOT event *before* the request has
* been copied out. In polled mode (during startup) this is
* irrelevant, because efx_mcdi_complete_sync() is ignored. In
* event mode, this condition is just an edge-case of
* receiving a REBOOT event after posting the MCDI
* request. Did the mc reboot before or after the copyout? The
* best we can do always is just return failure.
*
* If there is an outstanding proxy response expected it is not going
* to arrive. We should thus abort it.
*/
spin_lock(&mcdi->iface_lock);
efx_mcdi_proxy_abort(mcdi);
if (efx_mcdi_complete_sync(mcdi)) {
if (mcdi->mode == MCDI_MODE_EVENTS) {
mcdi->resprc = rc;
mcdi->resp_hdr_len = 0;
mcdi->resp_data_len = 0;
++mcdi->credits;
}
} else {
int count;
/* Consume the status word since efx_mcdi_rpc_finish() won't */
for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) {
rc = efx_mcdi_poll_reboot(efx);
if (rc)
break;
udelay(MCDI_STATUS_DELAY_US);
}
/* On EF10, a CODE_MC_REBOOT event can be received without the
* reboot detection in efx_mcdi_poll_reboot() being triggered.
* If zero was returned from the final call to
* efx_mcdi_poll_reboot(), the MC reboot wasn't noticed but the
* MC has definitely rebooted so prepare for the reset.
*/
if (!rc && efx->type->mcdi_reboot_detected)
efx->type->mcdi_reboot_detected(efx);
mcdi->new_epoch = true;
/* Nobody was waiting for an MCDI request, so trigger a reset */
efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
}
spin_unlock(&mcdi->iface_lock);
}
/* The MC is going down in to BIST mode. set the BIST flag to block
* new MCDI, cancel any outstanding MCDI and and schedule a BIST-type reset
* (which doesn't actually execute a reset, it waits for the controlling
* function to reset it).
*/
static void efx_mcdi_ev_bist(struct efx_nic *efx)
{
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
spin_lock(&mcdi->iface_lock);
efx->mc_bist_for_other_fn = true;
efx_mcdi_proxy_abort(mcdi);
if (efx_mcdi_complete_sync(mcdi)) {
if (mcdi->mode == MCDI_MODE_EVENTS) {
mcdi->resprc = -EIO;
mcdi->resp_hdr_len = 0;
mcdi->resp_data_len = 0;
++mcdi->credits;
}
}
mcdi->new_epoch = true;
efx_schedule_reset(efx, RESET_TYPE_MC_BIST);
spin_unlock(&mcdi->iface_lock);
}
/* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try
* to recover.
*/
static void efx_mcdi_abandon(struct efx_nic *efx)
{
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
if (xchg(&mcdi->mode, MCDI_MODE_FAIL) == MCDI_MODE_FAIL)
return; /* it had already been done */
netif_dbg(efx, hw, efx->net_dev, "MCDI is timing out; trying to recover\n");
efx_schedule_reset(efx, RESET_TYPE_MCDI_TIMEOUT);
}
static void efx_handle_drain_event(struct efx_nic *efx)
{
if (atomic_dec_and_test(&efx->active_queues))
wake_up(&efx->flush_wq);
WARN_ON(atomic_read(&efx->active_queues) < 0);
}
/* Called from efx_farch_ev_process and efx_ef10_ev_process for MCDI events */
void efx_mcdi_process_event(struct efx_channel *channel,
efx_qword_t *event)
{
struct efx_nic *efx = channel->efx;
int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE);
u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA);
switch (code) {
case MCDI_EVENT_CODE_BADSSERT:
netif_err(efx, hw, efx->net_dev,
"MC watchdog or assertion failure at 0x%x\n", data);
efx_mcdi_ev_death(efx, -EINTR);
break;
case MCDI_EVENT_CODE_PMNOTICE:
netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n");
break;
case MCDI_EVENT_CODE_CMDDONE:
efx_mcdi_ev_cpl(efx,
MCDI_EVENT_FIELD(*event, CMDDONE_SEQ),
MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN),
MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO));
break;
case MCDI_EVENT_CODE_LINKCHANGE:
efx_mcdi_process_link_change(efx, event);
break;
case MCDI_EVENT_CODE_SENSOREVT:
efx_mcdi_sensor_event(efx, event);
break;
case MCDI_EVENT_CODE_SCHEDERR:
netif_dbg(efx, hw, efx->net_dev,
"MC Scheduler alert (0x%x)\n", data);
break;
case MCDI_EVENT_CODE_REBOOT:
case MCDI_EVENT_CODE_MC_REBOOT:
netif_info(efx, hw, efx->net_dev, "MC Reboot\n");
efx_mcdi_ev_death(efx, -EIO);
break;
case MCDI_EVENT_CODE_MC_BIST:
netif_info(efx, hw, efx->net_dev, "MC entered BIST mode\n");
efx_mcdi_ev_bist(efx);
break;
case MCDI_EVENT_CODE_MAC_STATS_DMA:
/* MAC stats are gather lazily. We can ignore this. */
break;
case MCDI_EVENT_CODE_FLR:
if (efx->type->sriov_flr)
efx->type->sriov_flr(efx,
MCDI_EVENT_FIELD(*event, FLR_VF));
break;
case MCDI_EVENT_CODE_PTP_RX:
case MCDI_EVENT_CODE_PTP_FAULT:
case MCDI_EVENT_CODE_PTP_PPS:
efx_ptp_event(efx, event);
break;
case MCDI_EVENT_CODE_PTP_TIME:
efx_time_sync_event(channel, event);
break;
case MCDI_EVENT_CODE_TX_FLUSH:
case MCDI_EVENT_CODE_RX_FLUSH:
/* Two flush events will be sent: one to the same event
* queue as completions, and one to event queue 0.
* In the latter case the {RX,TX}_FLUSH_TO_DRIVER
* flag will be set, and we should ignore the event
* because we want to wait for all completions.
*/
BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN !=
MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN);
if (!MCDI_EVENT_FIELD(*event, TX_FLUSH_TO_DRIVER))
efx_handle_drain_event(efx);
break;
case MCDI_EVENT_CODE_TX_ERR:
case MCDI_EVENT_CODE_RX_ERR:
netif_err(efx, hw, efx->net_dev,
"%s DMA error (event: "EFX_QWORD_FMT")\n",
code == MCDI_EVENT_CODE_TX_ERR ? "TX" : "RX",
EFX_QWORD_VAL(*event));
efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
break;
case MCDI_EVENT_CODE_PROXY_RESPONSE:
efx_mcdi_ev_proxy_response(efx,
MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_HANDLE),
MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_RC));
break;
default:
netif_err(efx, hw, efx->net_dev,
"Unknown MCDI event " EFX_QWORD_FMT "\n",
EFX_QWORD_VAL(*event));
}
}
/**************************************************************************
*
* Specific request functions
*
**************************************************************************
*/
void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len)
{
MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_VERSION_OUT_LEN);
size_t outlength;
const __le16 *ver_words;
size_t offset;
int rc;
BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0);
rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0,
outbuf, sizeof(outbuf), &outlength);
if (rc)
goto fail;
if (outlength < MC_CMD_GET_VERSION_OUT_LEN) {
rc = -EIO;
goto fail;
}
ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION);
offset = scnprintf(buf, len, "%u.%u.%u.%u",
le16_to_cpu(ver_words[0]),
le16_to_cpu(ver_words[1]),
le16_to_cpu(ver_words[2]),
le16_to_cpu(ver_words[3]));
if (efx->type->print_additional_fwver)
offset += efx->type->print_additional_fwver(efx, buf + offset,
len - offset);
/* It's theoretically possible for the string to exceed 31
* characters, though in practice the first three version
* components are short enough that this doesn't happen.
*/
if (WARN_ON(offset >= len))
buf[0] = 0;
return;
fail:
netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
buf[0] = 0;
}
static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
bool *was_attached)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_DRV_ATTACH_IN_LEN);
MCDI_DECLARE_BUF(outbuf, MC_CMD_DRV_ATTACH_EXT_OUT_LEN);
size_t outlen;
int rc;
MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE,
driver_operating ? 1 : 0);
MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1);
MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_LOW_LATENCY);
sfc: Cope with permissions enforcement added to firmware for SR-IOV * Accept EPERM in some simple cases, the following cases are handled: 1) efx_mcdi_read_assertion() Unprivileged PCI functions aren't allowed to GET_ASSERTS. We return success as it's up to the primary PF to deal with asserts. 2) efx_mcdi_mon_probe() in efx_ef10_probe() Unprivileged PCI functions aren't allowed to read sensor info, and worrying about sensor data is the primary PF's job. 3) phy_op->reconfigure() in efx_init_port() and efx_reset_up() Unprivileged functions aren't allowed to MC_CMD_SET_LINK, they just have to accept the settings (including flow-control, which is what efx_init_port() is worried about) they've been given. 4) Fallback to GET_WORKAROUNDS in efx_ef10_probe() Unprivileged PCI functions aren't allowed to set workarounds. So if efx_mcdi_set_workaround() fails EPERM, use efx_mcdi_get_workarounds() to find out if workaround_35388 is enabled. 5) If DRV_ATTACH gets EPERM, try without specifying fw-variant Unprivileged PCI functions have to use a FIRMWARE_ID of 0xffffffff (MC_CMD_FW_DONT_CARE). 6) Don't try to exit_assertion unless one had fired Previously we called efx_mcdi_exit_assertion even if efx_mcdi_read_assertion had received MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS. This is unnecessary, and the resulting MC_CMD_REBOOT, even if the AFTER_ASSERTION flag made it a no-op, would fail EPERM for unprivileged PCI functions. So make efx_mcdi_read_assertion return whether an assert happened, and only call efx_mcdi_exit_assertion if it has. Signed-off-by: Shradha Shah <sshah@solarflare.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-05-06 06:59:18 +07:00
rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf),
outbuf, sizeof(outbuf), &outlen);
/* If we're not the primary PF, trying to ATTACH with a FIRMWARE_ID
* specified will fail with EPERM, and we have to tell the MC we don't
* care what firmware we get.
*/
if (rc == -EPERM) {
netif_dbg(efx, probe, efx->net_dev,
"efx_mcdi_drv_attach with fw-variant setting failed EPERM, trying without it\n");
MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID,
MC_CMD_FW_DONT_CARE);
rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf,
sizeof(inbuf), outbuf, sizeof(outbuf),
&outlen);
}
if (rc) {
efx_mcdi_display_error(efx, MC_CMD_DRV_ATTACH, sizeof(inbuf),
outbuf, outlen, rc);
goto fail;
sfc: Cope with permissions enforcement added to firmware for SR-IOV * Accept EPERM in some simple cases, the following cases are handled: 1) efx_mcdi_read_assertion() Unprivileged PCI functions aren't allowed to GET_ASSERTS. We return success as it's up to the primary PF to deal with asserts. 2) efx_mcdi_mon_probe() in efx_ef10_probe() Unprivileged PCI functions aren't allowed to read sensor info, and worrying about sensor data is the primary PF's job. 3) phy_op->reconfigure() in efx_init_port() and efx_reset_up() Unprivileged functions aren't allowed to MC_CMD_SET_LINK, they just have to accept the settings (including flow-control, which is what efx_init_port() is worried about) they've been given. 4) Fallback to GET_WORKAROUNDS in efx_ef10_probe() Unprivileged PCI functions aren't allowed to set workarounds. So if efx_mcdi_set_workaround() fails EPERM, use efx_mcdi_get_workarounds() to find out if workaround_35388 is enabled. 5) If DRV_ATTACH gets EPERM, try without specifying fw-variant Unprivileged PCI functions have to use a FIRMWARE_ID of 0xffffffff (MC_CMD_FW_DONT_CARE). 6) Don't try to exit_assertion unless one had fired Previously we called efx_mcdi_exit_assertion even if efx_mcdi_read_assertion had received MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS. This is unnecessary, and the resulting MC_CMD_REBOOT, even if the AFTER_ASSERTION flag made it a no-op, would fail EPERM for unprivileged PCI functions. So make efx_mcdi_read_assertion return whether an assert happened, and only call efx_mcdi_exit_assertion if it has. Signed-off-by: Shradha Shah <sshah@solarflare.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-05-06 06:59:18 +07:00
}
if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) {
rc = -EIO;
goto fail;
}
if (driver_operating) {
if (outlen >= MC_CMD_DRV_ATTACH_EXT_OUT_LEN) {
efx->mcdi->fn_flags =
MCDI_DWORD(outbuf,
DRV_ATTACH_EXT_OUT_FUNC_FLAGS);
} else {
/* Synthesise flags for Siena */
efx->mcdi->fn_flags =
1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL |
1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED |
(efx_port_num(efx) == 0) <<
MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY;
}
}
/* We currently assume we have control of the external link
* and are completely trusted by firmware. Abort probing
* if that's not true for this function.
*/
if (was_attached != NULL)
*was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE);
return 0;
fail:
netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
return rc;
}
int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address,
u16 *fw_subtype_list, u32 *capabilities)
{
MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_BOARD_CFG_OUT_LENMAX);
size_t outlen, i;
int port_num = efx_port_num(efx);
int rc;
BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0);
/* we need __aligned(2) for ether_addr_copy */
BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST & 1);
BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST & 1);
rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0,
outbuf, sizeof(outbuf), &outlen);
if (rc)
goto fail;
if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) {
rc = -EIO;
goto fail;
}
if (mac_address)
ether_addr_copy(mac_address,
port_num ?
MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1) :
MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0));
if (fw_subtype_list) {
for (i = 0;
i < MCDI_VAR_ARRAY_LEN(outlen,
GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST);
i++)
fw_subtype_list[i] = MCDI_ARRAY_WORD(
outbuf, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST, i);
for (; i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM; i++)
fw_subtype_list[i] = 0;
}
if (capabilities) {
if (port_num)
*capabilities = MCDI_DWORD(outbuf,
GET_BOARD_CFG_OUT_CAPABILITIES_PORT1);
else
*capabilities = MCDI_DWORD(outbuf,
GET_BOARD_CFG_OUT_CAPABILITIES_PORT0);
}
return 0;
fail:
netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n",
__func__, rc, (int)outlen);
return rc;
}
int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_LOG_CTRL_IN_LEN);
u32 dest = 0;
int rc;
if (uart)
dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART;
if (evq)
dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ;
MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest);
MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq);
BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0);
rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf),
NULL, 0, NULL);
return rc;
}
int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out)
{
MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TYPES_OUT_LEN);
size_t outlen;
int rc;
BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0);
rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0,
outbuf, sizeof(outbuf), &outlen);
if (rc)
goto fail;
if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) {
rc = -EIO;
goto fail;
}
*nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES);
return 0;
fail:
netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
__func__, rc);
return rc;
}
/* This function finds types using the new NVRAM_PARTITIONS mcdi. */
static int efx_new_mcdi_nvram_types(struct efx_nic *efx, u32 *number,
u32 *nvram_types)
{
efx_dword_t *outbuf = kzalloc(MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX_MCDI2,
GFP_KERNEL);
size_t outlen;
int rc;
if (!outbuf)
return -ENOMEM;
BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX_MCDI2, &outlen);
if (rc)
goto fail;
*number = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
memcpy(nvram_types, MCDI_PTR(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID),
*number * sizeof(u32));
fail:
kfree(outbuf);
return rc;
}
int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type,
size_t *size_out, size_t *erase_size_out,
bool *protected_out)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_INFO_IN_LEN);
MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_INFO_OUT_LEN);
size_t outlen;
int rc;
MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type);
rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf),
outbuf, sizeof(outbuf), &outlen);
if (rc)
goto fail;
if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) {
rc = -EIO;
goto fail;
}
*size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE);
*erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE);
*protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) &
(1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN));
return 0;
fail:
netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
return rc;
}
static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_TEST_IN_LEN);
MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TEST_OUT_LEN);
int rc;
MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type);
rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf),
outbuf, sizeof(outbuf), NULL);
if (rc)
return rc;
switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) {
case MC_CMD_NVRAM_TEST_PASS:
case MC_CMD_NVRAM_TEST_NOTSUPP:
return 0;
default:
return -EIO;
}
}
/* This function tests nvram partitions using the new mcdi partition lookup scheme */
int efx_new_mcdi_nvram_test_all(struct efx_nic *efx)
{
u32 *nvram_types = kzalloc(MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX_MCDI2,
GFP_KERNEL);
unsigned int number;
int rc, i;
if (!nvram_types)
return -ENOMEM;
rc = efx_new_mcdi_nvram_types(efx, &number, nvram_types);
if (rc)
goto fail;
/* Require at least one check */
rc = -EAGAIN;
for (i = 0; i < number; i++) {
if (nvram_types[i] == NVRAM_PARTITION_TYPE_PARTITION_MAP ||
nvram_types[i] == NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG)
continue;
rc = efx_mcdi_nvram_test(efx, nvram_types[i]);
if (rc)
goto fail;
}
fail:
kfree(nvram_types);
return rc;
}
int efx_mcdi_nvram_test_all(struct efx_nic *efx)
{
u32 nvram_types;
unsigned int type;
int rc;
rc = efx_mcdi_nvram_types(efx, &nvram_types);
if (rc)
goto fail1;
type = 0;
while (nvram_types != 0) {
if (nvram_types & 1) {
rc = efx_mcdi_nvram_test(efx, type);
if (rc)
goto fail2;
}
type++;
nvram_types >>= 1;
}
return 0;
fail2:
netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n",
__func__, type);
fail1:
netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
return rc;
}
sfc: Cope with permissions enforcement added to firmware for SR-IOV * Accept EPERM in some simple cases, the following cases are handled: 1) efx_mcdi_read_assertion() Unprivileged PCI functions aren't allowed to GET_ASSERTS. We return success as it's up to the primary PF to deal with asserts. 2) efx_mcdi_mon_probe() in efx_ef10_probe() Unprivileged PCI functions aren't allowed to read sensor info, and worrying about sensor data is the primary PF's job. 3) phy_op->reconfigure() in efx_init_port() and efx_reset_up() Unprivileged functions aren't allowed to MC_CMD_SET_LINK, they just have to accept the settings (including flow-control, which is what efx_init_port() is worried about) they've been given. 4) Fallback to GET_WORKAROUNDS in efx_ef10_probe() Unprivileged PCI functions aren't allowed to set workarounds. So if efx_mcdi_set_workaround() fails EPERM, use efx_mcdi_get_workarounds() to find out if workaround_35388 is enabled. 5) If DRV_ATTACH gets EPERM, try without specifying fw-variant Unprivileged PCI functions have to use a FIRMWARE_ID of 0xffffffff (MC_CMD_FW_DONT_CARE). 6) Don't try to exit_assertion unless one had fired Previously we called efx_mcdi_exit_assertion even if efx_mcdi_read_assertion had received MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS. This is unnecessary, and the resulting MC_CMD_REBOOT, even if the AFTER_ASSERTION flag made it a no-op, would fail EPERM for unprivileged PCI functions. So make efx_mcdi_read_assertion return whether an assert happened, and only call efx_mcdi_exit_assertion if it has. Signed-off-by: Shradha Shah <sshah@solarflare.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-05-06 06:59:18 +07:00
/* Returns 1 if an assertion was read, 0 if no assertion had fired,
* negative on error.
*/
static int efx_mcdi_read_assertion(struct efx_nic *efx)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_ASSERTS_IN_LEN);
MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_ASSERTS_OUT_LEN);
unsigned int flags, index;
const char *reason;
size_t outlen;
int retry;
int rc;
/* Attempt to read any stored assertion state before we reboot
* the mcfw out of the assertion handler. Retry twice, once
* because a boot-time assertion might cause this command to fail
* with EINTR. And once again because GET_ASSERTS can race with
* MC_CMD_REBOOT running on the other port. */
retry = 2;
do {
MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1);
rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_ASSERTS,
inbuf, MC_CMD_GET_ASSERTS_IN_LEN,
outbuf, sizeof(outbuf), &outlen);
sfc: Cope with permissions enforcement added to firmware for SR-IOV * Accept EPERM in some simple cases, the following cases are handled: 1) efx_mcdi_read_assertion() Unprivileged PCI functions aren't allowed to GET_ASSERTS. We return success as it's up to the primary PF to deal with asserts. 2) efx_mcdi_mon_probe() in efx_ef10_probe() Unprivileged PCI functions aren't allowed to read sensor info, and worrying about sensor data is the primary PF's job. 3) phy_op->reconfigure() in efx_init_port() and efx_reset_up() Unprivileged functions aren't allowed to MC_CMD_SET_LINK, they just have to accept the settings (including flow-control, which is what efx_init_port() is worried about) they've been given. 4) Fallback to GET_WORKAROUNDS in efx_ef10_probe() Unprivileged PCI functions aren't allowed to set workarounds. So if efx_mcdi_set_workaround() fails EPERM, use efx_mcdi_get_workarounds() to find out if workaround_35388 is enabled. 5) If DRV_ATTACH gets EPERM, try without specifying fw-variant Unprivileged PCI functions have to use a FIRMWARE_ID of 0xffffffff (MC_CMD_FW_DONT_CARE). 6) Don't try to exit_assertion unless one had fired Previously we called efx_mcdi_exit_assertion even if efx_mcdi_read_assertion had received MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS. This is unnecessary, and the resulting MC_CMD_REBOOT, even if the AFTER_ASSERTION flag made it a no-op, would fail EPERM for unprivileged PCI functions. So make efx_mcdi_read_assertion return whether an assert happened, and only call efx_mcdi_exit_assertion if it has. Signed-off-by: Shradha Shah <sshah@solarflare.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-05-06 06:59:18 +07:00
if (rc == -EPERM)
return 0;
} while ((rc == -EINTR || rc == -EIO) && retry-- > 0);
if (rc) {
efx_mcdi_display_error(efx, MC_CMD_GET_ASSERTS,
MC_CMD_GET_ASSERTS_IN_LEN, outbuf,
outlen, rc);
return rc;
}
if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN)
return -EIO;
/* Print out any recorded assertion state */
flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS);
if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS)
return 0;
reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL)
? "system-level assertion"
: (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL)
? "thread-level assertion"
: (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED)
? "watchdog reset"
: "unknown assertion";
netif_err(efx, hw, efx->net_dev,
"MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason,
MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS),
MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS));
/* Print out the registers */
for (index = 0;
index < MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM;
index++)
netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n",
1 + index,
MCDI_ARRAY_DWORD(outbuf, GET_ASSERTS_OUT_GP_REGS_OFFS,
index));
sfc: Cope with permissions enforcement added to firmware for SR-IOV * Accept EPERM in some simple cases, the following cases are handled: 1) efx_mcdi_read_assertion() Unprivileged PCI functions aren't allowed to GET_ASSERTS. We return success as it's up to the primary PF to deal with asserts. 2) efx_mcdi_mon_probe() in efx_ef10_probe() Unprivileged PCI functions aren't allowed to read sensor info, and worrying about sensor data is the primary PF's job. 3) phy_op->reconfigure() in efx_init_port() and efx_reset_up() Unprivileged functions aren't allowed to MC_CMD_SET_LINK, they just have to accept the settings (including flow-control, which is what efx_init_port() is worried about) they've been given. 4) Fallback to GET_WORKAROUNDS in efx_ef10_probe() Unprivileged PCI functions aren't allowed to set workarounds. So if efx_mcdi_set_workaround() fails EPERM, use efx_mcdi_get_workarounds() to find out if workaround_35388 is enabled. 5) If DRV_ATTACH gets EPERM, try without specifying fw-variant Unprivileged PCI functions have to use a FIRMWARE_ID of 0xffffffff (MC_CMD_FW_DONT_CARE). 6) Don't try to exit_assertion unless one had fired Previously we called efx_mcdi_exit_assertion even if efx_mcdi_read_assertion had received MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS. This is unnecessary, and the resulting MC_CMD_REBOOT, even if the AFTER_ASSERTION flag made it a no-op, would fail EPERM for unprivileged PCI functions. So make efx_mcdi_read_assertion return whether an assert happened, and only call efx_mcdi_exit_assertion if it has. Signed-off-by: Shradha Shah <sshah@solarflare.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-05-06 06:59:18 +07:00
return 1;
}
sfc: Cope with permissions enforcement added to firmware for SR-IOV * Accept EPERM in some simple cases, the following cases are handled: 1) efx_mcdi_read_assertion() Unprivileged PCI functions aren't allowed to GET_ASSERTS. We return success as it's up to the primary PF to deal with asserts. 2) efx_mcdi_mon_probe() in efx_ef10_probe() Unprivileged PCI functions aren't allowed to read sensor info, and worrying about sensor data is the primary PF's job. 3) phy_op->reconfigure() in efx_init_port() and efx_reset_up() Unprivileged functions aren't allowed to MC_CMD_SET_LINK, they just have to accept the settings (including flow-control, which is what efx_init_port() is worried about) they've been given. 4) Fallback to GET_WORKAROUNDS in efx_ef10_probe() Unprivileged PCI functions aren't allowed to set workarounds. So if efx_mcdi_set_workaround() fails EPERM, use efx_mcdi_get_workarounds() to find out if workaround_35388 is enabled. 5) If DRV_ATTACH gets EPERM, try without specifying fw-variant Unprivileged PCI functions have to use a FIRMWARE_ID of 0xffffffff (MC_CMD_FW_DONT_CARE). 6) Don't try to exit_assertion unless one had fired Previously we called efx_mcdi_exit_assertion even if efx_mcdi_read_assertion had received MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS. This is unnecessary, and the resulting MC_CMD_REBOOT, even if the AFTER_ASSERTION flag made it a no-op, would fail EPERM for unprivileged PCI functions. So make efx_mcdi_read_assertion return whether an assert happened, and only call efx_mcdi_exit_assertion if it has. Signed-off-by: Shradha Shah <sshah@solarflare.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-05-06 06:59:18 +07:00
static int efx_mcdi_exit_assertion(struct efx_nic *efx)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
sfc: Cope with permissions enforcement added to firmware for SR-IOV * Accept EPERM in some simple cases, the following cases are handled: 1) efx_mcdi_read_assertion() Unprivileged PCI functions aren't allowed to GET_ASSERTS. We return success as it's up to the primary PF to deal with asserts. 2) efx_mcdi_mon_probe() in efx_ef10_probe() Unprivileged PCI functions aren't allowed to read sensor info, and worrying about sensor data is the primary PF's job. 3) phy_op->reconfigure() in efx_init_port() and efx_reset_up() Unprivileged functions aren't allowed to MC_CMD_SET_LINK, they just have to accept the settings (including flow-control, which is what efx_init_port() is worried about) they've been given. 4) Fallback to GET_WORKAROUNDS in efx_ef10_probe() Unprivileged PCI functions aren't allowed to set workarounds. So if efx_mcdi_set_workaround() fails EPERM, use efx_mcdi_get_workarounds() to find out if workaround_35388 is enabled. 5) If DRV_ATTACH gets EPERM, try without specifying fw-variant Unprivileged PCI functions have to use a FIRMWARE_ID of 0xffffffff (MC_CMD_FW_DONT_CARE). 6) Don't try to exit_assertion unless one had fired Previously we called efx_mcdi_exit_assertion even if efx_mcdi_read_assertion had received MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS. This is unnecessary, and the resulting MC_CMD_REBOOT, even if the AFTER_ASSERTION flag made it a no-op, would fail EPERM for unprivileged PCI functions. So make efx_mcdi_read_assertion return whether an assert happened, and only call efx_mcdi_exit_assertion if it has. Signed-off-by: Shradha Shah <sshah@solarflare.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-05-06 06:59:18 +07:00
int rc;
/* If the MC is running debug firmware, it might now be
* waiting for a debugger to attach, but we just want it to
* reboot. We set a flag that makes the command a no-op if it
sfc: Cope with permissions enforcement added to firmware for SR-IOV * Accept EPERM in some simple cases, the following cases are handled: 1) efx_mcdi_read_assertion() Unprivileged PCI functions aren't allowed to GET_ASSERTS. We return success as it's up to the primary PF to deal with asserts. 2) efx_mcdi_mon_probe() in efx_ef10_probe() Unprivileged PCI functions aren't allowed to read sensor info, and worrying about sensor data is the primary PF's job. 3) phy_op->reconfigure() in efx_init_port() and efx_reset_up() Unprivileged functions aren't allowed to MC_CMD_SET_LINK, they just have to accept the settings (including flow-control, which is what efx_init_port() is worried about) they've been given. 4) Fallback to GET_WORKAROUNDS in efx_ef10_probe() Unprivileged PCI functions aren't allowed to set workarounds. So if efx_mcdi_set_workaround() fails EPERM, use efx_mcdi_get_workarounds() to find out if workaround_35388 is enabled. 5) If DRV_ATTACH gets EPERM, try without specifying fw-variant Unprivileged PCI functions have to use a FIRMWARE_ID of 0xffffffff (MC_CMD_FW_DONT_CARE). 6) Don't try to exit_assertion unless one had fired Previously we called efx_mcdi_exit_assertion even if efx_mcdi_read_assertion had received MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS. This is unnecessary, and the resulting MC_CMD_REBOOT, even if the AFTER_ASSERTION flag made it a no-op, would fail EPERM for unprivileged PCI functions. So make efx_mcdi_read_assertion return whether an assert happened, and only call efx_mcdi_exit_assertion if it has. Signed-off-by: Shradha Shah <sshah@solarflare.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-05-06 06:59:18 +07:00
* has already done so.
* The MCDI will thus return either 0 or -EIO.
*/
BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS,
MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION);
sfc: Cope with permissions enforcement added to firmware for SR-IOV * Accept EPERM in some simple cases, the following cases are handled: 1) efx_mcdi_read_assertion() Unprivileged PCI functions aren't allowed to GET_ASSERTS. We return success as it's up to the primary PF to deal with asserts. 2) efx_mcdi_mon_probe() in efx_ef10_probe() Unprivileged PCI functions aren't allowed to read sensor info, and worrying about sensor data is the primary PF's job. 3) phy_op->reconfigure() in efx_init_port() and efx_reset_up() Unprivileged functions aren't allowed to MC_CMD_SET_LINK, they just have to accept the settings (including flow-control, which is what efx_init_port() is worried about) they've been given. 4) Fallback to GET_WORKAROUNDS in efx_ef10_probe() Unprivileged PCI functions aren't allowed to set workarounds. So if efx_mcdi_set_workaround() fails EPERM, use efx_mcdi_get_workarounds() to find out if workaround_35388 is enabled. 5) If DRV_ATTACH gets EPERM, try without specifying fw-variant Unprivileged PCI functions have to use a FIRMWARE_ID of 0xffffffff (MC_CMD_FW_DONT_CARE). 6) Don't try to exit_assertion unless one had fired Previously we called efx_mcdi_exit_assertion even if efx_mcdi_read_assertion had received MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS. This is unnecessary, and the resulting MC_CMD_REBOOT, even if the AFTER_ASSERTION flag made it a no-op, would fail EPERM for unprivileged PCI functions. So make efx_mcdi_read_assertion return whether an assert happened, and only call efx_mcdi_exit_assertion if it has. Signed-off-by: Shradha Shah <sshah@solarflare.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-05-06 06:59:18 +07:00
rc = efx_mcdi_rpc_quiet(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN,
NULL, 0, NULL);
if (rc == -EIO)
rc = 0;
if (rc)
efx_mcdi_display_error(efx, MC_CMD_REBOOT, MC_CMD_REBOOT_IN_LEN,
NULL, 0, rc);
return rc;
}
int efx_mcdi_handle_assertion(struct efx_nic *efx)
{
int rc;
rc = efx_mcdi_read_assertion(efx);
sfc: Cope with permissions enforcement added to firmware for SR-IOV * Accept EPERM in some simple cases, the following cases are handled: 1) efx_mcdi_read_assertion() Unprivileged PCI functions aren't allowed to GET_ASSERTS. We return success as it's up to the primary PF to deal with asserts. 2) efx_mcdi_mon_probe() in efx_ef10_probe() Unprivileged PCI functions aren't allowed to read sensor info, and worrying about sensor data is the primary PF's job. 3) phy_op->reconfigure() in efx_init_port() and efx_reset_up() Unprivileged functions aren't allowed to MC_CMD_SET_LINK, they just have to accept the settings (including flow-control, which is what efx_init_port() is worried about) they've been given. 4) Fallback to GET_WORKAROUNDS in efx_ef10_probe() Unprivileged PCI functions aren't allowed to set workarounds. So if efx_mcdi_set_workaround() fails EPERM, use efx_mcdi_get_workarounds() to find out if workaround_35388 is enabled. 5) If DRV_ATTACH gets EPERM, try without specifying fw-variant Unprivileged PCI functions have to use a FIRMWARE_ID of 0xffffffff (MC_CMD_FW_DONT_CARE). 6) Don't try to exit_assertion unless one had fired Previously we called efx_mcdi_exit_assertion even if efx_mcdi_read_assertion had received MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS. This is unnecessary, and the resulting MC_CMD_REBOOT, even if the AFTER_ASSERTION flag made it a no-op, would fail EPERM for unprivileged PCI functions. So make efx_mcdi_read_assertion return whether an assert happened, and only call efx_mcdi_exit_assertion if it has. Signed-off-by: Shradha Shah <sshah@solarflare.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-05-06 06:59:18 +07:00
if (rc <= 0)
return rc;
sfc: Cope with permissions enforcement added to firmware for SR-IOV * Accept EPERM in some simple cases, the following cases are handled: 1) efx_mcdi_read_assertion() Unprivileged PCI functions aren't allowed to GET_ASSERTS. We return success as it's up to the primary PF to deal with asserts. 2) efx_mcdi_mon_probe() in efx_ef10_probe() Unprivileged PCI functions aren't allowed to read sensor info, and worrying about sensor data is the primary PF's job. 3) phy_op->reconfigure() in efx_init_port() and efx_reset_up() Unprivileged functions aren't allowed to MC_CMD_SET_LINK, they just have to accept the settings (including flow-control, which is what efx_init_port() is worried about) they've been given. 4) Fallback to GET_WORKAROUNDS in efx_ef10_probe() Unprivileged PCI functions aren't allowed to set workarounds. So if efx_mcdi_set_workaround() fails EPERM, use efx_mcdi_get_workarounds() to find out if workaround_35388 is enabled. 5) If DRV_ATTACH gets EPERM, try without specifying fw-variant Unprivileged PCI functions have to use a FIRMWARE_ID of 0xffffffff (MC_CMD_FW_DONT_CARE). 6) Don't try to exit_assertion unless one had fired Previously we called efx_mcdi_exit_assertion even if efx_mcdi_read_assertion had received MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS. This is unnecessary, and the resulting MC_CMD_REBOOT, even if the AFTER_ASSERTION flag made it a no-op, would fail EPERM for unprivileged PCI functions. So make efx_mcdi_read_assertion return whether an assert happened, and only call efx_mcdi_exit_assertion if it has. Signed-off-by: Shradha Shah <sshah@solarflare.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-05-06 06:59:18 +07:00
return efx_mcdi_exit_assertion(efx);
}
void efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_ID_LED_IN_LEN);
int rc;
BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF);
BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON);
BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT);
BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0);
MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode);
rc = efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf),
NULL, 0, NULL);
}
static int efx_mcdi_reset_func(struct efx_nic *efx)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_ENTITY_RESET_IN_LEN);
int rc;
BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN != 0);
MCDI_POPULATE_DWORD_1(inbuf, ENTITY_RESET_IN_FLAG,
ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1);
rc = efx_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, inbuf, sizeof(inbuf),
NULL, 0, NULL);
return rc;
}
static int efx_mcdi_reset_mc(struct efx_nic *efx)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
int rc;
BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0);
rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf),
NULL, 0, NULL);
/* White is black, and up is down */
if (rc == -EIO)
return 0;
if (rc == 0)
rc = -EIO;
return rc;
}
enum reset_type efx_mcdi_map_reset_reason(enum reset_type reason)
{
return RESET_TYPE_RECOVER_OR_ALL;
}
int efx_mcdi_reset(struct efx_nic *efx, enum reset_type method)
{
int rc;
/* If MCDI is down, we can't handle_assertion */
if (method == RESET_TYPE_MCDI_TIMEOUT) {
rc = pci_reset_function(efx->pci_dev);
if (rc)
return rc;
/* Re-enable polled MCDI completion */
if (efx->mcdi) {
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
mcdi->mode = MCDI_MODE_POLL;
}
return 0;
}
/* Recover from a failed assertion pre-reset */
rc = efx_mcdi_handle_assertion(efx);
if (rc)
return rc;
if (method == RESET_TYPE_DATAPATH)
return 0;
else if (method == RESET_TYPE_WORLD)
return efx_mcdi_reset_mc(efx);
else
return efx_mcdi_reset_func(efx);
}
static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type,
const u8 *mac, int *id_out)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_SET_IN_LEN);
MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_SET_OUT_LEN);
size_t outlen;
int rc;
MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type);
MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE,
MC_CMD_FILTER_MODE_SIMPLE);
ether_addr_copy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac);
rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf),
outbuf, sizeof(outbuf), &outlen);
if (rc)
goto fail;
if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) {
rc = -EIO;
goto fail;
}
*id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID);
return 0;
fail:
*id_out = -1;
netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
return rc;
}
int
efx_mcdi_wol_filter_set_magic(struct efx_nic *efx, const u8 *mac, int *id_out)
{
return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out);
}
int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out)
{
MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_GET_OUT_LEN);
size_t outlen;
int rc;
rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0,
outbuf, sizeof(outbuf), &outlen);
if (rc)
goto fail;
if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) {
rc = -EIO;
goto fail;
}
*id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID);
return 0;
fail:
*id_out = -1;
netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
return rc;
}
int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_REMOVE_IN_LEN);
int rc;
MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id);
rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf),
NULL, 0, NULL);
return rc;
}
int efx_mcdi_flush_rxqs(struct efx_nic *efx)
{
struct efx_channel *channel;
struct efx_rx_queue *rx_queue;
MCDI_DECLARE_BUF(inbuf,
MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS));
int rc, count;
BUILD_BUG_ON(EFX_MAX_CHANNELS >
MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
count = 0;
efx_for_each_channel(channel, efx) {
efx_for_each_channel_rx_queue(rx_queue, channel) {
if (rx_queue->flush_pending) {
rx_queue->flush_pending = false;
atomic_dec(&efx->rxq_flush_pending);
MCDI_SET_ARRAY_DWORD(
inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
count, efx_rx_queue_index(rx_queue));
count++;
}
}
}
rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf,
MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count), NULL, 0, NULL);
WARN_ON(rc < 0);
return rc;
}
int efx_mcdi_wol_filter_reset(struct efx_nic *efx)
{
int rc;
rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL);
return rc;
}
int efx_mcdi_set_workaround(struct efx_nic *efx, u32 type, bool enabled,
unsigned int *flags)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_WORKAROUND_IN_LEN);
MCDI_DECLARE_BUF(outbuf, MC_CMD_WORKAROUND_EXT_OUT_LEN);
size_t outlen;
int rc;
BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN != 0);
MCDI_SET_DWORD(inbuf, WORKAROUND_IN_TYPE, type);
MCDI_SET_DWORD(inbuf, WORKAROUND_IN_ENABLED, enabled);
rc = efx_mcdi_rpc(efx, MC_CMD_WORKAROUND, inbuf, sizeof(inbuf),
outbuf, sizeof(outbuf), &outlen);
if (rc)
return rc;
if (!flags)
return 0;
if (outlen >= MC_CMD_WORKAROUND_EXT_OUT_LEN)
*flags = MCDI_DWORD(outbuf, WORKAROUND_EXT_OUT_FLAGS);
else
*flags = 0;
return 0;
}
sfc: Cope with permissions enforcement added to firmware for SR-IOV * Accept EPERM in some simple cases, the following cases are handled: 1) efx_mcdi_read_assertion() Unprivileged PCI functions aren't allowed to GET_ASSERTS. We return success as it's up to the primary PF to deal with asserts. 2) efx_mcdi_mon_probe() in efx_ef10_probe() Unprivileged PCI functions aren't allowed to read sensor info, and worrying about sensor data is the primary PF's job. 3) phy_op->reconfigure() in efx_init_port() and efx_reset_up() Unprivileged functions aren't allowed to MC_CMD_SET_LINK, they just have to accept the settings (including flow-control, which is what efx_init_port() is worried about) they've been given. 4) Fallback to GET_WORKAROUNDS in efx_ef10_probe() Unprivileged PCI functions aren't allowed to set workarounds. So if efx_mcdi_set_workaround() fails EPERM, use efx_mcdi_get_workarounds() to find out if workaround_35388 is enabled. 5) If DRV_ATTACH gets EPERM, try without specifying fw-variant Unprivileged PCI functions have to use a FIRMWARE_ID of 0xffffffff (MC_CMD_FW_DONT_CARE). 6) Don't try to exit_assertion unless one had fired Previously we called efx_mcdi_exit_assertion even if efx_mcdi_read_assertion had received MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS. This is unnecessary, and the resulting MC_CMD_REBOOT, even if the AFTER_ASSERTION flag made it a no-op, would fail EPERM for unprivileged PCI functions. So make efx_mcdi_read_assertion return whether an assert happened, and only call efx_mcdi_exit_assertion if it has. Signed-off-by: Shradha Shah <sshah@solarflare.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-05-06 06:59:18 +07:00
int efx_mcdi_get_workarounds(struct efx_nic *efx, unsigned int *impl_out,
unsigned int *enabled_out)
{
MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_WORKAROUNDS_OUT_LEN);
sfc: Cope with permissions enforcement added to firmware for SR-IOV * Accept EPERM in some simple cases, the following cases are handled: 1) efx_mcdi_read_assertion() Unprivileged PCI functions aren't allowed to GET_ASSERTS. We return success as it's up to the primary PF to deal with asserts. 2) efx_mcdi_mon_probe() in efx_ef10_probe() Unprivileged PCI functions aren't allowed to read sensor info, and worrying about sensor data is the primary PF's job. 3) phy_op->reconfigure() in efx_init_port() and efx_reset_up() Unprivileged functions aren't allowed to MC_CMD_SET_LINK, they just have to accept the settings (including flow-control, which is what efx_init_port() is worried about) they've been given. 4) Fallback to GET_WORKAROUNDS in efx_ef10_probe() Unprivileged PCI functions aren't allowed to set workarounds. So if efx_mcdi_set_workaround() fails EPERM, use efx_mcdi_get_workarounds() to find out if workaround_35388 is enabled. 5) If DRV_ATTACH gets EPERM, try without specifying fw-variant Unprivileged PCI functions have to use a FIRMWARE_ID of 0xffffffff (MC_CMD_FW_DONT_CARE). 6) Don't try to exit_assertion unless one had fired Previously we called efx_mcdi_exit_assertion even if efx_mcdi_read_assertion had received MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS. This is unnecessary, and the resulting MC_CMD_REBOOT, even if the AFTER_ASSERTION flag made it a no-op, would fail EPERM for unprivileged PCI functions. So make efx_mcdi_read_assertion return whether an assert happened, and only call efx_mcdi_exit_assertion if it has. Signed-off-by: Shradha Shah <sshah@solarflare.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-05-06 06:59:18 +07:00
size_t outlen;
int rc;
rc = efx_mcdi_rpc(efx, MC_CMD_GET_WORKAROUNDS, NULL, 0,
outbuf, sizeof(outbuf), &outlen);
if (rc)
goto fail;
if (outlen < MC_CMD_GET_WORKAROUNDS_OUT_LEN) {
rc = -EIO;
goto fail;
}
if (impl_out)
*impl_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_IMPLEMENTED);
if (enabled_out)
*enabled_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_ENABLED);
return 0;
fail:
/* Older firmware lacks GET_WORKAROUNDS and this isn't especially
* terrifying. The call site will have to deal with it though.
*/
netif_cond_dbg(efx, hw, efx->net_dev, rc == -ENOSYS, err,
"%s: failed rc=%d\n", __func__, rc);
sfc: Cope with permissions enforcement added to firmware for SR-IOV * Accept EPERM in some simple cases, the following cases are handled: 1) efx_mcdi_read_assertion() Unprivileged PCI functions aren't allowed to GET_ASSERTS. We return success as it's up to the primary PF to deal with asserts. 2) efx_mcdi_mon_probe() in efx_ef10_probe() Unprivileged PCI functions aren't allowed to read sensor info, and worrying about sensor data is the primary PF's job. 3) phy_op->reconfigure() in efx_init_port() and efx_reset_up() Unprivileged functions aren't allowed to MC_CMD_SET_LINK, they just have to accept the settings (including flow-control, which is what efx_init_port() is worried about) they've been given. 4) Fallback to GET_WORKAROUNDS in efx_ef10_probe() Unprivileged PCI functions aren't allowed to set workarounds. So if efx_mcdi_set_workaround() fails EPERM, use efx_mcdi_get_workarounds() to find out if workaround_35388 is enabled. 5) If DRV_ATTACH gets EPERM, try without specifying fw-variant Unprivileged PCI functions have to use a FIRMWARE_ID of 0xffffffff (MC_CMD_FW_DONT_CARE). 6) Don't try to exit_assertion unless one had fired Previously we called efx_mcdi_exit_assertion even if efx_mcdi_read_assertion had received MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS. This is unnecessary, and the resulting MC_CMD_REBOOT, even if the AFTER_ASSERTION flag made it a no-op, would fail EPERM for unprivileged PCI functions. So make efx_mcdi_read_assertion return whether an assert happened, and only call efx_mcdi_exit_assertion if it has. Signed-off-by: Shradha Shah <sshah@solarflare.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-05-06 06:59:18 +07:00
return rc;
}
#ifdef CONFIG_SFC_MTD
#define EFX_MCDI_NVRAM_LEN_MAX 128
static int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_START_V2_IN_LEN);
int rc;
MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type);
MCDI_POPULATE_DWORD_1(inbuf, NVRAM_UPDATE_START_V2_IN_FLAGS,
NVRAM_UPDATE_START_V2_IN_FLAG_REPORT_VERIFY_RESULT,
1);
BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0);
rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf),
NULL, 0, NULL);
return rc;
}
static int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type,
loff_t offset, u8 *buffer, size_t length)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_READ_IN_V2_LEN);
MCDI_DECLARE_BUF(outbuf,
MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX));
size_t outlen;
int rc;
MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type);
MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset);
MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length);
MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_V2_MODE,
MC_CMD_NVRAM_READ_IN_V2_DEFAULT);
rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf),
outbuf, sizeof(outbuf), &outlen);
if (rc)
return rc;
memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length);
return 0;
}
static int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type,
loff_t offset, const u8 *buffer, size_t length)
{
MCDI_DECLARE_BUF(inbuf,
MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX));
int rc;
MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type);
MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset);
MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length);
memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length);
BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0);
rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf,
ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4),
NULL, 0, NULL);
return rc;
}
static int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type,
loff_t offset, size_t length)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_ERASE_IN_LEN);
int rc;
MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type);
MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset);
MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length);
BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0);
rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf),
NULL, 0, NULL);
return rc;
}
static int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_FINISH_V2_IN_LEN);
MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_UPDATE_FINISH_V2_OUT_LEN);
size_t outlen;
int rc, rc2;
MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type);
/* Always set this flag. Old firmware ignores it */
MCDI_POPULATE_DWORD_1(inbuf, NVRAM_UPDATE_FINISH_V2_IN_FLAGS,
NVRAM_UPDATE_FINISH_V2_IN_FLAG_REPORT_VERIFY_RESULT,
1);
rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf),
outbuf, sizeof(outbuf), &outlen);
if (!rc && outlen >= MC_CMD_NVRAM_UPDATE_FINISH_V2_OUT_LEN) {
rc2 = MCDI_DWORD(outbuf, NVRAM_UPDATE_FINISH_V2_OUT_RESULT_CODE);
if (rc2 != MC_CMD_NVRAM_VERIFY_RC_SUCCESS)
netif_err(efx, drv, efx->net_dev,
"NVRAM update failed verification with code 0x%x\n",
rc2);
switch (rc2) {
case MC_CMD_NVRAM_VERIFY_RC_SUCCESS:
break;
case MC_CMD_NVRAM_VERIFY_RC_CMS_CHECK_FAILED:
case MC_CMD_NVRAM_VERIFY_RC_MESSAGE_DIGEST_CHECK_FAILED:
case MC_CMD_NVRAM_VERIFY_RC_SIGNATURE_CHECK_FAILED:
case MC_CMD_NVRAM_VERIFY_RC_TRUSTED_APPROVERS_CHECK_FAILED:
case MC_CMD_NVRAM_VERIFY_RC_SIGNATURE_CHAIN_CHECK_FAILED:
rc = -EIO;
break;
case MC_CMD_NVRAM_VERIFY_RC_INVALID_CMS_FORMAT:
case MC_CMD_NVRAM_VERIFY_RC_BAD_MESSAGE_DIGEST:
rc = -EINVAL;
break;
case MC_CMD_NVRAM_VERIFY_RC_NO_VALID_SIGNATURES:
case MC_CMD_NVRAM_VERIFY_RC_NO_TRUSTED_APPROVERS:
case MC_CMD_NVRAM_VERIFY_RC_NO_SIGNATURE_MATCH:
rc = -EPERM;
break;
default:
netif_err(efx, drv, efx->net_dev,
"Unknown response to NVRAM_UPDATE_FINISH\n");
rc = -EIO;
}
}
return rc;
}
int efx_mcdi_mtd_read(struct mtd_info *mtd, loff_t start,
size_t len, size_t *retlen, u8 *buffer)
{
struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
struct efx_nic *efx = mtd->priv;
loff_t offset = start;
loff_t end = min_t(loff_t, start + len, mtd->size);
size_t chunk;
int rc = 0;
while (offset < end) {
chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
rc = efx_mcdi_nvram_read(efx, part->nvram_type, offset,
buffer, chunk);
if (rc)
goto out;
offset += chunk;
buffer += chunk;
}
out:
*retlen = offset - start;
return rc;
}
int efx_mcdi_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
{
struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
struct efx_nic *efx = mtd->priv;
loff_t offset = start & ~((loff_t)(mtd->erasesize - 1));
loff_t end = min_t(loff_t, start + len, mtd->size);
size_t chunk = part->common.mtd.erasesize;
int rc = 0;
if (!part->updating) {
rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
if (rc)
goto out;
part->updating = true;
}
/* The MCDI interface can in fact do multiple erase blocks at once;
* but erasing may be slow, so we make multiple calls here to avoid
* tripping the MCDI RPC timeout. */
while (offset < end) {
rc = efx_mcdi_nvram_erase(efx, part->nvram_type, offset,
chunk);
if (rc)
goto out;
offset += chunk;
}
out:
return rc;
}
int efx_mcdi_mtd_write(struct mtd_info *mtd, loff_t start,
size_t len, size_t *retlen, const u8 *buffer)
{
struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
struct efx_nic *efx = mtd->priv;
loff_t offset = start;
loff_t end = min_t(loff_t, start + len, mtd->size);
size_t chunk;
int rc = 0;
if (!part->updating) {
rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
if (rc)
goto out;
part->updating = true;
}
while (offset < end) {
chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
rc = efx_mcdi_nvram_write(efx, part->nvram_type, offset,
buffer, chunk);
if (rc)
goto out;
offset += chunk;
buffer += chunk;
}
out:
*retlen = offset - start;
return rc;
}
int efx_mcdi_mtd_sync(struct mtd_info *mtd)
{
struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
struct efx_nic *efx = mtd->priv;
int rc = 0;
if (part->updating) {
part->updating = false;
rc = efx_mcdi_nvram_update_finish(efx, part->nvram_type);
}
return rc;
}
void efx_mcdi_mtd_rename(struct efx_mtd_partition *part)
{
struct efx_mcdi_mtd_partition *mcdi_part =
container_of(part, struct efx_mcdi_mtd_partition, common);
struct efx_nic *efx = part->mtd.priv;
snprintf(part->name, sizeof(part->name), "%s %s:%02x",
efx->name, part->type_name, mcdi_part->fw_subtype);
}
#endif /* CONFIG_SFC_MTD */