2017-06-15 01:37:39 +07:00
|
|
|
/*
|
|
|
|
* Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
|
|
|
|
* Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
|
|
|
|
* Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
|
|
|
|
* Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
|
|
|
|
* Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
|
|
|
|
*
|
|
|
|
* This software is available to you under a choice of one of two
|
|
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
|
|
* General Public License (GPL) Version 2, available from the file
|
|
|
|
* COPYING in the main directory of this source tree, or the
|
|
|
|
* OpenIB.org BSD license below:
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or
|
|
|
|
* without modification, are permitted provided that the following
|
|
|
|
* conditions are met:
|
|
|
|
*
|
|
|
|
* - Redistributions of source code must retain the above
|
|
|
|
* copyright notice, this list of conditions and the following
|
|
|
|
* disclaimer.
|
|
|
|
*
|
|
|
|
* - Redistributions in binary form must reproduce the above
|
|
|
|
* copyright notice, this list of conditions and the following
|
|
|
|
* disclaimer in the documentation and/or other materials
|
|
|
|
* provided with the distribution.
|
|
|
|
*
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
|
|
* SOFTWARE.
|
|
|
|
*/
|
|
|
|
|
tls: RX path for ktls
Add rx path for tls software implementation.
recvmsg, splice_read, and poll implemented.
An additional sockopt TLS_RX is added, with the same interface as
TLS_TX. Either TLX_RX or TLX_TX may be provided separately, or
together (with two different setsockopt calls with appropriate keys).
Control messages are passed via CMSG in a similar way to transmit.
If no cmsg buffer is passed, then only application data records
will be passed to userspace, and EIO is returned for other types of
alerts.
EBADMSG is passed for decryption errors, and EMSGSIZE is passed for
framing too big, and EBADMSG for framing too small (matching openssl
semantics). EINVAL is returned for TLS versions that do not match the
original setsockopt call. All are unrecoverable.
strparser is used to parse TLS framing. Decryption is done directly
in to userspace buffers if they are large enough to support it, otherwise
sk_cow_data is called (similar to ipsec), and buffers are decrypted in
place and copied. splice_read always decrypts in place, since no
buffers are provided to decrypt in to.
sk_poll is overridden, and only returns POLLIN if a full TLS message is
received. Otherwise we wait for strparser to finish reading a full frame.
Actual decryption is only done during recvmsg or splice_read calls.
Signed-off-by: Dave Watson <davejwatson@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-23 00:10:35 +07:00
|
|
|
#include <linux/sched/signal.h>
|
2017-06-15 01:37:39 +07:00
|
|
|
#include <linux/module.h>
|
|
|
|
#include <crypto/aead.h>
|
|
|
|
|
tls: RX path for ktls
Add rx path for tls software implementation.
recvmsg, splice_read, and poll implemented.
An additional sockopt TLS_RX is added, with the same interface as
TLS_TX. Either TLX_RX or TLX_TX may be provided separately, or
together (with two different setsockopt calls with appropriate keys).
Control messages are passed via CMSG in a similar way to transmit.
If no cmsg buffer is passed, then only application data records
will be passed to userspace, and EIO is returned for other types of
alerts.
EBADMSG is passed for decryption errors, and EMSGSIZE is passed for
framing too big, and EBADMSG for framing too small (matching openssl
semantics). EINVAL is returned for TLS versions that do not match the
original setsockopt call. All are unrecoverable.
strparser is used to parse TLS framing. Decryption is done directly
in to userspace buffers if they are large enough to support it, otherwise
sk_cow_data is called (similar to ipsec), and buffers are decrypted in
place and copied. splice_read always decrypts in place, since no
buffers are provided to decrypt in to.
sk_poll is overridden, and only returns POLLIN if a full TLS message is
received. Otherwise we wait for strparser to finish reading a full frame.
Actual decryption is only done during recvmsg or splice_read calls.
Signed-off-by: Dave Watson <davejwatson@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-23 00:10:35 +07:00
|
|
|
#include <net/strparser.h>
|
2017-06-15 01:37:39 +07:00
|
|
|
#include <net/tls.h>
|
|
|
|
|
2018-04-11 07:52:34 +07:00
|
|
|
#define MAX_IV_SIZE TLS_CIPHER_AES_GCM_128_IV_SIZE
|
|
|
|
|
tls: RX path for ktls
Add rx path for tls software implementation.
recvmsg, splice_read, and poll implemented.
An additional sockopt TLS_RX is added, with the same interface as
TLS_TX. Either TLX_RX or TLX_TX may be provided separately, or
together (with two different setsockopt calls with appropriate keys).
Control messages are passed via CMSG in a similar way to transmit.
If no cmsg buffer is passed, then only application data records
will be passed to userspace, and EIO is returned for other types of
alerts.
EBADMSG is passed for decryption errors, and EMSGSIZE is passed for
framing too big, and EBADMSG for framing too small (matching openssl
semantics). EINVAL is returned for TLS versions that do not match the
original setsockopt call. All are unrecoverable.
strparser is used to parse TLS framing. Decryption is done directly
in to userspace buffers if they are large enough to support it, otherwise
sk_cow_data is called (similar to ipsec), and buffers are decrypted in
place and copied. splice_read always decrypts in place, since no
buffers are provided to decrypt in to.
sk_poll is overridden, and only returns POLLIN if a full TLS message is
received. Otherwise we wait for strparser to finish reading a full frame.
Actual decryption is only done during recvmsg or splice_read calls.
Signed-off-by: Dave Watson <davejwatson@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-23 00:10:35 +07:00
|
|
|
static int tls_do_decryption(struct sock *sk,
|
|
|
|
struct scatterlist *sgin,
|
|
|
|
struct scatterlist *sgout,
|
|
|
|
char *iv_recv,
|
|
|
|
size_t data_len,
|
|
|
|
struct sk_buff *skb,
|
|
|
|
gfp_t flags)
|
|
|
|
{
|
|
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
|
|
struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
|
|
|
|
struct strp_msg *rxm = strp_msg(skb);
|
|
|
|
struct aead_request *aead_req;
|
|
|
|
|
|
|
|
int ret;
|
|
|
|
unsigned int req_size = sizeof(struct aead_request) +
|
|
|
|
crypto_aead_reqsize(ctx->aead_recv);
|
|
|
|
|
|
|
|
aead_req = kzalloc(req_size, flags);
|
|
|
|
if (!aead_req)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
aead_request_set_tfm(aead_req, ctx->aead_recv);
|
|
|
|
aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE);
|
|
|
|
aead_request_set_crypt(aead_req, sgin, sgout,
|
|
|
|
data_len + tls_ctx->rx.tag_size,
|
|
|
|
(u8 *)iv_recv);
|
|
|
|
aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
|
|
|
|
crypto_req_done, &ctx->async_wait);
|
|
|
|
|
|
|
|
ret = crypto_wait_req(crypto_aead_decrypt(aead_req), &ctx->async_wait);
|
|
|
|
|
|
|
|
if (ret < 0)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
rxm->offset += tls_ctx->rx.prepend_size;
|
|
|
|
rxm->full_len -= tls_ctx->rx.overhead_size;
|
|
|
|
tls_advance_record_sn(sk, &tls_ctx->rx);
|
|
|
|
|
|
|
|
ctx->decrypted = true;
|
|
|
|
|
|
|
|
ctx->saved_data_ready(sk);
|
|
|
|
|
|
|
|
out:
|
|
|
|
kfree(aead_req);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2017-06-15 01:37:39 +07:00
|
|
|
static void trim_sg(struct sock *sk, struct scatterlist *sg,
|
|
|
|
int *sg_num_elem, unsigned int *sg_size, int target_size)
|
|
|
|
{
|
|
|
|
int i = *sg_num_elem - 1;
|
|
|
|
int trim = *sg_size - target_size;
|
|
|
|
|
|
|
|
if (trim <= 0) {
|
|
|
|
WARN_ON(trim < 0);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
*sg_size = target_size;
|
|
|
|
while (trim >= sg[i].length) {
|
|
|
|
trim -= sg[i].length;
|
|
|
|
sk_mem_uncharge(sk, sg[i].length);
|
|
|
|
put_page(sg_page(&sg[i]));
|
|
|
|
i--;
|
|
|
|
|
|
|
|
if (i < 0)
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
sg[i].length -= trim;
|
|
|
|
sk_mem_uncharge(sk, trim);
|
|
|
|
|
|
|
|
out:
|
|
|
|
*sg_num_elem = i + 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void trim_both_sgl(struct sock *sk, int target_size)
|
|
|
|
{
|
|
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
|
|
struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
|
|
|
|
|
|
|
|
trim_sg(sk, ctx->sg_plaintext_data,
|
|
|
|
&ctx->sg_plaintext_num_elem,
|
|
|
|
&ctx->sg_plaintext_size,
|
|
|
|
target_size);
|
|
|
|
|
|
|
|
if (target_size > 0)
|
2018-03-23 00:10:06 +07:00
|
|
|
target_size += tls_ctx->tx.overhead_size;
|
2017-06-15 01:37:39 +07:00
|
|
|
|
|
|
|
trim_sg(sk, ctx->sg_encrypted_data,
|
|
|
|
&ctx->sg_encrypted_num_elem,
|
|
|
|
&ctx->sg_encrypted_size,
|
|
|
|
target_size);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int alloc_encrypted_sg(struct sock *sk, int len)
|
|
|
|
{
|
|
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
|
|
struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
|
|
|
|
int rc = 0;
|
|
|
|
|
2018-03-19 02:56:49 +07:00
|
|
|
rc = sk_alloc_sg(sk, len,
|
2018-03-19 02:57:05 +07:00
|
|
|
ctx->sg_encrypted_data, 0,
|
2018-03-19 02:56:49 +07:00
|
|
|
&ctx->sg_encrypted_num_elem,
|
|
|
|
&ctx->sg_encrypted_size, 0);
|
2017-06-15 01:37:39 +07:00
|
|
|
|
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int alloc_plaintext_sg(struct sock *sk, int len)
|
|
|
|
{
|
|
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
|
|
struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
|
|
|
|
int rc = 0;
|
|
|
|
|
2018-03-19 02:57:05 +07:00
|
|
|
rc = sk_alloc_sg(sk, len, ctx->sg_plaintext_data, 0,
|
2018-03-19 02:56:49 +07:00
|
|
|
&ctx->sg_plaintext_num_elem, &ctx->sg_plaintext_size,
|
|
|
|
tls_ctx->pending_open_record_frags);
|
2017-06-15 01:37:39 +07:00
|
|
|
|
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void free_sg(struct sock *sk, struct scatterlist *sg,
|
|
|
|
int *sg_num_elem, unsigned int *sg_size)
|
|
|
|
{
|
|
|
|
int i, n = *sg_num_elem;
|
|
|
|
|
|
|
|
for (i = 0; i < n; ++i) {
|
|
|
|
sk_mem_uncharge(sk, sg[i].length);
|
|
|
|
put_page(sg_page(&sg[i]));
|
|
|
|
}
|
|
|
|
*sg_num_elem = 0;
|
|
|
|
*sg_size = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void tls_free_both_sg(struct sock *sk)
|
|
|
|
{
|
|
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
|
|
struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
|
|
|
|
|
|
|
|
free_sg(sk, ctx->sg_encrypted_data, &ctx->sg_encrypted_num_elem,
|
|
|
|
&ctx->sg_encrypted_size);
|
|
|
|
|
|
|
|
free_sg(sk, ctx->sg_plaintext_data, &ctx->sg_plaintext_num_elem,
|
|
|
|
&ctx->sg_plaintext_size);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int tls_do_encryption(struct tls_context *tls_ctx,
|
|
|
|
struct tls_sw_context *ctx, size_t data_len,
|
|
|
|
gfp_t flags)
|
|
|
|
{
|
|
|
|
unsigned int req_size = sizeof(struct aead_request) +
|
|
|
|
crypto_aead_reqsize(ctx->aead_send);
|
|
|
|
struct aead_request *aead_req;
|
|
|
|
int rc;
|
|
|
|
|
2017-11-13 15:22:44 +07:00
|
|
|
aead_req = kzalloc(req_size, flags);
|
2017-06-15 01:37:39 +07:00
|
|
|
if (!aead_req)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
2018-03-23 00:10:06 +07:00
|
|
|
ctx->sg_encrypted_data[0].offset += tls_ctx->tx.prepend_size;
|
|
|
|
ctx->sg_encrypted_data[0].length -= tls_ctx->tx.prepend_size;
|
2017-06-15 01:37:39 +07:00
|
|
|
|
|
|
|
aead_request_set_tfm(aead_req, ctx->aead_send);
|
|
|
|
aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE);
|
|
|
|
aead_request_set_crypt(aead_req, ctx->sg_aead_in, ctx->sg_aead_out,
|
2018-03-23 00:10:06 +07:00
|
|
|
data_len, tls_ctx->tx.iv);
|
2018-01-31 23:04:37 +07:00
|
|
|
|
|
|
|
aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
|
|
|
|
crypto_req_done, &ctx->async_wait);
|
|
|
|
|
|
|
|
rc = crypto_wait_req(crypto_aead_encrypt(aead_req), &ctx->async_wait);
|
2017-06-15 01:37:39 +07:00
|
|
|
|
2018-03-23 00:10:06 +07:00
|
|
|
ctx->sg_encrypted_data[0].offset -= tls_ctx->tx.prepend_size;
|
|
|
|
ctx->sg_encrypted_data[0].length += tls_ctx->tx.prepend_size;
|
2017-06-15 01:37:39 +07:00
|
|
|
|
|
|
|
kfree(aead_req);
|
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int tls_push_record(struct sock *sk, int flags,
|
|
|
|
unsigned char record_type)
|
|
|
|
{
|
|
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
|
|
struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
|
|
|
|
int rc;
|
|
|
|
|
|
|
|
sg_mark_end(ctx->sg_plaintext_data + ctx->sg_plaintext_num_elem - 1);
|
|
|
|
sg_mark_end(ctx->sg_encrypted_data + ctx->sg_encrypted_num_elem - 1);
|
|
|
|
|
2017-11-13 15:22:47 +07:00
|
|
|
tls_make_aad(ctx->aad_space, ctx->sg_plaintext_size,
|
2018-03-23 00:10:06 +07:00
|
|
|
tls_ctx->tx.rec_seq, tls_ctx->tx.rec_seq_size,
|
2017-06-15 01:37:39 +07:00
|
|
|
record_type);
|
|
|
|
|
|
|
|
tls_fill_prepend(tls_ctx,
|
|
|
|
page_address(sg_page(&ctx->sg_encrypted_data[0])) +
|
|
|
|
ctx->sg_encrypted_data[0].offset,
|
|
|
|
ctx->sg_plaintext_size, record_type);
|
|
|
|
|
|
|
|
tls_ctx->pending_open_record_frags = 0;
|
|
|
|
set_bit(TLS_PENDING_CLOSED_RECORD, &tls_ctx->flags);
|
|
|
|
|
|
|
|
rc = tls_do_encryption(tls_ctx, ctx, ctx->sg_plaintext_size,
|
|
|
|
sk->sk_allocation);
|
|
|
|
if (rc < 0) {
|
|
|
|
/* If we are called from write_space and
|
|
|
|
* we fail, we need to set this SOCK_NOSPACE
|
|
|
|
* to trigger another write_space in the future.
|
|
|
|
*/
|
|
|
|
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
|
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
|
|
|
free_sg(sk, ctx->sg_plaintext_data, &ctx->sg_plaintext_num_elem,
|
|
|
|
&ctx->sg_plaintext_size);
|
|
|
|
|
|
|
|
ctx->sg_encrypted_num_elem = 0;
|
|
|
|
ctx->sg_encrypted_size = 0;
|
|
|
|
|
|
|
|
/* Only pass through MSG_DONTWAIT and MSG_NOSIGNAL flags */
|
|
|
|
rc = tls_push_sg(sk, tls_ctx, ctx->sg_encrypted_data, 0, flags);
|
|
|
|
if (rc < 0 && rc != -EAGAIN)
|
2018-03-23 00:10:15 +07:00
|
|
|
tls_err_abort(sk, EBADMSG);
|
2017-06-15 01:37:39 +07:00
|
|
|
|
2018-03-23 00:10:06 +07:00
|
|
|
tls_advance_record_sn(sk, &tls_ctx->tx);
|
2017-06-15 01:37:39 +07:00
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int tls_sw_push_pending_record(struct sock *sk, int flags)
|
|
|
|
{
|
|
|
|
return tls_push_record(sk, flags, TLS_RECORD_TYPE_DATA);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int zerocopy_from_iter(struct sock *sk, struct iov_iter *from,
|
2018-03-23 00:09:53 +07:00
|
|
|
int length, int *pages_used,
|
|
|
|
unsigned int *size_used,
|
|
|
|
struct scatterlist *to, int to_max_pages,
|
|
|
|
bool charge)
|
2017-06-15 01:37:39 +07:00
|
|
|
{
|
|
|
|
struct page *pages[MAX_SKB_FRAGS];
|
|
|
|
|
|
|
|
size_t offset;
|
|
|
|
ssize_t copied, use;
|
|
|
|
int i = 0;
|
2018-03-23 00:09:53 +07:00
|
|
|
unsigned int size = *size_used;
|
|
|
|
int num_elem = *pages_used;
|
2017-06-15 01:37:39 +07:00
|
|
|
int rc = 0;
|
|
|
|
int maxpages;
|
|
|
|
|
|
|
|
while (length > 0) {
|
|
|
|
i = 0;
|
2018-03-23 00:09:53 +07:00
|
|
|
maxpages = to_max_pages - num_elem;
|
2017-06-15 01:37:39 +07:00
|
|
|
if (maxpages == 0) {
|
|
|
|
rc = -EFAULT;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
copied = iov_iter_get_pages(from, pages,
|
|
|
|
length,
|
|
|
|
maxpages, &offset);
|
|
|
|
if (copied <= 0) {
|
|
|
|
rc = -EFAULT;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
iov_iter_advance(from, copied);
|
|
|
|
|
|
|
|
length -= copied;
|
|
|
|
size += copied;
|
|
|
|
while (copied) {
|
|
|
|
use = min_t(int, copied, PAGE_SIZE - offset);
|
|
|
|
|
2018-03-23 00:09:53 +07:00
|
|
|
sg_set_page(&to[num_elem],
|
2017-06-15 01:37:39 +07:00
|
|
|
pages[i], use, offset);
|
2018-03-23 00:09:53 +07:00
|
|
|
sg_unmark_end(&to[num_elem]);
|
|
|
|
if (charge)
|
|
|
|
sk_mem_charge(sk, use);
|
2017-06-15 01:37:39 +07:00
|
|
|
|
|
|
|
offset = 0;
|
|
|
|
copied -= use;
|
|
|
|
|
|
|
|
++i;
|
|
|
|
++num_elem;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
out:
|
2018-03-23 00:09:53 +07:00
|
|
|
*size_used = size;
|
|
|
|
*pages_used = num_elem;
|
|
|
|
|
2017-06-15 01:37:39 +07:00
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int memcopy_from_iter(struct sock *sk, struct iov_iter *from,
|
|
|
|
int bytes)
|
|
|
|
{
|
|
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
|
|
struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
|
|
|
|
struct scatterlist *sg = ctx->sg_plaintext_data;
|
|
|
|
int copy, i, rc = 0;
|
|
|
|
|
|
|
|
for (i = tls_ctx->pending_open_record_frags;
|
|
|
|
i < ctx->sg_plaintext_num_elem; ++i) {
|
|
|
|
copy = sg[i].length;
|
|
|
|
if (copy_from_iter(
|
|
|
|
page_address(sg_page(&sg[i])) + sg[i].offset,
|
|
|
|
copy, from) != copy) {
|
|
|
|
rc = -EFAULT;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
bytes -= copy;
|
|
|
|
|
|
|
|
++tls_ctx->pending_open_record_frags;
|
|
|
|
|
|
|
|
if (!bytes)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
out:
|
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
|
|
|
int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
|
|
|
|
{
|
|
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
|
|
struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
|
|
|
|
int ret = 0;
|
|
|
|
int required_size;
|
|
|
|
long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
|
|
|
|
bool eor = !(msg->msg_flags & MSG_MORE);
|
|
|
|
size_t try_to_copy, copied = 0;
|
|
|
|
unsigned char record_type = TLS_RECORD_TYPE_DATA;
|
|
|
|
int record_room;
|
|
|
|
bool full_record;
|
|
|
|
int orig_size;
|
|
|
|
|
|
|
|
if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL))
|
|
|
|
return -ENOTSUPP;
|
|
|
|
|
|
|
|
lock_sock(sk);
|
|
|
|
|
|
|
|
if (tls_complete_pending_work(sk, tls_ctx, msg->msg_flags, &timeo))
|
|
|
|
goto send_end;
|
|
|
|
|
|
|
|
if (unlikely(msg->msg_controllen)) {
|
|
|
|
ret = tls_proccess_cmsg(sk, msg, &record_type);
|
|
|
|
if (ret)
|
|
|
|
goto send_end;
|
|
|
|
}
|
|
|
|
|
|
|
|
while (msg_data_left(msg)) {
|
|
|
|
if (sk->sk_err) {
|
2018-01-12 21:42:06 +07:00
|
|
|
ret = -sk->sk_err;
|
2017-06-15 01:37:39 +07:00
|
|
|
goto send_end;
|
|
|
|
}
|
|
|
|
|
|
|
|
orig_size = ctx->sg_plaintext_size;
|
|
|
|
full_record = false;
|
|
|
|
try_to_copy = msg_data_left(msg);
|
|
|
|
record_room = TLS_MAX_PAYLOAD_SIZE - ctx->sg_plaintext_size;
|
|
|
|
if (try_to_copy >= record_room) {
|
|
|
|
try_to_copy = record_room;
|
|
|
|
full_record = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
required_size = ctx->sg_plaintext_size + try_to_copy +
|
2018-03-23 00:10:06 +07:00
|
|
|
tls_ctx->tx.overhead_size;
|
2017-06-15 01:37:39 +07:00
|
|
|
|
|
|
|
if (!sk_stream_memory_free(sk))
|
|
|
|
goto wait_for_sndbuf;
|
|
|
|
alloc_encrypted:
|
|
|
|
ret = alloc_encrypted_sg(sk, required_size);
|
|
|
|
if (ret) {
|
|
|
|
if (ret != -ENOSPC)
|
|
|
|
goto wait_for_memory;
|
|
|
|
|
|
|
|
/* Adjust try_to_copy according to the amount that was
|
|
|
|
* actually allocated. The difference is due
|
|
|
|
* to max sg elements limit
|
|
|
|
*/
|
|
|
|
try_to_copy -= required_size - ctx->sg_encrypted_size;
|
|
|
|
full_record = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (full_record || eor) {
|
|
|
|
ret = zerocopy_from_iter(sk, &msg->msg_iter,
|
2018-03-23 00:09:53 +07:00
|
|
|
try_to_copy, &ctx->sg_plaintext_num_elem,
|
|
|
|
&ctx->sg_plaintext_size,
|
|
|
|
ctx->sg_plaintext_data,
|
|
|
|
ARRAY_SIZE(ctx->sg_plaintext_data),
|
|
|
|
true);
|
2017-06-15 01:37:39 +07:00
|
|
|
if (ret)
|
|
|
|
goto fallback_to_reg_send;
|
|
|
|
|
|
|
|
copied += try_to_copy;
|
|
|
|
ret = tls_push_record(sk, msg->msg_flags, record_type);
|
|
|
|
if (!ret)
|
|
|
|
continue;
|
|
|
|
if (ret == -EAGAIN)
|
|
|
|
goto send_end;
|
|
|
|
|
|
|
|
copied -= try_to_copy;
|
|
|
|
fallback_to_reg_send:
|
|
|
|
iov_iter_revert(&msg->msg_iter,
|
|
|
|
ctx->sg_plaintext_size - orig_size);
|
|
|
|
trim_sg(sk, ctx->sg_plaintext_data,
|
|
|
|
&ctx->sg_plaintext_num_elem,
|
|
|
|
&ctx->sg_plaintext_size,
|
|
|
|
orig_size);
|
|
|
|
}
|
|
|
|
|
|
|
|
required_size = ctx->sg_plaintext_size + try_to_copy;
|
|
|
|
alloc_plaintext:
|
|
|
|
ret = alloc_plaintext_sg(sk, required_size);
|
|
|
|
if (ret) {
|
|
|
|
if (ret != -ENOSPC)
|
|
|
|
goto wait_for_memory;
|
|
|
|
|
|
|
|
/* Adjust try_to_copy according to the amount that was
|
|
|
|
* actually allocated. The difference is due
|
|
|
|
* to max sg elements limit
|
|
|
|
*/
|
|
|
|
try_to_copy -= required_size - ctx->sg_plaintext_size;
|
|
|
|
full_record = true;
|
|
|
|
|
|
|
|
trim_sg(sk, ctx->sg_encrypted_data,
|
|
|
|
&ctx->sg_encrypted_num_elem,
|
|
|
|
&ctx->sg_encrypted_size,
|
|
|
|
ctx->sg_plaintext_size +
|
2018-03-23 00:10:06 +07:00
|
|
|
tls_ctx->tx.overhead_size);
|
2017-06-15 01:37:39 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
ret = memcopy_from_iter(sk, &msg->msg_iter, try_to_copy);
|
|
|
|
if (ret)
|
|
|
|
goto trim_sgl;
|
|
|
|
|
|
|
|
copied += try_to_copy;
|
|
|
|
if (full_record || eor) {
|
|
|
|
push_record:
|
|
|
|
ret = tls_push_record(sk, msg->msg_flags, record_type);
|
|
|
|
if (ret) {
|
|
|
|
if (ret == -ENOMEM)
|
|
|
|
goto wait_for_memory;
|
|
|
|
|
|
|
|
goto send_end;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
wait_for_sndbuf:
|
|
|
|
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
|
|
|
|
wait_for_memory:
|
|
|
|
ret = sk_stream_wait_memory(sk, &timeo);
|
|
|
|
if (ret) {
|
|
|
|
trim_sgl:
|
|
|
|
trim_both_sgl(sk, orig_size);
|
|
|
|
goto send_end;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (tls_is_pending_closed_record(tls_ctx))
|
|
|
|
goto push_record;
|
|
|
|
|
|
|
|
if (ctx->sg_encrypted_size < required_size)
|
|
|
|
goto alloc_encrypted;
|
|
|
|
|
|
|
|
goto alloc_plaintext;
|
|
|
|
}
|
|
|
|
|
|
|
|
send_end:
|
|
|
|
ret = sk_stream_error(sk, msg->msg_flags, ret);
|
|
|
|
|
|
|
|
release_sock(sk);
|
|
|
|
return copied ? copied : ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
int tls_sw_sendpage(struct sock *sk, struct page *page,
|
|
|
|
int offset, size_t size, int flags)
|
|
|
|
{
|
|
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
|
|
struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
|
|
|
|
int ret = 0;
|
|
|
|
long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
|
|
|
|
bool eor;
|
|
|
|
size_t orig_size = size;
|
|
|
|
unsigned char record_type = TLS_RECORD_TYPE_DATA;
|
|
|
|
struct scatterlist *sg;
|
|
|
|
bool full_record;
|
|
|
|
int record_room;
|
|
|
|
|
|
|
|
if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
|
|
|
|
MSG_SENDPAGE_NOTLAST))
|
|
|
|
return -ENOTSUPP;
|
|
|
|
|
|
|
|
/* No MSG_EOR from splice, only look at MSG_MORE */
|
|
|
|
eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST));
|
|
|
|
|
|
|
|
lock_sock(sk);
|
|
|
|
|
|
|
|
sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
|
|
|
|
|
|
|
|
if (tls_complete_pending_work(sk, tls_ctx, flags, &timeo))
|
|
|
|
goto sendpage_end;
|
|
|
|
|
|
|
|
/* Call the sk_stream functions to manage the sndbuf mem. */
|
|
|
|
while (size > 0) {
|
|
|
|
size_t copy, required_size;
|
|
|
|
|
|
|
|
if (sk->sk_err) {
|
2018-01-12 21:42:06 +07:00
|
|
|
ret = -sk->sk_err;
|
2017-06-15 01:37:39 +07:00
|
|
|
goto sendpage_end;
|
|
|
|
}
|
|
|
|
|
|
|
|
full_record = false;
|
|
|
|
record_room = TLS_MAX_PAYLOAD_SIZE - ctx->sg_plaintext_size;
|
|
|
|
copy = size;
|
|
|
|
if (copy >= record_room) {
|
|
|
|
copy = record_room;
|
|
|
|
full_record = true;
|
|
|
|
}
|
|
|
|
required_size = ctx->sg_plaintext_size + copy +
|
2018-03-23 00:10:06 +07:00
|
|
|
tls_ctx->tx.overhead_size;
|
2017-06-15 01:37:39 +07:00
|
|
|
|
|
|
|
if (!sk_stream_memory_free(sk))
|
|
|
|
goto wait_for_sndbuf;
|
|
|
|
alloc_payload:
|
|
|
|
ret = alloc_encrypted_sg(sk, required_size);
|
|
|
|
if (ret) {
|
|
|
|
if (ret != -ENOSPC)
|
|
|
|
goto wait_for_memory;
|
|
|
|
|
|
|
|
/* Adjust copy according to the amount that was
|
|
|
|
* actually allocated. The difference is due
|
|
|
|
* to max sg elements limit
|
|
|
|
*/
|
|
|
|
copy -= required_size - ctx->sg_plaintext_size;
|
|
|
|
full_record = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
get_page(page);
|
|
|
|
sg = ctx->sg_plaintext_data + ctx->sg_plaintext_num_elem;
|
|
|
|
sg_set_page(sg, page, copy, offset);
|
2018-01-20 03:30:13 +07:00
|
|
|
sg_unmark_end(sg);
|
|
|
|
|
2017-06-15 01:37:39 +07:00
|
|
|
ctx->sg_plaintext_num_elem++;
|
|
|
|
|
|
|
|
sk_mem_charge(sk, copy);
|
|
|
|
offset += copy;
|
|
|
|
size -= copy;
|
|
|
|
ctx->sg_plaintext_size += copy;
|
|
|
|
tls_ctx->pending_open_record_frags = ctx->sg_plaintext_num_elem;
|
|
|
|
|
|
|
|
if (full_record || eor ||
|
|
|
|
ctx->sg_plaintext_num_elem ==
|
|
|
|
ARRAY_SIZE(ctx->sg_plaintext_data)) {
|
|
|
|
push_record:
|
|
|
|
ret = tls_push_record(sk, flags, record_type);
|
|
|
|
if (ret) {
|
|
|
|
if (ret == -ENOMEM)
|
|
|
|
goto wait_for_memory;
|
|
|
|
|
|
|
|
goto sendpage_end;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
continue;
|
|
|
|
wait_for_sndbuf:
|
|
|
|
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
|
|
|
|
wait_for_memory:
|
|
|
|
ret = sk_stream_wait_memory(sk, &timeo);
|
|
|
|
if (ret) {
|
|
|
|
trim_both_sgl(sk, ctx->sg_plaintext_size);
|
|
|
|
goto sendpage_end;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (tls_is_pending_closed_record(tls_ctx))
|
|
|
|
goto push_record;
|
|
|
|
|
|
|
|
goto alloc_payload;
|
|
|
|
}
|
|
|
|
|
|
|
|
sendpage_end:
|
|
|
|
if (orig_size > size)
|
|
|
|
ret = orig_size - size;
|
|
|
|
else
|
|
|
|
ret = sk_stream_error(sk, flags, ret);
|
|
|
|
|
|
|
|
release_sock(sk);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
tls: RX path for ktls
Add rx path for tls software implementation.
recvmsg, splice_read, and poll implemented.
An additional sockopt TLS_RX is added, with the same interface as
TLS_TX. Either TLX_RX or TLX_TX may be provided separately, or
together (with two different setsockopt calls with appropriate keys).
Control messages are passed via CMSG in a similar way to transmit.
If no cmsg buffer is passed, then only application data records
will be passed to userspace, and EIO is returned for other types of
alerts.
EBADMSG is passed for decryption errors, and EMSGSIZE is passed for
framing too big, and EBADMSG for framing too small (matching openssl
semantics). EINVAL is returned for TLS versions that do not match the
original setsockopt call. All are unrecoverable.
strparser is used to parse TLS framing. Decryption is done directly
in to userspace buffers if they are large enough to support it, otherwise
sk_cow_data is called (similar to ipsec), and buffers are decrypted in
place and copied. splice_read always decrypts in place, since no
buffers are provided to decrypt in to.
sk_poll is overridden, and only returns POLLIN if a full TLS message is
received. Otherwise we wait for strparser to finish reading a full frame.
Actual decryption is only done during recvmsg or splice_read calls.
Signed-off-by: Dave Watson <davejwatson@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-23 00:10:35 +07:00
|
|
|
static struct sk_buff *tls_wait_data(struct sock *sk, int flags,
|
|
|
|
long timeo, int *err)
|
|
|
|
{
|
|
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
|
|
struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
|
|
|
|
struct sk_buff *skb;
|
|
|
|
DEFINE_WAIT_FUNC(wait, woken_wake_function);
|
|
|
|
|
|
|
|
while (!(skb = ctx->recv_pkt)) {
|
|
|
|
if (sk->sk_err) {
|
|
|
|
*err = sock_error(sk);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (sock_flag(sk, SOCK_DONE))
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
if ((flags & MSG_DONTWAIT) || !timeo) {
|
|
|
|
*err = -EAGAIN;
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
add_wait_queue(sk_sleep(sk), &wait);
|
|
|
|
sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
|
|
|
|
sk_wait_event(sk, &timeo, ctx->recv_pkt != skb, &wait);
|
|
|
|
sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
|
|
|
|
remove_wait_queue(sk_sleep(sk), &wait);
|
|
|
|
|
|
|
|
/* Handle signals */
|
|
|
|
if (signal_pending(current)) {
|
|
|
|
*err = sock_intr_errno(timeo);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return skb;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int decrypt_skb(struct sock *sk, struct sk_buff *skb,
|
|
|
|
struct scatterlist *sgout)
|
|
|
|
{
|
|
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
|
|
struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
|
2018-04-11 07:52:34 +07:00
|
|
|
char iv[TLS_CIPHER_AES_GCM_128_SALT_SIZE + MAX_IV_SIZE];
|
tls: RX path for ktls
Add rx path for tls software implementation.
recvmsg, splice_read, and poll implemented.
An additional sockopt TLS_RX is added, with the same interface as
TLS_TX. Either TLX_RX or TLX_TX may be provided separately, or
together (with two different setsockopt calls with appropriate keys).
Control messages are passed via CMSG in a similar way to transmit.
If no cmsg buffer is passed, then only application data records
will be passed to userspace, and EIO is returned for other types of
alerts.
EBADMSG is passed for decryption errors, and EMSGSIZE is passed for
framing too big, and EBADMSG for framing too small (matching openssl
semantics). EINVAL is returned for TLS versions that do not match the
original setsockopt call. All are unrecoverable.
strparser is used to parse TLS framing. Decryption is done directly
in to userspace buffers if they are large enough to support it, otherwise
sk_cow_data is called (similar to ipsec), and buffers are decrypted in
place and copied. splice_read always decrypts in place, since no
buffers are provided to decrypt in to.
sk_poll is overridden, and only returns POLLIN if a full TLS message is
received. Otherwise we wait for strparser to finish reading a full frame.
Actual decryption is only done during recvmsg or splice_read calls.
Signed-off-by: Dave Watson <davejwatson@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-23 00:10:35 +07:00
|
|
|
struct scatterlist sgin_arr[MAX_SKB_FRAGS + 2];
|
|
|
|
struct scatterlist *sgin = &sgin_arr[0];
|
|
|
|
struct strp_msg *rxm = strp_msg(skb);
|
|
|
|
int ret, nsg = ARRAY_SIZE(sgin_arr);
|
|
|
|
char aad_recv[TLS_AAD_SPACE_SIZE];
|
|
|
|
struct sk_buff *unused;
|
|
|
|
|
|
|
|
ret = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
|
|
|
|
iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
|
|
|
|
tls_ctx->rx.iv_size);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
memcpy(iv, tls_ctx->rx.iv, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
|
|
|
|
if (!sgout) {
|
|
|
|
nsg = skb_cow_data(skb, 0, &unused) + 1;
|
|
|
|
sgin = kmalloc_array(nsg, sizeof(*sgin), sk->sk_allocation);
|
|
|
|
if (!sgout)
|
|
|
|
sgout = sgin;
|
|
|
|
}
|
|
|
|
|
|
|
|
sg_init_table(sgin, nsg);
|
|
|
|
sg_set_buf(&sgin[0], aad_recv, sizeof(aad_recv));
|
|
|
|
|
|
|
|
nsg = skb_to_sgvec(skb, &sgin[1],
|
|
|
|
rxm->offset + tls_ctx->rx.prepend_size,
|
|
|
|
rxm->full_len - tls_ctx->rx.prepend_size);
|
|
|
|
|
|
|
|
tls_make_aad(aad_recv,
|
|
|
|
rxm->full_len - tls_ctx->rx.overhead_size,
|
|
|
|
tls_ctx->rx.rec_seq,
|
|
|
|
tls_ctx->rx.rec_seq_size,
|
|
|
|
ctx->control);
|
|
|
|
|
|
|
|
ret = tls_do_decryption(sk, sgin, sgout, iv,
|
|
|
|
rxm->full_len - tls_ctx->rx.overhead_size,
|
|
|
|
skb, sk->sk_allocation);
|
|
|
|
|
|
|
|
if (sgin != &sgin_arr[0])
|
|
|
|
kfree(sgin);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
|
|
|
|
unsigned int len)
|
|
|
|
{
|
|
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
|
|
struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
|
|
|
|
struct strp_msg *rxm = strp_msg(skb);
|
|
|
|
|
|
|
|
if (len < rxm->full_len) {
|
|
|
|
rxm->offset += len;
|
|
|
|
rxm->full_len -= len;
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Finished with message */
|
|
|
|
ctx->recv_pkt = NULL;
|
|
|
|
kfree_skb(skb);
|
|
|
|
strp_unpause(&ctx->strp);
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
int tls_sw_recvmsg(struct sock *sk,
|
|
|
|
struct msghdr *msg,
|
|
|
|
size_t len,
|
|
|
|
int nonblock,
|
|
|
|
int flags,
|
|
|
|
int *addr_len)
|
|
|
|
{
|
|
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
|
|
struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
|
|
|
|
unsigned char control;
|
|
|
|
struct strp_msg *rxm;
|
|
|
|
struct sk_buff *skb;
|
|
|
|
ssize_t copied = 0;
|
|
|
|
bool cmsg = false;
|
|
|
|
int err = 0;
|
|
|
|
long timeo;
|
|
|
|
|
|
|
|
flags |= nonblock;
|
|
|
|
|
|
|
|
if (unlikely(flags & MSG_ERRQUEUE))
|
|
|
|
return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
|
|
|
|
|
|
|
|
lock_sock(sk);
|
|
|
|
|
|
|
|
timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
|
|
|
|
do {
|
|
|
|
bool zc = false;
|
|
|
|
int chunk = 0;
|
|
|
|
|
|
|
|
skb = tls_wait_data(sk, flags, timeo, &err);
|
|
|
|
if (!skb)
|
|
|
|
goto recv_end;
|
|
|
|
|
|
|
|
rxm = strp_msg(skb);
|
|
|
|
if (!cmsg) {
|
|
|
|
int cerr;
|
|
|
|
|
|
|
|
cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
|
|
|
|
sizeof(ctx->control), &ctx->control);
|
|
|
|
cmsg = true;
|
|
|
|
control = ctx->control;
|
|
|
|
if (ctx->control != TLS_RECORD_TYPE_DATA) {
|
|
|
|
if (cerr || msg->msg_flags & MSG_CTRUNC) {
|
|
|
|
err = -EIO;
|
|
|
|
goto recv_end;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else if (control != ctx->control) {
|
|
|
|
goto recv_end;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!ctx->decrypted) {
|
|
|
|
int page_count;
|
|
|
|
int to_copy;
|
|
|
|
|
|
|
|
page_count = iov_iter_npages(&msg->msg_iter,
|
|
|
|
MAX_SKB_FRAGS);
|
|
|
|
to_copy = rxm->full_len - tls_ctx->rx.overhead_size;
|
|
|
|
if (to_copy <= len && page_count < MAX_SKB_FRAGS &&
|
|
|
|
likely(!(flags & MSG_PEEK))) {
|
|
|
|
struct scatterlist sgin[MAX_SKB_FRAGS + 1];
|
|
|
|
char unused[21];
|
|
|
|
int pages = 0;
|
|
|
|
|
|
|
|
zc = true;
|
|
|
|
sg_init_table(sgin, MAX_SKB_FRAGS + 1);
|
|
|
|
sg_set_buf(&sgin[0], unused, 13);
|
|
|
|
|
|
|
|
err = zerocopy_from_iter(sk, &msg->msg_iter,
|
|
|
|
to_copy, &pages,
|
|
|
|
&chunk, &sgin[1],
|
|
|
|
MAX_SKB_FRAGS, false);
|
|
|
|
if (err < 0)
|
|
|
|
goto fallback_to_reg_recv;
|
|
|
|
|
|
|
|
err = decrypt_skb(sk, skb, sgin);
|
|
|
|
for (; pages > 0; pages--)
|
|
|
|
put_page(sg_page(&sgin[pages]));
|
|
|
|
if (err < 0) {
|
|
|
|
tls_err_abort(sk, EBADMSG);
|
|
|
|
goto recv_end;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
fallback_to_reg_recv:
|
|
|
|
err = decrypt_skb(sk, skb, NULL);
|
|
|
|
if (err < 0) {
|
|
|
|
tls_err_abort(sk, EBADMSG);
|
|
|
|
goto recv_end;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
ctx->decrypted = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!zc) {
|
|
|
|
chunk = min_t(unsigned int, rxm->full_len, len);
|
|
|
|
err = skb_copy_datagram_msg(skb, rxm->offset, msg,
|
|
|
|
chunk);
|
|
|
|
if (err < 0)
|
|
|
|
goto recv_end;
|
|
|
|
}
|
|
|
|
|
|
|
|
copied += chunk;
|
|
|
|
len -= chunk;
|
|
|
|
if (likely(!(flags & MSG_PEEK))) {
|
|
|
|
u8 control = ctx->control;
|
|
|
|
|
|
|
|
if (tls_sw_advance_skb(sk, skb, chunk)) {
|
|
|
|
/* Return full control message to
|
|
|
|
* userspace before trying to parse
|
|
|
|
* another message type
|
|
|
|
*/
|
|
|
|
msg->msg_flags |= MSG_EOR;
|
|
|
|
if (control != TLS_RECORD_TYPE_DATA)
|
|
|
|
goto recv_end;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} while (len);
|
|
|
|
|
|
|
|
recv_end:
|
|
|
|
release_sock(sk);
|
|
|
|
return copied ? : err;
|
|
|
|
}
|
|
|
|
|
|
|
|
ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
|
|
|
|
struct pipe_inode_info *pipe,
|
|
|
|
size_t len, unsigned int flags)
|
|
|
|
{
|
|
|
|
struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
|
|
|
|
struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
|
|
|
|
struct strp_msg *rxm = NULL;
|
|
|
|
struct sock *sk = sock->sk;
|
|
|
|
struct sk_buff *skb;
|
|
|
|
ssize_t copied = 0;
|
|
|
|
int err = 0;
|
|
|
|
long timeo;
|
|
|
|
int chunk;
|
|
|
|
|
|
|
|
lock_sock(sk);
|
|
|
|
|
|
|
|
timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
|
|
|
|
|
|
|
|
skb = tls_wait_data(sk, flags, timeo, &err);
|
|
|
|
if (!skb)
|
|
|
|
goto splice_read_end;
|
|
|
|
|
|
|
|
/* splice does not support reading control messages */
|
|
|
|
if (ctx->control != TLS_RECORD_TYPE_DATA) {
|
|
|
|
err = -ENOTSUPP;
|
|
|
|
goto splice_read_end;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!ctx->decrypted) {
|
|
|
|
err = decrypt_skb(sk, skb, NULL);
|
|
|
|
|
|
|
|
if (err < 0) {
|
|
|
|
tls_err_abort(sk, EBADMSG);
|
|
|
|
goto splice_read_end;
|
|
|
|
}
|
|
|
|
ctx->decrypted = true;
|
|
|
|
}
|
|
|
|
rxm = strp_msg(skb);
|
|
|
|
|
|
|
|
chunk = min_t(unsigned int, rxm->full_len, len);
|
|
|
|
copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
|
|
|
|
if (copied < 0)
|
|
|
|
goto splice_read_end;
|
|
|
|
|
|
|
|
if (likely(!(flags & MSG_PEEK)))
|
|
|
|
tls_sw_advance_skb(sk, skb, copied);
|
|
|
|
|
|
|
|
splice_read_end:
|
|
|
|
release_sock(sk);
|
|
|
|
return copied ? : err;
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned int tls_sw_poll(struct file *file, struct socket *sock,
|
|
|
|
struct poll_table_struct *wait)
|
|
|
|
{
|
|
|
|
unsigned int ret;
|
|
|
|
struct sock *sk = sock->sk;
|
|
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
|
|
struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
|
|
|
|
|
|
|
|
/* Grab POLLOUT and POLLHUP from the underlying socket */
|
|
|
|
ret = ctx->sk_poll(file, sock, wait);
|
|
|
|
|
|
|
|
/* Clear POLLIN bits, and set based on recv_pkt */
|
|
|
|
ret &= ~(POLLIN | POLLRDNORM);
|
|
|
|
if (ctx->recv_pkt)
|
|
|
|
ret |= POLLIN | POLLRDNORM;
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
|
|
|
|
struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
|
|
|
|
char header[tls_ctx->rx.prepend_size];
|
|
|
|
struct strp_msg *rxm = strp_msg(skb);
|
|
|
|
size_t cipher_overhead;
|
|
|
|
size_t data_len = 0;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
/* Verify that we have a full TLS header, or wait for more data */
|
|
|
|
if (rxm->offset + tls_ctx->rx.prepend_size > skb->len)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/* Linearize header to local buffer */
|
|
|
|
ret = skb_copy_bits(skb, rxm->offset, header, tls_ctx->rx.prepend_size);
|
|
|
|
|
|
|
|
if (ret < 0)
|
|
|
|
goto read_failure;
|
|
|
|
|
|
|
|
ctx->control = header[0];
|
|
|
|
|
|
|
|
data_len = ((header[4] & 0xFF) | (header[3] << 8));
|
|
|
|
|
|
|
|
cipher_overhead = tls_ctx->rx.tag_size + tls_ctx->rx.iv_size;
|
|
|
|
|
|
|
|
if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead) {
|
|
|
|
ret = -EMSGSIZE;
|
|
|
|
goto read_failure;
|
|
|
|
}
|
|
|
|
if (data_len < cipher_overhead) {
|
|
|
|
ret = -EBADMSG;
|
|
|
|
goto read_failure;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (header[1] != TLS_VERSION_MINOR(tls_ctx->crypto_recv.version) ||
|
|
|
|
header[2] != TLS_VERSION_MAJOR(tls_ctx->crypto_recv.version)) {
|
|
|
|
ret = -EINVAL;
|
|
|
|
goto read_failure;
|
|
|
|
}
|
|
|
|
|
|
|
|
return data_len + TLS_HEADER_SIZE;
|
|
|
|
|
|
|
|
read_failure:
|
|
|
|
tls_err_abort(strp->sk, ret);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void tls_queue(struct strparser *strp, struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
|
|
|
|
struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
|
|
|
|
struct strp_msg *rxm;
|
|
|
|
|
|
|
|
rxm = strp_msg(skb);
|
|
|
|
|
|
|
|
ctx->decrypted = false;
|
|
|
|
|
|
|
|
ctx->recv_pkt = skb;
|
|
|
|
strp_pause(strp);
|
|
|
|
|
|
|
|
strp->sk->sk_state_change(strp->sk);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void tls_data_ready(struct sock *sk)
|
|
|
|
{
|
|
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
|
|
struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
|
|
|
|
|
|
|
|
strp_data_ready(&ctx->strp);
|
|
|
|
}
|
|
|
|
|
|
|
|
void tls_sw_free_resources(struct sock *sk)
|
2017-06-15 01:37:39 +07:00
|
|
|
{
|
|
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
|
|
struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
|
|
|
|
|
|
|
|
if (ctx->aead_send)
|
|
|
|
crypto_free_aead(ctx->aead_send);
|
tls: RX path for ktls
Add rx path for tls software implementation.
recvmsg, splice_read, and poll implemented.
An additional sockopt TLS_RX is added, with the same interface as
TLS_TX. Either TLX_RX or TLX_TX may be provided separately, or
together (with two different setsockopt calls with appropriate keys).
Control messages are passed via CMSG in a similar way to transmit.
If no cmsg buffer is passed, then only application data records
will be passed to userspace, and EIO is returned for other types of
alerts.
EBADMSG is passed for decryption errors, and EMSGSIZE is passed for
framing too big, and EBADMSG for framing too small (matching openssl
semantics). EINVAL is returned for TLS versions that do not match the
original setsockopt call. All are unrecoverable.
strparser is used to parse TLS framing. Decryption is done directly
in to userspace buffers if they are large enough to support it, otherwise
sk_cow_data is called (similar to ipsec), and buffers are decrypted in
place and copied. splice_read always decrypts in place, since no
buffers are provided to decrypt in to.
sk_poll is overridden, and only returns POLLIN if a full TLS message is
received. Otherwise we wait for strparser to finish reading a full frame.
Actual decryption is only done during recvmsg or splice_read calls.
Signed-off-by: Dave Watson <davejwatson@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-23 00:10:35 +07:00
|
|
|
if (ctx->aead_recv) {
|
|
|
|
if (ctx->recv_pkt) {
|
|
|
|
kfree_skb(ctx->recv_pkt);
|
|
|
|
ctx->recv_pkt = NULL;
|
|
|
|
}
|
|
|
|
crypto_free_aead(ctx->aead_recv);
|
|
|
|
strp_stop(&ctx->strp);
|
|
|
|
write_lock_bh(&sk->sk_callback_lock);
|
|
|
|
sk->sk_data_ready = ctx->saved_data_ready;
|
|
|
|
write_unlock_bh(&sk->sk_callback_lock);
|
|
|
|
release_sock(sk);
|
|
|
|
strp_done(&ctx->strp);
|
|
|
|
lock_sock(sk);
|
|
|
|
}
|
2017-06-15 01:37:39 +07:00
|
|
|
|
|
|
|
tls_free_both_sg(sk);
|
|
|
|
|
|
|
|
kfree(ctx);
|
2017-11-13 15:22:46 +07:00
|
|
|
kfree(tls_ctx);
|
2017-06-15 01:37:39 +07:00
|
|
|
}
|
|
|
|
|
tls: RX path for ktls
Add rx path for tls software implementation.
recvmsg, splice_read, and poll implemented.
An additional sockopt TLS_RX is added, with the same interface as
TLS_TX. Either TLX_RX or TLX_TX may be provided separately, or
together (with two different setsockopt calls with appropriate keys).
Control messages are passed via CMSG in a similar way to transmit.
If no cmsg buffer is passed, then only application data records
will be passed to userspace, and EIO is returned for other types of
alerts.
EBADMSG is passed for decryption errors, and EMSGSIZE is passed for
framing too big, and EBADMSG for framing too small (matching openssl
semantics). EINVAL is returned for TLS versions that do not match the
original setsockopt call. All are unrecoverable.
strparser is used to parse TLS framing. Decryption is done directly
in to userspace buffers if they are large enough to support it, otherwise
sk_cow_data is called (similar to ipsec), and buffers are decrypted in
place and copied. splice_read always decrypts in place, since no
buffers are provided to decrypt in to.
sk_poll is overridden, and only returns POLLIN if a full TLS message is
received. Otherwise we wait for strparser to finish reading a full frame.
Actual decryption is only done during recvmsg or splice_read calls.
Signed-off-by: Dave Watson <davejwatson@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-23 00:10:35 +07:00
|
|
|
int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
|
2017-06-15 01:37:39 +07:00
|
|
|
{
|
|
|
|
char keyval[TLS_CIPHER_AES_GCM_128_KEY_SIZE];
|
|
|
|
struct tls_crypto_info *crypto_info;
|
|
|
|
struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
|
|
|
|
struct tls_sw_context *sw_ctx;
|
tls: RX path for ktls
Add rx path for tls software implementation.
recvmsg, splice_read, and poll implemented.
An additional sockopt TLS_RX is added, with the same interface as
TLS_TX. Either TLX_RX or TLX_TX may be provided separately, or
together (with two different setsockopt calls with appropriate keys).
Control messages are passed via CMSG in a similar way to transmit.
If no cmsg buffer is passed, then only application data records
will be passed to userspace, and EIO is returned for other types of
alerts.
EBADMSG is passed for decryption errors, and EMSGSIZE is passed for
framing too big, and EBADMSG for framing too small (matching openssl
semantics). EINVAL is returned for TLS versions that do not match the
original setsockopt call. All are unrecoverable.
strparser is used to parse TLS framing. Decryption is done directly
in to userspace buffers if they are large enough to support it, otherwise
sk_cow_data is called (similar to ipsec), and buffers are decrypted in
place and copied. splice_read always decrypts in place, since no
buffers are provided to decrypt in to.
sk_poll is overridden, and only returns POLLIN if a full TLS message is
received. Otherwise we wait for strparser to finish reading a full frame.
Actual decryption is only done during recvmsg or splice_read calls.
Signed-off-by: Dave Watson <davejwatson@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-23 00:10:35 +07:00
|
|
|
struct cipher_context *cctx;
|
|
|
|
struct crypto_aead **aead;
|
|
|
|
struct strp_callbacks cb;
|
2017-06-15 01:37:39 +07:00
|
|
|
u16 nonce_size, tag_size, iv_size, rec_seq_size;
|
|
|
|
char *iv, *rec_seq;
|
|
|
|
int rc = 0;
|
|
|
|
|
|
|
|
if (!ctx) {
|
|
|
|
rc = -EINVAL;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
tls: RX path for ktls
Add rx path for tls software implementation.
recvmsg, splice_read, and poll implemented.
An additional sockopt TLS_RX is added, with the same interface as
TLS_TX. Either TLX_RX or TLX_TX may be provided separately, or
together (with two different setsockopt calls with appropriate keys).
Control messages are passed via CMSG in a similar way to transmit.
If no cmsg buffer is passed, then only application data records
will be passed to userspace, and EIO is returned for other types of
alerts.
EBADMSG is passed for decryption errors, and EMSGSIZE is passed for
framing too big, and EBADMSG for framing too small (matching openssl
semantics). EINVAL is returned for TLS versions that do not match the
original setsockopt call. All are unrecoverable.
strparser is used to parse TLS framing. Decryption is done directly
in to userspace buffers if they are large enough to support it, otherwise
sk_cow_data is called (similar to ipsec), and buffers are decrypted in
place and copied. splice_read always decrypts in place, since no
buffers are provided to decrypt in to.
sk_poll is overridden, and only returns POLLIN if a full TLS message is
received. Otherwise we wait for strparser to finish reading a full frame.
Actual decryption is only done during recvmsg or splice_read calls.
Signed-off-by: Dave Watson <davejwatson@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-23 00:10:35 +07:00
|
|
|
if (!ctx->priv_ctx) {
|
|
|
|
sw_ctx = kzalloc(sizeof(*sw_ctx), GFP_KERNEL);
|
|
|
|
if (!sw_ctx) {
|
|
|
|
rc = -ENOMEM;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
crypto_init_wait(&sw_ctx->async_wait);
|
|
|
|
} else {
|
|
|
|
sw_ctx = ctx->priv_ctx;
|
2017-06-15 01:37:39 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
ctx->priv_ctx = (struct tls_offload_context *)sw_ctx;
|
|
|
|
|
tls: RX path for ktls
Add rx path for tls software implementation.
recvmsg, splice_read, and poll implemented.
An additional sockopt TLS_RX is added, with the same interface as
TLS_TX. Either TLX_RX or TLX_TX may be provided separately, or
together (with two different setsockopt calls with appropriate keys).
Control messages are passed via CMSG in a similar way to transmit.
If no cmsg buffer is passed, then only application data records
will be passed to userspace, and EIO is returned for other types of
alerts.
EBADMSG is passed for decryption errors, and EMSGSIZE is passed for
framing too big, and EBADMSG for framing too small (matching openssl
semantics). EINVAL is returned for TLS versions that do not match the
original setsockopt call. All are unrecoverable.
strparser is used to parse TLS framing. Decryption is done directly
in to userspace buffers if they are large enough to support it, otherwise
sk_cow_data is called (similar to ipsec), and buffers are decrypted in
place and copied. splice_read always decrypts in place, since no
buffers are provided to decrypt in to.
sk_poll is overridden, and only returns POLLIN if a full TLS message is
received. Otherwise we wait for strparser to finish reading a full frame.
Actual decryption is only done during recvmsg or splice_read calls.
Signed-off-by: Dave Watson <davejwatson@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-23 00:10:35 +07:00
|
|
|
if (tx) {
|
|
|
|
crypto_info = &ctx->crypto_send;
|
|
|
|
cctx = &ctx->tx;
|
|
|
|
aead = &sw_ctx->aead_send;
|
|
|
|
} else {
|
|
|
|
crypto_info = &ctx->crypto_recv;
|
|
|
|
cctx = &ctx->rx;
|
|
|
|
aead = &sw_ctx->aead_recv;
|
|
|
|
}
|
|
|
|
|
2017-06-15 01:37:39 +07:00
|
|
|
switch (crypto_info->cipher_type) {
|
|
|
|
case TLS_CIPHER_AES_GCM_128: {
|
|
|
|
nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
|
|
|
|
tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
|
|
|
|
iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
|
|
|
|
iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
|
|
|
|
rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
|
|
|
|
rec_seq =
|
|
|
|
((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
|
|
|
|
gcm_128_info =
|
|
|
|
(struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
default:
|
|
|
|
rc = -EINVAL;
|
2018-01-16 22:04:26 +07:00
|
|
|
goto free_priv;
|
2017-06-15 01:37:39 +07:00
|
|
|
}
|
|
|
|
|
2018-04-11 07:52:34 +07:00
|
|
|
/* Sanity-check the IV size for stack allocations. */
|
|
|
|
if (iv_size > MAX_IV_SIZE) {
|
|
|
|
rc = -EINVAL;
|
|
|
|
goto free_priv;
|
|
|
|
}
|
|
|
|
|
tls: RX path for ktls
Add rx path for tls software implementation.
recvmsg, splice_read, and poll implemented.
An additional sockopt TLS_RX is added, with the same interface as
TLS_TX. Either TLX_RX or TLX_TX may be provided separately, or
together (with two different setsockopt calls with appropriate keys).
Control messages are passed via CMSG in a similar way to transmit.
If no cmsg buffer is passed, then only application data records
will be passed to userspace, and EIO is returned for other types of
alerts.
EBADMSG is passed for decryption errors, and EMSGSIZE is passed for
framing too big, and EBADMSG for framing too small (matching openssl
semantics). EINVAL is returned for TLS versions that do not match the
original setsockopt call. All are unrecoverable.
strparser is used to parse TLS framing. Decryption is done directly
in to userspace buffers if they are large enough to support it, otherwise
sk_cow_data is called (similar to ipsec), and buffers are decrypted in
place and copied. splice_read always decrypts in place, since no
buffers are provided to decrypt in to.
sk_poll is overridden, and only returns POLLIN if a full TLS message is
received. Otherwise we wait for strparser to finish reading a full frame.
Actual decryption is only done during recvmsg or splice_read calls.
Signed-off-by: Dave Watson <davejwatson@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-23 00:10:35 +07:00
|
|
|
cctx->prepend_size = TLS_HEADER_SIZE + nonce_size;
|
|
|
|
cctx->tag_size = tag_size;
|
|
|
|
cctx->overhead_size = cctx->prepend_size + cctx->tag_size;
|
|
|
|
cctx->iv_size = iv_size;
|
|
|
|
cctx->iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
|
|
|
|
GFP_KERNEL);
|
|
|
|
if (!cctx->iv) {
|
2017-06-15 01:37:39 +07:00
|
|
|
rc = -ENOMEM;
|
2018-01-16 22:04:26 +07:00
|
|
|
goto free_priv;
|
2017-06-15 01:37:39 +07:00
|
|
|
}
|
tls: RX path for ktls
Add rx path for tls software implementation.
recvmsg, splice_read, and poll implemented.
An additional sockopt TLS_RX is added, with the same interface as
TLS_TX. Either TLX_RX or TLX_TX may be provided separately, or
together (with two different setsockopt calls with appropriate keys).
Control messages are passed via CMSG in a similar way to transmit.
If no cmsg buffer is passed, then only application data records
will be passed to userspace, and EIO is returned for other types of
alerts.
EBADMSG is passed for decryption errors, and EMSGSIZE is passed for
framing too big, and EBADMSG for framing too small (matching openssl
semantics). EINVAL is returned for TLS versions that do not match the
original setsockopt call. All are unrecoverable.
strparser is used to parse TLS framing. Decryption is done directly
in to userspace buffers if they are large enough to support it, otherwise
sk_cow_data is called (similar to ipsec), and buffers are decrypted in
place and copied. splice_read always decrypts in place, since no
buffers are provided to decrypt in to.
sk_poll is overridden, and only returns POLLIN if a full TLS message is
received. Otherwise we wait for strparser to finish reading a full frame.
Actual decryption is only done during recvmsg or splice_read calls.
Signed-off-by: Dave Watson <davejwatson@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-23 00:10:35 +07:00
|
|
|
memcpy(cctx->iv, gcm_128_info->salt, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
|
|
|
|
memcpy(cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
|
|
|
|
cctx->rec_seq_size = rec_seq_size;
|
|
|
|
cctx->rec_seq = kmalloc(rec_seq_size, GFP_KERNEL);
|
|
|
|
if (!cctx->rec_seq) {
|
2017-06-15 01:37:39 +07:00
|
|
|
rc = -ENOMEM;
|
|
|
|
goto free_iv;
|
|
|
|
}
|
tls: RX path for ktls
Add rx path for tls software implementation.
recvmsg, splice_read, and poll implemented.
An additional sockopt TLS_RX is added, with the same interface as
TLS_TX. Either TLX_RX or TLX_TX may be provided separately, or
together (with two different setsockopt calls with appropriate keys).
Control messages are passed via CMSG in a similar way to transmit.
If no cmsg buffer is passed, then only application data records
will be passed to userspace, and EIO is returned for other types of
alerts.
EBADMSG is passed for decryption errors, and EMSGSIZE is passed for
framing too big, and EBADMSG for framing too small (matching openssl
semantics). EINVAL is returned for TLS versions that do not match the
original setsockopt call. All are unrecoverable.
strparser is used to parse TLS framing. Decryption is done directly
in to userspace buffers if they are large enough to support it, otherwise
sk_cow_data is called (similar to ipsec), and buffers are decrypted in
place and copied. splice_read always decrypts in place, since no
buffers are provided to decrypt in to.
sk_poll is overridden, and only returns POLLIN if a full TLS message is
received. Otherwise we wait for strparser to finish reading a full frame.
Actual decryption is only done during recvmsg or splice_read calls.
Signed-off-by: Dave Watson <davejwatson@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-23 00:10:35 +07:00
|
|
|
memcpy(cctx->rec_seq, rec_seq, rec_seq_size);
|
|
|
|
|
|
|
|
if (tx) {
|
|
|
|
sg_init_table(sw_ctx->sg_encrypted_data,
|
|
|
|
ARRAY_SIZE(sw_ctx->sg_encrypted_data));
|
|
|
|
sg_init_table(sw_ctx->sg_plaintext_data,
|
|
|
|
ARRAY_SIZE(sw_ctx->sg_plaintext_data));
|
|
|
|
|
|
|
|
sg_init_table(sw_ctx->sg_aead_in, 2);
|
|
|
|
sg_set_buf(&sw_ctx->sg_aead_in[0], sw_ctx->aad_space,
|
|
|
|
sizeof(sw_ctx->aad_space));
|
|
|
|
sg_unmark_end(&sw_ctx->sg_aead_in[1]);
|
|
|
|
sg_chain(sw_ctx->sg_aead_in, 2, sw_ctx->sg_plaintext_data);
|
|
|
|
sg_init_table(sw_ctx->sg_aead_out, 2);
|
|
|
|
sg_set_buf(&sw_ctx->sg_aead_out[0], sw_ctx->aad_space,
|
|
|
|
sizeof(sw_ctx->aad_space));
|
|
|
|
sg_unmark_end(&sw_ctx->sg_aead_out[1]);
|
|
|
|
sg_chain(sw_ctx->sg_aead_out, 2, sw_ctx->sg_encrypted_data);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!*aead) {
|
|
|
|
*aead = crypto_alloc_aead("gcm(aes)", 0, 0);
|
|
|
|
if (IS_ERR(*aead)) {
|
|
|
|
rc = PTR_ERR(*aead);
|
|
|
|
*aead = NULL;
|
2017-06-15 01:37:39 +07:00
|
|
|
goto free_rec_seq;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ctx->push_pending_record = tls_sw_push_pending_record;
|
|
|
|
|
|
|
|
memcpy(keyval, gcm_128_info->key, TLS_CIPHER_AES_GCM_128_KEY_SIZE);
|
|
|
|
|
tls: RX path for ktls
Add rx path for tls software implementation.
recvmsg, splice_read, and poll implemented.
An additional sockopt TLS_RX is added, with the same interface as
TLS_TX. Either TLX_RX or TLX_TX may be provided separately, or
together (with two different setsockopt calls with appropriate keys).
Control messages are passed via CMSG in a similar way to transmit.
If no cmsg buffer is passed, then only application data records
will be passed to userspace, and EIO is returned for other types of
alerts.
EBADMSG is passed for decryption errors, and EMSGSIZE is passed for
framing too big, and EBADMSG for framing too small (matching openssl
semantics). EINVAL is returned for TLS versions that do not match the
original setsockopt call. All are unrecoverable.
strparser is used to parse TLS framing. Decryption is done directly
in to userspace buffers if they are large enough to support it, otherwise
sk_cow_data is called (similar to ipsec), and buffers are decrypted in
place and copied. splice_read always decrypts in place, since no
buffers are provided to decrypt in to.
sk_poll is overridden, and only returns POLLIN if a full TLS message is
received. Otherwise we wait for strparser to finish reading a full frame.
Actual decryption is only done during recvmsg or splice_read calls.
Signed-off-by: Dave Watson <davejwatson@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-23 00:10:35 +07:00
|
|
|
rc = crypto_aead_setkey(*aead, keyval,
|
2017-06-15 01:37:39 +07:00
|
|
|
TLS_CIPHER_AES_GCM_128_KEY_SIZE);
|
|
|
|
if (rc)
|
|
|
|
goto free_aead;
|
|
|
|
|
tls: RX path for ktls
Add rx path for tls software implementation.
recvmsg, splice_read, and poll implemented.
An additional sockopt TLS_RX is added, with the same interface as
TLS_TX. Either TLX_RX or TLX_TX may be provided separately, or
together (with two different setsockopt calls with appropriate keys).
Control messages are passed via CMSG in a similar way to transmit.
If no cmsg buffer is passed, then only application data records
will be passed to userspace, and EIO is returned for other types of
alerts.
EBADMSG is passed for decryption errors, and EMSGSIZE is passed for
framing too big, and EBADMSG for framing too small (matching openssl
semantics). EINVAL is returned for TLS versions that do not match the
original setsockopt call. All are unrecoverable.
strparser is used to parse TLS framing. Decryption is done directly
in to userspace buffers if they are large enough to support it, otherwise
sk_cow_data is called (similar to ipsec), and buffers are decrypted in
place and copied. splice_read always decrypts in place, since no
buffers are provided to decrypt in to.
sk_poll is overridden, and only returns POLLIN if a full TLS message is
received. Otherwise we wait for strparser to finish reading a full frame.
Actual decryption is only done during recvmsg or splice_read calls.
Signed-off-by: Dave Watson <davejwatson@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-23 00:10:35 +07:00
|
|
|
rc = crypto_aead_setauthsize(*aead, cctx->tag_size);
|
|
|
|
if (rc)
|
|
|
|
goto free_aead;
|
|
|
|
|
|
|
|
if (!tx) {
|
|
|
|
/* Set up strparser */
|
|
|
|
memset(&cb, 0, sizeof(cb));
|
|
|
|
cb.rcv_msg = tls_queue;
|
|
|
|
cb.parse_msg = tls_read_size;
|
|
|
|
|
|
|
|
strp_init(&sw_ctx->strp, sk, &cb);
|
|
|
|
|
|
|
|
write_lock_bh(&sk->sk_callback_lock);
|
|
|
|
sw_ctx->saved_data_ready = sk->sk_data_ready;
|
|
|
|
sk->sk_data_ready = tls_data_ready;
|
|
|
|
write_unlock_bh(&sk->sk_callback_lock);
|
|
|
|
|
|
|
|
sw_ctx->sk_poll = sk->sk_socket->ops->poll;
|
|
|
|
|
|
|
|
strp_check_rcv(&sw_ctx->strp);
|
|
|
|
}
|
|
|
|
|
|
|
|
goto out;
|
2017-06-15 01:37:39 +07:00
|
|
|
|
|
|
|
free_aead:
|
tls: RX path for ktls
Add rx path for tls software implementation.
recvmsg, splice_read, and poll implemented.
An additional sockopt TLS_RX is added, with the same interface as
TLS_TX. Either TLX_RX or TLX_TX may be provided separately, or
together (with two different setsockopt calls with appropriate keys).
Control messages are passed via CMSG in a similar way to transmit.
If no cmsg buffer is passed, then only application data records
will be passed to userspace, and EIO is returned for other types of
alerts.
EBADMSG is passed for decryption errors, and EMSGSIZE is passed for
framing too big, and EBADMSG for framing too small (matching openssl
semantics). EINVAL is returned for TLS versions that do not match the
original setsockopt call. All are unrecoverable.
strparser is used to parse TLS framing. Decryption is done directly
in to userspace buffers if they are large enough to support it, otherwise
sk_cow_data is called (similar to ipsec), and buffers are decrypted in
place and copied. splice_read always decrypts in place, since no
buffers are provided to decrypt in to.
sk_poll is overridden, and only returns POLLIN if a full TLS message is
received. Otherwise we wait for strparser to finish reading a full frame.
Actual decryption is only done during recvmsg or splice_read calls.
Signed-off-by: Dave Watson <davejwatson@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-23 00:10:35 +07:00
|
|
|
crypto_free_aead(*aead);
|
|
|
|
*aead = NULL;
|
2017-06-15 01:37:39 +07:00
|
|
|
free_rec_seq:
|
tls: RX path for ktls
Add rx path for tls software implementation.
recvmsg, splice_read, and poll implemented.
An additional sockopt TLS_RX is added, with the same interface as
TLS_TX. Either TLX_RX or TLX_TX may be provided separately, or
together (with two different setsockopt calls with appropriate keys).
Control messages are passed via CMSG in a similar way to transmit.
If no cmsg buffer is passed, then only application data records
will be passed to userspace, and EIO is returned for other types of
alerts.
EBADMSG is passed for decryption errors, and EMSGSIZE is passed for
framing too big, and EBADMSG for framing too small (matching openssl
semantics). EINVAL is returned for TLS versions that do not match the
original setsockopt call. All are unrecoverable.
strparser is used to parse TLS framing. Decryption is done directly
in to userspace buffers if they are large enough to support it, otherwise
sk_cow_data is called (similar to ipsec), and buffers are decrypted in
place and copied. splice_read always decrypts in place, since no
buffers are provided to decrypt in to.
sk_poll is overridden, and only returns POLLIN if a full TLS message is
received. Otherwise we wait for strparser to finish reading a full frame.
Actual decryption is only done during recvmsg or splice_read calls.
Signed-off-by: Dave Watson <davejwatson@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-23 00:10:35 +07:00
|
|
|
kfree(cctx->rec_seq);
|
|
|
|
cctx->rec_seq = NULL;
|
2017-06-15 01:37:39 +07:00
|
|
|
free_iv:
|
2018-03-23 00:10:06 +07:00
|
|
|
kfree(ctx->tx.iv);
|
|
|
|
ctx->tx.iv = NULL;
|
2018-01-16 22:04:26 +07:00
|
|
|
free_priv:
|
|
|
|
kfree(ctx->priv_ctx);
|
|
|
|
ctx->priv_ctx = NULL;
|
2017-06-15 01:37:39 +07:00
|
|
|
out:
|
|
|
|
return rc;
|
|
|
|
}
|