linux_dsm_epyc7002/arch/powerpc/include/asm/fadump.h

214 lines
5.9 KiB
C
Raw Normal View History

/*
* Firmware Assisted dump header file.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* Copyright 2011 IBM Corporation
* Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
*/
#ifndef __PPC64_FA_DUMP_H__
#define __PPC64_FA_DUMP_H__
#ifdef CONFIG_FA_DUMP
/*
* The RMA region will be saved for later dumping when kernel crashes.
* RMA is Real Mode Area, the first block of logical memory address owned
* by logical partition, containing the storage that may be accessed with
* translate off.
*/
#define RMA_START 0x0
#define RMA_END (ppc64_rma_size)
/*
* On some Power systems where RMO is 128MB, it still requires minimum of
* 256MB for kernel to boot successfully. When kdump infrastructure is
* configured to save vmcore over network, we run into OOM issue while
* loading modules related to network setup. Hence we need aditional 64M
* of memory to avoid OOM issue.
*/
#define MIN_BOOT_MEM (((RMA_END < (0x1UL << 28)) ? (0x1UL << 28) : RMA_END) \
+ (0x1UL << 26))
fadump: Initialize elfcore header and add PT_LOAD program headers. Build the crash memory range list by traversing through system memory during the first kernel before we register for firmware-assisted dump. After the successful dump registration, initialize the elfcore header and populate PT_LOAD program headers with crash memory ranges. The elfcore header is saved in the scratch area within the reserved memory. The scratch area starts at the end of the memory reserved for saving RMR region contents. The scratch area contains fadump crash info structure that contains magic number for fadump validation and physical address where the eflcore header can be found. This structure will also be used to pass some important crash info data to the second kernel which will help second kernel to populate ELF core header with correct data before it gets exported through /proc/vmcore. Since the firmware preserves the entire partition memory at the time of crash the contents of the scratch area will be preserved till second kernel boot. Since the memory dump exported through /proc/vmcore is in ELF format similar to kdump, it will help us to reuse the kdump infrastructure for dump capture and filtering. Unlike phyp dump, userspace tool does not need to refer any sysfs interface while reading /proc/vmcore. NOTE: The current design implementation does not address a possibility of introducing additional fields (in future) to this structure without affecting compatibility. It's on TODO list to come up with better approach to address this. Reserved dump area start => +-------------------------------------+ | CPU state dump data | +-------------------------------------+ | HPTE region data | +-------------------------------------+ | RMR region data | Scratch area start => +-------------------------------------+ | fadump crash info structure { | | magic nummber | +------|---- elfcorehdr_addr | | | } | +----> +-------------------------------------+ | ELF core header | Reserved dump area end => +-------------------------------------+ Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2012-02-16 08:14:37 +07:00
#define memblock_num_regions(memblock_type) (memblock.memblock_type.cnt)
/* Firmware provided dump sections */
#define FADUMP_CPU_STATE_DATA 0x0001
#define FADUMP_HPTE_REGION 0x0002
#define FADUMP_REAL_MODE_REGION 0x0011
/* Dump request flag */
#define FADUMP_REQUEST_FLAG 0x00000001
/* FAD commands */
#define FADUMP_REGISTER 1
#define FADUMP_UNREGISTER 2
#define FADUMP_INVALIDATE 3
fadump: Initialize elfcore header and add PT_LOAD program headers. Build the crash memory range list by traversing through system memory during the first kernel before we register for firmware-assisted dump. After the successful dump registration, initialize the elfcore header and populate PT_LOAD program headers with crash memory ranges. The elfcore header is saved in the scratch area within the reserved memory. The scratch area starts at the end of the memory reserved for saving RMR region contents. The scratch area contains fadump crash info structure that contains magic number for fadump validation and physical address where the eflcore header can be found. This structure will also be used to pass some important crash info data to the second kernel which will help second kernel to populate ELF core header with correct data before it gets exported through /proc/vmcore. Since the firmware preserves the entire partition memory at the time of crash the contents of the scratch area will be preserved till second kernel boot. Since the memory dump exported through /proc/vmcore is in ELF format similar to kdump, it will help us to reuse the kdump infrastructure for dump capture and filtering. Unlike phyp dump, userspace tool does not need to refer any sysfs interface while reading /proc/vmcore. NOTE: The current design implementation does not address a possibility of introducing additional fields (in future) to this structure without affecting compatibility. It's on TODO list to come up with better approach to address this. Reserved dump area start => +-------------------------------------+ | CPU state dump data | +-------------------------------------+ | HPTE region data | +-------------------------------------+ | RMR region data | Scratch area start => +-------------------------------------+ | fadump crash info structure { | | magic nummber | +------|---- elfcorehdr_addr | | | } | +----> +-------------------------------------+ | ELF core header | Reserved dump area end => +-------------------------------------+ Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2012-02-16 08:14:37 +07:00
/* Dump status flag */
#define FADUMP_ERROR_FLAG 0x2000
#define FADUMP_CPU_ID_MASK ((1UL << 32) - 1)
#define CPU_UNKNOWN (~((u32)0))
/* Utility macros */
#define SKIP_TO_NEXT_CPU(reg_entry) \
({ \
while (be64_to_cpu(reg_entry->reg_id) != REG_ID("CPUEND")) \
reg_entry++; \
reg_entry++; \
})
/* Kernel Dump section info */
struct fadump_section {
__be32 request_flag;
__be16 source_data_type;
__be16 error_flags;
__be64 source_address;
__be64 source_len;
__be64 bytes_dumped;
__be64 destination_address;
};
/* ibm,configure-kernel-dump header. */
struct fadump_section_header {
__be32 dump_format_version;
__be16 dump_num_sections;
__be16 dump_status_flag;
__be32 offset_first_dump_section;
/* Fields for disk dump option. */
__be32 dd_block_size;
__be64 dd_block_offset;
__be64 dd_num_blocks;
__be32 dd_offset_disk_path;
/* Maximum time allowed to prevent an automatic dump-reboot. */
__be32 max_time_auto;
};
/*
* Firmware Assisted dump memory structure. This structure is required for
* registering future kernel dump with power firmware through rtas call.
*
* No disk dump option. Hence disk dump path string section is not included.
*/
struct fadump_mem_struct {
struct fadump_section_header header;
/* Kernel dump sections */
struct fadump_section cpu_state_data;
struct fadump_section hpte_region;
struct fadump_section rmr_region;
};
/* Firmware-assisted dump configuration details. */
struct fw_dump {
unsigned long cpu_state_data_size;
unsigned long hpte_region_size;
unsigned long boot_memory_size;
unsigned long reserve_dump_area_start;
unsigned long reserve_dump_area_size;
/* cmd line option during boot */
unsigned long reserve_bootvar;
fadump: Initialize elfcore header and add PT_LOAD program headers. Build the crash memory range list by traversing through system memory during the first kernel before we register for firmware-assisted dump. After the successful dump registration, initialize the elfcore header and populate PT_LOAD program headers with crash memory ranges. The elfcore header is saved in the scratch area within the reserved memory. The scratch area starts at the end of the memory reserved for saving RMR region contents. The scratch area contains fadump crash info structure that contains magic number for fadump validation and physical address where the eflcore header can be found. This structure will also be used to pass some important crash info data to the second kernel which will help second kernel to populate ELF core header with correct data before it gets exported through /proc/vmcore. Since the firmware preserves the entire partition memory at the time of crash the contents of the scratch area will be preserved till second kernel boot. Since the memory dump exported through /proc/vmcore is in ELF format similar to kdump, it will help us to reuse the kdump infrastructure for dump capture and filtering. Unlike phyp dump, userspace tool does not need to refer any sysfs interface while reading /proc/vmcore. NOTE: The current design implementation does not address a possibility of introducing additional fields (in future) to this structure without affecting compatibility. It's on TODO list to come up with better approach to address this. Reserved dump area start => +-------------------------------------+ | CPU state dump data | +-------------------------------------+ | HPTE region data | +-------------------------------------+ | RMR region data | Scratch area start => +-------------------------------------+ | fadump crash info structure { | | magic nummber | +------|---- elfcorehdr_addr | | | } | +----> +-------------------------------------+ | ELF core header | Reserved dump area end => +-------------------------------------+ Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2012-02-16 08:14:37 +07:00
unsigned long fadumphdr_addr;
unsigned long cpu_notes_buf;
unsigned long cpu_notes_buf_size;
int ibm_configure_kernel_dump;
unsigned long fadump_enabled:1;
unsigned long fadump_supported:1;
unsigned long dump_active:1;
unsigned long dump_registered:1;
};
fadump: Initialize elfcore header and add PT_LOAD program headers. Build the crash memory range list by traversing through system memory during the first kernel before we register for firmware-assisted dump. After the successful dump registration, initialize the elfcore header and populate PT_LOAD program headers with crash memory ranges. The elfcore header is saved in the scratch area within the reserved memory. The scratch area starts at the end of the memory reserved for saving RMR region contents. The scratch area contains fadump crash info structure that contains magic number for fadump validation and physical address where the eflcore header can be found. This structure will also be used to pass some important crash info data to the second kernel which will help second kernel to populate ELF core header with correct data before it gets exported through /proc/vmcore. Since the firmware preserves the entire partition memory at the time of crash the contents of the scratch area will be preserved till second kernel boot. Since the memory dump exported through /proc/vmcore is in ELF format similar to kdump, it will help us to reuse the kdump infrastructure for dump capture and filtering. Unlike phyp dump, userspace tool does not need to refer any sysfs interface while reading /proc/vmcore. NOTE: The current design implementation does not address a possibility of introducing additional fields (in future) to this structure without affecting compatibility. It's on TODO list to come up with better approach to address this. Reserved dump area start => +-------------------------------------+ | CPU state dump data | +-------------------------------------+ | HPTE region data | +-------------------------------------+ | RMR region data | Scratch area start => +-------------------------------------+ | fadump crash info structure { | | magic nummber | +------|---- elfcorehdr_addr | | | } | +----> +-------------------------------------+ | ELF core header | Reserved dump area end => +-------------------------------------+ Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2012-02-16 08:14:37 +07:00
/*
* Copy the ascii values for first 8 characters from a string into u64
* variable at their respective indexes.
* e.g.
* The string "FADMPINF" will be converted into 0x4641444d50494e46
*/
static inline u64 str_to_u64(const char *str)
{
u64 val = 0;
int i;
for (i = 0; i < sizeof(val); i++)
val = (*str) ? (val << 8) | *str++ : val << 8;
return val;
}
#define STR_TO_HEX(x) str_to_u64(x)
#define REG_ID(x) str_to_u64(x)
fadump: Initialize elfcore header and add PT_LOAD program headers. Build the crash memory range list by traversing through system memory during the first kernel before we register for firmware-assisted dump. After the successful dump registration, initialize the elfcore header and populate PT_LOAD program headers with crash memory ranges. The elfcore header is saved in the scratch area within the reserved memory. The scratch area starts at the end of the memory reserved for saving RMR region contents. The scratch area contains fadump crash info structure that contains magic number for fadump validation and physical address where the eflcore header can be found. This structure will also be used to pass some important crash info data to the second kernel which will help second kernel to populate ELF core header with correct data before it gets exported through /proc/vmcore. Since the firmware preserves the entire partition memory at the time of crash the contents of the scratch area will be preserved till second kernel boot. Since the memory dump exported through /proc/vmcore is in ELF format similar to kdump, it will help us to reuse the kdump infrastructure for dump capture and filtering. Unlike phyp dump, userspace tool does not need to refer any sysfs interface while reading /proc/vmcore. NOTE: The current design implementation does not address a possibility of introducing additional fields (in future) to this structure without affecting compatibility. It's on TODO list to come up with better approach to address this. Reserved dump area start => +-------------------------------------+ | CPU state dump data | +-------------------------------------+ | HPTE region data | +-------------------------------------+ | RMR region data | Scratch area start => +-------------------------------------+ | fadump crash info structure { | | magic nummber | +------|---- elfcorehdr_addr | | | } | +----> +-------------------------------------+ | ELF core header | Reserved dump area end => +-------------------------------------+ Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2012-02-16 08:14:37 +07:00
#define FADUMP_CRASH_INFO_MAGIC STR_TO_HEX("FADMPINF")
#define REGSAVE_AREA_MAGIC STR_TO_HEX("REGSAVE")
/* The firmware-assisted dump format.
*
* The register save area is an area in the partition's memory used to preserve
* the register contents (CPU state data) for the active CPUs during a firmware
* assisted dump. The dump format contains register save area header followed
* by register entries. Each list of registers for a CPU starts with
* "CPUSTRT" and ends with "CPUEND".
*/
/* Register save area header. */
struct fadump_reg_save_area_header {
__be64 magic_number;
__be32 version;
__be32 num_cpu_offset;
};
/* Register entry. */
struct fadump_reg_entry {
__be64 reg_id;
__be64 reg_value;
};
fadump: Initialize elfcore header and add PT_LOAD program headers. Build the crash memory range list by traversing through system memory during the first kernel before we register for firmware-assisted dump. After the successful dump registration, initialize the elfcore header and populate PT_LOAD program headers with crash memory ranges. The elfcore header is saved in the scratch area within the reserved memory. The scratch area starts at the end of the memory reserved for saving RMR region contents. The scratch area contains fadump crash info structure that contains magic number for fadump validation and physical address where the eflcore header can be found. This structure will also be used to pass some important crash info data to the second kernel which will help second kernel to populate ELF core header with correct data before it gets exported through /proc/vmcore. Since the firmware preserves the entire partition memory at the time of crash the contents of the scratch area will be preserved till second kernel boot. Since the memory dump exported through /proc/vmcore is in ELF format similar to kdump, it will help us to reuse the kdump infrastructure for dump capture and filtering. Unlike phyp dump, userspace tool does not need to refer any sysfs interface while reading /proc/vmcore. NOTE: The current design implementation does not address a possibility of introducing additional fields (in future) to this structure without affecting compatibility. It's on TODO list to come up with better approach to address this. Reserved dump area start => +-------------------------------------+ | CPU state dump data | +-------------------------------------+ | HPTE region data | +-------------------------------------+ | RMR region data | Scratch area start => +-------------------------------------+ | fadump crash info structure { | | magic nummber | +------|---- elfcorehdr_addr | | | } | +----> +-------------------------------------+ | ELF core header | Reserved dump area end => +-------------------------------------+ Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2012-02-16 08:14:37 +07:00
/* fadump crash info structure */
struct fadump_crash_info_header {
u64 magic_number;
u64 elfcorehdr_addr;
u32 crashing_cpu;
struct pt_regs regs;
powerpc/fadump: rename cpu_online_mask member of struct fadump_crash_info_header The four cpumasks cpu_{possible,online,present,active}_bits are exposed readonly via the corresponding const variables cpu_xyz_mask. But they are also accessible for arbitrary writing via the exposed functions set_cpu_xyz. There's quite a bit of code throughout the kernel which iterates over or otherwise accesses these bitmaps, and having the access go via the cpu_xyz_mask variables is nowadays [1] simply a useless indirection. It may be that any problem in CS can be solved by an extra level of indirection, but that doesn't mean every extra indirection solves a problem. In this case, it even necessitates some minor ugliness (see 4/6). Patch 1/6 is new in v2, and fixes a build failure on ppc by renaming a struct member, to avoid problems when the identifier cpu_online_mask becomes a macro later in the series. The next four patches eliminate the cpu_xyz_mask variables by simply exposing the actual bitmaps, after renaming them to discourage direct access - that still happens through cpu_xyz_mask, which are now simply macros with the same type and value as they used to have. After that, there's no longer any reason to have the setter functions be out-of-line: The boolean parameter is almost always a literal true or false, so by making them static inlines they will usually compile to one or two instructions. For a defconfig build on x86_64, bloat-o-meter says we save ~3000 bytes. We also save a little stack (stackdelta says 127 functions have a 16 byte smaller stack frame, while two grow by that amount). Mostly because, when iterating over the mask, gcc typically loads the value of cpu_xyz_mask into a callee-saved register and from there into %rdi before each find_next_bit call - now it can just load the appropriate immediate address into %rdi before each call. [1] See Rusty's kind explanation http://thread.gmane.org/gmane.linux.kernel/2047078/focus=2047722 for some historic context. This patch (of 6): As preparation for eliminating the indirect access to the various global cpu_*_bits bitmaps via the pointer variables cpu_*_mask, rename the cpu_online_mask member of struct fadump_crash_info_header to simply online_mask, thus allowing cpu_online_mask to become a macro. Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk> Acked-by: Michael Ellerman <mpe@ellerman.id.au> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-21 06:00:13 +07:00
struct cpumask online_mask;
fadump: Initialize elfcore header and add PT_LOAD program headers. Build the crash memory range list by traversing through system memory during the first kernel before we register for firmware-assisted dump. After the successful dump registration, initialize the elfcore header and populate PT_LOAD program headers with crash memory ranges. The elfcore header is saved in the scratch area within the reserved memory. The scratch area starts at the end of the memory reserved for saving RMR region contents. The scratch area contains fadump crash info structure that contains magic number for fadump validation and physical address where the eflcore header can be found. This structure will also be used to pass some important crash info data to the second kernel which will help second kernel to populate ELF core header with correct data before it gets exported through /proc/vmcore. Since the firmware preserves the entire partition memory at the time of crash the contents of the scratch area will be preserved till second kernel boot. Since the memory dump exported through /proc/vmcore is in ELF format similar to kdump, it will help us to reuse the kdump infrastructure for dump capture and filtering. Unlike phyp dump, userspace tool does not need to refer any sysfs interface while reading /proc/vmcore. NOTE: The current design implementation does not address a possibility of introducing additional fields (in future) to this structure without affecting compatibility. It's on TODO list to come up with better approach to address this. Reserved dump area start => +-------------------------------------+ | CPU state dump data | +-------------------------------------+ | HPTE region data | +-------------------------------------+ | RMR region data | Scratch area start => +-------------------------------------+ | fadump crash info structure { | | magic nummber | +------|---- elfcorehdr_addr | | | } | +----> +-------------------------------------+ | ELF core header | Reserved dump area end => +-------------------------------------+ Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2012-02-16 08:14:37 +07:00
};
/* Crash memory ranges */
#define INIT_CRASHMEM_RANGES (INIT_MEMBLOCK_REGIONS + 2)
struct fad_crash_memory_ranges {
unsigned long long base;
unsigned long long size;
};
extern int early_init_dt_scan_fw_dump(unsigned long node,
const char *uname, int depth, void *data);
extern int fadump_reserve_mem(void);
extern int setup_fadump(void);
extern int is_fadump_active(void);
extern void crash_fadump(struct pt_regs *, const char *);
extern void fadump_cleanup(void);
#else /* CONFIG_FA_DUMP */
static inline int is_fadump_active(void) { return 0; }
static inline void crash_fadump(struct pt_regs *regs, const char *str) { }
#endif
#endif