mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-15 16:36:48 +07:00
1147 lines
29 KiB
C
1147 lines
29 KiB
C
|
// SPDX-License-Identifier: GPL-2.0-only
|
||
|
/*
|
||
|
* Copyright (C) 2020 BAIKAL ELECTRONICS, JSC
|
||
|
*
|
||
|
* Authors:
|
||
|
* Maxim Kaurkin <maxim.kaurkin@baikalelectronics.ru>
|
||
|
* Serge Semin <Sergey.Semin@baikalelectronics.ru>
|
||
|
*
|
||
|
* Baikal-T1 Process, Voltage, Temperature sensor driver
|
||
|
*/
|
||
|
|
||
|
#include <linux/bitfield.h>
|
||
|
#include <linux/bitops.h>
|
||
|
#include <linux/clk.h>
|
||
|
#include <linux/completion.h>
|
||
|
#include <linux/device.h>
|
||
|
#include <linux/hwmon-sysfs.h>
|
||
|
#include <linux/hwmon.h>
|
||
|
#include <linux/interrupt.h>
|
||
|
#include <linux/io.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/ktime.h>
|
||
|
#include <linux/limits.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/mutex.h>
|
||
|
#include <linux/of.h>
|
||
|
#include <linux/platform_device.h>
|
||
|
#include <linux/seqlock.h>
|
||
|
#include <linux/sysfs.h>
|
||
|
#include <linux/types.h>
|
||
|
|
||
|
#include "bt1-pvt.h"
|
||
|
|
||
|
/*
|
||
|
* For the sake of the code simplification we created the sensors info table
|
||
|
* with the sensor names, activation modes, threshold registers base address
|
||
|
* and the thresholds bit fields.
|
||
|
*/
|
||
|
static const struct pvt_sensor_info pvt_info[] = {
|
||
|
PVT_SENSOR_INFO(0, "CPU Core Temperature", hwmon_temp, TEMP, TTHRES),
|
||
|
PVT_SENSOR_INFO(0, "CPU Core Voltage", hwmon_in, VOLT, VTHRES),
|
||
|
PVT_SENSOR_INFO(1, "CPU Core Low-Vt", hwmon_in, LVT, LTHRES),
|
||
|
PVT_SENSOR_INFO(2, "CPU Core High-Vt", hwmon_in, HVT, HTHRES),
|
||
|
PVT_SENSOR_INFO(3, "CPU Core Standard-Vt", hwmon_in, SVT, STHRES),
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* The original translation formulae of the temperature (in degrees of Celsius)
|
||
|
* to PVT data and vice-versa are following:
|
||
|
* N = 1.8322e-8*(T^4) + 2.343e-5*(T^3) + 8.7018e-3*(T^2) + 3.9269*(T^1) +
|
||
|
* 1.7204e2,
|
||
|
* T = -1.6743e-11*(N^4) + 8.1542e-8*(N^3) + -1.8201e-4*(N^2) +
|
||
|
* 3.1020e-1*(N^1) - 4.838e1,
|
||
|
* where T = [-48.380, 147.438]C and N = [0, 1023].
|
||
|
* They must be accordingly altered to be suitable for the integer arithmetics.
|
||
|
* The technique is called 'factor redistribution', which just makes sure the
|
||
|
* multiplications and divisions are made so to have a result of the operations
|
||
|
* within the integer numbers limit. In addition we need to translate the
|
||
|
* formulae to accept millidegrees of Celsius. Here what they look like after
|
||
|
* the alterations:
|
||
|
* N = (18322e-20*(T^4) + 2343e-13*(T^3) + 87018e-9*(T^2) + 39269e-3*T +
|
||
|
* 17204e2) / 1e4,
|
||
|
* T = -16743e-12*(D^4) + 81542e-9*(D^3) - 182010e-6*(D^2) + 310200e-3*D -
|
||
|
* 48380,
|
||
|
* where T = [-48380, 147438] mC and N = [0, 1023].
|
||
|
*/
|
||
|
static const struct pvt_poly poly_temp_to_N = {
|
||
|
.total_divider = 10000,
|
||
|
.terms = {
|
||
|
{4, 18322, 10000, 10000},
|
||
|
{3, 2343, 10000, 10},
|
||
|
{2, 87018, 10000, 10},
|
||
|
{1, 39269, 1000, 1},
|
||
|
{0, 1720400, 1, 1}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
static const struct pvt_poly poly_N_to_temp = {
|
||
|
.total_divider = 1,
|
||
|
.terms = {
|
||
|
{4, -16743, 1000, 1},
|
||
|
{3, 81542, 1000, 1},
|
||
|
{2, -182010, 1000, 1},
|
||
|
{1, 310200, 1000, 1},
|
||
|
{0, -48380, 1, 1}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* Similar alterations are performed for the voltage conversion equations.
|
||
|
* The original formulae are:
|
||
|
* N = 1.8658e3*V - 1.1572e3,
|
||
|
* V = (N + 1.1572e3) / 1.8658e3,
|
||
|
* where V = [0.620, 1.168] V and N = [0, 1023].
|
||
|
* After the optimization they looks as follows:
|
||
|
* N = (18658e-3*V - 11572) / 10,
|
||
|
* V = N * 10^5 / 18658 + 11572 * 10^4 / 18658.
|
||
|
*/
|
||
|
static const struct pvt_poly poly_volt_to_N = {
|
||
|
.total_divider = 10,
|
||
|
.terms = {
|
||
|
{1, 18658, 1000, 1},
|
||
|
{0, -11572, 1, 1}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
static const struct pvt_poly poly_N_to_volt = {
|
||
|
.total_divider = 10,
|
||
|
.terms = {
|
||
|
{1, 100000, 18658, 1},
|
||
|
{0, 115720000, 1, 18658}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* Here is the polynomial calculation function, which performs the
|
||
|
* redistributed terms calculations. It's pretty straightforward. We walk
|
||
|
* over each degree term up to the free one, and perform the redistributed
|
||
|
* multiplication of the term coefficient, its divider (as for the rationale
|
||
|
* fraction representation), data power and the rational fraction divider
|
||
|
* leftover. Then all of this is collected in a total sum variable, which
|
||
|
* value is normalized by the total divider before being returned.
|
||
|
*/
|
||
|
static long pvt_calc_poly(const struct pvt_poly *poly, long data)
|
||
|
{
|
||
|
const struct pvt_poly_term *term = poly->terms;
|
||
|
long tmp, ret = 0;
|
||
|
int deg;
|
||
|
|
||
|
do {
|
||
|
tmp = term->coef;
|
||
|
for (deg = 0; deg < term->deg; ++deg)
|
||
|
tmp = mult_frac(tmp, data, term->divider);
|
||
|
ret += tmp / term->divider_leftover;
|
||
|
} while ((term++)->deg);
|
||
|
|
||
|
return ret / poly->total_divider;
|
||
|
}
|
||
|
|
||
|
static inline u32 pvt_update(void __iomem *reg, u32 mask, u32 data)
|
||
|
{
|
||
|
u32 old;
|
||
|
|
||
|
old = readl_relaxed(reg);
|
||
|
writel((old & ~mask) | (data & mask), reg);
|
||
|
|
||
|
return old & mask;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Baikal-T1 PVT mode can be updated only when the controller is disabled.
|
||
|
* So first we disable it, then set the new mode together with the controller
|
||
|
* getting back enabled. The same concerns the temperature trim and
|
||
|
* measurements timeout. If it is necessary the interface mutex is supposed
|
||
|
* to be locked at the time the operations are performed.
|
||
|
*/
|
||
|
static inline void pvt_set_mode(struct pvt_hwmon *pvt, u32 mode)
|
||
|
{
|
||
|
u32 old;
|
||
|
|
||
|
mode = FIELD_PREP(PVT_CTRL_MODE_MASK, mode);
|
||
|
|
||
|
old = pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
|
||
|
pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_MODE_MASK | PVT_CTRL_EN,
|
||
|
mode | old);
|
||
|
}
|
||
|
|
||
|
static inline u32 pvt_calc_trim(long temp)
|
||
|
{
|
||
|
temp = clamp_val(temp, 0, PVT_TRIM_TEMP);
|
||
|
|
||
|
return DIV_ROUND_UP(temp, PVT_TRIM_STEP);
|
||
|
}
|
||
|
|
||
|
static inline void pvt_set_trim(struct pvt_hwmon *pvt, u32 trim)
|
||
|
{
|
||
|
u32 old;
|
||
|
|
||
|
trim = FIELD_PREP(PVT_CTRL_TRIM_MASK, trim);
|
||
|
|
||
|
old = pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
|
||
|
pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_TRIM_MASK | PVT_CTRL_EN,
|
||
|
trim | old);
|
||
|
}
|
||
|
|
||
|
static inline void pvt_set_tout(struct pvt_hwmon *pvt, u32 tout)
|
||
|
{
|
||
|
u32 old;
|
||
|
|
||
|
old = pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
|
||
|
writel(tout, pvt->regs + PVT_TTIMEOUT);
|
||
|
pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, old);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This driver can optionally provide the hwmon alarms for each sensor the PVT
|
||
|
* controller supports. The alarms functionality is made compile-time
|
||
|
* configurable due to the hardware interface implementation peculiarity
|
||
|
* described further in this comment. So in case if alarms are unnecessary in
|
||
|
* your system design it's recommended to have them disabled to prevent the PVT
|
||
|
* IRQs being periodically raised to get the data cache/alarms status up to
|
||
|
* date.
|
||
|
*
|
||
|
* Baikal-T1 PVT embedded controller is based on the Analog Bits PVT sensor,
|
||
|
* but is equipped with a dedicated control wrapper. It exposes the PVT
|
||
|
* sub-block registers space via the APB3 bus. In addition the wrapper provides
|
||
|
* a common interrupt vector of the sensors conversion completion events and
|
||
|
* threshold value alarms. Alas the wrapper interface hasn't been fully thought
|
||
|
* through. There is only one sensor can be activated at a time, for which the
|
||
|
* thresholds comparator is enabled right after the data conversion is
|
||
|
* completed. Due to this if alarms need to be implemented for all available
|
||
|
* sensors we can't just set the thresholds and enable the interrupts. We need
|
||
|
* to enable the sensors one after another and let the controller to detect
|
||
|
* the alarms by itself at each conversion. This also makes pointless to handle
|
||
|
* the alarms interrupts, since in occasion they happen synchronously with
|
||
|
* data conversion completion. The best driver design would be to have the
|
||
|
* completion interrupts enabled only and keep the converted value in the
|
||
|
* driver data cache. This solution is implemented if hwmon alarms are enabled
|
||
|
* in this driver. In case if the alarms are disabled, the conversion is
|
||
|
* performed on demand at the time a sensors input file is read.
|
||
|
*/
|
||
|
|
||
|
#if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
|
||
|
|
||
|
#define pvt_hard_isr NULL
|
||
|
|
||
|
static irqreturn_t pvt_soft_isr(int irq, void *data)
|
||
|
{
|
||
|
const struct pvt_sensor_info *info;
|
||
|
struct pvt_hwmon *pvt = data;
|
||
|
struct pvt_cache *cache;
|
||
|
u32 val, thres_sts, old;
|
||
|
|
||
|
/*
|
||
|
* DVALID bit will be cleared by reading the data. We need to save the
|
||
|
* status before the next conversion happens. Threshold events will be
|
||
|
* handled a bit later.
|
||
|
*/
|
||
|
thres_sts = readl(pvt->regs + PVT_RAW_INTR_STAT);
|
||
|
|
||
|
/*
|
||
|
* Then lets recharge the PVT interface with the next sampling mode.
|
||
|
* Lock the interface mutex to serialize trim, timeouts and alarm
|
||
|
* thresholds settings.
|
||
|
*/
|
||
|
cache = &pvt->cache[pvt->sensor];
|
||
|
info = &pvt_info[pvt->sensor];
|
||
|
pvt->sensor = (pvt->sensor == PVT_SENSOR_LAST) ?
|
||
|
PVT_SENSOR_FIRST : (pvt->sensor + 1);
|
||
|
|
||
|
/*
|
||
|
* For some reason we have to mask the interrupt before changing the
|
||
|
* mode, otherwise sometimes the temperature mode doesn't get
|
||
|
* activated even though the actual mode in the ctrl register
|
||
|
* corresponds to one. Then we read the data. By doing so we also
|
||
|
* recharge the data conversion. After this the mode corresponding
|
||
|
* to the next sensor in the row is set. Finally we enable the
|
||
|
* interrupts back.
|
||
|
*/
|
||
|
mutex_lock(&pvt->iface_mtx);
|
||
|
|
||
|
old = pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID,
|
||
|
PVT_INTR_DVALID);
|
||
|
|
||
|
val = readl(pvt->regs + PVT_DATA);
|
||
|
|
||
|
pvt_set_mode(pvt, pvt_info[pvt->sensor].mode);
|
||
|
|
||
|
pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, old);
|
||
|
|
||
|
mutex_unlock(&pvt->iface_mtx);
|
||
|
|
||
|
/*
|
||
|
* We can now update the data cache with data just retrieved from the
|
||
|
* sensor. Lock write-seqlock to make sure the reader has a coherent
|
||
|
* data.
|
||
|
*/
|
||
|
write_seqlock(&cache->data_seqlock);
|
||
|
|
||
|
cache->data = FIELD_GET(PVT_DATA_DATA_MASK, val);
|
||
|
|
||
|
write_sequnlock(&cache->data_seqlock);
|
||
|
|
||
|
/*
|
||
|
* While PVT core is doing the next mode data conversion, we'll check
|
||
|
* whether the alarms were triggered for the current sensor. Note that
|
||
|
* according to the documentation only one threshold IRQ status can be
|
||
|
* set at a time, that's why if-else statement is utilized.
|
||
|
*/
|
||
|
if ((thres_sts & info->thres_sts_lo) ^ cache->thres_sts_lo) {
|
||
|
WRITE_ONCE(cache->thres_sts_lo, thres_sts & info->thres_sts_lo);
|
||
|
hwmon_notify_event(pvt->hwmon, info->type, info->attr_min_alarm,
|
||
|
info->channel);
|
||
|
} else if ((thres_sts & info->thres_sts_hi) ^ cache->thres_sts_hi) {
|
||
|
WRITE_ONCE(cache->thres_sts_hi, thres_sts & info->thres_sts_hi);
|
||
|
hwmon_notify_event(pvt->hwmon, info->type, info->attr_max_alarm,
|
||
|
info->channel);
|
||
|
}
|
||
|
|
||
|
return IRQ_HANDLED;
|
||
|
}
|
||
|
|
||
|
inline umode_t pvt_limit_is_visible(enum pvt_sensor_type type)
|
||
|
{
|
||
|
return 0644;
|
||
|
}
|
||
|
|
||
|
inline umode_t pvt_alarm_is_visible(enum pvt_sensor_type type)
|
||
|
{
|
||
|
return 0444;
|
||
|
}
|
||
|
|
||
|
static int pvt_read_data(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
|
||
|
long *val)
|
||
|
{
|
||
|
struct pvt_cache *cache = &pvt->cache[type];
|
||
|
unsigned int seq;
|
||
|
u32 data;
|
||
|
|
||
|
do {
|
||
|
seq = read_seqbegin(&cache->data_seqlock);
|
||
|
data = cache->data;
|
||
|
} while (read_seqretry(&cache->data_seqlock, seq));
|
||
|
|
||
|
if (type == PVT_TEMP)
|
||
|
*val = pvt_calc_poly(&poly_N_to_temp, data);
|
||
|
else
|
||
|
*val = pvt_calc_poly(&poly_N_to_volt, data);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int pvt_read_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
|
||
|
bool is_low, long *val)
|
||
|
{
|
||
|
u32 data;
|
||
|
|
||
|
/* No need in serialization, since it is just read from MMIO. */
|
||
|
data = readl(pvt->regs + pvt_info[type].thres_base);
|
||
|
|
||
|
if (is_low)
|
||
|
data = FIELD_GET(PVT_THRES_LO_MASK, data);
|
||
|
else
|
||
|
data = FIELD_GET(PVT_THRES_HI_MASK, data);
|
||
|
|
||
|
if (type == PVT_TEMP)
|
||
|
*val = pvt_calc_poly(&poly_N_to_temp, data);
|
||
|
else
|
||
|
*val = pvt_calc_poly(&poly_N_to_volt, data);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int pvt_write_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
|
||
|
bool is_low, long val)
|
||
|
{
|
||
|
u32 data, limit, mask;
|
||
|
int ret;
|
||
|
|
||
|
if (type == PVT_TEMP) {
|
||
|
val = clamp(val, PVT_TEMP_MIN, PVT_TEMP_MAX);
|
||
|
data = pvt_calc_poly(&poly_temp_to_N, val);
|
||
|
} else {
|
||
|
val = clamp(val, PVT_VOLT_MIN, PVT_VOLT_MAX);
|
||
|
data = pvt_calc_poly(&poly_volt_to_N, val);
|
||
|
}
|
||
|
|
||
|
/* Serialize limit update, since a part of the register is changed. */
|
||
|
ret = mutex_lock_interruptible(&pvt->iface_mtx);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
/* Make sure the upper and lower ranges don't intersect. */
|
||
|
limit = readl(pvt->regs + pvt_info[type].thres_base);
|
||
|
if (is_low) {
|
||
|
limit = FIELD_GET(PVT_THRES_HI_MASK, limit);
|
||
|
data = clamp_val(data, PVT_DATA_MIN, limit);
|
||
|
data = FIELD_PREP(PVT_THRES_LO_MASK, data);
|
||
|
mask = PVT_THRES_LO_MASK;
|
||
|
} else {
|
||
|
limit = FIELD_GET(PVT_THRES_LO_MASK, limit);
|
||
|
data = clamp_val(data, limit, PVT_DATA_MAX);
|
||
|
data = FIELD_PREP(PVT_THRES_HI_MASK, data);
|
||
|
mask = PVT_THRES_HI_MASK;
|
||
|
}
|
||
|
|
||
|
pvt_update(pvt->regs + pvt_info[type].thres_base, mask, data);
|
||
|
|
||
|
mutex_unlock(&pvt->iface_mtx);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int pvt_read_alarm(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
|
||
|
bool is_low, long *val)
|
||
|
{
|
||
|
if (is_low)
|
||
|
*val = !!READ_ONCE(pvt->cache[type].thres_sts_lo);
|
||
|
else
|
||
|
*val = !!READ_ONCE(pvt->cache[type].thres_sts_hi);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static const struct hwmon_channel_info *pvt_channel_info[] = {
|
||
|
HWMON_CHANNEL_INFO(chip,
|
||
|
HWMON_C_REGISTER_TZ | HWMON_C_UPDATE_INTERVAL),
|
||
|
HWMON_CHANNEL_INFO(temp,
|
||
|
HWMON_T_INPUT | HWMON_T_TYPE | HWMON_T_LABEL |
|
||
|
HWMON_T_MIN | HWMON_T_MIN_ALARM |
|
||
|
HWMON_T_MAX | HWMON_T_MAX_ALARM |
|
||
|
HWMON_T_OFFSET),
|
||
|
HWMON_CHANNEL_INFO(in,
|
||
|
HWMON_I_INPUT | HWMON_I_LABEL |
|
||
|
HWMON_I_MIN | HWMON_I_MIN_ALARM |
|
||
|
HWMON_I_MAX | HWMON_I_MAX_ALARM,
|
||
|
HWMON_I_INPUT | HWMON_I_LABEL |
|
||
|
HWMON_I_MIN | HWMON_I_MIN_ALARM |
|
||
|
HWMON_I_MAX | HWMON_I_MAX_ALARM,
|
||
|
HWMON_I_INPUT | HWMON_I_LABEL |
|
||
|
HWMON_I_MIN | HWMON_I_MIN_ALARM |
|
||
|
HWMON_I_MAX | HWMON_I_MAX_ALARM,
|
||
|
HWMON_I_INPUT | HWMON_I_LABEL |
|
||
|
HWMON_I_MIN | HWMON_I_MIN_ALARM |
|
||
|
HWMON_I_MAX | HWMON_I_MAX_ALARM),
|
||
|
NULL
|
||
|
};
|
||
|
|
||
|
#else /* !CONFIG_SENSORS_BT1_PVT_ALARMS */
|
||
|
|
||
|
static irqreturn_t pvt_hard_isr(int irq, void *data)
|
||
|
{
|
||
|
struct pvt_hwmon *pvt = data;
|
||
|
struct pvt_cache *cache;
|
||
|
u32 val;
|
||
|
|
||
|
/*
|
||
|
* Mask the DVALID interrupt so after exiting from the handler a
|
||
|
* repeated conversion wouldn't happen.
|
||
|
*/
|
||
|
pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID,
|
||
|
PVT_INTR_DVALID);
|
||
|
|
||
|
/*
|
||
|
* Nothing special for alarm-less driver. Just read the data, update
|
||
|
* the cache and notify a waiter of this event.
|
||
|
*/
|
||
|
val = readl(pvt->regs + PVT_DATA);
|
||
|
if (!(val & PVT_DATA_VALID)) {
|
||
|
dev_err(pvt->dev, "Got IRQ when data isn't valid\n");
|
||
|
return IRQ_HANDLED;
|
||
|
}
|
||
|
|
||
|
cache = &pvt->cache[pvt->sensor];
|
||
|
|
||
|
WRITE_ONCE(cache->data, FIELD_GET(PVT_DATA_DATA_MASK, val));
|
||
|
|
||
|
complete(&cache->conversion);
|
||
|
|
||
|
return IRQ_HANDLED;
|
||
|
}
|
||
|
|
||
|
#define pvt_soft_isr NULL
|
||
|
|
||
|
inline umode_t pvt_limit_is_visible(enum pvt_sensor_type type)
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
inline umode_t pvt_alarm_is_visible(enum pvt_sensor_type type)
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int pvt_read_data(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
|
||
|
long *val)
|
||
|
{
|
||
|
struct pvt_cache *cache = &pvt->cache[type];
|
||
|
u32 data;
|
||
|
int ret;
|
||
|
|
||
|
/*
|
||
|
* Lock PVT conversion interface until data cache is updated. The
|
||
|
* data read procedure is following: set the requested PVT sensor
|
||
|
* mode, enable IRQ and conversion, wait until conversion is finished,
|
||
|
* then disable conversion and IRQ, and read the cached data.
|
||
|
*/
|
||
|
ret = mutex_lock_interruptible(&pvt->iface_mtx);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
pvt->sensor = type;
|
||
|
pvt_set_mode(pvt, pvt_info[type].mode);
|
||
|
|
||
|
/*
|
||
|
* Unmask the DVALID interrupt and enable the sensors conversions.
|
||
|
* Do the reverse procedure when conversion is done.
|
||
|
*/
|
||
|
pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, 0);
|
||
|
pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, PVT_CTRL_EN);
|
||
|
|
||
|
wait_for_completion(&cache->conversion);
|
||
|
|
||
|
pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
|
||
|
pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID,
|
||
|
PVT_INTR_DVALID);
|
||
|
|
||
|
data = READ_ONCE(cache->data);
|
||
|
|
||
|
mutex_unlock(&pvt->iface_mtx);
|
||
|
|
||
|
if (type == PVT_TEMP)
|
||
|
*val = pvt_calc_poly(&poly_N_to_temp, data);
|
||
|
else
|
||
|
*val = pvt_calc_poly(&poly_N_to_volt, data);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int pvt_read_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
|
||
|
bool is_low, long *val)
|
||
|
{
|
||
|
return -EOPNOTSUPP;
|
||
|
}
|
||
|
|
||
|
static int pvt_write_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
|
||
|
bool is_low, long val)
|
||
|
{
|
||
|
return -EOPNOTSUPP;
|
||
|
}
|
||
|
|
||
|
static int pvt_read_alarm(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
|
||
|
bool is_low, long *val)
|
||
|
{
|
||
|
return -EOPNOTSUPP;
|
||
|
}
|
||
|
|
||
|
static const struct hwmon_channel_info *pvt_channel_info[] = {
|
||
|
HWMON_CHANNEL_INFO(chip,
|
||
|
HWMON_C_REGISTER_TZ | HWMON_C_UPDATE_INTERVAL),
|
||
|
HWMON_CHANNEL_INFO(temp,
|
||
|
HWMON_T_INPUT | HWMON_T_TYPE | HWMON_T_LABEL |
|
||
|
HWMON_T_OFFSET),
|
||
|
HWMON_CHANNEL_INFO(in,
|
||
|
HWMON_I_INPUT | HWMON_I_LABEL,
|
||
|
HWMON_I_INPUT | HWMON_I_LABEL,
|
||
|
HWMON_I_INPUT | HWMON_I_LABEL,
|
||
|
HWMON_I_INPUT | HWMON_I_LABEL),
|
||
|
NULL
|
||
|
};
|
||
|
|
||
|
#endif /* !CONFIG_SENSORS_BT1_PVT_ALARMS */
|
||
|
|
||
|
static inline bool pvt_hwmon_channel_is_valid(enum hwmon_sensor_types type,
|
||
|
int ch)
|
||
|
{
|
||
|
switch (type) {
|
||
|
case hwmon_temp:
|
||
|
if (ch < 0 || ch >= PVT_TEMP_CHS)
|
||
|
return false;
|
||
|
break;
|
||
|
case hwmon_in:
|
||
|
if (ch < 0 || ch >= PVT_VOLT_CHS)
|
||
|
return false;
|
||
|
break;
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* The rest of the types are independent from the channel number. */
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static umode_t pvt_hwmon_is_visible(const void *data,
|
||
|
enum hwmon_sensor_types type,
|
||
|
u32 attr, int ch)
|
||
|
{
|
||
|
if (!pvt_hwmon_channel_is_valid(type, ch))
|
||
|
return 0;
|
||
|
|
||
|
switch (type) {
|
||
|
case hwmon_chip:
|
||
|
switch (attr) {
|
||
|
case hwmon_chip_update_interval:
|
||
|
return 0644;
|
||
|
}
|
||
|
break;
|
||
|
case hwmon_temp:
|
||
|
switch (attr) {
|
||
|
case hwmon_temp_input:
|
||
|
case hwmon_temp_type:
|
||
|
case hwmon_temp_label:
|
||
|
return 0444;
|
||
|
case hwmon_temp_min:
|
||
|
case hwmon_temp_max:
|
||
|
return pvt_limit_is_visible(ch);
|
||
|
case hwmon_temp_min_alarm:
|
||
|
case hwmon_temp_max_alarm:
|
||
|
return pvt_alarm_is_visible(ch);
|
||
|
case hwmon_temp_offset:
|
||
|
return 0644;
|
||
|
}
|
||
|
break;
|
||
|
case hwmon_in:
|
||
|
switch (attr) {
|
||
|
case hwmon_in_input:
|
||
|
case hwmon_in_label:
|
||
|
return 0444;
|
||
|
case hwmon_in_min:
|
||
|
case hwmon_in_max:
|
||
|
return pvt_limit_is_visible(PVT_VOLT + ch);
|
||
|
case hwmon_in_min_alarm:
|
||
|
case hwmon_in_max_alarm:
|
||
|
return pvt_alarm_is_visible(PVT_VOLT + ch);
|
||
|
}
|
||
|
break;
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int pvt_read_trim(struct pvt_hwmon *pvt, long *val)
|
||
|
{
|
||
|
u32 data;
|
||
|
|
||
|
data = readl(pvt->regs + PVT_CTRL);
|
||
|
*val = FIELD_GET(PVT_CTRL_TRIM_MASK, data) * PVT_TRIM_STEP;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int pvt_write_trim(struct pvt_hwmon *pvt, long val)
|
||
|
{
|
||
|
u32 trim;
|
||
|
int ret;
|
||
|
|
||
|
/*
|
||
|
* Serialize trim update, since a part of the register is changed and
|
||
|
* the controller is supposed to be disabled during this operation.
|
||
|
*/
|
||
|
ret = mutex_lock_interruptible(&pvt->iface_mtx);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
trim = pvt_calc_trim(val);
|
||
|
pvt_set_trim(pvt, trim);
|
||
|
|
||
|
mutex_unlock(&pvt->iface_mtx);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int pvt_read_timeout(struct pvt_hwmon *pvt, long *val)
|
||
|
{
|
||
|
unsigned long rate;
|
||
|
ktime_t kt;
|
||
|
u32 data;
|
||
|
|
||
|
rate = clk_get_rate(pvt->clks[PVT_CLOCK_REF].clk);
|
||
|
if (!rate)
|
||
|
return -ENODEV;
|
||
|
|
||
|
/*
|
||
|
* Don't bother with mutex here, since we just read data from MMIO.
|
||
|
* We also have to scale the ticks timeout up to compensate the
|
||
|
* ms-ns-data translations.
|
||
|
*/
|
||
|
data = readl(pvt->regs + PVT_TTIMEOUT) + 1;
|
||
|
|
||
|
/*
|
||
|
* Calculate ref-clock based delay (Ttotal) between two consecutive
|
||
|
* data samples of the same sensor. So we first must calculate the
|
||
|
* delay introduced by the internal ref-clock timer (Tref * Fclk).
|
||
|
* Then add the constant timeout cuased by each conversion latency
|
||
|
* (Tmin). The basic formulae for each conversion is following:
|
||
|
* Ttotal = Tref * Fclk + Tmin
|
||
|
* Note if alarms are enabled the sensors are polled one after
|
||
|
* another, so in order to have the delay being applicable for each
|
||
|
* sensor the requested value must be equally redistirbuted.
|
||
|
*/
|
||
|
#if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
|
||
|
kt = ktime_set(PVT_SENSORS_NUM * (u64)data, 0);
|
||
|
kt = ktime_divns(kt, rate);
|
||
|
kt = ktime_add_ns(kt, PVT_SENSORS_NUM * PVT_TOUT_MIN);
|
||
|
#else
|
||
|
kt = ktime_set(data, 0);
|
||
|
kt = ktime_divns(kt, rate);
|
||
|
kt = ktime_add_ns(kt, PVT_TOUT_MIN);
|
||
|
#endif
|
||
|
|
||
|
/* Return the result in msec as hwmon sysfs interface requires. */
|
||
|
*val = ktime_to_ms(kt);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int pvt_write_timeout(struct pvt_hwmon *pvt, long val)
|
||
|
{
|
||
|
unsigned long rate;
|
||
|
ktime_t kt;
|
||
|
u32 data;
|
||
|
int ret;
|
||
|
|
||
|
rate = clk_get_rate(pvt->clks[PVT_CLOCK_REF].clk);
|
||
|
if (!rate)
|
||
|
return -ENODEV;
|
||
|
|
||
|
/*
|
||
|
* If alarms are enabled, the requested timeout must be divided
|
||
|
* between all available sensors to have the requested delay
|
||
|
* applicable to each individual sensor.
|
||
|
*/
|
||
|
kt = ms_to_ktime(val);
|
||
|
#if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
|
||
|
kt = ktime_divns(kt, PVT_SENSORS_NUM);
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Subtract a constant lag, which always persists due to the limited
|
||
|
* PVT sampling rate. Make sure the timeout is not negative.
|
||
|
*/
|
||
|
kt = ktime_sub_ns(kt, PVT_TOUT_MIN);
|
||
|
if (ktime_to_ns(kt) < 0)
|
||
|
kt = ktime_set(0, 0);
|
||
|
|
||
|
/*
|
||
|
* Finally recalculate the timeout in terms of the reference clock
|
||
|
* period.
|
||
|
*/
|
||
|
data = ktime_divns(kt * rate, NSEC_PER_SEC);
|
||
|
|
||
|
/*
|
||
|
* Update the measurements delay, but lock the interface first, since
|
||
|
* we have to disable PVT in order to have the new delay actually
|
||
|
* updated.
|
||
|
*/
|
||
|
ret = mutex_lock_interruptible(&pvt->iface_mtx);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
pvt_set_tout(pvt, data);
|
||
|
|
||
|
mutex_unlock(&pvt->iface_mtx);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int pvt_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
|
||
|
u32 attr, int ch, long *val)
|
||
|
{
|
||
|
struct pvt_hwmon *pvt = dev_get_drvdata(dev);
|
||
|
|
||
|
if (!pvt_hwmon_channel_is_valid(type, ch))
|
||
|
return -EINVAL;
|
||
|
|
||
|
switch (type) {
|
||
|
case hwmon_chip:
|
||
|
switch (attr) {
|
||
|
case hwmon_chip_update_interval:
|
||
|
return pvt_read_timeout(pvt, val);
|
||
|
}
|
||
|
break;
|
||
|
case hwmon_temp:
|
||
|
switch (attr) {
|
||
|
case hwmon_temp_input:
|
||
|
return pvt_read_data(pvt, ch, val);
|
||
|
case hwmon_temp_type:
|
||
|
*val = 1;
|
||
|
return 0;
|
||
|
case hwmon_temp_min:
|
||
|
return pvt_read_limit(pvt, ch, true, val);
|
||
|
case hwmon_temp_max:
|
||
|
return pvt_read_limit(pvt, ch, false, val);
|
||
|
case hwmon_temp_min_alarm:
|
||
|
return pvt_read_alarm(pvt, ch, true, val);
|
||
|
case hwmon_temp_max_alarm:
|
||
|
return pvt_read_alarm(pvt, ch, false, val);
|
||
|
case hwmon_temp_offset:
|
||
|
return pvt_read_trim(pvt, val);
|
||
|
}
|
||
|
break;
|
||
|
case hwmon_in:
|
||
|
switch (attr) {
|
||
|
case hwmon_in_input:
|
||
|
return pvt_read_data(pvt, PVT_VOLT + ch, val);
|
||
|
case hwmon_in_min:
|
||
|
return pvt_read_limit(pvt, PVT_VOLT + ch, true, val);
|
||
|
case hwmon_in_max:
|
||
|
return pvt_read_limit(pvt, PVT_VOLT + ch, false, val);
|
||
|
case hwmon_in_min_alarm:
|
||
|
return pvt_read_alarm(pvt, PVT_VOLT + ch, true, val);
|
||
|
case hwmon_in_max_alarm:
|
||
|
return pvt_read_alarm(pvt, PVT_VOLT + ch, false, val);
|
||
|
}
|
||
|
break;
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return -EOPNOTSUPP;
|
||
|
}
|
||
|
|
||
|
static int pvt_hwmon_read_string(struct device *dev,
|
||
|
enum hwmon_sensor_types type,
|
||
|
u32 attr, int ch, const char **str)
|
||
|
{
|
||
|
if (!pvt_hwmon_channel_is_valid(type, ch))
|
||
|
return -EINVAL;
|
||
|
|
||
|
switch (type) {
|
||
|
case hwmon_temp:
|
||
|
switch (attr) {
|
||
|
case hwmon_temp_label:
|
||
|
*str = pvt_info[ch].label;
|
||
|
return 0;
|
||
|
}
|
||
|
break;
|
||
|
case hwmon_in:
|
||
|
switch (attr) {
|
||
|
case hwmon_in_label:
|
||
|
*str = pvt_info[PVT_VOLT + ch].label;
|
||
|
return 0;
|
||
|
}
|
||
|
break;
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return -EOPNOTSUPP;
|
||
|
}
|
||
|
|
||
|
static int pvt_hwmon_write(struct device *dev, enum hwmon_sensor_types type,
|
||
|
u32 attr, int ch, long val)
|
||
|
{
|
||
|
struct pvt_hwmon *pvt = dev_get_drvdata(dev);
|
||
|
|
||
|
if (!pvt_hwmon_channel_is_valid(type, ch))
|
||
|
return -EINVAL;
|
||
|
|
||
|
switch (type) {
|
||
|
case hwmon_chip:
|
||
|
switch (attr) {
|
||
|
case hwmon_chip_update_interval:
|
||
|
return pvt_write_timeout(pvt, val);
|
||
|
}
|
||
|
break;
|
||
|
case hwmon_temp:
|
||
|
switch (attr) {
|
||
|
case hwmon_temp_min:
|
||
|
return pvt_write_limit(pvt, ch, true, val);
|
||
|
case hwmon_temp_max:
|
||
|
return pvt_write_limit(pvt, ch, false, val);
|
||
|
case hwmon_temp_offset:
|
||
|
return pvt_write_trim(pvt, val);
|
||
|
}
|
||
|
break;
|
||
|
case hwmon_in:
|
||
|
switch (attr) {
|
||
|
case hwmon_in_min:
|
||
|
return pvt_write_limit(pvt, PVT_VOLT + ch, true, val);
|
||
|
case hwmon_in_max:
|
||
|
return pvt_write_limit(pvt, PVT_VOLT + ch, false, val);
|
||
|
}
|
||
|
break;
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return -EOPNOTSUPP;
|
||
|
}
|
||
|
|
||
|
static const struct hwmon_ops pvt_hwmon_ops = {
|
||
|
.is_visible = pvt_hwmon_is_visible,
|
||
|
.read = pvt_hwmon_read,
|
||
|
.read_string = pvt_hwmon_read_string,
|
||
|
.write = pvt_hwmon_write
|
||
|
};
|
||
|
|
||
|
static const struct hwmon_chip_info pvt_hwmon_info = {
|
||
|
.ops = &pvt_hwmon_ops,
|
||
|
.info = pvt_channel_info
|
||
|
};
|
||
|
|
||
|
static void pvt_clear_data(void *data)
|
||
|
{
|
||
|
struct pvt_hwmon *pvt = data;
|
||
|
#if !defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
|
||
|
int idx;
|
||
|
|
||
|
for (idx = 0; idx < PVT_SENSORS_NUM; ++idx)
|
||
|
complete_all(&pvt->cache[idx].conversion);
|
||
|
#endif
|
||
|
|
||
|
mutex_destroy(&pvt->iface_mtx);
|
||
|
}
|
||
|
|
||
|
static struct pvt_hwmon *pvt_create_data(struct platform_device *pdev)
|
||
|
{
|
||
|
struct device *dev = &pdev->dev;
|
||
|
struct pvt_hwmon *pvt;
|
||
|
int ret, idx;
|
||
|
|
||
|
pvt = devm_kzalloc(dev, sizeof(*pvt), GFP_KERNEL);
|
||
|
if (!pvt)
|
||
|
return ERR_PTR(-ENOMEM);
|
||
|
|
||
|
ret = devm_add_action(dev, pvt_clear_data, pvt);
|
||
|
if (ret) {
|
||
|
dev_err(dev, "Can't add PVT data clear action\n");
|
||
|
return ERR_PTR(ret);
|
||
|
}
|
||
|
|
||
|
pvt->dev = dev;
|
||
|
pvt->sensor = PVT_SENSOR_FIRST;
|
||
|
mutex_init(&pvt->iface_mtx);
|
||
|
|
||
|
#if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
|
||
|
for (idx = 0; idx < PVT_SENSORS_NUM; ++idx)
|
||
|
seqlock_init(&pvt->cache[idx].data_seqlock);
|
||
|
#else
|
||
|
for (idx = 0; idx < PVT_SENSORS_NUM; ++idx)
|
||
|
init_completion(&pvt->cache[idx].conversion);
|
||
|
#endif
|
||
|
|
||
|
return pvt;
|
||
|
}
|
||
|
|
||
|
static int pvt_request_regs(struct pvt_hwmon *pvt)
|
||
|
{
|
||
|
struct platform_device *pdev = to_platform_device(pvt->dev);
|
||
|
struct resource *res;
|
||
|
|
||
|
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
||
|
if (!res) {
|
||
|
dev_err(pvt->dev, "Couldn't find PVT memresource\n");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
pvt->regs = devm_ioremap_resource(pvt->dev, res);
|
||
|
if (IS_ERR(pvt->regs)) {
|
||
|
dev_err(pvt->dev, "Couldn't map PVT registers\n");
|
||
|
return PTR_ERR(pvt->regs);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void pvt_disable_clks(void *data)
|
||
|
{
|
||
|
struct pvt_hwmon *pvt = data;
|
||
|
|
||
|
clk_bulk_disable_unprepare(PVT_CLOCK_NUM, pvt->clks);
|
||
|
}
|
||
|
|
||
|
static int pvt_request_clks(struct pvt_hwmon *pvt)
|
||
|
{
|
||
|
int ret;
|
||
|
|
||
|
pvt->clks[PVT_CLOCK_APB].id = "pclk";
|
||
|
pvt->clks[PVT_CLOCK_REF].id = "ref";
|
||
|
|
||
|
ret = devm_clk_bulk_get(pvt->dev, PVT_CLOCK_NUM, pvt->clks);
|
||
|
if (ret) {
|
||
|
dev_err(pvt->dev, "Couldn't get PVT clocks descriptors\n");
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
ret = clk_bulk_prepare_enable(PVT_CLOCK_NUM, pvt->clks);
|
||
|
if (ret) {
|
||
|
dev_err(pvt->dev, "Couldn't enable the PVT clocks\n");
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
ret = devm_add_action_or_reset(pvt->dev, pvt_disable_clks, pvt);
|
||
|
if (ret) {
|
||
|
dev_err(pvt->dev, "Can't add PVT clocks disable action\n");
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void pvt_init_iface(struct pvt_hwmon *pvt)
|
||
|
{
|
||
|
u32 trim, temp;
|
||
|
|
||
|
/*
|
||
|
* Make sure all interrupts and controller are disabled so not to
|
||
|
* accidentally have ISR executed before the driver data is fully
|
||
|
* initialized. Clear the IRQ status as well.
|
||
|
*/
|
||
|
pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_ALL, PVT_INTR_ALL);
|
||
|
pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
|
||
|
readl(pvt->regs + PVT_CLR_INTR);
|
||
|
readl(pvt->regs + PVT_DATA);
|
||
|
|
||
|
/* Setup default sensor mode, timeout and temperature trim. */
|
||
|
pvt_set_mode(pvt, pvt_info[pvt->sensor].mode);
|
||
|
pvt_set_tout(pvt, PVT_TOUT_DEF);
|
||
|
|
||
|
trim = PVT_TRIM_DEF;
|
||
|
if (!of_property_read_u32(pvt->dev->of_node,
|
||
|
"baikal,pvt-temp-offset-millicelsius", &temp))
|
||
|
trim = pvt_calc_trim(temp);
|
||
|
|
||
|
pvt_set_trim(pvt, trim);
|
||
|
}
|
||
|
|
||
|
static int pvt_request_irq(struct pvt_hwmon *pvt)
|
||
|
{
|
||
|
struct platform_device *pdev = to_platform_device(pvt->dev);
|
||
|
int ret;
|
||
|
|
||
|
pvt->irq = platform_get_irq(pdev, 0);
|
||
|
if (pvt->irq < 0)
|
||
|
return pvt->irq;
|
||
|
|
||
|
ret = devm_request_threaded_irq(pvt->dev, pvt->irq,
|
||
|
pvt_hard_isr, pvt_soft_isr,
|
||
|
#if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
|
||
|
IRQF_SHARED | IRQF_TRIGGER_HIGH |
|
||
|
IRQF_ONESHOT,
|
||
|
#else
|
||
|
IRQF_SHARED | IRQF_TRIGGER_HIGH,
|
||
|
#endif
|
||
|
"pvt", pvt);
|
||
|
if (ret) {
|
||
|
dev_err(pvt->dev, "Couldn't request PVT IRQ\n");
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int pvt_create_hwmon(struct pvt_hwmon *pvt)
|
||
|
{
|
||
|
pvt->hwmon = devm_hwmon_device_register_with_info(pvt->dev, "pvt", pvt,
|
||
|
&pvt_hwmon_info, NULL);
|
||
|
if (IS_ERR(pvt->hwmon)) {
|
||
|
dev_err(pvt->dev, "Couldn't create hwmon device\n");
|
||
|
return PTR_ERR(pvt->hwmon);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
#if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
|
||
|
|
||
|
static void pvt_disable_iface(void *data)
|
||
|
{
|
||
|
struct pvt_hwmon *pvt = data;
|
||
|
|
||
|
mutex_lock(&pvt->iface_mtx);
|
||
|
pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
|
||
|
pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID,
|
||
|
PVT_INTR_DVALID);
|
||
|
mutex_unlock(&pvt->iface_mtx);
|
||
|
}
|
||
|
|
||
|
static int pvt_enable_iface(struct pvt_hwmon *pvt)
|
||
|
{
|
||
|
int ret;
|
||
|
|
||
|
ret = devm_add_action(pvt->dev, pvt_disable_iface, pvt);
|
||
|
if (ret) {
|
||
|
dev_err(pvt->dev, "Can't add PVT disable interface action\n");
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Enable sensors data conversion and IRQ. We need to lock the
|
||
|
* interface mutex since hwmon has just been created and the
|
||
|
* corresponding sysfs files are accessible from user-space,
|
||
|
* which theoretically may cause races.
|
||
|
*/
|
||
|
mutex_lock(&pvt->iface_mtx);
|
||
|
pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, 0);
|
||
|
pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, PVT_CTRL_EN);
|
||
|
mutex_unlock(&pvt->iface_mtx);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
#else /* !CONFIG_SENSORS_BT1_PVT_ALARMS */
|
||
|
|
||
|
static int pvt_enable_iface(struct pvt_hwmon *pvt)
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
#endif /* !CONFIG_SENSORS_BT1_PVT_ALARMS */
|
||
|
|
||
|
static int pvt_probe(struct platform_device *pdev)
|
||
|
{
|
||
|
struct pvt_hwmon *pvt;
|
||
|
int ret;
|
||
|
|
||
|
pvt = pvt_create_data(pdev);
|
||
|
if (IS_ERR(pvt))
|
||
|
return PTR_ERR(pvt);
|
||
|
|
||
|
ret = pvt_request_regs(pvt);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
ret = pvt_request_clks(pvt);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
pvt_init_iface(pvt);
|
||
|
|
||
|
ret = pvt_request_irq(pvt);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
ret = pvt_create_hwmon(pvt);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
ret = pvt_enable_iface(pvt);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static const struct of_device_id pvt_of_match[] = {
|
||
|
{ .compatible = "baikal,bt1-pvt" },
|
||
|
{ }
|
||
|
};
|
||
|
MODULE_DEVICE_TABLE(of, pvt_of_match);
|
||
|
|
||
|
static struct platform_driver pvt_driver = {
|
||
|
.probe = pvt_probe,
|
||
|
.driver = {
|
||
|
.name = "bt1-pvt",
|
||
|
.of_match_table = pvt_of_match
|
||
|
}
|
||
|
};
|
||
|
module_platform_driver(pvt_driver);
|
||
|
|
||
|
MODULE_AUTHOR("Maxim Kaurkin <maxim.kaurkin@baikalelectronics.ru>");
|
||
|
MODULE_DESCRIPTION("Baikal-T1 PVT driver");
|
||
|
MODULE_LICENSE("GPL v2");
|