linux_dsm_epyc7002/arch/frv/kernel/entry.S

1532 lines
40 KiB
ArmAsm
Raw Normal View History

/* entry.S: FR-V entry
*
* Copyright (C) 2003 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*
* Entry to the kernel is "interesting":
* (1) There are no stack pointers, not even for the kernel
* (2) General Registers should not be clobbered
* (3) There are no kernel-only data registers
* (4) Since all addressing modes are wrt to a General Register, no global
* variables can be reached
*
* We deal with this by declaring that we shall kill GR28 on entering the
* kernel from userspace
*
* However, since break interrupts can interrupt the CPU even when PSR.ET==0,
* they can't rely on GR28 to be anything useful, and so need to clobber a
* separate register (GR31). Break interrupts are managed in break.S
*
* GR29 _is_ saved, and holds the current task pointer globally
*
*/
#include <linux/linkage.h>
#include <asm/thread_info.h>
#include <asm/setup.h>
#include <asm/segment.h>
#include <asm/ptrace.h>
#include <asm/errno.h>
#include <asm/cache.h>
#include <asm/spr-regs.h>
#define nr_syscalls ((syscall_table_size)/4)
.section .text..entry
.balign 4
.macro LEDS val
# sethi.p %hi(0xe1200004),gr30
# setlo %lo(0xe1200004),gr30
# setlos #~\val,gr31
# st gr31,@(gr30,gr0)
# sethi.p %hi(0xffc00100),gr30
# setlo %lo(0xffc00100),gr30
# sth gr0,@(gr30,gr0)
# membar
.endm
.macro LEDS32
# not gr31,gr31
# sethi.p %hi(0xe1200004),gr30
# setlo %lo(0xe1200004),gr30
# st.p gr31,@(gr30,gr0)
# srli gr31,#16,gr31
# sethi.p %hi(0xffc00100),gr30
# setlo %lo(0xffc00100),gr30
# sth gr31,@(gr30,gr0)
# membar
.endm
###############################################################################
#
# entry point for External interrupts received whilst executing userspace code
#
###############################################################################
.globl __entry_uspace_external_interrupt
.type __entry_uspace_external_interrupt,@function
__entry_uspace_external_interrupt:
LEDS 0x6200
sethi.p %hi(__kernel_frame0_ptr),gr28
setlo %lo(__kernel_frame0_ptr),gr28
ldi @(gr28,#0),gr28
# handle h/w single-step through exceptions
sti gr0,@(gr28,#REG__STATUS)
.globl __entry_uspace_external_interrupt_reentry
__entry_uspace_external_interrupt_reentry:
LEDS 0x6201
setlos #REG__END,gr30
dcpl gr28,gr30,#0
# finish building the exception frame
sti sp, @(gr28,#REG_SP)
stdi gr2, @(gr28,#REG_GR(2))
stdi gr4, @(gr28,#REG_GR(4))
stdi gr6, @(gr28,#REG_GR(6))
stdi gr8, @(gr28,#REG_GR(8))
stdi gr10,@(gr28,#REG_GR(10))
stdi gr12,@(gr28,#REG_GR(12))
stdi gr14,@(gr28,#REG_GR(14))
stdi gr16,@(gr28,#REG_GR(16))
stdi gr18,@(gr28,#REG_GR(18))
stdi gr20,@(gr28,#REG_GR(20))
stdi gr22,@(gr28,#REG_GR(22))
stdi gr24,@(gr28,#REG_GR(24))
stdi gr26,@(gr28,#REG_GR(26))
sti gr0, @(gr28,#REG_GR(28))
sti gr29,@(gr28,#REG_GR(29))
stdi.p gr30,@(gr28,#REG_GR(30))
# set up the kernel stack pointer
ori gr28,0,sp
movsg tbr ,gr20
movsg psr ,gr22
movsg pcsr,gr21
movsg isr ,gr23
movsg ccr ,gr24
movsg cccr,gr25
movsg lr ,gr26
movsg lcr ,gr27
setlos.p #-1,gr4
andi gr22,#PSR_PS,gr5 /* try to rebuild original PSR value */
andi.p gr22,#~(PSR_PS|PSR_S),gr6
slli gr5,#1,gr5
or gr6,gr5,gr5
andi gr5,#~PSR_ET,gr5
sti gr20,@(gr28,#REG_TBR)
sti gr21,@(gr28,#REG_PC)
sti gr5 ,@(gr28,#REG_PSR)
sti gr23,@(gr28,#REG_ISR)
stdi gr24,@(gr28,#REG_CCR)
stdi gr26,@(gr28,#REG_LR)
sti gr4 ,@(gr28,#REG_SYSCALLNO)
movsg iacc0h,gr4
movsg iacc0l,gr5
stdi gr4,@(gr28,#REG_IACC0)
movsg gner0,gr4
movsg gner1,gr5
[PATCH] FRV: Use virtual interrupt disablement Make the FRV arch use virtual interrupt disablement because accesses to the processor status register (PSR) are relatively slow and because we will soon have the need to deal with multiple interrupt controls at the same time (separate h/w and inter-core interrupts). The way this is done is to dedicate one of the four integer condition code registers (ICC2) to maintaining a virtual interrupt disablement state whilst inside the kernel. This uses the ICC2.Z flag (Zero) to indicate whether the interrupts are virtually disabled and the ICC2.C flag (Carry) to indicate whether the interrupts are physically disabled. ICC2.Z is set to indicate interrupts are virtually disabled. ICC2.C is set to indicate interrupts are physically enabled. Under normal running conditions Z==0 and C==1. Disabling interrupts with local_irq_disable() doesn't then actually physically disable interrupts - it merely sets ICC2.Z to 1. Should an interrupt then happen, the exception prologue will note ICC2.Z is set and branch out of line using one instruction (an unlikely BEQ). Here it will physically disable interrupts and clear ICC2.C. When it comes time to enable interrupts (local_irq_enable()), this simply clears the ICC2.Z flag and invokes a trap #2 if both Z and C flags are clear (the HI integer condition). This can be done with the TIHI conditional trap instruction. The trap then physically reenables interrupts and sets ICC2.C again. Upon returning the interrupt will be taken as interrupts will then be enabled. Note that whilst processing the trap, the whole exceptions system is disabled, and so an interrupt can't happen till it returns. If no pending interrupt had happened, ICC2.C would still be set, the HI condition would not be fulfilled, and no trap will happen. Saving interrupts (local_irq_save) is simply a matter of pulling the ICC2.Z flag out of the CCR register, shifting it down and masking it off. This gives a result of 0 if interrupts were enabled and 1 if they weren't. Restoring interrupts (local_irq_restore) is then a matter of taking the saved value mentioned previously and XOR'ing it against 1. If it was one, the result will be zero, and if it was zero the result will be non-zero. This result is then used to affect the ICC2.Z flag directly (it is a condition code flag after all). An XOR instruction does not affect the Carry flag, and so that bit of state is unchanged. The two flags can then be sampled to see if they're both zero using the trap (TIHI) as for the unconditional reenablement (local_irq_enable). This patch also: (1) Modifies the debugging stub (break.S) to handle single-stepping crossing into the trap #2 handler and into virtually disabled interrupts. (2) Removes superseded fixup pointers from the second instructions in the trap tables (there's no a separate fixup table for this). (3) Declares the trap #3 vector for use in .org directives in the trap table. (4) Moves irq_enter() and irq_exit() in do_IRQ() to avoid problems with virtual interrupt handling, and removes the duplicate code that has now been folded into irq_exit() (softirq and preemption handling). (5) Tells the compiler in the arch Makefile that ICC2 is now reserved. (6) Documents the in-kernel ABI, including the virtual interrupts. (7) Renames the old irq management functions to different names. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-02-15 04:53:20 +07:00
stdi.p gr4,@(gr28,#REG_GNER0)
# interrupts start off fully disabled in the interrupt handler
subcc gr0,gr0,gr0,icc2 /* set Z and clear C */
# set up kernel global registers
sethi.p %hi(__kernel_current_task),gr5
setlo %lo(__kernel_current_task),gr5
sethi.p %hi(_gp),gr16
setlo %lo(_gp),gr16
ldi @(gr5,#0),gr29
ldi.p @(gr29,#4),gr15 ; __current_thread_info = current->thread_info
# make sure we (the kernel) get div-zero and misalignment exceptions
setlos #ISR_EDE|ISR_DTT_DIVBYZERO|ISR_EMAM_EXCEPTION,gr5
movgs gr5,isr
# switch to the kernel trap table
sethi.p %hi(__entry_kerneltrap_table),gr6
setlo %lo(__entry_kerneltrap_table),gr6
movgs gr6,tbr
# set the return address
sethi.p %hi(__entry_return_from_user_interrupt),gr4
setlo %lo(__entry_return_from_user_interrupt),gr4
movgs gr4,lr
# raise the minimum interrupt priority to 15 (NMI only) and enable exceptions
movsg psr,gr4
ori gr4,#PSR_PIL_14,gr4
movgs gr4,psr
ori gr4,#PSR_PIL_14|PSR_ET,gr4
movgs gr4,psr
LEDS 0x6202
bra do_IRQ
.size __entry_uspace_external_interrupt,.-__entry_uspace_external_interrupt
###############################################################################
#
# entry point for External interrupts received whilst executing kernel code
# - on arriving here, the following registers should already be set up:
# GR15 - current thread_info struct pointer
# GR16 - kernel GP-REL pointer
# GR29 - current task struct pointer
# TBR - kernel trap vector table
# ISR - kernel's preferred integer controls
#
###############################################################################
.globl __entry_kernel_external_interrupt
.type __entry_kernel_external_interrupt,@function
__entry_kernel_external_interrupt:
LEDS 0x6210
[PATCH] FRV: Use virtual interrupt disablement Make the FRV arch use virtual interrupt disablement because accesses to the processor status register (PSR) are relatively slow and because we will soon have the need to deal with multiple interrupt controls at the same time (separate h/w and inter-core interrupts). The way this is done is to dedicate one of the four integer condition code registers (ICC2) to maintaining a virtual interrupt disablement state whilst inside the kernel. This uses the ICC2.Z flag (Zero) to indicate whether the interrupts are virtually disabled and the ICC2.C flag (Carry) to indicate whether the interrupts are physically disabled. ICC2.Z is set to indicate interrupts are virtually disabled. ICC2.C is set to indicate interrupts are physically enabled. Under normal running conditions Z==0 and C==1. Disabling interrupts with local_irq_disable() doesn't then actually physically disable interrupts - it merely sets ICC2.Z to 1. Should an interrupt then happen, the exception prologue will note ICC2.Z is set and branch out of line using one instruction (an unlikely BEQ). Here it will physically disable interrupts and clear ICC2.C. When it comes time to enable interrupts (local_irq_enable()), this simply clears the ICC2.Z flag and invokes a trap #2 if both Z and C flags are clear (the HI integer condition). This can be done with the TIHI conditional trap instruction. The trap then physically reenables interrupts and sets ICC2.C again. Upon returning the interrupt will be taken as interrupts will then be enabled. Note that whilst processing the trap, the whole exceptions system is disabled, and so an interrupt can't happen till it returns. If no pending interrupt had happened, ICC2.C would still be set, the HI condition would not be fulfilled, and no trap will happen. Saving interrupts (local_irq_save) is simply a matter of pulling the ICC2.Z flag out of the CCR register, shifting it down and masking it off. This gives a result of 0 if interrupts were enabled and 1 if they weren't. Restoring interrupts (local_irq_restore) is then a matter of taking the saved value mentioned previously and XOR'ing it against 1. If it was one, the result will be zero, and if it was zero the result will be non-zero. This result is then used to affect the ICC2.Z flag directly (it is a condition code flag after all). An XOR instruction does not affect the Carry flag, and so that bit of state is unchanged. The two flags can then be sampled to see if they're both zero using the trap (TIHI) as for the unconditional reenablement (local_irq_enable). This patch also: (1) Modifies the debugging stub (break.S) to handle single-stepping crossing into the trap #2 handler and into virtually disabled interrupts. (2) Removes superseded fixup pointers from the second instructions in the trap tables (there's no a separate fixup table for this). (3) Declares the trap #3 vector for use in .org directives in the trap table. (4) Moves irq_enter() and irq_exit() in do_IRQ() to avoid problems with virtual interrupt handling, and removes the duplicate code that has now been folded into irq_exit() (softirq and preemption handling). (5) Tells the compiler in the arch Makefile that ICC2 is now reserved. (6) Documents the in-kernel ABI, including the virtual interrupts. (7) Renames the old irq management functions to different names. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-02-15 04:53:20 +07:00
// sub sp,gr15,gr31
// LEDS32
# set up the stack pointer
or.p sp,gr0,gr30
subi sp,#REG__END,sp
sti gr30,@(sp,#REG_SP)
# handle h/w single-step through exceptions
sti gr0,@(sp,#REG__STATUS)
.globl __entry_kernel_external_interrupt_reentry
__entry_kernel_external_interrupt_reentry:
LEDS 0x6211
# set up the exception frame
setlos #REG__END,gr30
dcpl sp,gr30,#0
sti.p gr28,@(sp,#REG_GR(28))
ori sp,0,gr28
# finish building the exception frame
stdi gr2,@(gr28,#REG_GR(2))
stdi gr4,@(gr28,#REG_GR(4))
stdi gr6,@(gr28,#REG_GR(6))
stdi gr8,@(gr28,#REG_GR(8))
stdi gr10,@(gr28,#REG_GR(10))
stdi gr12,@(gr28,#REG_GR(12))
stdi gr14,@(gr28,#REG_GR(14))
stdi gr16,@(gr28,#REG_GR(16))
stdi gr18,@(gr28,#REG_GR(18))
stdi gr20,@(gr28,#REG_GR(20))
stdi gr22,@(gr28,#REG_GR(22))
stdi gr24,@(gr28,#REG_GR(24))
stdi gr26,@(gr28,#REG_GR(26))
sti gr29,@(gr28,#REG_GR(29))
[PATCH] FRV: Use virtual interrupt disablement Make the FRV arch use virtual interrupt disablement because accesses to the processor status register (PSR) are relatively slow and because we will soon have the need to deal with multiple interrupt controls at the same time (separate h/w and inter-core interrupts). The way this is done is to dedicate one of the four integer condition code registers (ICC2) to maintaining a virtual interrupt disablement state whilst inside the kernel. This uses the ICC2.Z flag (Zero) to indicate whether the interrupts are virtually disabled and the ICC2.C flag (Carry) to indicate whether the interrupts are physically disabled. ICC2.Z is set to indicate interrupts are virtually disabled. ICC2.C is set to indicate interrupts are physically enabled. Under normal running conditions Z==0 and C==1. Disabling interrupts with local_irq_disable() doesn't then actually physically disable interrupts - it merely sets ICC2.Z to 1. Should an interrupt then happen, the exception prologue will note ICC2.Z is set and branch out of line using one instruction (an unlikely BEQ). Here it will physically disable interrupts and clear ICC2.C. When it comes time to enable interrupts (local_irq_enable()), this simply clears the ICC2.Z flag and invokes a trap #2 if both Z and C flags are clear (the HI integer condition). This can be done with the TIHI conditional trap instruction. The trap then physically reenables interrupts and sets ICC2.C again. Upon returning the interrupt will be taken as interrupts will then be enabled. Note that whilst processing the trap, the whole exceptions system is disabled, and so an interrupt can't happen till it returns. If no pending interrupt had happened, ICC2.C would still be set, the HI condition would not be fulfilled, and no trap will happen. Saving interrupts (local_irq_save) is simply a matter of pulling the ICC2.Z flag out of the CCR register, shifting it down and masking it off. This gives a result of 0 if interrupts were enabled and 1 if they weren't. Restoring interrupts (local_irq_restore) is then a matter of taking the saved value mentioned previously and XOR'ing it against 1. If it was one, the result will be zero, and if it was zero the result will be non-zero. This result is then used to affect the ICC2.Z flag directly (it is a condition code flag after all). An XOR instruction does not affect the Carry flag, and so that bit of state is unchanged. The two flags can then be sampled to see if they're both zero using the trap (TIHI) as for the unconditional reenablement (local_irq_enable). This patch also: (1) Modifies the debugging stub (break.S) to handle single-stepping crossing into the trap #2 handler and into virtually disabled interrupts. (2) Removes superseded fixup pointers from the second instructions in the trap tables (there's no a separate fixup table for this). (3) Declares the trap #3 vector for use in .org directives in the trap table. (4) Moves irq_enter() and irq_exit() in do_IRQ() to avoid problems with virtual interrupt handling, and removes the duplicate code that has now been folded into irq_exit() (softirq and preemption handling). (5) Tells the compiler in the arch Makefile that ICC2 is now reserved. (6) Documents the in-kernel ABI, including the virtual interrupts. (7) Renames the old irq management functions to different names. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-02-15 04:53:20 +07:00
stdi.p gr30,@(gr28,#REG_GR(30))
# note virtual interrupts will be fully enabled upon return
subicc gr0,#1,gr0,icc2 /* clear Z, set C */
movsg tbr ,gr20
movsg psr ,gr22
movsg pcsr,gr21
movsg isr ,gr23
movsg ccr ,gr24
movsg cccr,gr25
movsg lr ,gr26
movsg lcr ,gr27
setlos.p #-1,gr4
andi gr22,#PSR_PS,gr5 /* try to rebuild original PSR value */
andi.p gr22,#~(PSR_PS|PSR_S),gr6
slli gr5,#1,gr5
or gr6,gr5,gr5
andi.p gr5,#~PSR_ET,gr5
# set CCCR.CC3 to Undefined to abort atomic-modify completion inside the kernel
# - for an explanation of how it works, see: Documentation/frv/atomic-ops.txt
andi gr25,#~0xc0,gr25
sti gr20,@(gr28,#REG_TBR)
sti gr21,@(gr28,#REG_PC)
sti gr5 ,@(gr28,#REG_PSR)
sti gr23,@(gr28,#REG_ISR)
stdi gr24,@(gr28,#REG_CCR)
stdi gr26,@(gr28,#REG_LR)
sti gr4 ,@(gr28,#REG_SYSCALLNO)
movsg iacc0h,gr4
movsg iacc0l,gr5
stdi gr4,@(gr28,#REG_IACC0)
movsg gner0,gr4
movsg gner1,gr5
[PATCH] FRV: Use virtual interrupt disablement Make the FRV arch use virtual interrupt disablement because accesses to the processor status register (PSR) are relatively slow and because we will soon have the need to deal with multiple interrupt controls at the same time (separate h/w and inter-core interrupts). The way this is done is to dedicate one of the four integer condition code registers (ICC2) to maintaining a virtual interrupt disablement state whilst inside the kernel. This uses the ICC2.Z flag (Zero) to indicate whether the interrupts are virtually disabled and the ICC2.C flag (Carry) to indicate whether the interrupts are physically disabled. ICC2.Z is set to indicate interrupts are virtually disabled. ICC2.C is set to indicate interrupts are physically enabled. Under normal running conditions Z==0 and C==1. Disabling interrupts with local_irq_disable() doesn't then actually physically disable interrupts - it merely sets ICC2.Z to 1. Should an interrupt then happen, the exception prologue will note ICC2.Z is set and branch out of line using one instruction (an unlikely BEQ). Here it will physically disable interrupts and clear ICC2.C. When it comes time to enable interrupts (local_irq_enable()), this simply clears the ICC2.Z flag and invokes a trap #2 if both Z and C flags are clear (the HI integer condition). This can be done with the TIHI conditional trap instruction. The trap then physically reenables interrupts and sets ICC2.C again. Upon returning the interrupt will be taken as interrupts will then be enabled. Note that whilst processing the trap, the whole exceptions system is disabled, and so an interrupt can't happen till it returns. If no pending interrupt had happened, ICC2.C would still be set, the HI condition would not be fulfilled, and no trap will happen. Saving interrupts (local_irq_save) is simply a matter of pulling the ICC2.Z flag out of the CCR register, shifting it down and masking it off. This gives a result of 0 if interrupts were enabled and 1 if they weren't. Restoring interrupts (local_irq_restore) is then a matter of taking the saved value mentioned previously and XOR'ing it against 1. If it was one, the result will be zero, and if it was zero the result will be non-zero. This result is then used to affect the ICC2.Z flag directly (it is a condition code flag after all). An XOR instruction does not affect the Carry flag, and so that bit of state is unchanged. The two flags can then be sampled to see if they're both zero using the trap (TIHI) as for the unconditional reenablement (local_irq_enable). This patch also: (1) Modifies the debugging stub (break.S) to handle single-stepping crossing into the trap #2 handler and into virtually disabled interrupts. (2) Removes superseded fixup pointers from the second instructions in the trap tables (there's no a separate fixup table for this). (3) Declares the trap #3 vector for use in .org directives in the trap table. (4) Moves irq_enter() and irq_exit() in do_IRQ() to avoid problems with virtual interrupt handling, and removes the duplicate code that has now been folded into irq_exit() (softirq and preemption handling). (5) Tells the compiler in the arch Makefile that ICC2 is now reserved. (6) Documents the in-kernel ABI, including the virtual interrupts. (7) Renames the old irq management functions to different names. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-02-15 04:53:20 +07:00
stdi.p gr4,@(gr28,#REG_GNER0)
# interrupts start off fully disabled in the interrupt handler
subcc gr0,gr0,gr0,icc2 /* set Z and clear C */
# set the return address
sethi.p %hi(__entry_return_from_kernel_interrupt),gr4
setlo %lo(__entry_return_from_kernel_interrupt),gr4
movgs gr4,lr
# clear power-saving mode flags
movsg hsr0,gr4
andi gr4,#~HSR0_PDM,gr4
movgs gr4,hsr0
# raise the minimum interrupt priority to 15 (NMI only) and enable exceptions
movsg psr,gr4
ori gr4,#PSR_PIL_14,gr4
movgs gr4,psr
ori gr4,#PSR_ET,gr4
movgs gr4,psr
LEDS 0x6212
bra do_IRQ
.size __entry_kernel_external_interrupt,.-__entry_kernel_external_interrupt
[PATCH] FRV: Use virtual interrupt disablement Make the FRV arch use virtual interrupt disablement because accesses to the processor status register (PSR) are relatively slow and because we will soon have the need to deal with multiple interrupt controls at the same time (separate h/w and inter-core interrupts). The way this is done is to dedicate one of the four integer condition code registers (ICC2) to maintaining a virtual interrupt disablement state whilst inside the kernel. This uses the ICC2.Z flag (Zero) to indicate whether the interrupts are virtually disabled and the ICC2.C flag (Carry) to indicate whether the interrupts are physically disabled. ICC2.Z is set to indicate interrupts are virtually disabled. ICC2.C is set to indicate interrupts are physically enabled. Under normal running conditions Z==0 and C==1. Disabling interrupts with local_irq_disable() doesn't then actually physically disable interrupts - it merely sets ICC2.Z to 1. Should an interrupt then happen, the exception prologue will note ICC2.Z is set and branch out of line using one instruction (an unlikely BEQ). Here it will physically disable interrupts and clear ICC2.C. When it comes time to enable interrupts (local_irq_enable()), this simply clears the ICC2.Z flag and invokes a trap #2 if both Z and C flags are clear (the HI integer condition). This can be done with the TIHI conditional trap instruction. The trap then physically reenables interrupts and sets ICC2.C again. Upon returning the interrupt will be taken as interrupts will then be enabled. Note that whilst processing the trap, the whole exceptions system is disabled, and so an interrupt can't happen till it returns. If no pending interrupt had happened, ICC2.C would still be set, the HI condition would not be fulfilled, and no trap will happen. Saving interrupts (local_irq_save) is simply a matter of pulling the ICC2.Z flag out of the CCR register, shifting it down and masking it off. This gives a result of 0 if interrupts were enabled and 1 if they weren't. Restoring interrupts (local_irq_restore) is then a matter of taking the saved value mentioned previously and XOR'ing it against 1. If it was one, the result will be zero, and if it was zero the result will be non-zero. This result is then used to affect the ICC2.Z flag directly (it is a condition code flag after all). An XOR instruction does not affect the Carry flag, and so that bit of state is unchanged. The two flags can then be sampled to see if they're both zero using the trap (TIHI) as for the unconditional reenablement (local_irq_enable). This patch also: (1) Modifies the debugging stub (break.S) to handle single-stepping crossing into the trap #2 handler and into virtually disabled interrupts. (2) Removes superseded fixup pointers from the second instructions in the trap tables (there's no a separate fixup table for this). (3) Declares the trap #3 vector for use in .org directives in the trap table. (4) Moves irq_enter() and irq_exit() in do_IRQ() to avoid problems with virtual interrupt handling, and removes the duplicate code that has now been folded into irq_exit() (softirq and preemption handling). (5) Tells the compiler in the arch Makefile that ICC2 is now reserved. (6) Documents the in-kernel ABI, including the virtual interrupts. (7) Renames the old irq management functions to different names. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-02-15 04:53:20 +07:00
###############################################################################
#
# deal with interrupts that were actually virtually disabled
# - we need to really disable them, flag the fact and return immediately
# - if you change this, you must alter break.S also
#
###############################################################################
.balign L1_CACHE_BYTES
.globl __entry_kernel_external_interrupt_virtually_disabled
.type __entry_kernel_external_interrupt_virtually_disabled,@function
__entry_kernel_external_interrupt_virtually_disabled:
movsg psr,gr30
andi gr30,#~PSR_PIL,gr30
ori gr30,#PSR_PIL_14,gr30 ; debugging interrupts only
movgs gr30,psr
subcc gr0,gr0,gr0,icc2 ; leave Z set, clear C
rett #0
.size __entry_kernel_external_interrupt_virtually_disabled,.-__entry_kernel_external_interrupt_virtually_disabled
###############################################################################
#
# deal with re-enablement of interrupts that were pending when virtually re-enabled
# - set ICC2.C, re-enable the real interrupts and return
# - we can clear ICC2.Z because we shouldn't be here if it's not 0 [due to TIHI]
# - if you change this, you must alter break.S also
#
###############################################################################
.balign L1_CACHE_BYTES
.globl __entry_kernel_external_interrupt_virtual_reenable
.type __entry_kernel_external_interrupt_virtual_reenable,@function
__entry_kernel_external_interrupt_virtual_reenable:
movsg psr,gr30
andi gr30,#~PSR_PIL,gr30 ; re-enable interrupts
movgs gr30,psr
subicc gr0,#1,gr0,icc2 ; clear Z, set C
rett #0
.size __entry_kernel_external_interrupt_virtual_reenable,.-__entry_kernel_external_interrupt_virtual_reenable
###############################################################################
#
# entry point for Software and Progam interrupts generated whilst executing userspace code
#
###############################################################################
.globl __entry_uspace_softprog_interrupt
.type __entry_uspace_softprog_interrupt,@function
.globl __entry_uspace_handle_mmu_fault
__entry_uspace_softprog_interrupt:
LEDS 0x6000
#ifdef CONFIG_MMU
movsg ear0,gr28
__entry_uspace_handle_mmu_fault:
movgs gr28,scr2
#endif
sethi.p %hi(__kernel_frame0_ptr),gr28
setlo %lo(__kernel_frame0_ptr),gr28
ldi @(gr28,#0),gr28
# handle h/w single-step through exceptions
sti gr0,@(gr28,#REG__STATUS)
.globl __entry_uspace_softprog_interrupt_reentry
__entry_uspace_softprog_interrupt_reentry:
LEDS 0x6001
setlos #REG__END,gr30
dcpl gr28,gr30,#0
# set up the kernel stack pointer
sti.p sp,@(gr28,#REG_SP)
ori gr28,0,sp
sti gr0,@(gr28,#REG_GR(28))
stdi gr20,@(gr28,#REG_GR(20))
stdi gr22,@(gr28,#REG_GR(22))
movsg tbr,gr20
movsg pcsr,gr21
movsg psr,gr22
sethi.p %hi(__entry_return_from_user_exception),gr23
setlo %lo(__entry_return_from_user_exception),gr23
[PATCH] FRV: Use virtual interrupt disablement Make the FRV arch use virtual interrupt disablement because accesses to the processor status register (PSR) are relatively slow and because we will soon have the need to deal with multiple interrupt controls at the same time (separate h/w and inter-core interrupts). The way this is done is to dedicate one of the four integer condition code registers (ICC2) to maintaining a virtual interrupt disablement state whilst inside the kernel. This uses the ICC2.Z flag (Zero) to indicate whether the interrupts are virtually disabled and the ICC2.C flag (Carry) to indicate whether the interrupts are physically disabled. ICC2.Z is set to indicate interrupts are virtually disabled. ICC2.C is set to indicate interrupts are physically enabled. Under normal running conditions Z==0 and C==1. Disabling interrupts with local_irq_disable() doesn't then actually physically disable interrupts - it merely sets ICC2.Z to 1. Should an interrupt then happen, the exception prologue will note ICC2.Z is set and branch out of line using one instruction (an unlikely BEQ). Here it will physically disable interrupts and clear ICC2.C. When it comes time to enable interrupts (local_irq_enable()), this simply clears the ICC2.Z flag and invokes a trap #2 if both Z and C flags are clear (the HI integer condition). This can be done with the TIHI conditional trap instruction. The trap then physically reenables interrupts and sets ICC2.C again. Upon returning the interrupt will be taken as interrupts will then be enabled. Note that whilst processing the trap, the whole exceptions system is disabled, and so an interrupt can't happen till it returns. If no pending interrupt had happened, ICC2.C would still be set, the HI condition would not be fulfilled, and no trap will happen. Saving interrupts (local_irq_save) is simply a matter of pulling the ICC2.Z flag out of the CCR register, shifting it down and masking it off. This gives a result of 0 if interrupts were enabled and 1 if they weren't. Restoring interrupts (local_irq_restore) is then a matter of taking the saved value mentioned previously and XOR'ing it against 1. If it was one, the result will be zero, and if it was zero the result will be non-zero. This result is then used to affect the ICC2.Z flag directly (it is a condition code flag after all). An XOR instruction does not affect the Carry flag, and so that bit of state is unchanged. The two flags can then be sampled to see if they're both zero using the trap (TIHI) as for the unconditional reenablement (local_irq_enable). This patch also: (1) Modifies the debugging stub (break.S) to handle single-stepping crossing into the trap #2 handler and into virtually disabled interrupts. (2) Removes superseded fixup pointers from the second instructions in the trap tables (there's no a separate fixup table for this). (3) Declares the trap #3 vector for use in .org directives in the trap table. (4) Moves irq_enter() and irq_exit() in do_IRQ() to avoid problems with virtual interrupt handling, and removes the duplicate code that has now been folded into irq_exit() (softirq and preemption handling). (5) Tells the compiler in the arch Makefile that ICC2 is now reserved. (6) Documents the in-kernel ABI, including the virtual interrupts. (7) Renames the old irq management functions to different names. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-02-15 04:53:20 +07:00
bra __entry_common
.size __entry_uspace_softprog_interrupt,.-__entry_uspace_softprog_interrupt
# single-stepping was disabled on entry to a TLB handler that then faulted
#ifdef CONFIG_MMU
.globl __entry_uspace_handle_mmu_fault_sstep
__entry_uspace_handle_mmu_fault_sstep:
movgs gr28,scr2
sethi.p %hi(__kernel_frame0_ptr),gr28
setlo %lo(__kernel_frame0_ptr),gr28
ldi @(gr28,#0),gr28
# flag single-step re-enablement
sti gr0,@(gr28,#REG__STATUS)
bra __entry_uspace_softprog_interrupt_reentry
#endif
###############################################################################
#
# entry point for Software and Progam interrupts generated whilst executing kernel code
#
###############################################################################
.globl __entry_kernel_softprog_interrupt
.type __entry_kernel_softprog_interrupt,@function
__entry_kernel_softprog_interrupt:
LEDS 0x6004
#ifdef CONFIG_MMU
movsg ear0,gr30
movgs gr30,scr2
#endif
.globl __entry_kernel_handle_mmu_fault
__entry_kernel_handle_mmu_fault:
# set up the stack pointer
subi sp,#REG__END,sp
sti sp,@(sp,#REG_SP)
sti sp,@(sp,#REG_SP-4)
andi sp,#~7,sp
# handle h/w single-step through exceptions
sti gr0,@(sp,#REG__STATUS)
.globl __entry_kernel_softprog_interrupt_reentry
__entry_kernel_softprog_interrupt_reentry:
LEDS 0x6005
setlos #REG__END,gr30
dcpl sp,gr30,#0
# set up the exception frame
sti.p gr28,@(sp,#REG_GR(28))
ori sp,0,gr28
stdi gr20,@(gr28,#REG_GR(20))
stdi gr22,@(gr28,#REG_GR(22))
ldi @(sp,#REG_SP),gr22 /* reconstruct the old SP */
addi gr22,#REG__END,gr22
sti gr22,@(sp,#REG_SP)
# set CCCR.CC3 to Undefined to abort atomic-modify completion inside the kernel
# - for an explanation of how it works, see: Documentation/frv/atomic-ops.txt
movsg cccr,gr20
andi gr20,#~0xc0,gr20
movgs gr20,cccr
movsg tbr,gr20
movsg pcsr,gr21
movsg psr,gr22
sethi.p %hi(__entry_return_from_kernel_exception),gr23
setlo %lo(__entry_return_from_kernel_exception),gr23
bra __entry_common
.size __entry_kernel_softprog_interrupt,.-__entry_kernel_softprog_interrupt
# single-stepping was disabled on entry to a TLB handler that then faulted
#ifdef CONFIG_MMU
.globl __entry_kernel_handle_mmu_fault_sstep
__entry_kernel_handle_mmu_fault_sstep:
# set up the stack pointer
subi sp,#REG__END,sp
sti sp,@(sp,#REG_SP)
sti sp,@(sp,#REG_SP-4)
andi sp,#~7,sp
# flag single-step re-enablement
sethi #REG__STATUS_STEP,gr30
sti gr30,@(sp,#REG__STATUS)
bra __entry_kernel_softprog_interrupt_reentry
#endif
###############################################################################
#
# the rest of the kernel entry point code
# - on arriving here, the following registers should be set up:
# GR1 - kernel stack pointer
# GR7 - syscall number (trap 0 only)
# GR8-13 - syscall args (trap 0 only)
# GR20 - saved TBR
# GR21 - saved PC
# GR22 - saved PSR
# GR23 - return handler address
# GR28 - exception frame on stack
# SCR2 - saved EAR0 where applicable (clobbered by ICI & ICEF insns on FR451)
# PSR - PSR.S 1, PSR.ET 0
#
###############################################################################
.globl __entry_common
.type __entry_common,@function
__entry_common:
LEDS 0x6008
# finish building the exception frame
stdi gr2,@(gr28,#REG_GR(2))
stdi gr4,@(gr28,#REG_GR(4))
stdi gr6,@(gr28,#REG_GR(6))
stdi gr8,@(gr28,#REG_GR(8))
stdi gr10,@(gr28,#REG_GR(10))
stdi gr12,@(gr28,#REG_GR(12))
stdi gr14,@(gr28,#REG_GR(14))
stdi gr16,@(gr28,#REG_GR(16))
stdi gr18,@(gr28,#REG_GR(18))
stdi gr24,@(gr28,#REG_GR(24))
stdi gr26,@(gr28,#REG_GR(26))
sti gr29,@(gr28,#REG_GR(29))
stdi gr30,@(gr28,#REG_GR(30))
movsg lcr ,gr27
movsg lr ,gr26
movgs gr23,lr
movsg cccr,gr25
movsg ccr ,gr24
movsg isr ,gr23
setlos.p #-1,gr4
andi gr22,#PSR_PS,gr5 /* try to rebuild original PSR value */
andi.p gr22,#~(PSR_PS|PSR_S),gr6
slli gr5,#1,gr5
or gr6,gr5,gr5
andi gr5,#~PSR_ET,gr5
sti gr20,@(gr28,#REG_TBR)
sti gr21,@(gr28,#REG_PC)
sti gr5 ,@(gr28,#REG_PSR)
sti gr23,@(gr28,#REG_ISR)
stdi gr24,@(gr28,#REG_CCR)
stdi gr26,@(gr28,#REG_LR)
sti gr4 ,@(gr28,#REG_SYSCALLNO)
movsg iacc0h,gr4
movsg iacc0l,gr5
stdi gr4,@(gr28,#REG_IACC0)
movsg gner0,gr4
movsg gner1,gr5
[PATCH] FRV: Use virtual interrupt disablement Make the FRV arch use virtual interrupt disablement because accesses to the processor status register (PSR) are relatively slow and because we will soon have the need to deal with multiple interrupt controls at the same time (separate h/w and inter-core interrupts). The way this is done is to dedicate one of the four integer condition code registers (ICC2) to maintaining a virtual interrupt disablement state whilst inside the kernel. This uses the ICC2.Z flag (Zero) to indicate whether the interrupts are virtually disabled and the ICC2.C flag (Carry) to indicate whether the interrupts are physically disabled. ICC2.Z is set to indicate interrupts are virtually disabled. ICC2.C is set to indicate interrupts are physically enabled. Under normal running conditions Z==0 and C==1. Disabling interrupts with local_irq_disable() doesn't then actually physically disable interrupts - it merely sets ICC2.Z to 1. Should an interrupt then happen, the exception prologue will note ICC2.Z is set and branch out of line using one instruction (an unlikely BEQ). Here it will physically disable interrupts and clear ICC2.C. When it comes time to enable interrupts (local_irq_enable()), this simply clears the ICC2.Z flag and invokes a trap #2 if both Z and C flags are clear (the HI integer condition). This can be done with the TIHI conditional trap instruction. The trap then physically reenables interrupts and sets ICC2.C again. Upon returning the interrupt will be taken as interrupts will then be enabled. Note that whilst processing the trap, the whole exceptions system is disabled, and so an interrupt can't happen till it returns. If no pending interrupt had happened, ICC2.C would still be set, the HI condition would not be fulfilled, and no trap will happen. Saving interrupts (local_irq_save) is simply a matter of pulling the ICC2.Z flag out of the CCR register, shifting it down and masking it off. This gives a result of 0 if interrupts were enabled and 1 if they weren't. Restoring interrupts (local_irq_restore) is then a matter of taking the saved value mentioned previously and XOR'ing it against 1. If it was one, the result will be zero, and if it was zero the result will be non-zero. This result is then used to affect the ICC2.Z flag directly (it is a condition code flag after all). An XOR instruction does not affect the Carry flag, and so that bit of state is unchanged. The two flags can then be sampled to see if they're both zero using the trap (TIHI) as for the unconditional reenablement (local_irq_enable). This patch also: (1) Modifies the debugging stub (break.S) to handle single-stepping crossing into the trap #2 handler and into virtually disabled interrupts. (2) Removes superseded fixup pointers from the second instructions in the trap tables (there's no a separate fixup table for this). (3) Declares the trap #3 vector for use in .org directives in the trap table. (4) Moves irq_enter() and irq_exit() in do_IRQ() to avoid problems with virtual interrupt handling, and removes the duplicate code that has now been folded into irq_exit() (softirq and preemption handling). (5) Tells the compiler in the arch Makefile that ICC2 is now reserved. (6) Documents the in-kernel ABI, including the virtual interrupts. (7) Renames the old irq management functions to different names. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-02-15 04:53:20 +07:00
stdi.p gr4,@(gr28,#REG_GNER0)
# set up virtual interrupt disablement
subicc gr0,#1,gr0,icc2 /* clear Z flag, set C flag */
# set up kernel global registers
sethi.p %hi(__kernel_current_task),gr5
setlo %lo(__kernel_current_task),gr5
sethi.p %hi(_gp),gr16
setlo %lo(_gp),gr16
ldi @(gr5,#0),gr29
ldi @(gr29,#4),gr15 ; __current_thread_info = current->thread_info
# switch to the kernel trap table
sethi.p %hi(__entry_kerneltrap_table),gr6
setlo %lo(__entry_kerneltrap_table),gr6
movgs gr6,tbr
# make sure we (the kernel) get div-zero and misalignment exceptions
setlos #ISR_EDE|ISR_DTT_DIVBYZERO|ISR_EMAM_EXCEPTION,gr5
movgs gr5,isr
# clear power-saving mode flags
movsg hsr0,gr4
andi gr4,#~HSR0_PDM,gr4
movgs gr4,hsr0
# multiplex again using old TBR as a guide
setlos.p #TBR_TT,gr3
sethi %hi(__entry_vector_table),gr6
and.p gr20,gr3,gr5
setlo %lo(__entry_vector_table),gr6
srli gr5,#2,gr5
ld @(gr5,gr6),gr5
LEDS 0x6009
jmpl @(gr5,gr0)
.size __entry_common,.-__entry_common
###############################################################################
#
# handle instruction MMU fault
#
###############################################################################
#ifdef CONFIG_MMU
.globl __entry_insn_mmu_fault
__entry_insn_mmu_fault:
LEDS 0x6010
setlos #0,gr8
movsg esr0,gr9
movsg scr2,gr10
# now that we've accessed the exception regs, we can enable exceptions
movsg psr,gr4
ori gr4,#PSR_ET,gr4
movgs gr4,psr
sethi.p %hi(do_page_fault),gr5
setlo %lo(do_page_fault),gr5
jmpl @(gr5,gr0) ; call do_page_fault(0,esr0,ear0)
#endif
###############################################################################
#
# handle instruction access error
#
###############################################################################
.globl __entry_insn_access_error
__entry_insn_access_error:
LEDS 0x6011
sethi.p %hi(insn_access_error),gr5
setlo %lo(insn_access_error),gr5
movsg esfr1,gr8
movsg epcr0,gr9
movsg esr0,gr10
# now that we've accessed the exception regs, we can enable exceptions
movsg psr,gr4
ori gr4,#PSR_ET,gr4
movgs gr4,psr
jmpl @(gr5,gr0) ; call insn_access_error(esfr1,epcr0,esr0)
###############################################################################
#
# handle various instructions of dubious legality
#
###############################################################################
.globl __entry_unsupported_trap
.globl __entry_illegal_instruction
.globl __entry_privileged_instruction
.globl __entry_debug_exception
__entry_unsupported_trap:
subi gr21,#4,gr21
sti gr21,@(gr28,#REG_PC)
__entry_illegal_instruction:
__entry_privileged_instruction:
__entry_debug_exception:
LEDS 0x6012
sethi.p %hi(illegal_instruction),gr5
setlo %lo(illegal_instruction),gr5
movsg esfr1,gr8
movsg epcr0,gr9
movsg esr0,gr10
# now that we've accessed the exception regs, we can enable exceptions
movsg psr,gr4
ori gr4,#PSR_ET,gr4
movgs gr4,psr
jmpl @(gr5,gr0) ; call ill_insn(esfr1,epcr0,esr0)
###############################################################################
#
# handle atomic operation emulation for userspace
#
###############################################################################
.globl __entry_atomic_op
__entry_atomic_op:
LEDS 0x6012
sethi.p %hi(atomic_operation),gr5
setlo %lo(atomic_operation),gr5
movsg esfr1,gr8
movsg epcr0,gr9
movsg esr0,gr10
# now that we've accessed the exception regs, we can enable exceptions
movsg psr,gr4
ori gr4,#PSR_ET,gr4
movgs gr4,psr
jmpl @(gr5,gr0) ; call atomic_operation(esfr1,epcr0,esr0)
###############################################################################
#
# handle media exception
#
###############################################################################
.globl __entry_media_exception
__entry_media_exception:
LEDS 0x6013
sethi.p %hi(media_exception),gr5
setlo %lo(media_exception),gr5
movsg msr0,gr8
movsg msr1,gr9
# now that we've accessed the exception regs, we can enable exceptions
movsg psr,gr4
ori gr4,#PSR_ET,gr4
movgs gr4,psr
jmpl @(gr5,gr0) ; call media_excep(msr0,msr1)
###############################################################################
#
# handle data MMU fault
# handle data DAT fault (write-protect exception)
#
###############################################################################
#ifdef CONFIG_MMU
.globl __entry_data_mmu_fault
__entry_data_mmu_fault:
.globl __entry_data_dat_fault
__entry_data_dat_fault:
LEDS 0x6014
setlos #1,gr8
movsg esr0,gr9
movsg scr2,gr10 ; saved EAR0
# now that we've accessed the exception regs, we can enable exceptions
movsg psr,gr4
ori gr4,#PSR_ET,gr4
movgs gr4,psr
sethi.p %hi(do_page_fault),gr5
setlo %lo(do_page_fault),gr5
jmpl @(gr5,gr0) ; call do_page_fault(1,esr0,ear0)
#endif
###############################################################################
#
# handle data and instruction access exceptions
#
###############################################################################
.globl __entry_insn_access_exception
.globl __entry_data_access_exception
__entry_insn_access_exception:
__entry_data_access_exception:
LEDS 0x6016
sethi.p %hi(memory_access_exception),gr5
setlo %lo(memory_access_exception),gr5
movsg esr0,gr8
movsg scr2,gr9 ; saved EAR0
movsg epcr0,gr10
# now that we've accessed the exception regs, we can enable exceptions
movsg psr,gr4
ori gr4,#PSR_ET,gr4
movgs gr4,psr
jmpl @(gr5,gr0) ; call memory_access_error(esr0,ear0,epcr0)
###############################################################################
#
# handle data access error
#
###############################################################################
.globl __entry_data_access_error
__entry_data_access_error:
LEDS 0x6016
sethi.p %hi(data_access_error),gr5
setlo %lo(data_access_error),gr5
movsg esfr1,gr8
movsg esr15,gr9
movsg ear15,gr10
# now that we've accessed the exception regs, we can enable exceptions
movsg psr,gr4
ori gr4,#PSR_ET,gr4
movgs gr4,psr
jmpl @(gr5,gr0) ; call data_access_error(esfr1,esr15,ear15)
###############################################################################
#
# handle data store error
#
###############################################################################
.globl __entry_data_store_error
__entry_data_store_error:
LEDS 0x6017
sethi.p %hi(data_store_error),gr5
setlo %lo(data_store_error),gr5
movsg esfr1,gr8
movsg esr14,gr9
# now that we've accessed the exception regs, we can enable exceptions
movsg psr,gr4
ori gr4,#PSR_ET,gr4
movgs gr4,psr
jmpl @(gr5,gr0) ; call data_store_error(esfr1,esr14)
###############################################################################
#
# handle division exception
#
###############################################################################
.globl __entry_division_exception
__entry_division_exception:
LEDS 0x6018
sethi.p %hi(division_exception),gr5
setlo %lo(division_exception),gr5
movsg esfr1,gr8
movsg esr0,gr9
movsg isr,gr10
# now that we've accessed the exception regs, we can enable exceptions
movsg psr,gr4
ori gr4,#PSR_ET,gr4
movgs gr4,psr
jmpl @(gr5,gr0) ; call div_excep(esfr1,esr0,isr)
###############################################################################
#
# handle compound exception
#
###############################################################################
.globl __entry_compound_exception
__entry_compound_exception:
LEDS 0x6019
sethi.p %hi(compound_exception),gr5
setlo %lo(compound_exception),gr5
movsg esfr1,gr8
movsg esr0,gr9
movsg esr14,gr10
movsg esr15,gr11
movsg msr0,gr12
movsg msr1,gr13
# now that we've accessed the exception regs, we can enable exceptions
movsg psr,gr4
ori gr4,#PSR_ET,gr4
movgs gr4,psr
jmpl @(gr5,gr0) ; call comp_excep(esfr1,esr0,esr14,esr15,msr0,msr1)
###############################################################################
#
# handle interrupts and NMIs
#
###############################################################################
.globl __entry_do_IRQ
__entry_do_IRQ:
LEDS 0x6020
# we can enable exceptions
movsg psr,gr4
ori gr4,#PSR_ET,gr4
movgs gr4,psr
bra do_IRQ
.globl __entry_do_NMI
__entry_do_NMI:
LEDS 0x6021
# we can enable exceptions
movsg psr,gr4
ori gr4,#PSR_ET,gr4
movgs gr4,psr
bra do_NMI
###############################################################################
#
# the return path for a newly forked child process
# - __switch_to() saved the old current pointer in GR8 for us
#
###############################################################################
.globl ret_from_fork
ret_from_fork:
LEDS 0x6100
call schedule_tail
# fork & co. return 0 to child
setlos.p #0,gr8
bra __syscall_exit
###################################################################################################
#
# Return to user mode is not as complex as all this looks,
# but we want the default path for a system call return to
# go as quickly as possible which is why some of this is
# less clear than it otherwise should be.
#
###################################################################################################
.balign L1_CACHE_BYTES
.globl system_call
system_call:
LEDS 0x6101
movsg psr,gr4 ; enable exceptions
ori gr4,#PSR_ET,gr4
movgs gr4,psr
sti gr7,@(gr28,#REG_SYSCALLNO)
sti.p gr8,@(gr28,#REG_ORIG_GR8)
subicc gr7,#nr_syscalls,gr0,icc0
bnc icc0,#0,__syscall_badsys
ldi @(gr15,#TI_FLAGS),gr4
andicc gr4,#_TIF_SYSCALL_TRACE,gr0,icc0
bne icc0,#0,__syscall_trace_entry
__syscall_call:
slli.p gr7,#2,gr7
sethi %hi(sys_call_table),gr5
setlo %lo(sys_call_table),gr5
ld @(gr5,gr7),gr4
calll @(gr4,gr0)
###############################################################################
#
# return to interrupted process
#
###############################################################################
__syscall_exit:
LEDS 0x6300
sti gr8,@(gr28,#REG_GR(8)) ; save return value
# rebuild saved psr - execve will change it for init/main.c
ldi @(gr28,#REG_PSR),gr22
srli gr22,#1,gr5
andi.p gr22,#~PSR_PS,gr22
andi gr5,#PSR_PS,gr5
or gr5,gr22,gr22
ori gr22,#PSR_S,gr22
# keep current PSR in GR23
movsg psr,gr23
# make sure we don't miss an interrupt setting need_resched or sigpending between
# sampling and the RETT
ori gr23,#PSR_PIL_14,gr23
movgs gr23,psr
ldi @(gr15,#TI_FLAGS),gr4
sethi.p %hi(_TIF_ALLWORK_MASK),gr5
setlo %lo(_TIF_ALLWORK_MASK),gr5
andcc gr4,gr5,gr0,icc0
bne icc0,#0,__syscall_exit_work
# restore all registers and return
__entry_return_direct:
LEDS 0x6301
andi gr22,#~PSR_ET,gr22
movgs gr22,psr
ldi @(gr28,#REG_ISR),gr23
lddi @(gr28,#REG_CCR),gr24
lddi @(gr28,#REG_LR) ,gr26
ldi @(gr28,#REG_PC) ,gr21
ldi @(gr28,#REG_TBR),gr20
movgs gr20,tbr
movgs gr21,pcsr
movgs gr23,isr
movgs gr24,ccr
movgs gr25,cccr
movgs gr26,lr
movgs gr27,lcr
lddi @(gr28,#REG_GNER0),gr4
movgs gr4,gner0
movgs gr5,gner1
lddi @(gr28,#REG_IACC0),gr4
movgs gr4,iacc0h
movgs gr5,iacc0l
lddi @(gr28,#REG_GR(4)) ,gr4
lddi @(gr28,#REG_GR(6)) ,gr6
lddi @(gr28,#REG_GR(8)) ,gr8
lddi @(gr28,#REG_GR(10)),gr10
lddi @(gr28,#REG_GR(12)),gr12
lddi @(gr28,#REG_GR(14)),gr14
lddi @(gr28,#REG_GR(16)),gr16
lddi @(gr28,#REG_GR(18)),gr18
lddi @(gr28,#REG_GR(20)),gr20
lddi @(gr28,#REG_GR(22)),gr22
lddi @(gr28,#REG_GR(24)),gr24
lddi @(gr28,#REG_GR(26)),gr26
ldi @(gr28,#REG_GR(29)),gr29
lddi @(gr28,#REG_GR(30)),gr30
# check to see if a debugging return is required
LEDS 0x67f0
movsg ccr,gr2
ldi @(gr28,#REG__STATUS),gr3
andicc gr3,#REG__STATUS_STEP,gr0,icc0
bne icc0,#0,__entry_return_singlestep
movgs gr2,ccr
ldi @(gr28,#REG_SP) ,sp
lddi @(gr28,#REG_GR(2)) ,gr2
ldi @(gr28,#REG_GR(28)),gr28
LEDS 0x67fe
// movsg pcsr,gr31
// LEDS32
#if 0
# store the current frame in the workram on the FR451
movgs gr28,scr2
sethi.p %hi(0xfe800000),gr28
setlo %lo(0xfe800000),gr28
stdi gr2,@(gr28,#REG_GR(2))
stdi gr4,@(gr28,#REG_GR(4))
stdi gr6,@(gr28,#REG_GR(6))
stdi gr8,@(gr28,#REG_GR(8))
stdi gr10,@(gr28,#REG_GR(10))
stdi gr12,@(gr28,#REG_GR(12))
stdi gr14,@(gr28,#REG_GR(14))
stdi gr16,@(gr28,#REG_GR(16))
stdi gr18,@(gr28,#REG_GR(18))
stdi gr24,@(gr28,#REG_GR(24))
stdi gr26,@(gr28,#REG_GR(26))
sti gr29,@(gr28,#REG_GR(29))
stdi gr30,@(gr28,#REG_GR(30))
movsg tbr ,gr30
sti gr30,@(gr28,#REG_TBR)
movsg pcsr,gr30
sti gr30,@(gr28,#REG_PC)
movsg psr ,gr30
sti gr30,@(gr28,#REG_PSR)
movsg isr ,gr30
sti gr30,@(gr28,#REG_ISR)
movsg ccr ,gr30
movsg cccr,gr31
stdi gr30,@(gr28,#REG_CCR)
movsg lr ,gr30
movsg lcr ,gr31
stdi gr30,@(gr28,#REG_LR)
sti gr0 ,@(gr28,#REG_SYSCALLNO)
movsg scr2,gr28
#endif
rett #0
# return via break.S
__entry_return_singlestep:
movgs gr2,ccr
lddi @(gr28,#REG_GR(2)) ,gr2
ldi @(gr28,#REG_SP) ,sp
ldi @(gr28,#REG_GR(28)),gr28
LEDS 0x67ff
break
.globl __entry_return_singlestep_breaks_here
__entry_return_singlestep_breaks_here:
nop
###############################################################################
#
# return to a process interrupted in kernel space
# - we need to consider preemption if that is enabled
#
###############################################################################
.balign L1_CACHE_BYTES
__entry_return_from_kernel_exception:
LEDS 0x6302
movsg psr,gr23
ori gr23,#PSR_PIL_14,gr23
movgs gr23,psr
bra __entry_return_direct
.balign L1_CACHE_BYTES
__entry_return_from_kernel_interrupt:
LEDS 0x6303
movsg psr,gr23
ori gr23,#PSR_PIL_14,gr23
movgs gr23,psr
#ifdef CONFIG_PREEMPT
ldi @(gr15,#TI_PRE_COUNT),gr5
subicc gr5,#0,gr0,icc0
beq icc0,#0,__entry_return_direct
__entry_preempt_need_resched:
ldi @(gr15,#TI_FLAGS),gr4
andicc gr4,#_TIF_NEED_RESCHED,gr0,icc0
beq icc0,#1,__entry_return_direct
setlos #PREEMPT_ACTIVE,gr5
sti gr5,@(gr15,#TI_FLAGS)
andi gr23,#~PSR_PIL,gr23
movgs gr23,psr
call schedule
sti gr0,@(gr15,#TI_PRE_COUNT)
movsg psr,gr23
ori gr23,#PSR_PIL_14,gr23
movgs gr23,psr
bra __entry_preempt_need_resched
#else
bra __entry_return_direct
#endif
###############################################################################
#
# perform work that needs to be done immediately before resumption
#
###############################################################################
.globl __entry_return_from_user_exception
.balign L1_CACHE_BYTES
__entry_return_from_user_exception:
LEDS 0x6501
__entry_resume_userspace:
# make sure we don't miss an interrupt setting need_resched or sigpending between
# sampling and the RETT
movsg psr,gr23
ori gr23,#PSR_PIL_14,gr23
movgs gr23,psr
__entry_return_from_user_interrupt:
LEDS 0x6402
ldi @(gr15,#TI_FLAGS),gr4
sethi.p %hi(_TIF_WORK_MASK),gr5
setlo %lo(_TIF_WORK_MASK),gr5
andcc gr4,gr5,gr0,icc0
beq icc0,#1,__entry_return_direct
__entry_work_pending:
LEDS 0x6404
andicc gr4,#_TIF_NEED_RESCHED,gr0,icc0
beq icc0,#1,__entry_work_notifysig
__entry_work_resched:
LEDS 0x6408
movsg psr,gr23
andi gr23,#~PSR_PIL,gr23
movgs gr23,psr
call schedule
movsg psr,gr23
ori gr23,#PSR_PIL_14,gr23
movgs gr23,psr
LEDS 0x6401
ldi @(gr15,#TI_FLAGS),gr4
sethi.p %hi(_TIF_WORK_MASK),gr5
setlo %lo(_TIF_WORK_MASK),gr5
andcc gr4,gr5,gr0,icc0
beq icc0,#1,__entry_return_direct
andicc gr4,#_TIF_NEED_RESCHED,gr0,icc0
bne icc0,#1,__entry_work_resched
__entry_work_notifysig:
LEDS 0x6410
ori.p gr4,#0,gr8
call do_notify_resume
bra __entry_resume_userspace
# perform syscall entry tracing
__syscall_trace_entry:
LEDS 0x6320
call syscall_trace_entry
lddi.p @(gr28,#REG_GR(8)) ,gr8
ori gr8,#0,gr7 ; syscall_trace_entry() returned new syscallno
lddi @(gr28,#REG_GR(10)),gr10
lddi.p @(gr28,#REG_GR(12)),gr12
subicc gr7,#nr_syscalls,gr0,icc0
bnc icc0,#0,__syscall_badsys
bra __syscall_call
# perform syscall exit tracing
__syscall_exit_work:
LEDS 0x6340
andicc gr4,#_TIF_SYSCALL_TRACE,gr0,icc0
beq icc0,#1,__entry_work_pending
movsg psr,gr23
andi gr23,#~PSR_PIL,gr23 ; could let syscall_trace_exit() call schedule()
movgs gr23,psr
call syscall_trace_exit
bra __entry_resume_userspace
__syscall_badsys:
LEDS 0x6380
setlos #-ENOSYS,gr8
sti gr8,@(gr28,#REG_GR(8)) ; save return value
bra __entry_resume_userspace
###############################################################################
#
# syscall vector table
#
###############################################################################
.section .rodata
ALIGN
.globl sys_call_table
sys_call_table:
.long sys_restart_syscall /* 0 - old "setup()" system call, used for restarting */
.long sys_exit
.long sys_fork
.long sys_read
.long sys_write
.long sys_open /* 5 */
.long sys_close
.long sys_waitpid
.long sys_creat
.long sys_link
.long sys_unlink /* 10 */
.long sys_execve
.long sys_chdir
.long sys_time
.long sys_mknod
.long sys_chmod /* 15 */
.long sys_lchown16
.long sys_ni_syscall /* old break syscall holder */
.long sys_stat
.long sys_lseek
.long sys_getpid /* 20 */
.long sys_mount
.long sys_oldumount
.long sys_setuid16
.long sys_getuid16
.long sys_ni_syscall // sys_stime /* 25 */
.long sys_ptrace
.long sys_alarm
.long sys_fstat
.long sys_pause
.long sys_utime /* 30 */
.long sys_ni_syscall /* old stty syscall holder */
.long sys_ni_syscall /* old gtty syscall holder */
.long sys_access
.long sys_nice
.long sys_ni_syscall /* 35 */ /* old ftime syscall holder */
.long sys_sync
.long sys_kill
.long sys_rename
.long sys_mkdir
.long sys_rmdir /* 40 */
.long sys_dup
.long sys_pipe
.long sys_times
.long sys_ni_syscall /* old prof syscall holder */
.long sys_brk /* 45 */
.long sys_setgid16
.long sys_getgid16
.long sys_ni_syscall // sys_signal
.long sys_geteuid16
.long sys_getegid16 /* 50 */
.long sys_acct
.long sys_umount /* recycled never used phys( */
.long sys_ni_syscall /* old lock syscall holder */
.long sys_ioctl
.long sys_fcntl /* 55 */
.long sys_ni_syscall /* old mpx syscall holder */
.long sys_setpgid
.long sys_ni_syscall /* old ulimit syscall holder */
.long sys_ni_syscall /* old old uname syscall */
.long sys_umask /* 60 */
.long sys_chroot
.long sys_ustat
.long sys_dup2
.long sys_getppid
.long sys_getpgrp /* 65 */
.long sys_setsid
.long sys_sigaction
.long sys_ni_syscall // sys_sgetmask
.long sys_ni_syscall // sys_ssetmask
.long sys_setreuid16 /* 70 */
.long sys_setregid16
.long sys_sigsuspend
.long sys_ni_syscall // sys_sigpending
.long sys_sethostname
.long sys_setrlimit /* 75 */
.long sys_ni_syscall // sys_old_getrlimit
.long sys_getrusage
.long sys_gettimeofday
.long sys_settimeofday
.long sys_getgroups16 /* 80 */
.long sys_setgroups16
.long sys_ni_syscall /* old_select slot */
.long sys_symlink
.long sys_lstat
.long sys_readlink /* 85 */
.long sys_uselib
.long sys_swapon
.long sys_reboot
.long sys_ni_syscall // old_readdir
.long sys_ni_syscall /* 90 */ /* old_mmap slot */
.long sys_munmap
.long sys_truncate
.long sys_ftruncate
.long sys_fchmod
.long sys_fchown16 /* 95 */
.long sys_getpriority
.long sys_setpriority
.long sys_ni_syscall /* old profil syscall holder */
.long sys_statfs
.long sys_fstatfs /* 100 */
.long sys_ni_syscall /* ioperm for i386 */
.long sys_socketcall
.long sys_syslog
.long sys_setitimer
.long sys_getitimer /* 105 */
.long sys_newstat
.long sys_newlstat
.long sys_newfstat
.long sys_ni_syscall /* obsolete olduname( syscall */
.long sys_ni_syscall /* iopl for i386 */ /* 110 */
.long sys_vhangup
.long sys_ni_syscall /* obsolete idle( syscall */
.long sys_ni_syscall /* vm86old for i386 */
.long sys_wait4
.long sys_swapoff /* 115 */
.long sys_sysinfo
.long sys_ipc
.long sys_fsync
.long sys_sigreturn
.long sys_clone /* 120 */
.long sys_setdomainname
.long sys_newuname
.long sys_ni_syscall /* old "cacheflush" */
.long sys_adjtimex
.long sys_mprotect /* 125 */
.long sys_sigprocmask
.long sys_ni_syscall /* old "create_module" */
.long sys_init_module
.long sys_delete_module
.long sys_ni_syscall /* old "get_kernel_syms" */
.long sys_quotactl
.long sys_getpgid
.long sys_fchdir
.long sys_bdflush
.long sys_sysfs /* 135 */
.long sys_personality
.long sys_ni_syscall /* for afs_syscall */
.long sys_setfsuid16
.long sys_setfsgid16
.long sys_llseek /* 140 */
.long sys_getdents
.long sys_select
.long sys_flock
.long sys_msync
.long sys_readv /* 145 */
.long sys_writev
.long sys_getsid
.long sys_fdatasync
.long sys_sysctl
.long sys_mlock /* 150 */
.long sys_munlock
.long sys_mlockall
.long sys_munlockall
.long sys_sched_setparam
.long sys_sched_getparam /* 155 */
.long sys_sched_setscheduler
.long sys_sched_getscheduler
.long sys_sched_yield
.long sys_sched_get_priority_max
.long sys_sched_get_priority_min /* 160 */
.long sys_sched_rr_get_interval
.long sys_nanosleep
.long sys_mremap
.long sys_setresuid16
.long sys_getresuid16 /* 165 */
.long sys_ni_syscall /* for vm86 */
.long sys_ni_syscall /* Old sys_query_module */
.long sys_poll
.long sys_nfsservctl
.long sys_setresgid16 /* 170 */
.long sys_getresgid16
.long sys_prctl
.long sys_rt_sigreturn
.long sys_rt_sigaction
.long sys_rt_sigprocmask /* 175 */
.long sys_rt_sigpending
.long sys_rt_sigtimedwait
.long sys_rt_sigqueueinfo
.long sys_rt_sigsuspend
.long sys_pread64 /* 180 */
.long sys_pwrite64
.long sys_chown16
.long sys_getcwd
.long sys_capget
.long sys_capset /* 185 */
.long sys_sigaltstack
.long sys_sendfile
.long sys_ni_syscall /* streams1 */
.long sys_ni_syscall /* streams2 */
.long sys_vfork /* 190 */
.long sys_getrlimit
.long sys_mmap2
.long sys_truncate64
.long sys_ftruncate64
.long sys_stat64 /* 195 */
.long sys_lstat64
.long sys_fstat64
.long sys_lchown
.long sys_getuid
.long sys_getgid /* 200 */
.long sys_geteuid
.long sys_getegid
.long sys_setreuid
.long sys_setregid
.long sys_getgroups /* 205 */
.long sys_setgroups
.long sys_fchown
.long sys_setresuid
.long sys_getresuid
.long sys_setresgid /* 210 */
.long sys_getresgid
.long sys_chown
.long sys_setuid
.long sys_setgid
.long sys_setfsuid /* 215 */
.long sys_setfsgid
.long sys_pivot_root
.long sys_mincore
.long sys_madvise
.long sys_getdents64 /* 220 */
.long sys_fcntl64
.long sys_ni_syscall /* reserved for TUX */
.long sys_ni_syscall /* Reserved for Security */
.long sys_gettid
.long sys_readahead /* 225 */
.long sys_setxattr
.long sys_lsetxattr
.long sys_fsetxattr
.long sys_getxattr
.long sys_lgetxattr /* 230 */
.long sys_fgetxattr
.long sys_listxattr
.long sys_llistxattr
.long sys_flistxattr
.long sys_removexattr /* 235 */
.long sys_lremovexattr
.long sys_fremovexattr
.long sys_tkill
.long sys_sendfile64
.long sys_futex /* 240 */
.long sys_sched_setaffinity
.long sys_sched_getaffinity
.long sys_ni_syscall //sys_set_thread_area
.long sys_ni_syscall //sys_get_thread_area
.long sys_io_setup /* 245 */
.long sys_io_destroy
.long sys_io_getevents
.long sys_io_submit
.long sys_io_cancel
.long sys_fadvise64 /* 250 */
.long sys_ni_syscall
.long sys_exit_group
.long sys_lookup_dcookie
.long sys_epoll_create
.long sys_epoll_ctl /* 255 */
.long sys_epoll_wait
.long sys_remap_file_pages
.long sys_set_tid_address
.long sys_timer_create
.long sys_timer_settime /* 260 */
.long sys_timer_gettime
.long sys_timer_getoverrun
.long sys_timer_delete
.long sys_clock_settime
.long sys_clock_gettime /* 265 */
.long sys_clock_getres
.long sys_clock_nanosleep
.long sys_statfs64
.long sys_fstatfs64
.long sys_tgkill /* 270 */
.long sys_utimes
.long sys_fadvise64_64
.long sys_ni_syscall /* sys_vserver */
.long sys_mbind
.long sys_get_mempolicy
.long sys_set_mempolicy
.long sys_mq_open
.long sys_mq_unlink
.long sys_mq_timedsend
.long sys_mq_timedreceive /* 280 */
.long sys_mq_notify
.long sys_mq_getsetattr
.long sys_ni_syscall /* reserved for kexec */
.long sys_waitid
.long sys_ni_syscall /* 285 */ /* available */
.long sys_add_key
.long sys_request_key
.long sys_keyctl
.long sys_ioprio_set
.long sys_ioprio_get /* 290 */
.long sys_inotify_init
.long sys_inotify_add_watch
.long sys_inotify_rm_watch
.long sys_migrate_pages
.long sys_openat /* 295 */
.long sys_mkdirat
.long sys_mknodat
.long sys_fchownat
.long sys_futimesat
.long sys_fstatat64 /* 300 */
.long sys_unlinkat
.long sys_renameat
.long sys_linkat
.long sys_symlinkat
.long sys_readlinkat /* 305 */
.long sys_fchmodat
.long sys_faccessat
.long sys_pselect6
.long sys_ppoll
.long sys_unshare /* 310 */
.long sys_set_robust_list
.long sys_get_robust_list
.long sys_splice
.long sys_sync_file_range
.long sys_tee /* 315 */
.long sys_vmsplice
.long sys_move_pages
.long sys_getcpu
.long sys_epoll_pwait
.long sys_utimensat /* 320 */
.long sys_signalfd
.long sys_timerfd_create
.long sys_eventfd
.long sys_fallocate
.long sys_timerfd_settime /* 325 */
.long sys_timerfd_gettime
.long sys_signalfd4
.long sys_eventfd2
.long sys_epoll_create1
.long sys_dup3 /* 330 */
.long sys_pipe2
.long sys_inotify_init1
.long sys_preadv
.long sys_pwritev
.long sys_rt_tgsigqueueinfo /* 335 */
perf: Do the big rename: Performance Counters -> Performance Events Bye-bye Performance Counters, welcome Performance Events! In the past few months the perfcounters subsystem has grown out its initial role of counting hardware events, and has become (and is becoming) a much broader generic event enumeration, reporting, logging, monitoring, analysis facility. Naming its core object 'perf_counter' and naming the subsystem 'perfcounters' has become more and more of a misnomer. With pending code like hw-breakpoints support the 'counter' name is less and less appropriate. All in one, we've decided to rename the subsystem to 'performance events' and to propagate this rename through all fields, variables and API names. (in an ABI compatible fashion) The word 'event' is also a bit shorter than 'counter' - which makes it slightly more convenient to write/handle as well. Thanks goes to Stephane Eranian who first observed this misnomer and suggested a rename. User-space tooling and ABI compatibility is not affected - this patch should be function-invariant. (Also, defconfigs were not touched to keep the size down.) This patch has been generated via the following script: FILES=$(find * -type f | grep -vE 'oprofile|[^K]config') sed -i \ -e 's/PERF_EVENT_/PERF_RECORD_/g' \ -e 's/PERF_COUNTER/PERF_EVENT/g' \ -e 's/perf_counter/perf_event/g' \ -e 's/nb_counters/nb_events/g' \ -e 's/swcounter/swevent/g' \ -e 's/tpcounter_event/tp_event/g' \ $FILES for N in $(find . -name perf_counter.[ch]); do M=$(echo $N | sed 's/perf_counter/perf_event/g') mv $N $M done FILES=$(find . -name perf_event.*) sed -i \ -e 's/COUNTER_MASK/REG_MASK/g' \ -e 's/COUNTER/EVENT/g' \ -e 's/\<event\>/event_id/g' \ -e 's/counter/event/g' \ -e 's/Counter/Event/g' \ $FILES ... to keep it as correct as possible. This script can also be used by anyone who has pending perfcounters patches - it converts a Linux kernel tree over to the new naming. We tried to time this change to the point in time where the amount of pending patches is the smallest: the end of the merge window. Namespace clashes were fixed up in a preparatory patch - and some stylistic fallout will be fixed up in a subsequent patch. ( NOTE: 'counters' are still the proper terminology when we deal with hardware registers - and these sed scripts are a bit over-eager in renaming them. I've undone some of that, but in case there's something left where 'counter' would be better than 'event' we can undo that on an individual basis instead of touching an otherwise nicely automated patch. ) Suggested-by: Stephane Eranian <eranian@google.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: Paul Mackerras <paulus@samba.org> Reviewed-by: Arjan van de Ven <arjan@linux.intel.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Howells <dhowells@redhat.com> Cc: Kyle McMartin <kyle@mcmartin.ca> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: <linux-arch@vger.kernel.org> LKML-Reference: <new-submission> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-21 17:02:48 +07:00
.long sys_perf_event_open
ns: Wire up the setns system call 32bit and 64bit on x86 are tested and working. The rest I have looked at closely and I can't find any problems. setns is an easy system call to wire up. It just takes two ints so I don't expect any weird architecture porting problems. While doing this I have noticed that we have some architectures that are very slow to get new system calls. cris seems to be the slowest where the last system calls wired up were preadv and pwritev. avr32 is weird in that recvmmsg was wired up but never declared in unistd.h. frv is behind with perf_event_open being the last syscall wired up. On h8300 the last system call wired up was epoll_wait. On m32r the last system call wired up was fallocate. mn10300 has recvmmsg as the last system call wired up. The rest seem to at least have syncfs wired up which was new in the 2.6.39. v2: Most of the architecture support added by Daniel Lezcano <dlezcano@fr.ibm.com> v3: ported to v2.6.36-rc4 by: Eric W. Biederman <ebiederm@xmission.com> v4: Moved wiring up of the system call to another patch v5: ported to v2.6.39-rc6 v6: rebased onto parisc-next and net-next to avoid syscall conflicts. v7: ported to Linus's latest post 2.6.39 tree. >  arch/blackfin/include/asm/unistd.h     |    3 ++- >  arch/blackfin/mach-common/entry.S      |    1 + Acked-by: Mike Frysinger <vapier@gentoo.org> Oh - ia64 wiring looks good. Acked-by: Tony Luck <tony.luck@intel.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-05-28 09:28:27 +07:00
.long sys_setns
syscall_table_size = (. - sys_call_table)