linux_dsm_epyc7002/drivers/net/wireless/ath/ath10k/swap.c

209 lines
6.0 KiB
C
Raw Normal View History

/*
* Copyright (c) 2015 Qualcomm Atheros, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/* This file has implementation for code swap logic. With code swap feature,
* target can run the fw binary with even smaller IRAM size by using host
* memory to store some of the code segments.
*/
#include "core.h"
#include "bmi.h"
#include "debug.h"
static int ath10k_swap_code_seg_fill(struct ath10k *ar,
struct ath10k_swap_code_seg_info *seg_info,
const void *data, size_t data_len)
{
u8 *virt_addr = seg_info->virt_address[0];
u8 swap_magic[ATH10K_SWAP_CODE_SEG_MAGIC_BYTES_SZ] = {};
const u8 *fw_data = data;
union ath10k_swap_code_seg_item *swap_item;
u32 length = 0;
u32 payload_len;
u32 total_payload_len = 0;
u32 size_left = data_len;
/* Parse swap bin and copy the content to host allocated memory.
* The format is Address, length and value. The last 4-bytes is
* target write address. Currently address field is not used.
*/
seg_info->target_addr = -1;
while (size_left >= sizeof(*swap_item)) {
swap_item = (union ath10k_swap_code_seg_item *)fw_data;
payload_len = __le32_to_cpu(swap_item->tlv.length);
if ((payload_len > size_left) ||
(payload_len == 0 &&
size_left != sizeof(struct ath10k_swap_code_seg_tail))) {
ath10k_err(ar, "refusing to parse invalid tlv length %d\n",
payload_len);
return -EINVAL;
}
if (payload_len == 0) {
if (memcmp(swap_item->tail.magic_signature, swap_magic,
ATH10K_SWAP_CODE_SEG_MAGIC_BYTES_SZ)) {
ath10k_err(ar, "refusing an invalid swap file\n");
return -EINVAL;
}
seg_info->target_addr =
__le32_to_cpu(swap_item->tail.bmi_write_addr);
break;
}
memcpy(virt_addr, swap_item->tlv.data, payload_len);
virt_addr += payload_len;
length = payload_len + sizeof(struct ath10k_swap_code_seg_tlv);
size_left -= length;
fw_data += length;
total_payload_len += payload_len;
}
if (seg_info->target_addr == -1) {
ath10k_err(ar, "failed to parse invalid swap file\n");
return -EINVAL;
}
seg_info->seg_hw_info.swap_size = __cpu_to_le32(total_payload_len);
return 0;
}
static void
ath10k_swap_code_seg_free(struct ath10k *ar,
struct ath10k_swap_code_seg_info *seg_info)
{
u32 seg_size;
if (!seg_info)
return;
if (!seg_info->virt_address[0])
return;
seg_size = __le32_to_cpu(seg_info->seg_hw_info.size);
dma_free_coherent(ar->dev, seg_size, seg_info->virt_address[0],
seg_info->paddr[0]);
}
static struct ath10k_swap_code_seg_info *
ath10k_swap_code_seg_alloc(struct ath10k *ar, size_t swap_bin_len)
{
struct ath10k_swap_code_seg_info *seg_info;
void *virt_addr;
dma_addr_t paddr;
swap_bin_len = roundup(swap_bin_len, 2);
if (swap_bin_len > ATH10K_SWAP_CODE_SEG_BIN_LEN_MAX) {
ath10k_err(ar, "refusing code swap bin because it is too big %zu > %d\n",
swap_bin_len, ATH10K_SWAP_CODE_SEG_BIN_LEN_MAX);
return NULL;
}
seg_info = devm_kzalloc(ar->dev, sizeof(*seg_info), GFP_KERNEL);
if (!seg_info)
return NULL;
virt_addr = dma_alloc_coherent(ar->dev, swap_bin_len, &paddr,
GFP_KERNEL);
if (!virt_addr) {
ath10k_err(ar, "failed to allocate dma coherent memory\n");
return NULL;
}
seg_info->seg_hw_info.bus_addr[0] = __cpu_to_le32(paddr);
seg_info->seg_hw_info.size = __cpu_to_le32(swap_bin_len);
seg_info->seg_hw_info.swap_size = __cpu_to_le32(swap_bin_len);
seg_info->seg_hw_info.num_segs =
__cpu_to_le32(ATH10K_SWAP_CODE_SEG_NUM_SUPPORTED);
seg_info->seg_hw_info.size_log2 = __cpu_to_le32(ilog2(swap_bin_len));
seg_info->virt_address[0] = virt_addr;
seg_info->paddr[0] = paddr;
return seg_info;
}
int ath10k_swap_code_seg_configure(struct ath10k *ar,
enum ath10k_swap_code_seg_bin_type type)
{
int ret;
struct ath10k_swap_code_seg_info *seg_info = NULL;
switch (type) {
case ATH10K_SWAP_CODE_SEG_BIN_TYPE_FW:
if (!ar->swap.firmware_swap_code_seg_info)
return 0;
ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot found firmware code swap binary\n");
seg_info = ar->swap.firmware_swap_code_seg_info;
break;
default:
case ATH10K_SWAP_CODE_SEG_BIN_TYPE_OTP:
case ATH10K_SWAP_CODE_SEG_BIN_TYPE_UTF:
ath10k_warn(ar, "ignoring unknown code swap binary type %d\n",
type);
return 0;
}
ret = ath10k_bmi_write_memory(ar, seg_info->target_addr,
&seg_info->seg_hw_info,
sizeof(seg_info->seg_hw_info));
if (ret) {
ath10k_err(ar, "failed to write Code swap segment information (%d)\n",
ret);
return ret;
}
return 0;
}
void ath10k_swap_code_seg_release(struct ath10k *ar)
{
ath10k_swap_code_seg_free(ar, ar->swap.firmware_swap_code_seg_info);
ar->swap.firmware_codeswap_data = NULL;
ar->swap.firmware_codeswap_len = 0;
ar->swap.firmware_swap_code_seg_info = NULL;
}
int ath10k_swap_code_seg_init(struct ath10k *ar)
{
int ret;
struct ath10k_swap_code_seg_info *seg_info;
if (!ar->swap.firmware_codeswap_len || !ar->swap.firmware_codeswap_data)
return 0;
seg_info = ath10k_swap_code_seg_alloc(ar,
ar->swap.firmware_codeswap_len);
if (!seg_info) {
ath10k_err(ar, "failed to allocate fw code swap segment\n");
return -ENOMEM;
}
ret = ath10k_swap_code_seg_fill(ar, seg_info,
ar->swap.firmware_codeswap_data,
ar->swap.firmware_codeswap_len);
if (ret) {
ath10k_warn(ar, "failed to initialize fw code swap segment: %d\n",
ret);
ath10k_swap_code_seg_free(ar, seg_info);
return ret;
}
ar->swap.firmware_swap_code_seg_info = seg_info;
return 0;
}