mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-13 13:46:31 +07:00
521 lines
12 KiB
C
521 lines
12 KiB
C
|
/*
|
||
|
* Copyright (C) 1994 Linus Torvalds
|
||
|
*
|
||
|
* Pentium III FXSR, SSE support
|
||
|
* General FPU state handling cleanups
|
||
|
* Gareth Hughes <gareth@valinux.com>, May 2000
|
||
|
* x86-64 work by Andi Kleen 2002
|
||
|
*/
|
||
|
|
||
|
#ifndef _FPU_INTERNAL_H
|
||
|
#define _FPU_INTERNAL_H
|
||
|
|
||
|
#include <linux/kernel_stat.h>
|
||
|
#include <linux/regset.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <asm/asm.h>
|
||
|
#include <asm/cpufeature.h>
|
||
|
#include <asm/processor.h>
|
||
|
#include <asm/sigcontext.h>
|
||
|
#include <asm/user.h>
|
||
|
#include <asm/uaccess.h>
|
||
|
#include <asm/xsave.h>
|
||
|
|
||
|
extern unsigned int sig_xstate_size;
|
||
|
extern void fpu_init(void);
|
||
|
|
||
|
DECLARE_PER_CPU(struct task_struct *, fpu_owner_task);
|
||
|
|
||
|
extern user_regset_active_fn fpregs_active, xfpregs_active;
|
||
|
extern user_regset_get_fn fpregs_get, xfpregs_get, fpregs_soft_get,
|
||
|
xstateregs_get;
|
||
|
extern user_regset_set_fn fpregs_set, xfpregs_set, fpregs_soft_set,
|
||
|
xstateregs_set;
|
||
|
|
||
|
|
||
|
/*
|
||
|
* xstateregs_active == fpregs_active. Please refer to the comment
|
||
|
* at the definition of fpregs_active.
|
||
|
*/
|
||
|
#define xstateregs_active fpregs_active
|
||
|
|
||
|
extern struct _fpx_sw_bytes fx_sw_reserved;
|
||
|
#ifdef CONFIG_IA32_EMULATION
|
||
|
extern unsigned int sig_xstate_ia32_size;
|
||
|
extern struct _fpx_sw_bytes fx_sw_reserved_ia32;
|
||
|
struct _fpstate_ia32;
|
||
|
struct _xstate_ia32;
|
||
|
extern int save_i387_xstate_ia32(void __user *buf);
|
||
|
extern int restore_i387_xstate_ia32(void __user *buf);
|
||
|
#endif
|
||
|
|
||
|
#ifdef CONFIG_MATH_EMULATION
|
||
|
extern void finit_soft_fpu(struct i387_soft_struct *soft);
|
||
|
#else
|
||
|
static inline void finit_soft_fpu(struct i387_soft_struct *soft) {}
|
||
|
#endif
|
||
|
|
||
|
#define X87_FSW_ES (1 << 7) /* Exception Summary */
|
||
|
|
||
|
static __always_inline __pure bool use_xsaveopt(void)
|
||
|
{
|
||
|
return static_cpu_has(X86_FEATURE_XSAVEOPT);
|
||
|
}
|
||
|
|
||
|
static __always_inline __pure bool use_xsave(void)
|
||
|
{
|
||
|
return static_cpu_has(X86_FEATURE_XSAVE);
|
||
|
}
|
||
|
|
||
|
static __always_inline __pure bool use_fxsr(void)
|
||
|
{
|
||
|
return static_cpu_has(X86_FEATURE_FXSR);
|
||
|
}
|
||
|
|
||
|
extern void __sanitize_i387_state(struct task_struct *);
|
||
|
|
||
|
static inline void sanitize_i387_state(struct task_struct *tsk)
|
||
|
{
|
||
|
if (!use_xsaveopt())
|
||
|
return;
|
||
|
__sanitize_i387_state(tsk);
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_X86_64
|
||
|
static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
|
||
|
{
|
||
|
int err;
|
||
|
|
||
|
/* See comment in fxsave() below. */
|
||
|
#ifdef CONFIG_AS_FXSAVEQ
|
||
|
asm volatile("1: fxrstorq %[fx]\n\t"
|
||
|
"2:\n"
|
||
|
".section .fixup,\"ax\"\n"
|
||
|
"3: movl $-1,%[err]\n"
|
||
|
" jmp 2b\n"
|
||
|
".previous\n"
|
||
|
_ASM_EXTABLE(1b, 3b)
|
||
|
: [err] "=r" (err)
|
||
|
: [fx] "m" (*fx), "0" (0));
|
||
|
#else
|
||
|
asm volatile("1: rex64/fxrstor (%[fx])\n\t"
|
||
|
"2:\n"
|
||
|
".section .fixup,\"ax\"\n"
|
||
|
"3: movl $-1,%[err]\n"
|
||
|
" jmp 2b\n"
|
||
|
".previous\n"
|
||
|
_ASM_EXTABLE(1b, 3b)
|
||
|
: [err] "=r" (err)
|
||
|
: [fx] "R" (fx), "m" (*fx), "0" (0));
|
||
|
#endif
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
static inline int fxsave_user(struct i387_fxsave_struct __user *fx)
|
||
|
{
|
||
|
int err;
|
||
|
|
||
|
/*
|
||
|
* Clear the bytes not touched by the fxsave and reserved
|
||
|
* for the SW usage.
|
||
|
*/
|
||
|
err = __clear_user(&fx->sw_reserved,
|
||
|
sizeof(struct _fpx_sw_bytes));
|
||
|
if (unlikely(err))
|
||
|
return -EFAULT;
|
||
|
|
||
|
/* See comment in fxsave() below. */
|
||
|
#ifdef CONFIG_AS_FXSAVEQ
|
||
|
asm volatile("1: fxsaveq %[fx]\n\t"
|
||
|
"2:\n"
|
||
|
".section .fixup,\"ax\"\n"
|
||
|
"3: movl $-1,%[err]\n"
|
||
|
" jmp 2b\n"
|
||
|
".previous\n"
|
||
|
_ASM_EXTABLE(1b, 3b)
|
||
|
: [err] "=r" (err), [fx] "=m" (*fx)
|
||
|
: "0" (0));
|
||
|
#else
|
||
|
asm volatile("1: rex64/fxsave (%[fx])\n\t"
|
||
|
"2:\n"
|
||
|
".section .fixup,\"ax\"\n"
|
||
|
"3: movl $-1,%[err]\n"
|
||
|
" jmp 2b\n"
|
||
|
".previous\n"
|
||
|
_ASM_EXTABLE(1b, 3b)
|
||
|
: [err] "=r" (err), "=m" (*fx)
|
||
|
: [fx] "R" (fx), "0" (0));
|
||
|
#endif
|
||
|
if (unlikely(err) &&
|
||
|
__clear_user(fx, sizeof(struct i387_fxsave_struct)))
|
||
|
err = -EFAULT;
|
||
|
/* No need to clear here because the caller clears USED_MATH */
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
static inline void fpu_fxsave(struct fpu *fpu)
|
||
|
{
|
||
|
/* Using "rex64; fxsave %0" is broken because, if the memory operand
|
||
|
uses any extended registers for addressing, a second REX prefix
|
||
|
will be generated (to the assembler, rex64 followed by semicolon
|
||
|
is a separate instruction), and hence the 64-bitness is lost. */
|
||
|
|
||
|
#ifdef CONFIG_AS_FXSAVEQ
|
||
|
/* Using "fxsaveq %0" would be the ideal choice, but is only supported
|
||
|
starting with gas 2.16. */
|
||
|
__asm__ __volatile__("fxsaveq %0"
|
||
|
: "=m" (fpu->state->fxsave));
|
||
|
#else
|
||
|
/* Using, as a workaround, the properly prefixed form below isn't
|
||
|
accepted by any binutils version so far released, complaining that
|
||
|
the same type of prefix is used twice if an extended register is
|
||
|
needed for addressing (fix submitted to mainline 2005-11-21).
|
||
|
asm volatile("rex64/fxsave %0"
|
||
|
: "=m" (fpu->state->fxsave));
|
||
|
This, however, we can work around by forcing the compiler to select
|
||
|
an addressing mode that doesn't require extended registers. */
|
||
|
asm volatile("rex64/fxsave (%[fx])"
|
||
|
: "=m" (fpu->state->fxsave)
|
||
|
: [fx] "R" (&fpu->state->fxsave));
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
#else /* CONFIG_X86_32 */
|
||
|
|
||
|
/* perform fxrstor iff the processor has extended states, otherwise frstor */
|
||
|
static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
|
||
|
{
|
||
|
/*
|
||
|
* The "nop" is needed to make the instructions the same
|
||
|
* length.
|
||
|
*/
|
||
|
alternative_input(
|
||
|
"nop ; frstor %1",
|
||
|
"fxrstor %1",
|
||
|
X86_FEATURE_FXSR,
|
||
|
"m" (*fx));
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static inline void fpu_fxsave(struct fpu *fpu)
|
||
|
{
|
||
|
asm volatile("fxsave %[fx]"
|
||
|
: [fx] "=m" (fpu->state->fxsave));
|
||
|
}
|
||
|
|
||
|
#endif /* CONFIG_X86_64 */
|
||
|
|
||
|
/*
|
||
|
* These must be called with preempt disabled. Returns
|
||
|
* 'true' if the FPU state is still intact.
|
||
|
*/
|
||
|
static inline int fpu_save_init(struct fpu *fpu)
|
||
|
{
|
||
|
if (use_xsave()) {
|
||
|
fpu_xsave(fpu);
|
||
|
|
||
|
/*
|
||
|
* xsave header may indicate the init state of the FP.
|
||
|
*/
|
||
|
if (!(fpu->state->xsave.xsave_hdr.xstate_bv & XSTATE_FP))
|
||
|
return 1;
|
||
|
} else if (use_fxsr()) {
|
||
|
fpu_fxsave(fpu);
|
||
|
} else {
|
||
|
asm volatile("fnsave %[fx]; fwait"
|
||
|
: [fx] "=m" (fpu->state->fsave));
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If exceptions are pending, we need to clear them so
|
||
|
* that we don't randomly get exceptions later.
|
||
|
*
|
||
|
* FIXME! Is this perhaps only true for the old-style
|
||
|
* irq13 case? Maybe we could leave the x87 state
|
||
|
* intact otherwise?
|
||
|
*/
|
||
|
if (unlikely(fpu->state->fxsave.swd & X87_FSW_ES)) {
|
||
|
asm volatile("fnclex");
|
||
|
return 0;
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static inline int __save_init_fpu(struct task_struct *tsk)
|
||
|
{
|
||
|
return fpu_save_init(&tsk->thread.fpu);
|
||
|
}
|
||
|
|
||
|
static inline int fpu_fxrstor_checking(struct fpu *fpu)
|
||
|
{
|
||
|
return fxrstor_checking(&fpu->state->fxsave);
|
||
|
}
|
||
|
|
||
|
static inline int fpu_restore_checking(struct fpu *fpu)
|
||
|
{
|
||
|
if (use_xsave())
|
||
|
return fpu_xrstor_checking(fpu);
|
||
|
else
|
||
|
return fpu_fxrstor_checking(fpu);
|
||
|
}
|
||
|
|
||
|
static inline int restore_fpu_checking(struct task_struct *tsk)
|
||
|
{
|
||
|
/* AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception
|
||
|
is pending. Clear the x87 state here by setting it to fixed
|
||
|
values. "m" is a random variable that should be in L1 */
|
||
|
alternative_input(
|
||
|
ASM_NOP8 ASM_NOP2,
|
||
|
"emms\n\t" /* clear stack tags */
|
||
|
"fildl %P[addr]", /* set F?P to defined value */
|
||
|
X86_FEATURE_FXSAVE_LEAK,
|
||
|
[addr] "m" (tsk->thread.fpu.has_fpu));
|
||
|
|
||
|
return fpu_restore_checking(&tsk->thread.fpu);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Software FPU state helpers. Careful: these need to
|
||
|
* be preemption protection *and* they need to be
|
||
|
* properly paired with the CR0.TS changes!
|
||
|
*/
|
||
|
static inline int __thread_has_fpu(struct task_struct *tsk)
|
||
|
{
|
||
|
return tsk->thread.fpu.has_fpu;
|
||
|
}
|
||
|
|
||
|
/* Must be paired with an 'stts' after! */
|
||
|
static inline void __thread_clear_has_fpu(struct task_struct *tsk)
|
||
|
{
|
||
|
tsk->thread.fpu.has_fpu = 0;
|
||
|
percpu_write(fpu_owner_task, NULL);
|
||
|
}
|
||
|
|
||
|
/* Must be paired with a 'clts' before! */
|
||
|
static inline void __thread_set_has_fpu(struct task_struct *tsk)
|
||
|
{
|
||
|
tsk->thread.fpu.has_fpu = 1;
|
||
|
percpu_write(fpu_owner_task, tsk);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Encapsulate the CR0.TS handling together with the
|
||
|
* software flag.
|
||
|
*
|
||
|
* These generally need preemption protection to work,
|
||
|
* do try to avoid using these on their own.
|
||
|
*/
|
||
|
static inline void __thread_fpu_end(struct task_struct *tsk)
|
||
|
{
|
||
|
__thread_clear_has_fpu(tsk);
|
||
|
stts();
|
||
|
}
|
||
|
|
||
|
static inline void __thread_fpu_begin(struct task_struct *tsk)
|
||
|
{
|
||
|
clts();
|
||
|
__thread_set_has_fpu(tsk);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* FPU state switching for scheduling.
|
||
|
*
|
||
|
* This is a two-stage process:
|
||
|
*
|
||
|
* - switch_fpu_prepare() saves the old state and
|
||
|
* sets the new state of the CR0.TS bit. This is
|
||
|
* done within the context of the old process.
|
||
|
*
|
||
|
* - switch_fpu_finish() restores the new state as
|
||
|
* necessary.
|
||
|
*/
|
||
|
typedef struct { int preload; } fpu_switch_t;
|
||
|
|
||
|
/*
|
||
|
* FIXME! We could do a totally lazy restore, but we need to
|
||
|
* add a per-cpu "this was the task that last touched the FPU
|
||
|
* on this CPU" variable, and the task needs to have a "I last
|
||
|
* touched the FPU on this CPU" and check them.
|
||
|
*
|
||
|
* We don't do that yet, so "fpu_lazy_restore()" always returns
|
||
|
* false, but some day..
|
||
|
*/
|
||
|
static inline int fpu_lazy_restore(struct task_struct *new, unsigned int cpu)
|
||
|
{
|
||
|
return new == percpu_read_stable(fpu_owner_task) &&
|
||
|
cpu == new->thread.fpu.last_cpu;
|
||
|
}
|
||
|
|
||
|
static inline fpu_switch_t switch_fpu_prepare(struct task_struct *old, struct task_struct *new, int cpu)
|
||
|
{
|
||
|
fpu_switch_t fpu;
|
||
|
|
||
|
fpu.preload = tsk_used_math(new) && new->fpu_counter > 5;
|
||
|
if (__thread_has_fpu(old)) {
|
||
|
if (!__save_init_fpu(old))
|
||
|
cpu = ~0;
|
||
|
old->thread.fpu.last_cpu = cpu;
|
||
|
old->thread.fpu.has_fpu = 0; /* But leave fpu_owner_task! */
|
||
|
|
||
|
/* Don't change CR0.TS if we just switch! */
|
||
|
if (fpu.preload) {
|
||
|
new->fpu_counter++;
|
||
|
__thread_set_has_fpu(new);
|
||
|
prefetch(new->thread.fpu.state);
|
||
|
} else
|
||
|
stts();
|
||
|
} else {
|
||
|
old->fpu_counter = 0;
|
||
|
old->thread.fpu.last_cpu = ~0;
|
||
|
if (fpu.preload) {
|
||
|
new->fpu_counter++;
|
||
|
if (fpu_lazy_restore(new, cpu))
|
||
|
fpu.preload = 0;
|
||
|
else
|
||
|
prefetch(new->thread.fpu.state);
|
||
|
__thread_fpu_begin(new);
|
||
|
}
|
||
|
}
|
||
|
return fpu;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* By the time this gets called, we've already cleared CR0.TS and
|
||
|
* given the process the FPU if we are going to preload the FPU
|
||
|
* state - all we need to do is to conditionally restore the register
|
||
|
* state itself.
|
||
|
*/
|
||
|
static inline void switch_fpu_finish(struct task_struct *new, fpu_switch_t fpu)
|
||
|
{
|
||
|
if (fpu.preload) {
|
||
|
if (unlikely(restore_fpu_checking(new)))
|
||
|
__thread_fpu_end(new);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Signal frame handlers...
|
||
|
*/
|
||
|
extern int save_i387_xstate(void __user *buf);
|
||
|
extern int restore_i387_xstate(void __user *buf);
|
||
|
|
||
|
static inline void __clear_fpu(struct task_struct *tsk)
|
||
|
{
|
||
|
if (__thread_has_fpu(tsk)) {
|
||
|
/* Ignore delayed exceptions from user space */
|
||
|
asm volatile("1: fwait\n"
|
||
|
"2:\n"
|
||
|
_ASM_EXTABLE(1b, 2b));
|
||
|
__thread_fpu_end(tsk);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The actual user_fpu_begin/end() functions
|
||
|
* need to be preemption-safe.
|
||
|
*
|
||
|
* NOTE! user_fpu_end() must be used only after you
|
||
|
* have saved the FP state, and user_fpu_begin() must
|
||
|
* be used only immediately before restoring it.
|
||
|
* These functions do not do any save/restore on
|
||
|
* their own.
|
||
|
*/
|
||
|
static inline void user_fpu_end(void)
|
||
|
{
|
||
|
preempt_disable();
|
||
|
__thread_fpu_end(current);
|
||
|
preempt_enable();
|
||
|
}
|
||
|
|
||
|
static inline void user_fpu_begin(void)
|
||
|
{
|
||
|
preempt_disable();
|
||
|
if (!user_has_fpu())
|
||
|
__thread_fpu_begin(current);
|
||
|
preempt_enable();
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* These disable preemption on their own and are safe
|
||
|
*/
|
||
|
static inline void save_init_fpu(struct task_struct *tsk)
|
||
|
{
|
||
|
WARN_ON_ONCE(!__thread_has_fpu(tsk));
|
||
|
preempt_disable();
|
||
|
__save_init_fpu(tsk);
|
||
|
__thread_fpu_end(tsk);
|
||
|
preempt_enable();
|
||
|
}
|
||
|
|
||
|
static inline void clear_fpu(struct task_struct *tsk)
|
||
|
{
|
||
|
preempt_disable();
|
||
|
__clear_fpu(tsk);
|
||
|
preempt_enable();
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* i387 state interaction
|
||
|
*/
|
||
|
static inline unsigned short get_fpu_cwd(struct task_struct *tsk)
|
||
|
{
|
||
|
if (cpu_has_fxsr) {
|
||
|
return tsk->thread.fpu.state->fxsave.cwd;
|
||
|
} else {
|
||
|
return (unsigned short)tsk->thread.fpu.state->fsave.cwd;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static inline unsigned short get_fpu_swd(struct task_struct *tsk)
|
||
|
{
|
||
|
if (cpu_has_fxsr) {
|
||
|
return tsk->thread.fpu.state->fxsave.swd;
|
||
|
} else {
|
||
|
return (unsigned short)tsk->thread.fpu.state->fsave.swd;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static inline unsigned short get_fpu_mxcsr(struct task_struct *tsk)
|
||
|
{
|
||
|
if (cpu_has_xmm) {
|
||
|
return tsk->thread.fpu.state->fxsave.mxcsr;
|
||
|
} else {
|
||
|
return MXCSR_DEFAULT;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static bool fpu_allocated(struct fpu *fpu)
|
||
|
{
|
||
|
return fpu->state != NULL;
|
||
|
}
|
||
|
|
||
|
static inline int fpu_alloc(struct fpu *fpu)
|
||
|
{
|
||
|
if (fpu_allocated(fpu))
|
||
|
return 0;
|
||
|
fpu->state = kmem_cache_alloc(task_xstate_cachep, GFP_KERNEL);
|
||
|
if (!fpu->state)
|
||
|
return -ENOMEM;
|
||
|
WARN_ON((unsigned long)fpu->state & 15);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static inline void fpu_free(struct fpu *fpu)
|
||
|
{
|
||
|
if (fpu->state) {
|
||
|
kmem_cache_free(task_xstate_cachep, fpu->state);
|
||
|
fpu->state = NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static inline void fpu_copy(struct fpu *dst, struct fpu *src)
|
||
|
{
|
||
|
memcpy(dst->state, src->state, xstate_size);
|
||
|
}
|
||
|
|
||
|
extern void fpu_finit(struct fpu *fpu);
|
||
|
|
||
|
#endif
|