linux_dsm_epyc7002/drivers/char/tpm/tpm.h

619 lines
15 KiB
C
Raw Normal View History

/*
* Copyright (C) 2004 IBM Corporation
* Copyright (C) 2015 Intel Corporation
*
* Authors:
* Leendert van Doorn <leendert@watson.ibm.com>
* Dave Safford <safford@watson.ibm.com>
* Reiner Sailer <sailer@watson.ibm.com>
* Kylene Hall <kjhall@us.ibm.com>
*
* Maintained by: <tpmdd-devel@lists.sourceforge.net>
*
* Device driver for TCG/TCPA TPM (trusted platform module).
* Specifications at www.trustedcomputinggroup.org
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation, version 2 of the
* License.
*
*/
#ifndef __TPM_H__
#define __TPM_H__
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/fs.h>
#include <linux/hw_random.h>
#include <linux/mutex.h>
#include <linux/sched.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/tpm.h>
#include <linux/acpi.h>
#include <linux/cdev.h>
#include <linux/highmem.h>
#include <linux/tpm_eventlog.h>
#include <crypto/hash_info.h>
#ifdef CONFIG_X86
#include <asm/intel-family.h>
#endif
enum tpm_const {
TPM_MINOR = 224, /* officially assigned */
TPM_BUFSIZE = 4096,
TPM_NUM_DEVICES = 65536,
TPM: Retry SaveState command in suspend path If the TPM has already been sent a SaveState command before the driver is loaded it may have problems sending that same command again later. This issue is seen with the Chromebook Pixel due to a firmware bug in the legacy mode boot path which is sending the SaveState command before booting the kernel. More information is available at http://crbug.com/203524 This change introduces a retry of the SaveState command in the suspend path in order to work around this issue. A future firmware update should fix this but this is also a trivial workaround in the driver that has no effect on systems that do not show this problem. When this does happen the TPM responds with a non-fatal TPM_RETRY code that is defined in the specification: The TPM is too busy to respond to the command immediately, but the command could be resubmitted at a later time. The TPM MAY return TPM_RETRY for any command at any time. It can take several seconds before the TPM will respond again. I measured a typical time between 3 and 4 seconds and the timeout is set at a safe 5 seconds. It is also possible to reproduce this with commands via /dev/tpm0. The bug linked above has a python script attached which can be used to test for this problem. I tested a variety of TPMs from Infineon, Nuvoton, Atmel, and STMicro but was only able to reproduce this with LPC and I2C TPMs from Infineon. The TPM specification only loosely defines this behavior: TPM Main Level 2 Part 3 v1.2 r116, section 3.3. TPM_SaveState: The TPM MAY declare all preserved values invalid in response to any command other than TPM_Init. TCG PC Client BIOS Spec 1.21 section 8.3.1. After issuing a TPM_SaveState command, the OS SHOULD NOT issue TPM commands before transitioning to S3 without issuing another TPM_SaveState command. TCG PC Client TIS 1.21, section 4. Power Management: The TPM_SaveState command allows a Static OS to indicate to the TPM that the platform may enter a low power state where the TPM will be required to enter into the D3 power state. The use of the term "may" is significant in that there is no requirement for the platform to actually enter the low power state after sending the TPM_SaveState command. The software may, in fact, send subsequent commands after sending the TPM_SaveState command. Change-Id: I52b41e826412688e5b6c8ddd3bb16409939704e9 Signed-off-by: Duncan Laurie <dlaurie@chromium.org> Signed-off-by: Kent Yoder <key@linux.vnet.ibm.com>
2013-03-18 04:56:39 +07:00
TPM_RETRY = 50, /* 5 seconds */
TPM_NUM_EVENT_LOG_FILES = 3,
};
enum tpm_timeout {
TPM_TIMEOUT = 5, /* msecs */
TPM_TIMEOUT_RETRY = 100, /* msecs */
TPM_TIMEOUT_RANGE_US = 300, /* usecs */
tpm: reduce polling time to usecs for even finer granularity The TPM burstcount and status commands are supposed to return very quickly [2][3]. This patch further reduces the TPM poll sleep time to usecs in get_burstcount() and wait_for_tpm_stat() by calling usleep_range() directly. After this change, performance on a system[1] with a TPM 1.2 with an 8 byte burstcount for 1000 extends improved from ~10.7 sec to ~7 sec. [1] All tests are performed on an x86 based, locked down, single purpose closed system. It has Infineon TPM 1.2 using LPC Bus. [2] From the TCG Specification "TCG PC Client Specific TPM Interface Specification (TIS), Family 1.2": "NOTE : It takes roughly 330 ns per byte transfer on LPC. 256 bytes would take 84 us, which is a long time to stall the CPU. Chipsets may not be designed to post this much data to LPC; therefore, the CPU itself is stalled for much of this time. Sending 1 kB would take 350 μs. Therefore, even if the TPM_STS_x.burstCount field is a high value, software SHOULD be interruptible during this period." [3] From the TCG Specification 2.0, "TCG PC Client Platform TPM Profile (PTP) Specification": "It takes roughly 330 ns per byte transfer on LPC. 256 bytes would take 84 us. Chipsets may not be designed to post this much data to LPC; therefore, the CPU itself is stalled for much of this time. Sending 1 kB would take 350 us. Therefore, even if the TPM_STS_x.burstCount field is a high value, software should be interruptible during this period. For SPI, assuming 20MHz clock and 64-byte transfers, it would take about 120 usec to move 256B of data. Sending 1kB would take about 500 usec. If the transactions are done using 4 bytes at a time, then it would take about 1 msec. to transfer 1kB of data." Signed-off-by: Nayna Jain <nayna@linux.vnet.ibm.com> Reviewed-by: Mimi Zohar <zohar@linux.vnet.ibm.com> Reviewed-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Acked-by: Jay Freyensee <why2jjj.linux@gmail.com> Tested-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
2018-05-16 12:51:25 +07:00
TPM_TIMEOUT_POLL = 1, /* msecs */
TPM_TIMEOUT_USECS_MIN = 100, /* usecs */
TPM_TIMEOUT_USECS_MAX = 500 /* usecs */
};
/* TPM addresses */
enum tpm_addr {
TPM_SUPERIO_ADDR = 0x2E,
TPM_ADDR = 0x4E,
};
/* Indexes the duration array */
enum tpm_duration {
TPM_SHORT = 0,
TPM_MEDIUM = 1,
TPM_LONG = 2,
TPM_LONG_LONG = 3,
TPM_UNDEFINED,
TPM_NUM_DURATIONS = TPM_UNDEFINED,
};
TPM: Retry SaveState command in suspend path If the TPM has already been sent a SaveState command before the driver is loaded it may have problems sending that same command again later. This issue is seen with the Chromebook Pixel due to a firmware bug in the legacy mode boot path which is sending the SaveState command before booting the kernel. More information is available at http://crbug.com/203524 This change introduces a retry of the SaveState command in the suspend path in order to work around this issue. A future firmware update should fix this but this is also a trivial workaround in the driver that has no effect on systems that do not show this problem. When this does happen the TPM responds with a non-fatal TPM_RETRY code that is defined in the specification: The TPM is too busy to respond to the command immediately, but the command could be resubmitted at a later time. The TPM MAY return TPM_RETRY for any command at any time. It can take several seconds before the TPM will respond again. I measured a typical time between 3 and 4 seconds and the timeout is set at a safe 5 seconds. It is also possible to reproduce this with commands via /dev/tpm0. The bug linked above has a python script attached which can be used to test for this problem. I tested a variety of TPMs from Infineon, Nuvoton, Atmel, and STMicro but was only able to reproduce this with LPC and I2C TPMs from Infineon. The TPM specification only loosely defines this behavior: TPM Main Level 2 Part 3 v1.2 r116, section 3.3. TPM_SaveState: The TPM MAY declare all preserved values invalid in response to any command other than TPM_Init. TCG PC Client BIOS Spec 1.21 section 8.3.1. After issuing a TPM_SaveState command, the OS SHOULD NOT issue TPM commands before transitioning to S3 without issuing another TPM_SaveState command. TCG PC Client TIS 1.21, section 4. Power Management: The TPM_SaveState command allows a Static OS to indicate to the TPM that the platform may enter a low power state where the TPM will be required to enter into the D3 power state. The use of the term "may" is significant in that there is no requirement for the platform to actually enter the low power state after sending the TPM_SaveState command. The software may, in fact, send subsequent commands after sending the TPM_SaveState command. Change-Id: I52b41e826412688e5b6c8ddd3bb16409939704e9 Signed-off-by: Duncan Laurie <dlaurie@chromium.org> Signed-off-by: Kent Yoder <key@linux.vnet.ibm.com>
2013-03-18 04:56:39 +07:00
#define TPM_WARN_RETRY 0x800
#define TPM_WARN_DOING_SELFTEST 0x802
#define TPM_ERR_DEACTIVATED 0x6
#define TPM_ERR_DISABLED 0x7
#define TPM_ERR_INVALID_POSTINIT 38
#define TPM_HEADER_SIZE 10
enum tpm2_const {
TPM2_PLATFORM_PCR = 24,
TPM2_PCR_SELECT_MIN = ((TPM2_PLATFORM_PCR + 7) / 8),
};
enum tpm2_timeouts {
TPM2_TIMEOUT_A = 750,
TPM2_TIMEOUT_B = 2000,
TPM2_TIMEOUT_C = 200,
TPM2_TIMEOUT_D = 30,
TPM2_DURATION_SHORT = 20,
TPM2_DURATION_MEDIUM = 750,
TPM2_DURATION_LONG = 2000,
TPM2_DURATION_LONG_LONG = 300000,
TPM2_DURATION_DEFAULT = 120000,
};
enum tpm2_structures {
TPM2_ST_NO_SESSIONS = 0x8001,
TPM2_ST_SESSIONS = 0x8002,
};
tpm: return a TPM_RC_COMMAND_CODE response if command is not implemented According to the TPM Library Specification, a TPM device must do a command header validation before processing and return a TPM_RC_COMMAND_CODE code if the command is not implemented. So user-space will expect to handle that response as an error. But if the in-kernel resource manager is used (/dev/tpmrm?), an -EINVAL errno code is returned instead if the command isn't implemented. This confuses userspace since it doesn't expect that error value. This also isn't consistent with the behavior when not using TPM spaces and accessing the TPM directly (/dev/tpm?). In this case, the command is sent to the TPM even when not implemented and the TPM responds with an error. Instead of returning an -EINVAL errno code when the tpm_validate_command() function fails, synthesize a TPM command response so user-space can get a TPM_RC_COMMAND_CODE as expected when a chip doesn't implement the command. The TPM only sets 12 of the 32 bits in the TPM_RC response, so the TSS and TAB specifications define that higher layers in the stack should use some of the unused 20 bits to specify from which level of the stack the error is coming from. Since the TPM_RC_COMMAND_CODE response code is sent by the kernel resource manager, set the error level to the TAB/RM layer so user-space is aware of this. Suggested-by: Jason Gunthorpe <jgg@ziepe.ca> Signed-off-by: Javier Martinez Canillas <javierm@redhat.com> Reviewed-by: William Roberts <william.c.roberts@intel.com> Reviewed-by: Philip Tricca <philip.b.tricca@intel.com> Reviewed-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Tested-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
2017-11-30 14:39:07 +07:00
/* Indicates from what layer of the software stack the error comes from */
#define TSS2_RC_LAYER_SHIFT 16
#define TSS2_RESMGR_TPM_RC_LAYER (11 << TSS2_RC_LAYER_SHIFT)
enum tpm2_return_codes {
TPM2_RC_SUCCESS = 0x0000,
TPM2_RC_HASH = 0x0083, /* RC_FMT1 */
TPM2_RC_HANDLE = 0x008B,
TPM2_RC_INITIALIZE = 0x0100, /* RC_VER1 */
tpm: fix intermittent failure with self tests My Nuvoton 6xx in a Dell XPS-13 has been intermittently failing to work (necessitating a reboot). The problem seems to be that the TPM gets into a state where the partial self-test doesn't return TPM_RC_SUCCESS (meaning all tests have run to completion), but instead returns TPM_RC_TESTING (meaning some tests are still running in the background). There are various theories that resending the self-test command actually causes the tests to restart and thus triggers more TPM_RC_TESTING returns until the timeout is exceeded. There are several issues here: firstly being we shouldn't slow down the boot sequence waiting for the self test to complete once the TPM backgrounds them. It will actually make available all functions that have passed and if it gets a failure return TPM_RC_FAILURE to every subsequent command. So the fix is to kick off self tests once and if they return TPM_RC_TESTING log that as a backgrounded self test and continue on. In order to prevent other tpm users from seeing any TPM_RC_TESTING returns (which it might if they send a command that needs a TPM subsystem which is still under test), we loop in tpm_transmit_cmd until either a timeout or we don't get a TPM_RC_TESTING return. Finally, there have been observations of strange returns from a partial test. One Nuvoton is occasionally returning TPM_RC_COMMAND_CODE, so treat any unexpected return from a partial self test as an indication we need to run a full self test. [jarkko.sakkinen@linux.intel.com: cleaned up some klog messages and dropped tpm_transmit_check() helper function from James' original commit.] Fixes: 2482b1bba5122 ("tpm: Trigger only missing TPM 2.0 self tests") Cc: stable@vger.kernel.org Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com> Reviewed-by: Jarkko Sakkinen <jarkko.sakkine@linux.intel.com> Tested-by: Jarkko Sakkinen <jarkko.sakkine@linux.intel.com> Signed-off-by: Jarkko Sakkinen <jarkko.sakkine@linux.intel.com>
2018-03-22 22:32:20 +07:00
TPM2_RC_FAILURE = 0x0101,
TPM2_RC_DISABLED = 0x0120,
tpm: return a TPM_RC_COMMAND_CODE response if command is not implemented According to the TPM Library Specification, a TPM device must do a command header validation before processing and return a TPM_RC_COMMAND_CODE code if the command is not implemented. So user-space will expect to handle that response as an error. But if the in-kernel resource manager is used (/dev/tpmrm?), an -EINVAL errno code is returned instead if the command isn't implemented. This confuses userspace since it doesn't expect that error value. This also isn't consistent with the behavior when not using TPM spaces and accessing the TPM directly (/dev/tpm?). In this case, the command is sent to the TPM even when not implemented and the TPM responds with an error. Instead of returning an -EINVAL errno code when the tpm_validate_command() function fails, synthesize a TPM command response so user-space can get a TPM_RC_COMMAND_CODE as expected when a chip doesn't implement the command. The TPM only sets 12 of the 32 bits in the TPM_RC response, so the TSS and TAB specifications define that higher layers in the stack should use some of the unused 20 bits to specify from which level of the stack the error is coming from. Since the TPM_RC_COMMAND_CODE response code is sent by the kernel resource manager, set the error level to the TAB/RM layer so user-space is aware of this. Suggested-by: Jason Gunthorpe <jgg@ziepe.ca> Signed-off-by: Javier Martinez Canillas <javierm@redhat.com> Reviewed-by: William Roberts <william.c.roberts@intel.com> Reviewed-by: Philip Tricca <philip.b.tricca@intel.com> Reviewed-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Tested-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
2017-11-30 14:39:07 +07:00
TPM2_RC_COMMAND_CODE = 0x0143,
TPM2_RC_TESTING = 0x090A, /* RC_WARN */
TPM2_RC_REFERENCE_H0 = 0x0910,
TPM2_RC_RETRY = 0x0922,
};
enum tpm2_algorithms {
TPM2_ALG_ERROR = 0x0000,
TPM2_ALG_SHA1 = 0x0004,
TPM2_ALG_KEYEDHASH = 0x0008,
TPM2_ALG_SHA256 = 0x000B,
TPM2_ALG_SHA384 = 0x000C,
TPM2_ALG_SHA512 = 0x000D,
TPM2_ALG_NULL = 0x0010,
TPM2_ALG_SM3_256 = 0x0012,
};
enum tpm2_command_codes {
TPM2_CC_FIRST = 0x011F,
TPM2_CC_HIERARCHY_CONTROL = 0x0121,
TPM2_CC_HIERARCHY_CHANGE_AUTH = 0x0129,
TPM2_CC_CREATE_PRIMARY = 0x0131,
TPM2_CC_SEQUENCE_COMPLETE = 0x013E,
TPM2_CC_SELF_TEST = 0x0143,
TPM2_CC_STARTUP = 0x0144,
TPM2_CC_SHUTDOWN = 0x0145,
TPM2_CC_NV_READ = 0x014E,
TPM2_CC_CREATE = 0x0153,
TPM2_CC_LOAD = 0x0157,
TPM2_CC_SEQUENCE_UPDATE = 0x015C,
TPM2_CC_UNSEAL = 0x015E,
TPM2_CC_CONTEXT_LOAD = 0x0161,
TPM2_CC_CONTEXT_SAVE = 0x0162,
TPM2_CC_FLUSH_CONTEXT = 0x0165,
TPM2_CC_VERIFY_SIGNATURE = 0x0177,
TPM2_CC_GET_CAPABILITY = 0x017A,
TPM2_CC_GET_RANDOM = 0x017B,
TPM2_CC_PCR_READ = 0x017E,
TPM2_CC_PCR_EXTEND = 0x0182,
TPM2_CC_EVENT_SEQUENCE_COMPLETE = 0x0185,
TPM2_CC_HASH_SEQUENCE_START = 0x0186,
TPM2_CC_CREATE_LOADED = 0x0191,
TPM2_CC_LAST = 0x0193, /* Spec 1.36 */
};
enum tpm2_permanent_handles {
TPM2_RS_PW = 0x40000009,
};
enum tpm2_capabilities {
TPM2_CAP_HANDLES = 1,
TPM2_CAP_COMMANDS = 2,
TPM2_CAP_PCRS = 5,
TPM2_CAP_TPM_PROPERTIES = 6,
};
enum tpm2_properties {
TPM_PT_TOTAL_COMMANDS = 0x0129,
};
enum tpm2_startup_types {
TPM2_SU_CLEAR = 0x0000,
TPM2_SU_STATE = 0x0001,
};
enum tpm2_cc_attrs {
TPM2_CC_ATTR_CHANDLES = 25,
TPM2_CC_ATTR_RHANDLE = 28,
};
#define TPM_VID_INTEL 0x8086
#define TPM_VID_WINBOND 0x1050
#define TPM_VID_STM 0x104A
#define TPM_PPI_VERSION_LEN 3
struct tpm_space {
u32 context_tbl[3];
u8 *context_buf;
tpm2: add session handle context saving and restoring to the space code Sessions are different from transient objects in that their handles may not be virtualized (because they're used for some hmac calculations). Additionally when a session is context saved, a vestigial memory remains in the TPM and if it is also flushed, that will be lost and the session context will refuse to load next time, so the code is updated to flush only transient objects after a context save. Add a separate array (chip->session_tbl) to save and restore sessions by handle. Use the failure of a context save or load to signal that the session has been flushed from the TPM and we can remove its memory from chip->session_tbl. Sessions are also isolated during each instance of a tpm space. This means that spaces shouldn't be able to see each other's sessions and is enforced by ensuring that a space user may only refer to sessions handles that are present in their own chip->session_tbl. Finally when a space is closed, all the sessions belonging to it should be flushed so the handles may be re-used by other spaces. Note that if we get a session save or load error, all sessions are effectively flushed. Even though we restore the session buffer, all the old sessions will refuse to load after the flush and they'll be purged from our session memory. This means that while transient context handling is still soft in the face of errors, session handling is hard (any failure of the model means all sessions are lost). Fixes-from: Colin Ian King <colin.king@canonical.com> Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com> Tested-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Reviewed-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
2017-02-01 06:47:31 +07:00
u32 session_tbl[3];
u8 *session_buf;
};
enum tpm_chip_flags {
TPM_CHIP_FLAG_TPM2 = BIT(1),
TPM_CHIP_FLAG_IRQ = BIT(2),
TPM_CHIP_FLAG_VIRTUAL = BIT(3),
TPM_CHIP_FLAG_HAVE_TIMEOUTS = BIT(4),
TPM_CHIP_FLAG_ALWAYS_POWERED = BIT(5),
};
struct tpm_bios_log {
void *bios_event_log;
void *bios_event_log_end;
};
struct tpm_chip_seqops {
struct tpm_chip *chip;
const struct seq_operations *seqops;
};
struct tpm_chip {
struct device dev;
struct device devs;
struct cdev cdev;
struct cdev cdevs;
/* A driver callback under ops cannot be run unless ops_sem is held
* (sometimes implicitly, eg for the sysfs code). ops becomes null
* when the driver is unregistered, see tpm_try_get_ops.
*/
struct rw_semaphore ops_sem;
const struct tpm_class_ops *ops;
struct tpm_bios_log log;
struct tpm_chip_seqops bin_log_seqops;
struct tpm_chip_seqops ascii_log_seqops;
unsigned int flags;
int dev_num; /* /dev/tpm# */
unsigned long is_open; /* only one allowed */
char hwrng_name[64];
struct hwrng hwrng;
struct mutex tpm_mutex; /* tpm is processing */
unsigned long timeout_a; /* jiffies */
unsigned long timeout_b; /* jiffies */
unsigned long timeout_c; /* jiffies */
unsigned long timeout_d; /* jiffies */
bool timeout_adjusted;
unsigned long duration[TPM_NUM_DURATIONS]; /* jiffies */
bool duration_adjusted;
struct dentry *bios_dir[TPM_NUM_EVENT_LOG_FILES];
const struct attribute_group *groups[3];
unsigned int groups_cnt;
u16 active_banks[7];
#ifdef CONFIG_ACPI
acpi_handle acpi_dev_handle;
char ppi_version[TPM_PPI_VERSION_LEN + 1];
#endif /* CONFIG_ACPI */
struct tpm_space work_space;
u32 nr_commands;
u32 *cc_attrs_tbl;
/* active locality */
int locality;
};
#define to_tpm_chip(d) container_of(d, struct tpm_chip, dev)
struct tpm_input_header {
__be16 tag;
__be32 length;
__be32 ordinal;
} __packed;
struct tpm_output_header {
__be16 tag;
__be32 length;
__be32 return_code;
} __packed;
#define TPM_TAG_RQU_COMMAND 193
struct stclear_flags_t {
__be16 tag;
u8 deactivated;
u8 disableForceClear;
u8 physicalPresence;
u8 physicalPresenceLock;
u8 bGlobalLock;
} __packed;
struct tpm_version_t {
u8 Major;
u8 Minor;
u8 revMajor;
u8 revMinor;
} __packed;
struct tpm_version_1_2_t {
__be16 tag;
u8 Major;
u8 Minor;
u8 revMajor;
u8 revMinor;
} __packed;
struct timeout_t {
__be32 a;
__be32 b;
__be32 c;
__be32 d;
} __packed;
struct duration_t {
__be32 tpm_short;
__be32 tpm_medium;
__be32 tpm_long;
} __packed;
struct permanent_flags_t {
__be16 tag;
u8 disable;
u8 ownership;
u8 deactivated;
u8 readPubek;
u8 disableOwnerClear;
u8 allowMaintenance;
u8 physicalPresenceLifetimeLock;
u8 physicalPresenceHWEnable;
u8 physicalPresenceCMDEnable;
u8 CEKPUsed;
u8 TPMpost;
u8 TPMpostLock;
u8 FIPS;
u8 operator;
u8 enableRevokeEK;
u8 nvLocked;
u8 readSRKPub;
u8 tpmEstablished;
u8 maintenanceDone;
u8 disableFullDALogicInfo;
} __packed;
typedef union {
struct permanent_flags_t perm_flags;
struct stclear_flags_t stclear_flags;
__u8 owned;
__be32 num_pcrs;
struct tpm_version_t tpm_version;
struct tpm_version_1_2_t tpm_version_1_2;
__be32 manufacturer_id;
struct timeout_t timeout;
struct duration_t duration;
} cap_t;
enum tpm_capabilities {
TPM_CAP_FLAG = 4,
TPM_CAP_PROP = 5,
TPM_CAP_VERSION_1_1 = 0x06,
TPM_CAP_VERSION_1_2 = 0x1A,
};
enum tpm_sub_capabilities {
TPM_CAP_PROP_PCR = 0x101,
TPM_CAP_PROP_MANUFACTURER = 0x103,
TPM_CAP_FLAG_PERM = 0x108,
TPM_CAP_FLAG_VOL = 0x109,
TPM_CAP_PROP_OWNER = 0x111,
TPM_CAP_PROP_TIS_TIMEOUT = 0x115,
TPM_CAP_PROP_TIS_DURATION = 0x120,
};
typedef union {
struct tpm_input_header in;
struct tpm_output_header out;
} tpm_cmd_header;
struct tpm_pcrread_out {
u8 pcr_result[TPM_DIGEST_SIZE];
} __packed;
struct tpm_pcrread_in {
__be32 pcr_idx;
} __packed;
/* 128 bytes is an arbitrary cap. This could be as large as TPM_BUFSIZE - 18
* bytes, but 128 is still a relatively large number of random bytes and
* anything much bigger causes users of struct tpm_cmd_t to start getting
* compiler warnings about stack frame size. */
#define TPM_MAX_RNG_DATA 128
struct tpm_getrandom_out {
__be32 rng_data_len;
u8 rng_data[TPM_MAX_RNG_DATA];
} __packed;
struct tpm_getrandom_in {
__be32 num_bytes;
} __packed;
typedef union {
struct tpm_pcrread_in pcrread_in;
struct tpm_pcrread_out pcrread_out;
struct tpm_getrandom_in getrandom_in;
struct tpm_getrandom_out getrandom_out;
} tpm_cmd_params;
struct tpm_cmd_t {
tpm_cmd_header header;
tpm_cmd_params params;
} __packed;
/* A string buffer type for constructing TPM commands. This is based on the
* ideas of string buffer code in security/keys/trusted.h but is heap based
* in order to keep the stack usage minimal.
*/
enum tpm_buf_flags {
TPM_BUF_OVERFLOW = BIT(0),
};
struct tpm_buf {
struct page *data_page;
unsigned int flags;
u8 *data;
};
static inline void tpm_buf_reset(struct tpm_buf *buf, u16 tag, u32 ordinal)
{
struct tpm_input_header *head;
head = (struct tpm_input_header *)buf->data;
head->tag = cpu_to_be16(tag);
head->length = cpu_to_be32(sizeof(*head));
head->ordinal = cpu_to_be32(ordinal);
}
static inline int tpm_buf_init(struct tpm_buf *buf, u16 tag, u32 ordinal)
{
buf->data_page = alloc_page(GFP_HIGHUSER);
if (!buf->data_page)
return -ENOMEM;
buf->flags = 0;
buf->data = kmap(buf->data_page);
tpm_buf_reset(buf, tag, ordinal);
return 0;
}
static inline void tpm_buf_destroy(struct tpm_buf *buf)
{
kunmap(buf->data_page);
__free_page(buf->data_page);
}
static inline u32 tpm_buf_length(struct tpm_buf *buf)
{
struct tpm_input_header *head = (struct tpm_input_header *) buf->data;
return be32_to_cpu(head->length);
}
static inline u16 tpm_buf_tag(struct tpm_buf *buf)
{
struct tpm_input_header *head = (struct tpm_input_header *) buf->data;
return be16_to_cpu(head->tag);
}
static inline void tpm_buf_append(struct tpm_buf *buf,
const unsigned char *new_data,
unsigned int new_len)
{
struct tpm_input_header *head = (struct tpm_input_header *) buf->data;
u32 len = tpm_buf_length(buf);
/* Return silently if overflow has already happened. */
if (buf->flags & TPM_BUF_OVERFLOW)
return;
if ((len + new_len) > PAGE_SIZE) {
WARN(1, "tpm_buf: overflow\n");
buf->flags |= TPM_BUF_OVERFLOW;
return;
}
memcpy(&buf->data[len], new_data, new_len);
head->length = cpu_to_be32(len + new_len);
}
static inline void tpm_buf_append_u8(struct tpm_buf *buf, const u8 value)
{
tpm_buf_append(buf, &value, 1);
}
static inline void tpm_buf_append_u16(struct tpm_buf *buf, const u16 value)
{
__be16 value2 = cpu_to_be16(value);
tpm_buf_append(buf, (u8 *) &value2, 2);
}
static inline void tpm_buf_append_u32(struct tpm_buf *buf, const u32 value)
{
__be32 value2 = cpu_to_be32(value);
tpm_buf_append(buf, (u8 *) &value2, 4);
}
extern struct class *tpm_class;
extern struct class *tpmrm_class;
extern dev_t tpm_devt;
extern const struct file_operations tpm_fops;
extern const struct file_operations tpmrm_fops;
extern struct idr dev_nums_idr;
tpm: separate cmd_ready/go_idle from runtime_pm Fix tpm ptt initialization error: tpm tpm0: A TPM error (378) occurred get tpm pcr allocation. We cannot use go_idle cmd_ready commands via runtime_pm handles as with the introduction of localities this is no longer an optional feature, while runtime pm can be not enabled. Though cmd_ready/go_idle provides a power saving, it's also a part of TPM2 protocol and should be called explicitly. This patch exposes cmd_read/go_idle via tpm class ops and removes runtime pm support as it is not used by any driver. When calling from nested context always use both flags: TPM_TRANSMIT_UNLOCKED and TPM_TRANSMIT_RAW. Both are needed to resolve tpm spaces and locality request recursive calls to tpm_transmit(). TPM_TRANSMIT_RAW should never be used standalone as it will fail on double locking. While TPM_TRANSMIT_UNLOCKED standalone should be called from non-recursive locked contexts. New wrappers are added tpm_cmd_ready() and tpm_go_idle() to streamline tpm_try_transmit code. tpm_crb no longer needs own power saving functions and can drop using tpm_pm_suspend/resume. This patch cannot be really separated from the locality fix. Fixes: 888d867df441 (tpm: cmd_ready command can be issued only after granting locality) Cc: stable@vger.kernel.org Fixes: 888d867df441 (tpm: cmd_ready command can be issued only after granting locality) Signed-off-by: Tomas Winkler <tomas.winkler@intel.com> Tested-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Reviewed-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
2018-06-28 22:13:33 +07:00
/**
* enum tpm_transmit_flags - flags for tpm_transmit()
tpm: separate cmd_ready/go_idle from runtime_pm Fix tpm ptt initialization error: tpm tpm0: A TPM error (378) occurred get tpm pcr allocation. We cannot use go_idle cmd_ready commands via runtime_pm handles as with the introduction of localities this is no longer an optional feature, while runtime pm can be not enabled. Though cmd_ready/go_idle provides a power saving, it's also a part of TPM2 protocol and should be called explicitly. This patch exposes cmd_read/go_idle via tpm class ops and removes runtime pm support as it is not used by any driver. When calling from nested context always use both flags: TPM_TRANSMIT_UNLOCKED and TPM_TRANSMIT_RAW. Both are needed to resolve tpm spaces and locality request recursive calls to tpm_transmit(). TPM_TRANSMIT_RAW should never be used standalone as it will fail on double locking. While TPM_TRANSMIT_UNLOCKED standalone should be called from non-recursive locked contexts. New wrappers are added tpm_cmd_ready() and tpm_go_idle() to streamline tpm_try_transmit code. tpm_crb no longer needs own power saving functions and can drop using tpm_pm_suspend/resume. This patch cannot be really separated from the locality fix. Fixes: 888d867df441 (tpm: cmd_ready command can be issued only after granting locality) Cc: stable@vger.kernel.org Fixes: 888d867df441 (tpm: cmd_ready command can be issued only after granting locality) Signed-off-by: Tomas Winkler <tomas.winkler@intel.com> Tested-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Reviewed-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
2018-06-28 22:13:33 +07:00
*
* @TPM_TRANSMIT_UNLOCKED: do not lock the chip
* @TPM_TRANSMIT_NESTED: discard setup steps (power management,
* locality) including locking (i.e. implicit
* UNLOCKED)
tpm: separate cmd_ready/go_idle from runtime_pm Fix tpm ptt initialization error: tpm tpm0: A TPM error (378) occurred get tpm pcr allocation. We cannot use go_idle cmd_ready commands via runtime_pm handles as with the introduction of localities this is no longer an optional feature, while runtime pm can be not enabled. Though cmd_ready/go_idle provides a power saving, it's also a part of TPM2 protocol and should be called explicitly. This patch exposes cmd_read/go_idle via tpm class ops and removes runtime pm support as it is not used by any driver. When calling from nested context always use both flags: TPM_TRANSMIT_UNLOCKED and TPM_TRANSMIT_RAW. Both are needed to resolve tpm spaces and locality request recursive calls to tpm_transmit(). TPM_TRANSMIT_RAW should never be used standalone as it will fail on double locking. While TPM_TRANSMIT_UNLOCKED standalone should be called from non-recursive locked contexts. New wrappers are added tpm_cmd_ready() and tpm_go_idle() to streamline tpm_try_transmit code. tpm_crb no longer needs own power saving functions and can drop using tpm_pm_suspend/resume. This patch cannot be really separated from the locality fix. Fixes: 888d867df441 (tpm: cmd_ready command can be issued only after granting locality) Cc: stable@vger.kernel.org Fixes: 888d867df441 (tpm: cmd_ready command can be issued only after granting locality) Signed-off-by: Tomas Winkler <tomas.winkler@intel.com> Tested-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Reviewed-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
2018-06-28 22:13:33 +07:00
*/
enum tpm_transmit_flags {
TPM_TRANSMIT_UNLOCKED = BIT(0),
TPM_TRANSMIT_NESTED = BIT(1),
};
ssize_t tpm_transmit(struct tpm_chip *chip, struct tpm_space *space,
u8 *buf, size_t bufsiz, unsigned int flags);
ssize_t tpm_transmit_cmd(struct tpm_chip *chip, struct tpm_space *space,
void *buf, size_t bufsiz,
size_t min_rsp_body_length, unsigned int flags,
const char *desc);
int tpm_startup(struct tpm_chip *chip);
ssize_t tpm_getcap(struct tpm_chip *chip, u32 subcap_id, cap_t *cap,
const char *desc, size_t min_cap_length);
int tpm_get_timeouts(struct tpm_chip *);
int tpm1_auto_startup(struct tpm_chip *chip);
int tpm_do_selftest(struct tpm_chip *chip);
unsigned long tpm1_calc_ordinal_duration(struct tpm_chip *chip, u32 ordinal);
int tpm_pm_suspend(struct device *dev);
int tpm_pm_resume(struct device *dev);
static inline void tpm_msleep(unsigned int delay_msec)
{
usleep_range((delay_msec * 1000) - TPM_TIMEOUT_RANGE_US,
delay_msec * 1000);
};
struct tpm_chip *tpm_find_get_ops(struct tpm_chip *chip);
__must_check int tpm_try_get_ops(struct tpm_chip *chip);
void tpm_put_ops(struct tpm_chip *chip);
struct tpm_chip *tpm_chip_alloc(struct device *dev,
const struct tpm_class_ops *ops);
struct tpm_chip *tpmm_chip_alloc(struct device *pdev,
const struct tpm_class_ops *ops);
int tpm_chip_register(struct tpm_chip *chip);
void tpm_chip_unregister(struct tpm_chip *chip);
void tpm_sysfs_add_device(struct tpm_chip *chip);
int tpm_pcr_read_dev(struct tpm_chip *chip, int pcr_idx, u8 *res_buf);
#ifdef CONFIG_ACPI
extern void tpm_add_ppi(struct tpm_chip *chip);
#else
static inline void tpm_add_ppi(struct tpm_chip *chip)
{
}
#endif
static inline u32 tpm2_rc_value(u32 rc)
{
return (rc & BIT(7)) ? rc & 0xff : rc;
}
int tpm2_pcr_read(struct tpm_chip *chip, int pcr_idx, u8 *res_buf);
int tpm2_pcr_extend(struct tpm_chip *chip, int pcr_idx, u32 count,
struct tpm2_digest *digests);
int tpm2_get_random(struct tpm_chip *chip, u8 *dest, size_t max);
void tpm2_flush_context_cmd(struct tpm_chip *chip, u32 handle,
unsigned int flags);
int tpm2_seal_trusted(struct tpm_chip *chip,
struct trusted_key_payload *payload,
struct trusted_key_options *options);
int tpm2_unseal_trusted(struct tpm_chip *chip,
struct trusted_key_payload *payload,
struct trusted_key_options *options);
ssize_t tpm2_get_tpm_pt(struct tpm_chip *chip, u32 property_id,
u32 *value, const char *desc);
int tpm2_auto_startup(struct tpm_chip *chip);
void tpm2_shutdown(struct tpm_chip *chip, u16 shutdown_type);
unsigned long tpm2_calc_ordinal_duration(struct tpm_chip *chip, u32 ordinal);
int tpm2_probe(struct tpm_chip *chip);
int tpm2_find_cc(struct tpm_chip *chip, u32 cc);
int tpm2_init_space(struct tpm_space *space);
tpm2: add session handle context saving and restoring to the space code Sessions are different from transient objects in that their handles may not be virtualized (because they're used for some hmac calculations). Additionally when a session is context saved, a vestigial memory remains in the TPM and if it is also flushed, that will be lost and the session context will refuse to load next time, so the code is updated to flush only transient objects after a context save. Add a separate array (chip->session_tbl) to save and restore sessions by handle. Use the failure of a context save or load to signal that the session has been flushed from the TPM and we can remove its memory from chip->session_tbl. Sessions are also isolated during each instance of a tpm space. This means that spaces shouldn't be able to see each other's sessions and is enforced by ensuring that a space user may only refer to sessions handles that are present in their own chip->session_tbl. Finally when a space is closed, all the sessions belonging to it should be flushed so the handles may be re-used by other spaces. Note that if we get a session save or load error, all sessions are effectively flushed. Even though we restore the session buffer, all the old sessions will refuse to load after the flush and they'll be purged from our session memory. This means that while transient context handling is still soft in the face of errors, session handling is hard (any failure of the model means all sessions are lost). Fixes-from: Colin Ian King <colin.king@canonical.com> Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com> Tested-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Reviewed-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
2017-02-01 06:47:31 +07:00
void tpm2_del_space(struct tpm_chip *chip, struct tpm_space *space);
int tpm2_prepare_space(struct tpm_chip *chip, struct tpm_space *space, u32 cc,
u8 *cmd);
int tpm2_commit_space(struct tpm_chip *chip, struct tpm_space *space,
u32 cc, u8 *buf, size_t *bufsiz);
int tpm_bios_log_setup(struct tpm_chip *chip);
void tpm_bios_log_teardown(struct tpm_chip *chip);
int tpm_dev_common_init(void);
void tpm_dev_common_exit(void);
#endif