mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-13 21:36:43 +07:00
1549 lines
46 KiB
C
1549 lines
46 KiB
C
|
/****************************************************************************
|
||
|
* Driver for Solarflare Solarstorm network controllers and boards
|
||
|
* Copyright 2005-2006 Fen Systems Ltd.
|
||
|
* Copyright 2006-2008 Solarflare Communications Inc.
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify it
|
||
|
* under the terms of the GNU General Public License version 2 as published
|
||
|
* by the Free Software Foundation, incorporated herein by reference.
|
||
|
*/
|
||
|
|
||
|
#include <linux/bitops.h>
|
||
|
#include <linux/delay.h>
|
||
|
#include <linux/pci.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/seq_file.h>
|
||
|
#include "net_driver.h"
|
||
|
#include "bitfield.h"
|
||
|
#include "efx.h"
|
||
|
#include "nic.h"
|
||
|
#include "regs.h"
|
||
|
#include "io.h"
|
||
|
#include "workarounds.h"
|
||
|
|
||
|
/**************************************************************************
|
||
|
*
|
||
|
* Configurable values
|
||
|
*
|
||
|
**************************************************************************
|
||
|
*/
|
||
|
|
||
|
/* This is set to 16 for a good reason. In summary, if larger than
|
||
|
* 16, the descriptor cache holds more than a default socket
|
||
|
* buffer's worth of packets (for UDP we can only have at most one
|
||
|
* socket buffer's worth outstanding). This combined with the fact
|
||
|
* that we only get 1 TX event per descriptor cache means the NIC
|
||
|
* goes idle.
|
||
|
*/
|
||
|
#define TX_DC_ENTRIES 16
|
||
|
#define TX_DC_ENTRIES_ORDER 1
|
||
|
|
||
|
#define RX_DC_ENTRIES 64
|
||
|
#define RX_DC_ENTRIES_ORDER 3
|
||
|
|
||
|
/* RX FIFO XOFF watermark
|
||
|
*
|
||
|
* When the amount of the RX FIFO increases used increases past this
|
||
|
* watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
|
||
|
* This also has an effect on RX/TX arbitration
|
||
|
*/
|
||
|
int efx_nic_rx_xoff_thresh = -1;
|
||
|
module_param_named(rx_xoff_thresh_bytes, efx_nic_rx_xoff_thresh, int, 0644);
|
||
|
MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold");
|
||
|
|
||
|
/* RX FIFO XON watermark
|
||
|
*
|
||
|
* When the amount of the RX FIFO used decreases below this
|
||
|
* watermark send XON. Only used if TX flow control is enabled (ethtool -A)
|
||
|
* This also has an effect on RX/TX arbitration
|
||
|
*/
|
||
|
int efx_nic_rx_xon_thresh = -1;
|
||
|
module_param_named(rx_xon_thresh_bytes, efx_nic_rx_xon_thresh, int, 0644);
|
||
|
MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold");
|
||
|
|
||
|
/* If EFX_MAX_INT_ERRORS internal errors occur within
|
||
|
* EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
|
||
|
* disable it.
|
||
|
*/
|
||
|
#define EFX_INT_ERROR_EXPIRE 3600
|
||
|
#define EFX_MAX_INT_ERRORS 5
|
||
|
|
||
|
/* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
|
||
|
*/
|
||
|
#define EFX_FLUSH_INTERVAL 10
|
||
|
#define EFX_FLUSH_POLL_COUNT 100
|
||
|
|
||
|
/* Size and alignment of special buffers (4KB) */
|
||
|
#define EFX_BUF_SIZE 4096
|
||
|
|
||
|
/* Depth of RX flush request fifo */
|
||
|
#define EFX_RX_FLUSH_COUNT 4
|
||
|
|
||
|
/**************************************************************************
|
||
|
*
|
||
|
* Solarstorm hardware access
|
||
|
*
|
||
|
**************************************************************************/
|
||
|
|
||
|
static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
|
||
|
unsigned int index)
|
||
|
{
|
||
|
efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
|
||
|
value, index);
|
||
|
}
|
||
|
|
||
|
/* Read the current event from the event queue */
|
||
|
static inline efx_qword_t *efx_event(struct efx_channel *channel,
|
||
|
unsigned int index)
|
||
|
{
|
||
|
return (((efx_qword_t *) (channel->eventq.addr)) + index);
|
||
|
}
|
||
|
|
||
|
/* See if an event is present
|
||
|
*
|
||
|
* We check both the high and low dword of the event for all ones. We
|
||
|
* wrote all ones when we cleared the event, and no valid event can
|
||
|
* have all ones in either its high or low dwords. This approach is
|
||
|
* robust against reordering.
|
||
|
*
|
||
|
* Note that using a single 64-bit comparison is incorrect; even
|
||
|
* though the CPU read will be atomic, the DMA write may not be.
|
||
|
*/
|
||
|
static inline int efx_event_present(efx_qword_t *event)
|
||
|
{
|
||
|
return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
|
||
|
EFX_DWORD_IS_ALL_ONES(event->dword[1])));
|
||
|
}
|
||
|
|
||
|
static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
|
||
|
const efx_oword_t *mask)
|
||
|
{
|
||
|
return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
|
||
|
((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
|
||
|
}
|
||
|
|
||
|
int efx_nic_test_registers(struct efx_nic *efx,
|
||
|
const struct efx_nic_register_test *regs,
|
||
|
size_t n_regs)
|
||
|
{
|
||
|
unsigned address = 0, i, j;
|
||
|
efx_oword_t mask, imask, original, reg, buf;
|
||
|
|
||
|
/* Falcon should be in loopback to isolate the XMAC from the PHY */
|
||
|
WARN_ON(!LOOPBACK_INTERNAL(efx));
|
||
|
|
||
|
for (i = 0; i < n_regs; ++i) {
|
||
|
address = regs[i].address;
|
||
|
mask = imask = regs[i].mask;
|
||
|
EFX_INVERT_OWORD(imask);
|
||
|
|
||
|
efx_reado(efx, &original, address);
|
||
|
|
||
|
/* bit sweep on and off */
|
||
|
for (j = 0; j < 128; j++) {
|
||
|
if (!EFX_EXTRACT_OWORD32(mask, j, j))
|
||
|
continue;
|
||
|
|
||
|
/* Test this testable bit can be set in isolation */
|
||
|
EFX_AND_OWORD(reg, original, mask);
|
||
|
EFX_SET_OWORD32(reg, j, j, 1);
|
||
|
|
||
|
efx_writeo(efx, ®, address);
|
||
|
efx_reado(efx, &buf, address);
|
||
|
|
||
|
if (efx_masked_compare_oword(®, &buf, &mask))
|
||
|
goto fail;
|
||
|
|
||
|
/* Test this testable bit can be cleared in isolation */
|
||
|
EFX_OR_OWORD(reg, original, mask);
|
||
|
EFX_SET_OWORD32(reg, j, j, 0);
|
||
|
|
||
|
efx_writeo(efx, ®, address);
|
||
|
efx_reado(efx, &buf, address);
|
||
|
|
||
|
if (efx_masked_compare_oword(®, &buf, &mask))
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
efx_writeo(efx, &original, address);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
fail:
|
||
|
EFX_ERR(efx, "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
|
||
|
" at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
|
||
|
EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
|
||
|
return -EIO;
|
||
|
}
|
||
|
|
||
|
/**************************************************************************
|
||
|
*
|
||
|
* Special buffer handling
|
||
|
* Special buffers are used for event queues and the TX and RX
|
||
|
* descriptor rings.
|
||
|
*
|
||
|
*************************************************************************/
|
||
|
|
||
|
/*
|
||
|
* Initialise a special buffer
|
||
|
*
|
||
|
* This will define a buffer (previously allocated via
|
||
|
* efx_alloc_special_buffer()) in the buffer table, allowing
|
||
|
* it to be used for event queues, descriptor rings etc.
|
||
|
*/
|
||
|
static void
|
||
|
efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
|
||
|
{
|
||
|
efx_qword_t buf_desc;
|
||
|
int index;
|
||
|
dma_addr_t dma_addr;
|
||
|
int i;
|
||
|
|
||
|
EFX_BUG_ON_PARANOID(!buffer->addr);
|
||
|
|
||
|
/* Write buffer descriptors to NIC */
|
||
|
for (i = 0; i < buffer->entries; i++) {
|
||
|
index = buffer->index + i;
|
||
|
dma_addr = buffer->dma_addr + (i * 4096);
|
||
|
EFX_LOG(efx, "mapping special buffer %d at %llx\n",
|
||
|
index, (unsigned long long)dma_addr);
|
||
|
EFX_POPULATE_QWORD_3(buf_desc,
|
||
|
FRF_AZ_BUF_ADR_REGION, 0,
|
||
|
FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
|
||
|
FRF_AZ_BUF_OWNER_ID_FBUF, 0);
|
||
|
efx_write_buf_tbl(efx, &buf_desc, index);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Unmaps a buffer and clears the buffer table entries */
|
||
|
static void
|
||
|
efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
|
||
|
{
|
||
|
efx_oword_t buf_tbl_upd;
|
||
|
unsigned int start = buffer->index;
|
||
|
unsigned int end = (buffer->index + buffer->entries - 1);
|
||
|
|
||
|
if (!buffer->entries)
|
||
|
return;
|
||
|
|
||
|
EFX_LOG(efx, "unmapping special buffers %d-%d\n",
|
||
|
buffer->index, buffer->index + buffer->entries - 1);
|
||
|
|
||
|
EFX_POPULATE_OWORD_4(buf_tbl_upd,
|
||
|
FRF_AZ_BUF_UPD_CMD, 0,
|
||
|
FRF_AZ_BUF_CLR_CMD, 1,
|
||
|
FRF_AZ_BUF_CLR_END_ID, end,
|
||
|
FRF_AZ_BUF_CLR_START_ID, start);
|
||
|
efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Allocate a new special buffer
|
||
|
*
|
||
|
* This allocates memory for a new buffer, clears it and allocates a
|
||
|
* new buffer ID range. It does not write into the buffer table.
|
||
|
*
|
||
|
* This call will allocate 4KB buffers, since 8KB buffers can't be
|
||
|
* used for event queues and descriptor rings.
|
||
|
*/
|
||
|
static int efx_alloc_special_buffer(struct efx_nic *efx,
|
||
|
struct efx_special_buffer *buffer,
|
||
|
unsigned int len)
|
||
|
{
|
||
|
len = ALIGN(len, EFX_BUF_SIZE);
|
||
|
|
||
|
buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
|
||
|
&buffer->dma_addr);
|
||
|
if (!buffer->addr)
|
||
|
return -ENOMEM;
|
||
|
buffer->len = len;
|
||
|
buffer->entries = len / EFX_BUF_SIZE;
|
||
|
BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1));
|
||
|
|
||
|
/* All zeros is a potentially valid event so memset to 0xff */
|
||
|
memset(buffer->addr, 0xff, len);
|
||
|
|
||
|
/* Select new buffer ID */
|
||
|
buffer->index = efx->next_buffer_table;
|
||
|
efx->next_buffer_table += buffer->entries;
|
||
|
|
||
|
EFX_LOG(efx, "allocating special buffers %d-%d at %llx+%x "
|
||
|
"(virt %p phys %llx)\n", buffer->index,
|
||
|
buffer->index + buffer->entries - 1,
|
||
|
(u64)buffer->dma_addr, len,
|
||
|
buffer->addr, (u64)virt_to_phys(buffer->addr));
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
|
||
|
{
|
||
|
if (!buffer->addr)
|
||
|
return;
|
||
|
|
||
|
EFX_LOG(efx, "deallocating special buffers %d-%d at %llx+%x "
|
||
|
"(virt %p phys %llx)\n", buffer->index,
|
||
|
buffer->index + buffer->entries - 1,
|
||
|
(u64)buffer->dma_addr, buffer->len,
|
||
|
buffer->addr, (u64)virt_to_phys(buffer->addr));
|
||
|
|
||
|
pci_free_consistent(efx->pci_dev, buffer->len, buffer->addr,
|
||
|
buffer->dma_addr);
|
||
|
buffer->addr = NULL;
|
||
|
buffer->entries = 0;
|
||
|
}
|
||
|
|
||
|
/**************************************************************************
|
||
|
*
|
||
|
* Generic buffer handling
|
||
|
* These buffers are used for interrupt status and MAC stats
|
||
|
*
|
||
|
**************************************************************************/
|
||
|
|
||
|
int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
|
||
|
unsigned int len)
|
||
|
{
|
||
|
buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
|
||
|
&buffer->dma_addr);
|
||
|
if (!buffer->addr)
|
||
|
return -ENOMEM;
|
||
|
buffer->len = len;
|
||
|
memset(buffer->addr, 0, len);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
|
||
|
{
|
||
|
if (buffer->addr) {
|
||
|
pci_free_consistent(efx->pci_dev, buffer->len,
|
||
|
buffer->addr, buffer->dma_addr);
|
||
|
buffer->addr = NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**************************************************************************
|
||
|
*
|
||
|
* TX path
|
||
|
*
|
||
|
**************************************************************************/
|
||
|
|
||
|
/* Returns a pointer to the specified transmit descriptor in the TX
|
||
|
* descriptor queue belonging to the specified channel.
|
||
|
*/
|
||
|
static inline efx_qword_t *
|
||
|
efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
|
||
|
{
|
||
|
return (((efx_qword_t *) (tx_queue->txd.addr)) + index);
|
||
|
}
|
||
|
|
||
|
/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
|
||
|
static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue)
|
||
|
{
|
||
|
unsigned write_ptr;
|
||
|
efx_dword_t reg;
|
||
|
|
||
|
write_ptr = tx_queue->write_count & EFX_TXQ_MASK;
|
||
|
EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
|
||
|
efx_writed_page(tx_queue->efx, ®,
|
||
|
FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
|
||
|
}
|
||
|
|
||
|
|
||
|
/* For each entry inserted into the software descriptor ring, create a
|
||
|
* descriptor in the hardware TX descriptor ring (in host memory), and
|
||
|
* write a doorbell.
|
||
|
*/
|
||
|
void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
|
||
|
{
|
||
|
|
||
|
struct efx_tx_buffer *buffer;
|
||
|
efx_qword_t *txd;
|
||
|
unsigned write_ptr;
|
||
|
|
||
|
BUG_ON(tx_queue->write_count == tx_queue->insert_count);
|
||
|
|
||
|
do {
|
||
|
write_ptr = tx_queue->write_count & EFX_TXQ_MASK;
|
||
|
buffer = &tx_queue->buffer[write_ptr];
|
||
|
txd = efx_tx_desc(tx_queue, write_ptr);
|
||
|
++tx_queue->write_count;
|
||
|
|
||
|
/* Create TX descriptor ring entry */
|
||
|
EFX_POPULATE_QWORD_4(*txd,
|
||
|
FSF_AZ_TX_KER_CONT, buffer->continuation,
|
||
|
FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
|
||
|
FSF_AZ_TX_KER_BUF_REGION, 0,
|
||
|
FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
|
||
|
} while (tx_queue->write_count != tx_queue->insert_count);
|
||
|
|
||
|
wmb(); /* Ensure descriptors are written before they are fetched */
|
||
|
efx_notify_tx_desc(tx_queue);
|
||
|
}
|
||
|
|
||
|
/* Allocate hardware resources for a TX queue */
|
||
|
int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
|
||
|
{
|
||
|
struct efx_nic *efx = tx_queue->efx;
|
||
|
BUILD_BUG_ON(EFX_TXQ_SIZE < 512 || EFX_TXQ_SIZE > 4096 ||
|
||
|
EFX_TXQ_SIZE & EFX_TXQ_MASK);
|
||
|
return efx_alloc_special_buffer(efx, &tx_queue->txd,
|
||
|
EFX_TXQ_SIZE * sizeof(efx_qword_t));
|
||
|
}
|
||
|
|
||
|
void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
|
||
|
{
|
||
|
efx_oword_t tx_desc_ptr;
|
||
|
struct efx_nic *efx = tx_queue->efx;
|
||
|
|
||
|
tx_queue->flushed = FLUSH_NONE;
|
||
|
|
||
|
/* Pin TX descriptor ring */
|
||
|
efx_init_special_buffer(efx, &tx_queue->txd);
|
||
|
|
||
|
/* Push TX descriptor ring to card */
|
||
|
EFX_POPULATE_OWORD_10(tx_desc_ptr,
|
||
|
FRF_AZ_TX_DESCQ_EN, 1,
|
||
|
FRF_AZ_TX_ISCSI_DDIG_EN, 0,
|
||
|
FRF_AZ_TX_ISCSI_HDIG_EN, 0,
|
||
|
FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
|
||
|
FRF_AZ_TX_DESCQ_EVQ_ID,
|
||
|
tx_queue->channel->channel,
|
||
|
FRF_AZ_TX_DESCQ_OWNER_ID, 0,
|
||
|
FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
|
||
|
FRF_AZ_TX_DESCQ_SIZE,
|
||
|
__ffs(tx_queue->txd.entries),
|
||
|
FRF_AZ_TX_DESCQ_TYPE, 0,
|
||
|
FRF_BZ_TX_NON_IP_DROP_DIS, 1);
|
||
|
|
||
|
if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
|
||
|
int csum = tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM;
|
||
|
EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
|
||
|
EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_TCP_CHKSM_DIS,
|
||
|
!csum);
|
||
|
}
|
||
|
|
||
|
efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
|
||
|
tx_queue->queue);
|
||
|
|
||
|
if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
|
||
|
efx_oword_t reg;
|
||
|
|
||
|
/* Only 128 bits in this register */
|
||
|
BUILD_BUG_ON(EFX_TX_QUEUE_COUNT >= 128);
|
||
|
|
||
|
efx_reado(efx, ®, FR_AA_TX_CHKSM_CFG);
|
||
|
if (tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM)
|
||
|
clear_bit_le(tx_queue->queue, (void *)®);
|
||
|
else
|
||
|
set_bit_le(tx_queue->queue, (void *)®);
|
||
|
efx_writeo(efx, ®, FR_AA_TX_CHKSM_CFG);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue)
|
||
|
{
|
||
|
struct efx_nic *efx = tx_queue->efx;
|
||
|
efx_oword_t tx_flush_descq;
|
||
|
|
||
|
tx_queue->flushed = FLUSH_PENDING;
|
||
|
|
||
|
/* Post a flush command */
|
||
|
EFX_POPULATE_OWORD_2(tx_flush_descq,
|
||
|
FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
|
||
|
FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
|
||
|
efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
|
||
|
}
|
||
|
|
||
|
void efx_nic_fini_tx(struct efx_tx_queue *tx_queue)
|
||
|
{
|
||
|
struct efx_nic *efx = tx_queue->efx;
|
||
|
efx_oword_t tx_desc_ptr;
|
||
|
|
||
|
/* The queue should have been flushed */
|
||
|
WARN_ON(tx_queue->flushed != FLUSH_DONE);
|
||
|
|
||
|
/* Remove TX descriptor ring from card */
|
||
|
EFX_ZERO_OWORD(tx_desc_ptr);
|
||
|
efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
|
||
|
tx_queue->queue);
|
||
|
|
||
|
/* Unpin TX descriptor ring */
|
||
|
efx_fini_special_buffer(efx, &tx_queue->txd);
|
||
|
}
|
||
|
|
||
|
/* Free buffers backing TX queue */
|
||
|
void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
|
||
|
{
|
||
|
efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
|
||
|
}
|
||
|
|
||
|
/**************************************************************************
|
||
|
*
|
||
|
* RX path
|
||
|
*
|
||
|
**************************************************************************/
|
||
|
|
||
|
/* Returns a pointer to the specified descriptor in the RX descriptor queue */
|
||
|
static inline efx_qword_t *
|
||
|
efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
|
||
|
{
|
||
|
return (((efx_qword_t *) (rx_queue->rxd.addr)) + index);
|
||
|
}
|
||
|
|
||
|
/* This creates an entry in the RX descriptor queue */
|
||
|
static inline void
|
||
|
efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
|
||
|
{
|
||
|
struct efx_rx_buffer *rx_buf;
|
||
|
efx_qword_t *rxd;
|
||
|
|
||
|
rxd = efx_rx_desc(rx_queue, index);
|
||
|
rx_buf = efx_rx_buffer(rx_queue, index);
|
||
|
EFX_POPULATE_QWORD_3(*rxd,
|
||
|
FSF_AZ_RX_KER_BUF_SIZE,
|
||
|
rx_buf->len -
|
||
|
rx_queue->efx->type->rx_buffer_padding,
|
||
|
FSF_AZ_RX_KER_BUF_REGION, 0,
|
||
|
FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
|
||
|
}
|
||
|
|
||
|
/* This writes to the RX_DESC_WPTR register for the specified receive
|
||
|
* descriptor ring.
|
||
|
*/
|
||
|
void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
|
||
|
{
|
||
|
efx_dword_t reg;
|
||
|
unsigned write_ptr;
|
||
|
|
||
|
while (rx_queue->notified_count != rx_queue->added_count) {
|
||
|
efx_build_rx_desc(rx_queue,
|
||
|
rx_queue->notified_count &
|
||
|
EFX_RXQ_MASK);
|
||
|
++rx_queue->notified_count;
|
||
|
}
|
||
|
|
||
|
wmb();
|
||
|
write_ptr = rx_queue->added_count & EFX_RXQ_MASK;
|
||
|
EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
|
||
|
efx_writed_page(rx_queue->efx, ®,
|
||
|
FR_AZ_RX_DESC_UPD_DWORD_P0, rx_queue->queue);
|
||
|
}
|
||
|
|
||
|
int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
|
||
|
{
|
||
|
struct efx_nic *efx = rx_queue->efx;
|
||
|
BUILD_BUG_ON(EFX_RXQ_SIZE < 512 || EFX_RXQ_SIZE > 4096 ||
|
||
|
EFX_RXQ_SIZE & EFX_RXQ_MASK);
|
||
|
return efx_alloc_special_buffer(efx, &rx_queue->rxd,
|
||
|
EFX_RXQ_SIZE * sizeof(efx_qword_t));
|
||
|
}
|
||
|
|
||
|
void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
|
||
|
{
|
||
|
efx_oword_t rx_desc_ptr;
|
||
|
struct efx_nic *efx = rx_queue->efx;
|
||
|
bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
|
||
|
bool iscsi_digest_en = is_b0;
|
||
|
|
||
|
EFX_LOG(efx, "RX queue %d ring in special buffers %d-%d\n",
|
||
|
rx_queue->queue, rx_queue->rxd.index,
|
||
|
rx_queue->rxd.index + rx_queue->rxd.entries - 1);
|
||
|
|
||
|
rx_queue->flushed = FLUSH_NONE;
|
||
|
|
||
|
/* Pin RX descriptor ring */
|
||
|
efx_init_special_buffer(efx, &rx_queue->rxd);
|
||
|
|
||
|
/* Push RX descriptor ring to card */
|
||
|
EFX_POPULATE_OWORD_10(rx_desc_ptr,
|
||
|
FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
|
||
|
FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
|
||
|
FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
|
||
|
FRF_AZ_RX_DESCQ_EVQ_ID,
|
||
|
rx_queue->channel->channel,
|
||
|
FRF_AZ_RX_DESCQ_OWNER_ID, 0,
|
||
|
FRF_AZ_RX_DESCQ_LABEL, rx_queue->queue,
|
||
|
FRF_AZ_RX_DESCQ_SIZE,
|
||
|
__ffs(rx_queue->rxd.entries),
|
||
|
FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
|
||
|
/* For >=B0 this is scatter so disable */
|
||
|
FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
|
||
|
FRF_AZ_RX_DESCQ_EN, 1);
|
||
|
efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
|
||
|
rx_queue->queue);
|
||
|
}
|
||
|
|
||
|
static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue)
|
||
|
{
|
||
|
struct efx_nic *efx = rx_queue->efx;
|
||
|
efx_oword_t rx_flush_descq;
|
||
|
|
||
|
rx_queue->flushed = FLUSH_PENDING;
|
||
|
|
||
|
/* Post a flush command */
|
||
|
EFX_POPULATE_OWORD_2(rx_flush_descq,
|
||
|
FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
|
||
|
FRF_AZ_RX_FLUSH_DESCQ, rx_queue->queue);
|
||
|
efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
|
||
|
}
|
||
|
|
||
|
void efx_nic_fini_rx(struct efx_rx_queue *rx_queue)
|
||
|
{
|
||
|
efx_oword_t rx_desc_ptr;
|
||
|
struct efx_nic *efx = rx_queue->efx;
|
||
|
|
||
|
/* The queue should already have been flushed */
|
||
|
WARN_ON(rx_queue->flushed != FLUSH_DONE);
|
||
|
|
||
|
/* Remove RX descriptor ring from card */
|
||
|
EFX_ZERO_OWORD(rx_desc_ptr);
|
||
|
efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
|
||
|
rx_queue->queue);
|
||
|
|
||
|
/* Unpin RX descriptor ring */
|
||
|
efx_fini_special_buffer(efx, &rx_queue->rxd);
|
||
|
}
|
||
|
|
||
|
/* Free buffers backing RX queue */
|
||
|
void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
|
||
|
{
|
||
|
efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
|
||
|
}
|
||
|
|
||
|
/**************************************************************************
|
||
|
*
|
||
|
* Event queue processing
|
||
|
* Event queues are processed by per-channel tasklets.
|
||
|
*
|
||
|
**************************************************************************/
|
||
|
|
||
|
/* Update a channel's event queue's read pointer (RPTR) register
|
||
|
*
|
||
|
* This writes the EVQ_RPTR_REG register for the specified channel's
|
||
|
* event queue.
|
||
|
*
|
||
|
* Note that EVQ_RPTR_REG contains the index of the "last read" event,
|
||
|
* whereas channel->eventq_read_ptr contains the index of the "next to
|
||
|
* read" event.
|
||
|
*/
|
||
|
void efx_nic_eventq_read_ack(struct efx_channel *channel)
|
||
|
{
|
||
|
efx_dword_t reg;
|
||
|
struct efx_nic *efx = channel->efx;
|
||
|
|
||
|
EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR, channel->eventq_read_ptr);
|
||
|
efx_writed_table(efx, ®, efx->type->evq_rptr_tbl_base,
|
||
|
channel->channel);
|
||
|
}
|
||
|
|
||
|
/* Use HW to insert a SW defined event */
|
||
|
void efx_generate_event(struct efx_channel *channel, efx_qword_t *event)
|
||
|
{
|
||
|
efx_oword_t drv_ev_reg;
|
||
|
|
||
|
BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
|
||
|
FRF_AZ_DRV_EV_DATA_WIDTH != 64);
|
||
|
drv_ev_reg.u32[0] = event->u32[0];
|
||
|
drv_ev_reg.u32[1] = event->u32[1];
|
||
|
drv_ev_reg.u32[2] = 0;
|
||
|
drv_ev_reg.u32[3] = 0;
|
||
|
EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, channel->channel);
|
||
|
efx_writeo(channel->efx, &drv_ev_reg, FR_AZ_DRV_EV);
|
||
|
}
|
||
|
|
||
|
/* Handle a transmit completion event
|
||
|
*
|
||
|
* The NIC batches TX completion events; the message we receive is of
|
||
|
* the form "complete all TX events up to this index".
|
||
|
*/
|
||
|
static void
|
||
|
efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
|
||
|
{
|
||
|
unsigned int tx_ev_desc_ptr;
|
||
|
unsigned int tx_ev_q_label;
|
||
|
struct efx_tx_queue *tx_queue;
|
||
|
struct efx_nic *efx = channel->efx;
|
||
|
|
||
|
if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
|
||
|
/* Transmit completion */
|
||
|
tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
|
||
|
tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
|
||
|
tx_queue = &efx->tx_queue[tx_ev_q_label];
|
||
|
channel->irq_mod_score +=
|
||
|
(tx_ev_desc_ptr - tx_queue->read_count) &
|
||
|
EFX_TXQ_MASK;
|
||
|
efx_xmit_done(tx_queue, tx_ev_desc_ptr);
|
||
|
} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
|
||
|
/* Rewrite the FIFO write pointer */
|
||
|
tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
|
||
|
tx_queue = &efx->tx_queue[tx_ev_q_label];
|
||
|
|
||
|
if (efx_dev_registered(efx))
|
||
|
netif_tx_lock(efx->net_dev);
|
||
|
efx_notify_tx_desc(tx_queue);
|
||
|
if (efx_dev_registered(efx))
|
||
|
netif_tx_unlock(efx->net_dev);
|
||
|
} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
|
||
|
EFX_WORKAROUND_10727(efx)) {
|
||
|
efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
|
||
|
} else {
|
||
|
EFX_ERR(efx, "channel %d unexpected TX event "
|
||
|
EFX_QWORD_FMT"\n", channel->channel,
|
||
|
EFX_QWORD_VAL(*event));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Detect errors included in the rx_evt_pkt_ok bit. */
|
||
|
static void efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
|
||
|
const efx_qword_t *event,
|
||
|
bool *rx_ev_pkt_ok,
|
||
|
bool *discard)
|
||
|
{
|
||
|
struct efx_nic *efx = rx_queue->efx;
|
||
|
bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
|
||
|
bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
|
||
|
bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
|
||
|
bool rx_ev_other_err, rx_ev_pause_frm;
|
||
|
bool rx_ev_hdr_type, rx_ev_mcast_pkt;
|
||
|
unsigned rx_ev_pkt_type;
|
||
|
|
||
|
rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
|
||
|
rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
|
||
|
rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
|
||
|
rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
|
||
|
rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
|
||
|
FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
|
||
|
rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
|
||
|
FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
|
||
|
rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
|
||
|
FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
|
||
|
rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
|
||
|
rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
|
||
|
rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
|
||
|
0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
|
||
|
rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
|
||
|
|
||
|
/* Every error apart from tobe_disc and pause_frm */
|
||
|
rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
|
||
|
rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
|
||
|
rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
|
||
|
|
||
|
/* Count errors that are not in MAC stats. Ignore expected
|
||
|
* checksum errors during self-test. */
|
||
|
if (rx_ev_frm_trunc)
|
||
|
++rx_queue->channel->n_rx_frm_trunc;
|
||
|
else if (rx_ev_tobe_disc)
|
||
|
++rx_queue->channel->n_rx_tobe_disc;
|
||
|
else if (!efx->loopback_selftest) {
|
||
|
if (rx_ev_ip_hdr_chksum_err)
|
||
|
++rx_queue->channel->n_rx_ip_hdr_chksum_err;
|
||
|
else if (rx_ev_tcp_udp_chksum_err)
|
||
|
++rx_queue->channel->n_rx_tcp_udp_chksum_err;
|
||
|
}
|
||
|
|
||
|
/* The frame must be discarded if any of these are true. */
|
||
|
*discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
|
||
|
rx_ev_tobe_disc | rx_ev_pause_frm);
|
||
|
|
||
|
/* TOBE_DISC is expected on unicast mismatches; don't print out an
|
||
|
* error message. FRM_TRUNC indicates RXDP dropped the packet due
|
||
|
* to a FIFO overflow.
|
||
|
*/
|
||
|
#ifdef EFX_ENABLE_DEBUG
|
||
|
if (rx_ev_other_err) {
|
||
|
EFX_INFO_RL(efx, " RX queue %d unexpected RX event "
|
||
|
EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
|
||
|
rx_queue->queue, EFX_QWORD_VAL(*event),
|
||
|
rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
|
||
|
rx_ev_ip_hdr_chksum_err ?
|
||
|
" [IP_HDR_CHKSUM_ERR]" : "",
|
||
|
rx_ev_tcp_udp_chksum_err ?
|
||
|
" [TCP_UDP_CHKSUM_ERR]" : "",
|
||
|
rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
|
||
|
rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
|
||
|
rx_ev_drib_nib ? " [DRIB_NIB]" : "",
|
||
|
rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
|
||
|
rx_ev_pause_frm ? " [PAUSE]" : "");
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/* Handle receive events that are not in-order. */
|
||
|
static void
|
||
|
efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
|
||
|
{
|
||
|
struct efx_nic *efx = rx_queue->efx;
|
||
|
unsigned expected, dropped;
|
||
|
|
||
|
expected = rx_queue->removed_count & EFX_RXQ_MASK;
|
||
|
dropped = (index - expected) & EFX_RXQ_MASK;
|
||
|
EFX_INFO(efx, "dropped %d events (index=%d expected=%d)\n",
|
||
|
dropped, index, expected);
|
||
|
|
||
|
efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
|
||
|
RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
|
||
|
}
|
||
|
|
||
|
/* Handle a packet received event
|
||
|
*
|
||
|
* The NIC gives a "discard" flag if it's a unicast packet with the
|
||
|
* wrong destination address
|
||
|
* Also "is multicast" and "matches multicast filter" flags can be used to
|
||
|
* discard non-matching multicast packets.
|
||
|
*/
|
||
|
static void
|
||
|
efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
|
||
|
{
|
||
|
unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
|
||
|
unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
|
||
|
unsigned expected_ptr;
|
||
|
bool rx_ev_pkt_ok, discard = false, checksummed;
|
||
|
struct efx_rx_queue *rx_queue;
|
||
|
struct efx_nic *efx = channel->efx;
|
||
|
|
||
|
/* Basic packet information */
|
||
|
rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
|
||
|
rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
|
||
|
rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
|
||
|
WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
|
||
|
WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
|
||
|
WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
|
||
|
channel->channel);
|
||
|
|
||
|
rx_queue = &efx->rx_queue[channel->channel];
|
||
|
|
||
|
rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
|
||
|
expected_ptr = rx_queue->removed_count & EFX_RXQ_MASK;
|
||
|
if (unlikely(rx_ev_desc_ptr != expected_ptr))
|
||
|
efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
|
||
|
|
||
|
if (likely(rx_ev_pkt_ok)) {
|
||
|
/* If packet is marked as OK and packet type is TCP/IP or
|
||
|
* UDP/IP, then we can rely on the hardware checksum.
|
||
|
*/
|
||
|
checksummed =
|
||
|
likely(efx->rx_checksum_enabled) &&
|
||
|
(rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP ||
|
||
|
rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP);
|
||
|
} else {
|
||
|
efx_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok, &discard);
|
||
|
checksummed = false;
|
||
|
}
|
||
|
|
||
|
/* Detect multicast packets that didn't match the filter */
|
||
|
rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
|
||
|
if (rx_ev_mcast_pkt) {
|
||
|
unsigned int rx_ev_mcast_hash_match =
|
||
|
EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
|
||
|
|
||
|
if (unlikely(!rx_ev_mcast_hash_match)) {
|
||
|
++channel->n_rx_mcast_mismatch;
|
||
|
discard = true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
channel->irq_mod_score += 2;
|
||
|
|
||
|
/* Handle received packet */
|
||
|
efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
|
||
|
checksummed, discard);
|
||
|
}
|
||
|
|
||
|
/* Global events are basically PHY events */
|
||
|
static void
|
||
|
efx_handle_global_event(struct efx_channel *channel, efx_qword_t *event)
|
||
|
{
|
||
|
struct efx_nic *efx = channel->efx;
|
||
|
bool handled = false;
|
||
|
|
||
|
if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
|
||
|
EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
|
||
|
EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR)) {
|
||
|
/* Ignored */
|
||
|
handled = true;
|
||
|
}
|
||
|
|
||
|
if ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) &&
|
||
|
EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
|
||
|
efx->xmac_poll_required = true;
|
||
|
handled = true;
|
||
|
}
|
||
|
|
||
|
if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ?
|
||
|
EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
|
||
|
EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
|
||
|
EFX_ERR(efx, "channel %d seen global RX_RESET "
|
||
|
"event. Resetting.\n", channel->channel);
|
||
|
|
||
|
atomic_inc(&efx->rx_reset);
|
||
|
efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
|
||
|
RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
|
||
|
handled = true;
|
||
|
}
|
||
|
|
||
|
if (!handled)
|
||
|
EFX_ERR(efx, "channel %d unknown global event "
|
||
|
EFX_QWORD_FMT "\n", channel->channel,
|
||
|
EFX_QWORD_VAL(*event));
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
|
||
|
{
|
||
|
struct efx_nic *efx = channel->efx;
|
||
|
unsigned int ev_sub_code;
|
||
|
unsigned int ev_sub_data;
|
||
|
|
||
|
ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
|
||
|
ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
|
||
|
|
||
|
switch (ev_sub_code) {
|
||
|
case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
|
||
|
EFX_TRACE(efx, "channel %d TXQ %d flushed\n",
|
||
|
channel->channel, ev_sub_data);
|
||
|
break;
|
||
|
case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
|
||
|
EFX_TRACE(efx, "channel %d RXQ %d flushed\n",
|
||
|
channel->channel, ev_sub_data);
|
||
|
break;
|
||
|
case FSE_AZ_EVQ_INIT_DONE_EV:
|
||
|
EFX_LOG(efx, "channel %d EVQ %d initialised\n",
|
||
|
channel->channel, ev_sub_data);
|
||
|
break;
|
||
|
case FSE_AZ_SRM_UPD_DONE_EV:
|
||
|
EFX_TRACE(efx, "channel %d SRAM update done\n",
|
||
|
channel->channel);
|
||
|
break;
|
||
|
case FSE_AZ_WAKE_UP_EV:
|
||
|
EFX_TRACE(efx, "channel %d RXQ %d wakeup event\n",
|
||
|
channel->channel, ev_sub_data);
|
||
|
break;
|
||
|
case FSE_AZ_TIMER_EV:
|
||
|
EFX_TRACE(efx, "channel %d RX queue %d timer expired\n",
|
||
|
channel->channel, ev_sub_data);
|
||
|
break;
|
||
|
case FSE_AA_RX_RECOVER_EV:
|
||
|
EFX_ERR(efx, "channel %d seen DRIVER RX_RESET event. "
|
||
|
"Resetting.\n", channel->channel);
|
||
|
atomic_inc(&efx->rx_reset);
|
||
|
efx_schedule_reset(efx,
|
||
|
EFX_WORKAROUND_6555(efx) ?
|
||
|
RESET_TYPE_RX_RECOVERY :
|
||
|
RESET_TYPE_DISABLE);
|
||
|
break;
|
||
|
case FSE_BZ_RX_DSC_ERROR_EV:
|
||
|
EFX_ERR(efx, "RX DMA Q %d reports descriptor fetch error."
|
||
|
" RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
|
||
|
efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
|
||
|
break;
|
||
|
case FSE_BZ_TX_DSC_ERROR_EV:
|
||
|
EFX_ERR(efx, "TX DMA Q %d reports descriptor fetch error."
|
||
|
" TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
|
||
|
efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
|
||
|
break;
|
||
|
default:
|
||
|
EFX_TRACE(efx, "channel %d unknown driver event code %d "
|
||
|
"data %04x\n", channel->channel, ev_sub_code,
|
||
|
ev_sub_data);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int efx_nic_process_eventq(struct efx_channel *channel, int rx_quota)
|
||
|
{
|
||
|
unsigned int read_ptr;
|
||
|
efx_qword_t event, *p_event;
|
||
|
int ev_code;
|
||
|
int rx_packets = 0;
|
||
|
|
||
|
read_ptr = channel->eventq_read_ptr;
|
||
|
|
||
|
do {
|
||
|
p_event = efx_event(channel, read_ptr);
|
||
|
event = *p_event;
|
||
|
|
||
|
if (!efx_event_present(&event))
|
||
|
/* End of events */
|
||
|
break;
|
||
|
|
||
|
EFX_TRACE(channel->efx, "channel %d event is "EFX_QWORD_FMT"\n",
|
||
|
channel->channel, EFX_QWORD_VAL(event));
|
||
|
|
||
|
/* Clear this event by marking it all ones */
|
||
|
EFX_SET_QWORD(*p_event);
|
||
|
|
||
|
ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
|
||
|
|
||
|
switch (ev_code) {
|
||
|
case FSE_AZ_EV_CODE_RX_EV:
|
||
|
efx_handle_rx_event(channel, &event);
|
||
|
++rx_packets;
|
||
|
break;
|
||
|
case FSE_AZ_EV_CODE_TX_EV:
|
||
|
efx_handle_tx_event(channel, &event);
|
||
|
break;
|
||
|
case FSE_AZ_EV_CODE_DRV_GEN_EV:
|
||
|
channel->eventq_magic = EFX_QWORD_FIELD(
|
||
|
event, FSF_AZ_DRV_GEN_EV_MAGIC);
|
||
|
EFX_LOG(channel->efx, "channel %d received generated "
|
||
|
"event "EFX_QWORD_FMT"\n", channel->channel,
|
||
|
EFX_QWORD_VAL(event));
|
||
|
break;
|
||
|
case FSE_AZ_EV_CODE_GLOBAL_EV:
|
||
|
efx_handle_global_event(channel, &event);
|
||
|
break;
|
||
|
case FSE_AZ_EV_CODE_DRIVER_EV:
|
||
|
efx_handle_driver_event(channel, &event);
|
||
|
break;
|
||
|
default:
|
||
|
EFX_ERR(channel->efx, "channel %d unknown event type %d"
|
||
|
" (data " EFX_QWORD_FMT ")\n", channel->channel,
|
||
|
ev_code, EFX_QWORD_VAL(event));
|
||
|
}
|
||
|
|
||
|
/* Increment read pointer */
|
||
|
read_ptr = (read_ptr + 1) & EFX_EVQ_MASK;
|
||
|
|
||
|
} while (rx_packets < rx_quota);
|
||
|
|
||
|
channel->eventq_read_ptr = read_ptr;
|
||
|
return rx_packets;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* Allocate buffer table entries for event queue */
|
||
|
int efx_nic_probe_eventq(struct efx_channel *channel)
|
||
|
{
|
||
|
struct efx_nic *efx = channel->efx;
|
||
|
BUILD_BUG_ON(EFX_EVQ_SIZE < 512 || EFX_EVQ_SIZE > 32768 ||
|
||
|
EFX_EVQ_SIZE & EFX_EVQ_MASK);
|
||
|
return efx_alloc_special_buffer(efx, &channel->eventq,
|
||
|
EFX_EVQ_SIZE * sizeof(efx_qword_t));
|
||
|
}
|
||
|
|
||
|
void efx_nic_init_eventq(struct efx_channel *channel)
|
||
|
{
|
||
|
efx_oword_t evq_ptr;
|
||
|
struct efx_nic *efx = channel->efx;
|
||
|
|
||
|
EFX_LOG(efx, "channel %d event queue in special buffers %d-%d\n",
|
||
|
channel->channel, channel->eventq.index,
|
||
|
channel->eventq.index + channel->eventq.entries - 1);
|
||
|
|
||
|
/* Pin event queue buffer */
|
||
|
efx_init_special_buffer(efx, &channel->eventq);
|
||
|
|
||
|
/* Fill event queue with all ones (i.e. empty events) */
|
||
|
memset(channel->eventq.addr, 0xff, channel->eventq.len);
|
||
|
|
||
|
/* Push event queue to card */
|
||
|
EFX_POPULATE_OWORD_3(evq_ptr,
|
||
|
FRF_AZ_EVQ_EN, 1,
|
||
|
FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
|
||
|
FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
|
||
|
efx_writeo_table(efx, &evq_ptr, efx->type->evq_ptr_tbl_base,
|
||
|
channel->channel);
|
||
|
|
||
|
efx->type->push_irq_moderation(channel);
|
||
|
}
|
||
|
|
||
|
void efx_nic_fini_eventq(struct efx_channel *channel)
|
||
|
{
|
||
|
efx_oword_t eventq_ptr;
|
||
|
struct efx_nic *efx = channel->efx;
|
||
|
|
||
|
/* Remove event queue from card */
|
||
|
EFX_ZERO_OWORD(eventq_ptr);
|
||
|
efx_writeo_table(efx, &eventq_ptr, efx->type->evq_ptr_tbl_base,
|
||
|
channel->channel);
|
||
|
|
||
|
/* Unpin event queue */
|
||
|
efx_fini_special_buffer(efx, &channel->eventq);
|
||
|
}
|
||
|
|
||
|
/* Free buffers backing event queue */
|
||
|
void efx_nic_remove_eventq(struct efx_channel *channel)
|
||
|
{
|
||
|
efx_free_special_buffer(channel->efx, &channel->eventq);
|
||
|
}
|
||
|
|
||
|
|
||
|
/* Generates a test event on the event queue. A subsequent call to
|
||
|
* process_eventq() should pick up the event and place the value of
|
||
|
* "magic" into channel->eventq_magic;
|
||
|
*/
|
||
|
void efx_nic_generate_test_event(struct efx_channel *channel, unsigned int magic)
|
||
|
{
|
||
|
efx_qword_t test_event;
|
||
|
|
||
|
EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE,
|
||
|
FSE_AZ_EV_CODE_DRV_GEN_EV,
|
||
|
FSF_AZ_DRV_GEN_EV_MAGIC, magic);
|
||
|
efx_generate_event(channel, &test_event);
|
||
|
}
|
||
|
|
||
|
/**************************************************************************
|
||
|
*
|
||
|
* Flush handling
|
||
|
*
|
||
|
**************************************************************************/
|
||
|
|
||
|
|
||
|
static void efx_poll_flush_events(struct efx_nic *efx)
|
||
|
{
|
||
|
struct efx_channel *channel = &efx->channel[0];
|
||
|
struct efx_tx_queue *tx_queue;
|
||
|
struct efx_rx_queue *rx_queue;
|
||
|
unsigned int read_ptr = channel->eventq_read_ptr;
|
||
|
unsigned int end_ptr = (read_ptr - 1) & EFX_EVQ_MASK;
|
||
|
|
||
|
do {
|
||
|
efx_qword_t *event = efx_event(channel, read_ptr);
|
||
|
int ev_code, ev_sub_code, ev_queue;
|
||
|
bool ev_failed;
|
||
|
|
||
|
if (!efx_event_present(event))
|
||
|
break;
|
||
|
|
||
|
ev_code = EFX_QWORD_FIELD(*event, FSF_AZ_EV_CODE);
|
||
|
ev_sub_code = EFX_QWORD_FIELD(*event,
|
||
|
FSF_AZ_DRIVER_EV_SUBCODE);
|
||
|
if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
|
||
|
ev_sub_code == FSE_AZ_TX_DESCQ_FLS_DONE_EV) {
|
||
|
ev_queue = EFX_QWORD_FIELD(*event,
|
||
|
FSF_AZ_DRIVER_EV_SUBDATA);
|
||
|
if (ev_queue < EFX_TX_QUEUE_COUNT) {
|
||
|
tx_queue = efx->tx_queue + ev_queue;
|
||
|
tx_queue->flushed = FLUSH_DONE;
|
||
|
}
|
||
|
} else if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
|
||
|
ev_sub_code == FSE_AZ_RX_DESCQ_FLS_DONE_EV) {
|
||
|
ev_queue = EFX_QWORD_FIELD(
|
||
|
*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
|
||
|
ev_failed = EFX_QWORD_FIELD(
|
||
|
*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
|
||
|
if (ev_queue < efx->n_rx_queues) {
|
||
|
rx_queue = efx->rx_queue + ev_queue;
|
||
|
rx_queue->flushed =
|
||
|
ev_failed ? FLUSH_FAILED : FLUSH_DONE;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* We're about to destroy the queue anyway, so
|
||
|
* it's ok to throw away every non-flush event */
|
||
|
EFX_SET_QWORD(*event);
|
||
|
|
||
|
read_ptr = (read_ptr + 1) & EFX_EVQ_MASK;
|
||
|
} while (read_ptr != end_ptr);
|
||
|
|
||
|
channel->eventq_read_ptr = read_ptr;
|
||
|
}
|
||
|
|
||
|
/* Handle tx and rx flushes at the same time, since they run in
|
||
|
* parallel in the hardware and there's no reason for us to
|
||
|
* serialise them */
|
||
|
int efx_nic_flush_queues(struct efx_nic *efx)
|
||
|
{
|
||
|
struct efx_rx_queue *rx_queue;
|
||
|
struct efx_tx_queue *tx_queue;
|
||
|
int i, tx_pending, rx_pending;
|
||
|
|
||
|
/* If necessary prepare the hardware for flushing */
|
||
|
efx->type->prepare_flush(efx);
|
||
|
|
||
|
/* Flush all tx queues in parallel */
|
||
|
efx_for_each_tx_queue(tx_queue, efx)
|
||
|
efx_flush_tx_queue(tx_queue);
|
||
|
|
||
|
/* The hardware supports four concurrent rx flushes, each of which may
|
||
|
* need to be retried if there is an outstanding descriptor fetch */
|
||
|
for (i = 0; i < EFX_FLUSH_POLL_COUNT; ++i) {
|
||
|
rx_pending = tx_pending = 0;
|
||
|
efx_for_each_rx_queue(rx_queue, efx) {
|
||
|
if (rx_queue->flushed == FLUSH_PENDING)
|
||
|
++rx_pending;
|
||
|
}
|
||
|
efx_for_each_rx_queue(rx_queue, efx) {
|
||
|
if (rx_pending == EFX_RX_FLUSH_COUNT)
|
||
|
break;
|
||
|
if (rx_queue->flushed == FLUSH_FAILED ||
|
||
|
rx_queue->flushed == FLUSH_NONE) {
|
||
|
efx_flush_rx_queue(rx_queue);
|
||
|
++rx_pending;
|
||
|
}
|
||
|
}
|
||
|
efx_for_each_tx_queue(tx_queue, efx) {
|
||
|
if (tx_queue->flushed != FLUSH_DONE)
|
||
|
++tx_pending;
|
||
|
}
|
||
|
|
||
|
if (rx_pending == 0 && tx_pending == 0)
|
||
|
return 0;
|
||
|
|
||
|
msleep(EFX_FLUSH_INTERVAL);
|
||
|
efx_poll_flush_events(efx);
|
||
|
}
|
||
|
|
||
|
/* Mark the queues as all flushed. We're going to return failure
|
||
|
* leading to a reset, or fake up success anyway */
|
||
|
efx_for_each_tx_queue(tx_queue, efx) {
|
||
|
if (tx_queue->flushed != FLUSH_DONE)
|
||
|
EFX_ERR(efx, "tx queue %d flush command timed out\n",
|
||
|
tx_queue->queue);
|
||
|
tx_queue->flushed = FLUSH_DONE;
|
||
|
}
|
||
|
efx_for_each_rx_queue(rx_queue, efx) {
|
||
|
if (rx_queue->flushed != FLUSH_DONE)
|
||
|
EFX_ERR(efx, "rx queue %d flush command timed out\n",
|
||
|
rx_queue->queue);
|
||
|
rx_queue->flushed = FLUSH_DONE;
|
||
|
}
|
||
|
|
||
|
if (EFX_WORKAROUND_7803(efx))
|
||
|
return 0;
|
||
|
|
||
|
return -ETIMEDOUT;
|
||
|
}
|
||
|
|
||
|
/**************************************************************************
|
||
|
*
|
||
|
* Hardware interrupts
|
||
|
* The hardware interrupt handler does very little work; all the event
|
||
|
* queue processing is carried out by per-channel tasklets.
|
||
|
*
|
||
|
**************************************************************************/
|
||
|
|
||
|
/* Enable/disable/generate interrupts */
|
||
|
static inline void efx_nic_interrupts(struct efx_nic *efx,
|
||
|
bool enabled, bool force)
|
||
|
{
|
||
|
efx_oword_t int_en_reg_ker;
|
||
|
|
||
|
EFX_POPULATE_OWORD_2(int_en_reg_ker,
|
||
|
FRF_AZ_KER_INT_KER, force,
|
||
|
FRF_AZ_DRV_INT_EN_KER, enabled);
|
||
|
efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
|
||
|
}
|
||
|
|
||
|
void efx_nic_enable_interrupts(struct efx_nic *efx)
|
||
|
{
|
||
|
struct efx_channel *channel;
|
||
|
|
||
|
EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
|
||
|
wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
|
||
|
|
||
|
/* Enable interrupts */
|
||
|
efx_nic_interrupts(efx, true, false);
|
||
|
|
||
|
/* Force processing of all the channels to get the EVQ RPTRs up to
|
||
|
date */
|
||
|
efx_for_each_channel(channel, efx)
|
||
|
efx_schedule_channel(channel);
|
||
|
}
|
||
|
|
||
|
void efx_nic_disable_interrupts(struct efx_nic *efx)
|
||
|
{
|
||
|
/* Disable interrupts */
|
||
|
efx_nic_interrupts(efx, false, false);
|
||
|
}
|
||
|
|
||
|
/* Generate a test interrupt
|
||
|
* Interrupt must already have been enabled, otherwise nasty things
|
||
|
* may happen.
|
||
|
*/
|
||
|
void efx_nic_generate_interrupt(struct efx_nic *efx)
|
||
|
{
|
||
|
efx_nic_interrupts(efx, true, true);
|
||
|
}
|
||
|
|
||
|
/* Process a fatal interrupt
|
||
|
* Disable bus mastering ASAP and schedule a reset
|
||
|
*/
|
||
|
irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx)
|
||
|
{
|
||
|
struct falcon_nic_data *nic_data = efx->nic_data;
|
||
|
efx_oword_t *int_ker = efx->irq_status.addr;
|
||
|
efx_oword_t fatal_intr;
|
||
|
int error, mem_perr;
|
||
|
|
||
|
efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
|
||
|
error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
|
||
|
|
||
|
EFX_ERR(efx, "SYSTEM ERROR " EFX_OWORD_FMT " status "
|
||
|
EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
|
||
|
EFX_OWORD_VAL(fatal_intr),
|
||
|
error ? "disabling bus mastering" : "no recognised error");
|
||
|
if (error == 0)
|
||
|
goto out;
|
||
|
|
||
|
/* If this is a memory parity error dump which blocks are offending */
|
||
|
mem_perr = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER);
|
||
|
if (mem_perr) {
|
||
|
efx_oword_t reg;
|
||
|
efx_reado(efx, ®, FR_AZ_MEM_STAT);
|
||
|
EFX_ERR(efx, "SYSTEM ERROR: memory parity error "
|
||
|
EFX_OWORD_FMT "\n", EFX_OWORD_VAL(reg));
|
||
|
}
|
||
|
|
||
|
/* Disable both devices */
|
||
|
pci_clear_master(efx->pci_dev);
|
||
|
if (efx_nic_is_dual_func(efx))
|
||
|
pci_clear_master(nic_data->pci_dev2);
|
||
|
efx_nic_disable_interrupts(efx);
|
||
|
|
||
|
/* Count errors and reset or disable the NIC accordingly */
|
||
|
if (efx->int_error_count == 0 ||
|
||
|
time_after(jiffies, efx->int_error_expire)) {
|
||
|
efx->int_error_count = 0;
|
||
|
efx->int_error_expire =
|
||
|
jiffies + EFX_INT_ERROR_EXPIRE * HZ;
|
||
|
}
|
||
|
if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
|
||
|
EFX_ERR(efx, "SYSTEM ERROR - reset scheduled\n");
|
||
|
efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
|
||
|
} else {
|
||
|
EFX_ERR(efx, "SYSTEM ERROR - max number of errors seen."
|
||
|
"NIC will be disabled\n");
|
||
|
efx_schedule_reset(efx, RESET_TYPE_DISABLE);
|
||
|
}
|
||
|
out:
|
||
|
return IRQ_HANDLED;
|
||
|
}
|
||
|
|
||
|
/* Handle a legacy interrupt
|
||
|
* Acknowledges the interrupt and schedule event queue processing.
|
||
|
*/
|
||
|
static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
|
||
|
{
|
||
|
struct efx_nic *efx = dev_id;
|
||
|
efx_oword_t *int_ker = efx->irq_status.addr;
|
||
|
irqreturn_t result = IRQ_NONE;
|
||
|
struct efx_channel *channel;
|
||
|
efx_dword_t reg;
|
||
|
u32 queues;
|
||
|
int syserr;
|
||
|
|
||
|
/* Read the ISR which also ACKs the interrupts */
|
||
|
efx_readd(efx, ®, FR_BZ_INT_ISR0);
|
||
|
queues = EFX_EXTRACT_DWORD(reg, 0, 31);
|
||
|
|
||
|
/* Check to see if we have a serious error condition */
|
||
|
syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
|
||
|
if (unlikely(syserr))
|
||
|
return efx_nic_fatal_interrupt(efx);
|
||
|
|
||
|
/* Schedule processing of any interrupting queues */
|
||
|
efx_for_each_channel(channel, efx) {
|
||
|
if ((queues & 1) ||
|
||
|
efx_event_present(
|
||
|
efx_event(channel, channel->eventq_read_ptr))) {
|
||
|
efx_schedule_channel(channel);
|
||
|
result = IRQ_HANDLED;
|
||
|
}
|
||
|
queues >>= 1;
|
||
|
}
|
||
|
|
||
|
if (result == IRQ_HANDLED) {
|
||
|
efx->last_irq_cpu = raw_smp_processor_id();
|
||
|
EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
|
||
|
irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
|
||
|
}
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/* Handle an MSI interrupt
|
||
|
*
|
||
|
* Handle an MSI hardware interrupt. This routine schedules event
|
||
|
* queue processing. No interrupt acknowledgement cycle is necessary.
|
||
|
* Also, we never need to check that the interrupt is for us, since
|
||
|
* MSI interrupts cannot be shared.
|
||
|
*/
|
||
|
static irqreturn_t efx_msi_interrupt(int irq, void *dev_id)
|
||
|
{
|
||
|
struct efx_channel *channel = dev_id;
|
||
|
struct efx_nic *efx = channel->efx;
|
||
|
efx_oword_t *int_ker = efx->irq_status.addr;
|
||
|
int syserr;
|
||
|
|
||
|
efx->last_irq_cpu = raw_smp_processor_id();
|
||
|
EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
|
||
|
irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
|
||
|
|
||
|
/* Check to see if we have a serious error condition */
|
||
|
syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
|
||
|
if (unlikely(syserr))
|
||
|
return efx_nic_fatal_interrupt(efx);
|
||
|
|
||
|
/* Schedule processing of the channel */
|
||
|
efx_schedule_channel(channel);
|
||
|
|
||
|
return IRQ_HANDLED;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* Setup RSS indirection table.
|
||
|
* This maps from the hash value of the packet to RXQ
|
||
|
*/
|
||
|
static void efx_setup_rss_indir_table(struct efx_nic *efx)
|
||
|
{
|
||
|
int i = 0;
|
||
|
unsigned long offset;
|
||
|
efx_dword_t dword;
|
||
|
|
||
|
if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
|
||
|
return;
|
||
|
|
||
|
for (offset = FR_BZ_RX_INDIRECTION_TBL;
|
||
|
offset < FR_BZ_RX_INDIRECTION_TBL + 0x800;
|
||
|
offset += 0x10) {
|
||
|
EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
|
||
|
i % efx->n_rx_queues);
|
||
|
efx_writed(efx, &dword, offset);
|
||
|
i++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Hook interrupt handler(s)
|
||
|
* Try MSI and then legacy interrupts.
|
||
|
*/
|
||
|
int efx_nic_init_interrupt(struct efx_nic *efx)
|
||
|
{
|
||
|
struct efx_channel *channel;
|
||
|
int rc;
|
||
|
|
||
|
if (!EFX_INT_MODE_USE_MSI(efx)) {
|
||
|
irq_handler_t handler;
|
||
|
if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
|
||
|
handler = efx_legacy_interrupt;
|
||
|
else
|
||
|
handler = falcon_legacy_interrupt_a1;
|
||
|
|
||
|
rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
|
||
|
efx->name, efx);
|
||
|
if (rc) {
|
||
|
EFX_ERR(efx, "failed to hook legacy IRQ %d\n",
|
||
|
efx->pci_dev->irq);
|
||
|
goto fail1;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Hook MSI or MSI-X interrupt */
|
||
|
efx_for_each_channel(channel, efx) {
|
||
|
rc = request_irq(channel->irq, efx_msi_interrupt,
|
||
|
IRQF_PROBE_SHARED, /* Not shared */
|
||
|
channel->name, channel);
|
||
|
if (rc) {
|
||
|
EFX_ERR(efx, "failed to hook IRQ %d\n", channel->irq);
|
||
|
goto fail2;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
fail2:
|
||
|
efx_for_each_channel(channel, efx)
|
||
|
free_irq(channel->irq, channel);
|
||
|
fail1:
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
void efx_nic_fini_interrupt(struct efx_nic *efx)
|
||
|
{
|
||
|
struct efx_channel *channel;
|
||
|
efx_oword_t reg;
|
||
|
|
||
|
/* Disable MSI/MSI-X interrupts */
|
||
|
efx_for_each_channel(channel, efx) {
|
||
|
if (channel->irq)
|
||
|
free_irq(channel->irq, channel);
|
||
|
}
|
||
|
|
||
|
/* ACK legacy interrupt */
|
||
|
if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
|
||
|
efx_reado(efx, ®, FR_BZ_INT_ISR0);
|
||
|
else
|
||
|
falcon_irq_ack_a1(efx);
|
||
|
|
||
|
/* Disable legacy interrupt */
|
||
|
if (efx->legacy_irq)
|
||
|
free_irq(efx->legacy_irq, efx);
|
||
|
}
|
||
|
|
||
|
u32 efx_nic_fpga_ver(struct efx_nic *efx)
|
||
|
{
|
||
|
efx_oword_t altera_build;
|
||
|
efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
|
||
|
return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
|
||
|
}
|
||
|
|
||
|
void efx_nic_init_common(struct efx_nic *efx)
|
||
|
{
|
||
|
efx_oword_t temp;
|
||
|
|
||
|
/* Set positions of descriptor caches in SRAM. */
|
||
|
EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR,
|
||
|
efx->type->tx_dc_base / 8);
|
||
|
efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
|
||
|
EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR,
|
||
|
efx->type->rx_dc_base / 8);
|
||
|
efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
|
||
|
|
||
|
/* Set TX descriptor cache size. */
|
||
|
BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
|
||
|
EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
|
||
|
efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
|
||
|
|
||
|
/* Set RX descriptor cache size. Set low watermark to size-8, as
|
||
|
* this allows most efficient prefetching.
|
||
|
*/
|
||
|
BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
|
||
|
EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
|
||
|
efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
|
||
|
EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
|
||
|
efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
|
||
|
|
||
|
/* Program INT_KER address */
|
||
|
EFX_POPULATE_OWORD_2(temp,
|
||
|
FRF_AZ_NORM_INT_VEC_DIS_KER,
|
||
|
EFX_INT_MODE_USE_MSI(efx),
|
||
|
FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
|
||
|
efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
|
||
|
|
||
|
/* Enable all the genuinely fatal interrupts. (They are still
|
||
|
* masked by the overall interrupt mask, controlled by
|
||
|
* falcon_interrupts()).
|
||
|
*
|
||
|
* Note: All other fatal interrupts are enabled
|
||
|
*/
|
||
|
EFX_POPULATE_OWORD_3(temp,
|
||
|
FRF_AZ_ILL_ADR_INT_KER_EN, 1,
|
||
|
FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
|
||
|
FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
|
||
|
EFX_INVERT_OWORD(temp);
|
||
|
efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
|
||
|
|
||
|
efx_setup_rss_indir_table(efx);
|
||
|
|
||
|
/* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
|
||
|
* controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
|
||
|
*/
|
||
|
efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
|
||
|
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
|
||
|
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
|
||
|
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
|
||
|
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 0);
|
||
|
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
|
||
|
/* Enable SW_EV to inherit in char driver - assume harmless here */
|
||
|
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
|
||
|
/* Prefetch threshold 2 => fetch when descriptor cache half empty */
|
||
|
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
|
||
|
/* Squash TX of packets of 16 bytes or less */
|
||
|
if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
|
||
|
EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
|
||
|
efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
|
||
|
}
|