linux_dsm_epyc7002/drivers/block/null_blk_main.c

1843 lines
43 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Add configfs and memory store: Kyungchan Koh <kkc6196@fb.com> and
* Shaohua Li <shli@fb.com>
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/init.h>
#include "null_blk.h"
#define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT)
#define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT)
#define SECTOR_MASK (PAGE_SECTORS - 1)
#define FREE_BATCH 16
#define TICKS_PER_SEC 50ULL
#define TIMER_INTERVAL (NSEC_PER_SEC / TICKS_PER_SEC)
#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
static DECLARE_FAULT_ATTR(null_timeout_attr);
static DECLARE_FAULT_ATTR(null_requeue_attr);
#endif
static inline u64 mb_per_tick(int mbps)
{
return (1 << 20) / TICKS_PER_SEC * ((u64) mbps);
}
/*
* Status flags for nullb_device.
*
* CONFIGURED: Device has been configured and turned on. Cannot reconfigure.
* UP: Device is currently on and visible in userspace.
* THROTTLED: Device is being throttled.
* CACHE: Device is using a write-back cache.
*/
enum nullb_device_flags {
NULLB_DEV_FL_CONFIGURED = 0,
NULLB_DEV_FL_UP = 1,
NULLB_DEV_FL_THROTTLED = 2,
NULLB_DEV_FL_CACHE = 3,
};
#define MAP_SZ ((PAGE_SIZE >> SECTOR_SHIFT) + 2)
/*
* nullb_page is a page in memory for nullb devices.
*
* @page: The page holding the data.
* @bitmap: The bitmap represents which sector in the page has data.
* Each bit represents one block size. For example, sector 8
* will use the 7th bit
* The highest 2 bits of bitmap are for special purpose. LOCK means the cache
* page is being flushing to storage. FREE means the cache page is freed and
* should be skipped from flushing to storage. Please see
* null_make_cache_space
*/
struct nullb_page {
struct page *page;
DECLARE_BITMAP(bitmap, MAP_SZ);
};
#define NULLB_PAGE_LOCK (MAP_SZ - 1)
#define NULLB_PAGE_FREE (MAP_SZ - 2)
static LIST_HEAD(nullb_list);
static struct mutex lock;
static int null_major;
static DEFINE_IDA(nullb_indexes);
static struct blk_mq_tag_set tag_set;
enum {
NULL_IRQ_NONE = 0,
NULL_IRQ_SOFTIRQ = 1,
NULL_IRQ_TIMER = 2,
};
enum {
NULL_Q_BIO = 0,
NULL_Q_RQ = 1,
NULL_Q_MQ = 2,
};
static int g_no_sched;
module_param_named(no_sched, g_no_sched, int, 0444);
MODULE_PARM_DESC(no_sched, "No io scheduler");
static int g_submit_queues = 1;
module_param_named(submit_queues, g_submit_queues, int, 0444);
MODULE_PARM_DESC(submit_queues, "Number of submission queues");
static int g_home_node = NUMA_NO_NODE;
module_param_named(home_node, g_home_node, int, 0444);
MODULE_PARM_DESC(home_node, "Home node for the device");
#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
static char g_timeout_str[80];
module_param_string(timeout, g_timeout_str, sizeof(g_timeout_str), 0444);
static char g_requeue_str[80];
module_param_string(requeue, g_requeue_str, sizeof(g_requeue_str), 0444);
#endif
static int g_queue_mode = NULL_Q_MQ;
static int null_param_store_val(const char *str, int *val, int min, int max)
{
int ret, new_val;
ret = kstrtoint(str, 10, &new_val);
if (ret)
return -EINVAL;
if (new_val < min || new_val > max)
return -EINVAL;
*val = new_val;
return 0;
}
static int null_set_queue_mode(const char *str, const struct kernel_param *kp)
{
return null_param_store_val(str, &g_queue_mode, NULL_Q_BIO, NULL_Q_MQ);
}
static const struct kernel_param_ops null_queue_mode_param_ops = {
.set = null_set_queue_mode,
.get = param_get_int,
};
device_param_cb(queue_mode, &null_queue_mode_param_ops, &g_queue_mode, 0444);
MODULE_PARM_DESC(queue_mode, "Block interface to use (0=bio,1=rq,2=multiqueue)");
static int g_gb = 250;
module_param_named(gb, g_gb, int, 0444);
MODULE_PARM_DESC(gb, "Size in GB");
static int g_bs = 512;
module_param_named(bs, g_bs, int, 0444);
MODULE_PARM_DESC(bs, "Block size (in bytes)");
static int nr_devices = 1;
module_param(nr_devices, int, 0444);
MODULE_PARM_DESC(nr_devices, "Number of devices to register");
static bool g_blocking;
module_param_named(blocking, g_blocking, bool, 0444);
MODULE_PARM_DESC(blocking, "Register as a blocking blk-mq driver device");
static bool shared_tags;
module_param(shared_tags, bool, 0444);
MODULE_PARM_DESC(shared_tags, "Share tag set between devices for blk-mq");
static int g_irqmode = NULL_IRQ_SOFTIRQ;
static int null_set_irqmode(const char *str, const struct kernel_param *kp)
{
return null_param_store_val(str, &g_irqmode, NULL_IRQ_NONE,
NULL_IRQ_TIMER);
}
static const struct kernel_param_ops null_irqmode_param_ops = {
.set = null_set_irqmode,
.get = param_get_int,
};
device_param_cb(irqmode, &null_irqmode_param_ops, &g_irqmode, 0444);
MODULE_PARM_DESC(irqmode, "IRQ completion handler. 0-none, 1-softirq, 2-timer");
static unsigned long g_completion_nsec = 10000;
module_param_named(completion_nsec, g_completion_nsec, ulong, 0444);
MODULE_PARM_DESC(completion_nsec, "Time in ns to complete a request in hardware. Default: 10,000ns");
static int g_hw_queue_depth = 64;
module_param_named(hw_queue_depth, g_hw_queue_depth, int, 0444);
MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: 64");
static bool g_use_per_node_hctx;
module_param_named(use_per_node_hctx, g_use_per_node_hctx, bool, 0444);
MODULE_PARM_DESC(use_per_node_hctx, "Use per-node allocation for hardware context queues. Default: false");
static bool g_zoned;
module_param_named(zoned, g_zoned, bool, S_IRUGO);
MODULE_PARM_DESC(zoned, "Make device as a host-managed zoned block device. Default: false");
static unsigned long g_zone_size = 256;
module_param_named(zone_size, g_zone_size, ulong, S_IRUGO);
MODULE_PARM_DESC(zone_size, "Zone size in MB when block device is zoned. Must be power-of-two: Default: 256");
static unsigned int g_zone_nr_conv;
module_param_named(zone_nr_conv, g_zone_nr_conv, uint, 0444);
MODULE_PARM_DESC(zone_nr_conv, "Number of conventional zones when block device is zoned. Default: 0");
static struct nullb_device *null_alloc_dev(void);
static void null_free_dev(struct nullb_device *dev);
static void null_del_dev(struct nullb *nullb);
static int null_add_dev(struct nullb_device *dev);
static void null_free_device_storage(struct nullb_device *dev, bool is_cache);
static inline struct nullb_device *to_nullb_device(struct config_item *item)
{
return item ? container_of(item, struct nullb_device, item) : NULL;
}
static inline ssize_t nullb_device_uint_attr_show(unsigned int val, char *page)
{
return snprintf(page, PAGE_SIZE, "%u\n", val);
}
static inline ssize_t nullb_device_ulong_attr_show(unsigned long val,
char *page)
{
return snprintf(page, PAGE_SIZE, "%lu\n", val);
}
static inline ssize_t nullb_device_bool_attr_show(bool val, char *page)
{
return snprintf(page, PAGE_SIZE, "%u\n", val);
}
static ssize_t nullb_device_uint_attr_store(unsigned int *val,
const char *page, size_t count)
{
unsigned int tmp;
int result;
result = kstrtouint(page, 0, &tmp);
if (result)
return result;
*val = tmp;
return count;
}
static ssize_t nullb_device_ulong_attr_store(unsigned long *val,
const char *page, size_t count)
{
int result;
unsigned long tmp;
result = kstrtoul(page, 0, &tmp);
if (result)
return result;
*val = tmp;
return count;
}
static ssize_t nullb_device_bool_attr_store(bool *val, const char *page,
size_t count)
{
bool tmp;
int result;
result = kstrtobool(page, &tmp);
if (result)
return result;
*val = tmp;
return count;
}
/* The following macro should only be used with TYPE = {uint, ulong, bool}. */
#define NULLB_DEVICE_ATTR(NAME, TYPE) \
static ssize_t \
nullb_device_##NAME##_show(struct config_item *item, char *page) \
{ \
return nullb_device_##TYPE##_attr_show( \
to_nullb_device(item)->NAME, page); \
} \
static ssize_t \
nullb_device_##NAME##_store(struct config_item *item, const char *page, \
size_t count) \
{ \
if (test_bit(NULLB_DEV_FL_CONFIGURED, &to_nullb_device(item)->flags)) \
return -EBUSY; \
return nullb_device_##TYPE##_attr_store( \
&to_nullb_device(item)->NAME, page, count); \
} \
CONFIGFS_ATTR(nullb_device_, NAME);
NULLB_DEVICE_ATTR(size, ulong);
NULLB_DEVICE_ATTR(completion_nsec, ulong);
NULLB_DEVICE_ATTR(submit_queues, uint);
NULLB_DEVICE_ATTR(home_node, uint);
NULLB_DEVICE_ATTR(queue_mode, uint);
NULLB_DEVICE_ATTR(blocksize, uint);
NULLB_DEVICE_ATTR(irqmode, uint);
NULLB_DEVICE_ATTR(hw_queue_depth, uint);
NULLB_DEVICE_ATTR(index, uint);
NULLB_DEVICE_ATTR(blocking, bool);
NULLB_DEVICE_ATTR(use_per_node_hctx, bool);
NULLB_DEVICE_ATTR(memory_backed, bool);
NULLB_DEVICE_ATTR(discard, bool);
NULLB_DEVICE_ATTR(mbps, uint);
NULLB_DEVICE_ATTR(cache_size, ulong);
NULLB_DEVICE_ATTR(zoned, bool);
NULLB_DEVICE_ATTR(zone_size, ulong);
NULLB_DEVICE_ATTR(zone_nr_conv, uint);
static ssize_t nullb_device_power_show(struct config_item *item, char *page)
{
return nullb_device_bool_attr_show(to_nullb_device(item)->power, page);
}
static ssize_t nullb_device_power_store(struct config_item *item,
const char *page, size_t count)
{
struct nullb_device *dev = to_nullb_device(item);
bool newp = false;
ssize_t ret;
ret = nullb_device_bool_attr_store(&newp, page, count);
if (ret < 0)
return ret;
if (!dev->power && newp) {
if (test_and_set_bit(NULLB_DEV_FL_UP, &dev->flags))
return count;
if (null_add_dev(dev)) {
clear_bit(NULLB_DEV_FL_UP, &dev->flags);
return -ENOMEM;
}
set_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
dev->power = newp;
} else if (dev->power && !newp) {
block: null_blk: fix race condition for null_del_dev Dulicate call of null_del_dev() will trigger null pointer error like below. The reason is a race condition between nullb_device_power_store() and nullb_group_drop_item(). CPU#0 CPU#1 ---------------- ----------------- do_rmdir() >configfs_rmdir() >client_drop_item() >nullb_group_drop_item() nullb_device_power_store() >null_del_dev() >test_and_clear_bit(NULLB_DEV_FL_UP >null_del_dev() ^^^^^ Duplicated null_dev_dev() triger null pointer error >clear_bit(NULLB_DEV_FL_UP The fix could be keep the sequnce of clear NULLB_DEV_FL_UP and null_del_dev(). [ 698.613600] BUG: unable to handle kernel NULL pointer dereference at 0000000000000018 [ 698.613608] #PF error: [normal kernel read fault] [ 698.613611] PGD 0 P4D 0 [ 698.613619] Oops: 0000 [#1] SMP PTI [ 698.613627] CPU: 3 PID: 6382 Comm: rmdir Not tainted 5.0.0+ #35 [ 698.613631] Hardware name: LENOVO 20LJS2EV08/20LJS2EV08, BIOS R0SET33W (1.17 ) 07/18/2018 [ 698.613644] RIP: 0010:null_del_dev+0xc/0x110 [null_blk] [ 698.613649] Code: 00 00 00 5b 41 5c 41 5d 41 5e 41 5f 5d c3 0f 0b eb 97 e8 47 bb 2a e8 0f 1f 80 00 00 00 00 0f 1f 44 00 00 55 48 89 e5 41 54 53 <8b> 77 18 48 89 fb 4c 8b 27 48 c7 c7 40 57 1e c1 e8 bf c7 cb e8 48 [ 698.613654] RSP: 0018:ffffb887888bfde0 EFLAGS: 00010286 [ 698.613659] RAX: 0000000000000000 RBX: ffff9d436d92bc00 RCX: ffff9d43a9184681 [ 698.613663] RDX: ffffffffc11e5c30 RSI: 0000000068be6540 RDI: 0000000000000000 [ 698.613667] RBP: ffffb887888bfdf0 R08: 0000000000000001 R09: 0000000000000000 [ 698.613671] R10: ffffb887888bfdd8 R11: 0000000000000f16 R12: ffff9d436d92bc08 [ 698.613675] R13: ffff9d436d94e630 R14: ffffffffc11e5088 R15: ffffffffc11e5000 [ 698.613680] FS: 00007faa68be6540(0000) GS:ffff9d43d14c0000(0000) knlGS:0000000000000000 [ 698.613685] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 698.613689] CR2: 0000000000000018 CR3: 000000042f70c002 CR4: 00000000003606e0 [ 698.613693] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 698.613697] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 698.613700] Call Trace: [ 698.613712] nullb_group_drop_item+0x50/0x70 [null_blk] [ 698.613722] client_drop_item+0x29/0x40 [ 698.613728] configfs_rmdir+0x1ed/0x300 [ 698.613738] vfs_rmdir+0xb2/0x130 [ 698.613743] do_rmdir+0x1c7/0x1e0 [ 698.613750] __x64_sys_rmdir+0x17/0x20 [ 698.613759] do_syscall_64+0x5a/0x110 [ 698.613768] entry_SYSCALL_64_after_hwframe+0x44/0xa9 Signed-off-by: Bob Liu <bob.liu@oracle.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-15 14:43:48 +07:00
if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
mutex_lock(&lock);
dev->power = newp;
null_del_dev(dev->nullb);
mutex_unlock(&lock);
}
clear_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
}
return count;
}
CONFIGFS_ATTR(nullb_device_, power);
static ssize_t nullb_device_badblocks_show(struct config_item *item, char *page)
{
struct nullb_device *t_dev = to_nullb_device(item);
return badblocks_show(&t_dev->badblocks, page, 0);
}
static ssize_t nullb_device_badblocks_store(struct config_item *item,
const char *page, size_t count)
{
struct nullb_device *t_dev = to_nullb_device(item);
char *orig, *buf, *tmp;
u64 start, end;
int ret;
orig = kstrndup(page, count, GFP_KERNEL);
if (!orig)
return -ENOMEM;
buf = strstrip(orig);
ret = -EINVAL;
if (buf[0] != '+' && buf[0] != '-')
goto out;
tmp = strchr(&buf[1], '-');
if (!tmp)
goto out;
*tmp = '\0';
ret = kstrtoull(buf + 1, 0, &start);
if (ret)
goto out;
ret = kstrtoull(tmp + 1, 0, &end);
if (ret)
goto out;
ret = -EINVAL;
if (start > end)
goto out;
/* enable badblocks */
cmpxchg(&t_dev->badblocks.shift, -1, 0);
if (buf[0] == '+')
ret = badblocks_set(&t_dev->badblocks, start,
end - start + 1, 1);
else
ret = badblocks_clear(&t_dev->badblocks, start,
end - start + 1);
if (ret == 0)
ret = count;
out:
kfree(orig);
return ret;
}
CONFIGFS_ATTR(nullb_device_, badblocks);
static struct configfs_attribute *nullb_device_attrs[] = {
&nullb_device_attr_size,
&nullb_device_attr_completion_nsec,
&nullb_device_attr_submit_queues,
&nullb_device_attr_home_node,
&nullb_device_attr_queue_mode,
&nullb_device_attr_blocksize,
&nullb_device_attr_irqmode,
&nullb_device_attr_hw_queue_depth,
&nullb_device_attr_index,
&nullb_device_attr_blocking,
&nullb_device_attr_use_per_node_hctx,
&nullb_device_attr_power,
&nullb_device_attr_memory_backed,
&nullb_device_attr_discard,
&nullb_device_attr_mbps,
&nullb_device_attr_cache_size,
&nullb_device_attr_badblocks,
&nullb_device_attr_zoned,
&nullb_device_attr_zone_size,
&nullb_device_attr_zone_nr_conv,
NULL,
};
static void nullb_device_release(struct config_item *item)
{
struct nullb_device *dev = to_nullb_device(item);
null_free_device_storage(dev, false);
null_free_dev(dev);
}
static struct configfs_item_operations nullb_device_ops = {
.release = nullb_device_release,
};
static const struct config_item_type nullb_device_type = {
.ct_item_ops = &nullb_device_ops,
.ct_attrs = nullb_device_attrs,
.ct_owner = THIS_MODULE,
};
static struct
config_item *nullb_group_make_item(struct config_group *group, const char *name)
{
struct nullb_device *dev;
dev = null_alloc_dev();
if (!dev)
return ERR_PTR(-ENOMEM);
config_item_init_type_name(&dev->item, name, &nullb_device_type);
return &dev->item;
}
static void
nullb_group_drop_item(struct config_group *group, struct config_item *item)
{
struct nullb_device *dev = to_nullb_device(item);
if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
mutex_lock(&lock);
dev->power = false;
null_del_dev(dev->nullb);
mutex_unlock(&lock);
}
config_item_put(item);
}
static ssize_t memb_group_features_show(struct config_item *item, char *page)
{
return snprintf(page, PAGE_SIZE, "memory_backed,discard,bandwidth,cache,badblocks,zoned,zone_size\n");
}
CONFIGFS_ATTR_RO(memb_group_, features);
static struct configfs_attribute *nullb_group_attrs[] = {
&memb_group_attr_features,
NULL,
};
static struct configfs_group_operations nullb_group_ops = {
.make_item = nullb_group_make_item,
.drop_item = nullb_group_drop_item,
};
static const struct config_item_type nullb_group_type = {
.ct_group_ops = &nullb_group_ops,
.ct_attrs = nullb_group_attrs,
.ct_owner = THIS_MODULE,
};
static struct configfs_subsystem nullb_subsys = {
.su_group = {
.cg_item = {
.ci_namebuf = "nullb",
.ci_type = &nullb_group_type,
},
},
};
static inline int null_cache_active(struct nullb *nullb)
{
return test_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
}
static struct nullb_device *null_alloc_dev(void)
{
struct nullb_device *dev;
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
if (!dev)
return NULL;
INIT_RADIX_TREE(&dev->data, GFP_ATOMIC);
INIT_RADIX_TREE(&dev->cache, GFP_ATOMIC);
if (badblocks_init(&dev->badblocks, 0)) {
kfree(dev);
return NULL;
}
dev->size = g_gb * 1024;
dev->completion_nsec = g_completion_nsec;
dev->submit_queues = g_submit_queues;
dev->home_node = g_home_node;
dev->queue_mode = g_queue_mode;
dev->blocksize = g_bs;
dev->irqmode = g_irqmode;
dev->hw_queue_depth = g_hw_queue_depth;
dev->blocking = g_blocking;
dev->use_per_node_hctx = g_use_per_node_hctx;
dev->zoned = g_zoned;
dev->zone_size = g_zone_size;
dev->zone_nr_conv = g_zone_nr_conv;
return dev;
}
static void null_free_dev(struct nullb_device *dev)
{
if (!dev)
return;
null_zone_exit(dev);
badblocks_exit(&dev->badblocks);
kfree(dev);
}
static void put_tag(struct nullb_queue *nq, unsigned int tag)
{
clear_bit_unlock(tag, nq->tag_map);
if (waitqueue_active(&nq->wait))
wake_up(&nq->wait);
}
static unsigned int get_tag(struct nullb_queue *nq)
{
unsigned int tag;
do {
tag = find_first_zero_bit(nq->tag_map, nq->queue_depth);
if (tag >= nq->queue_depth)
return -1U;
} while (test_and_set_bit_lock(tag, nq->tag_map));
return tag;
}
static void free_cmd(struct nullb_cmd *cmd)
{
put_tag(cmd->nq, cmd->tag);
}
null_blk: set a separate timer for each command For the Timer IRQ mode (i.e., when command completions are delayed), there is one timer for each CPU. Each of these timers . has a completion queue associated with it, containing all the command completions to be executed when the timer fires; . is set, and a new completion-to-execute is inserted into its completion queue, every time the dispatch code for a new command happens to be executed on the CPU related to the timer. This implies that, if the dispatch of a new command happens to be executed on a CPU whose timer has already been set, but has not yet fired, then the timer is set again, to the completion time of the newly arrived command. When the timer eventually fires, all its queued completions are executed. This way of handling delayed command completions entails the following problem: if more than one command completion is inserted into the queue of a timer before the timer fires, then the expiration time for the timer is moved forward every time each of these completions is enqueued. As a consequence, only the last completion enqueued enjoys a correct execution time, while all previous completions are unjustly delayed until the last completion is executed (and at that time they are executed all together). Specifically, if all the above completions are enqueued almost at the same time, then the problem is negligible. On the opposite end, if every completion is enqueued a while after the previous completion was enqueued (in the extreme case, it is enqueued only right before the timer would have expired), then every enqueued completion, except for the last one, experiences an inflated delay, proportional to the number of completions enqueued after it. In the end, commands, and thus I/O requests, may be completed at an arbitrarily lower rate than the desired one. This commit addresses this issue by replacing per-CPU timers with per-command timers, i.e., by associating an individual timer with each command. Signed-off-by: Paolo Valente <paolo.valente@unimore.it> Signed-off-by: Arianna Avanzini <avanzini@google.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-12-01 17:48:17 +07:00
static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer);
static struct nullb_cmd *__alloc_cmd(struct nullb_queue *nq)
{
struct nullb_cmd *cmd;
unsigned int tag;
tag = get_tag(nq);
if (tag != -1U) {
cmd = &nq->cmds[tag];
cmd->tag = tag;
cmd->nq = nq;
if (nq->dev->irqmode == NULL_IRQ_TIMER) {
null_blk: set a separate timer for each command For the Timer IRQ mode (i.e., when command completions are delayed), there is one timer for each CPU. Each of these timers . has a completion queue associated with it, containing all the command completions to be executed when the timer fires; . is set, and a new completion-to-execute is inserted into its completion queue, every time the dispatch code for a new command happens to be executed on the CPU related to the timer. This implies that, if the dispatch of a new command happens to be executed on a CPU whose timer has already been set, but has not yet fired, then the timer is set again, to the completion time of the newly arrived command. When the timer eventually fires, all its queued completions are executed. This way of handling delayed command completions entails the following problem: if more than one command completion is inserted into the queue of a timer before the timer fires, then the expiration time for the timer is moved forward every time each of these completions is enqueued. As a consequence, only the last completion enqueued enjoys a correct execution time, while all previous completions are unjustly delayed until the last completion is executed (and at that time they are executed all together). Specifically, if all the above completions are enqueued almost at the same time, then the problem is negligible. On the opposite end, if every completion is enqueued a while after the previous completion was enqueued (in the extreme case, it is enqueued only right before the timer would have expired), then every enqueued completion, except for the last one, experiences an inflated delay, proportional to the number of completions enqueued after it. In the end, commands, and thus I/O requests, may be completed at an arbitrarily lower rate than the desired one. This commit addresses this issue by replacing per-CPU timers with per-command timers, i.e., by associating an individual timer with each command. Signed-off-by: Paolo Valente <paolo.valente@unimore.it> Signed-off-by: Arianna Avanzini <avanzini@google.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-12-01 17:48:17 +07:00
hrtimer_init(&cmd->timer, CLOCK_MONOTONIC,
HRTIMER_MODE_REL);
cmd->timer.function = null_cmd_timer_expired;
}
return cmd;
}
return NULL;
}
static struct nullb_cmd *alloc_cmd(struct nullb_queue *nq, int can_wait)
{
struct nullb_cmd *cmd;
DEFINE_WAIT(wait);
cmd = __alloc_cmd(nq);
if (cmd || !can_wait)
return cmd;
do {
prepare_to_wait(&nq->wait, &wait, TASK_UNINTERRUPTIBLE);
cmd = __alloc_cmd(nq);
if (cmd)
break;
io_schedule();
} while (1);
finish_wait(&nq->wait, &wait);
return cmd;
}
static void end_cmd(struct nullb_cmd *cmd)
{
int queue_mode = cmd->nq->dev->queue_mode;
switch (queue_mode) {
case NULL_Q_MQ:
blk_mq_end_request(cmd->rq, cmd->error);
return;
case NULL_Q_BIO:
cmd->bio->bi_status = cmd->error;
bio_endio(cmd->bio);
break;
}
free_cmd(cmd);
}
static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer)
{
end_cmd(container_of(timer, struct nullb_cmd, timer));
return HRTIMER_NORESTART;
}
static void null_cmd_end_timer(struct nullb_cmd *cmd)
{
ktime_t kt = cmd->nq->dev->completion_nsec;
null_blk: set a separate timer for each command For the Timer IRQ mode (i.e., when command completions are delayed), there is one timer for each CPU. Each of these timers . has a completion queue associated with it, containing all the command completions to be executed when the timer fires; . is set, and a new completion-to-execute is inserted into its completion queue, every time the dispatch code for a new command happens to be executed on the CPU related to the timer. This implies that, if the dispatch of a new command happens to be executed on a CPU whose timer has already been set, but has not yet fired, then the timer is set again, to the completion time of the newly arrived command. When the timer eventually fires, all its queued completions are executed. This way of handling delayed command completions entails the following problem: if more than one command completion is inserted into the queue of a timer before the timer fires, then the expiration time for the timer is moved forward every time each of these completions is enqueued. As a consequence, only the last completion enqueued enjoys a correct execution time, while all previous completions are unjustly delayed until the last completion is executed (and at that time they are executed all together). Specifically, if all the above completions are enqueued almost at the same time, then the problem is negligible. On the opposite end, if every completion is enqueued a while after the previous completion was enqueued (in the extreme case, it is enqueued only right before the timer would have expired), then every enqueued completion, except for the last one, experiences an inflated delay, proportional to the number of completions enqueued after it. In the end, commands, and thus I/O requests, may be completed at an arbitrarily lower rate than the desired one. This commit addresses this issue by replacing per-CPU timers with per-command timers, i.e., by associating an individual timer with each command. Signed-off-by: Paolo Valente <paolo.valente@unimore.it> Signed-off-by: Arianna Avanzini <avanzini@google.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-12-01 17:48:17 +07:00
hrtimer_start(&cmd->timer, kt, HRTIMER_MODE_REL);
}
static void null_complete_rq(struct request *rq)
{
end_cmd(blk_mq_rq_to_pdu(rq));
}
static struct nullb_page *null_alloc_page(gfp_t gfp_flags)
{
struct nullb_page *t_page;
t_page = kmalloc(sizeof(struct nullb_page), gfp_flags);
if (!t_page)
goto out;
t_page->page = alloc_pages(gfp_flags, 0);
if (!t_page->page)
goto out_freepage;
memset(t_page->bitmap, 0, sizeof(t_page->bitmap));
return t_page;
out_freepage:
kfree(t_page);
out:
return NULL;
}
static void null_free_page(struct nullb_page *t_page)
{
__set_bit(NULLB_PAGE_FREE, t_page->bitmap);
if (test_bit(NULLB_PAGE_LOCK, t_page->bitmap))
return;
__free_page(t_page->page);
kfree(t_page);
}
static bool null_page_empty(struct nullb_page *page)
{
int size = MAP_SZ - 2;
return find_first_bit(page->bitmap, size) == size;
}
static void null_free_sector(struct nullb *nullb, sector_t sector,
bool is_cache)
{
unsigned int sector_bit;
u64 idx;
struct nullb_page *t_page, *ret;
struct radix_tree_root *root;
root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
idx = sector >> PAGE_SECTORS_SHIFT;
sector_bit = (sector & SECTOR_MASK);
t_page = radix_tree_lookup(root, idx);
if (t_page) {
__clear_bit(sector_bit, t_page->bitmap);
if (null_page_empty(t_page)) {
ret = radix_tree_delete_item(root, idx, t_page);
WARN_ON(ret != t_page);
null_free_page(ret);
if (is_cache)
nullb->dev->curr_cache -= PAGE_SIZE;
}
}
}
static struct nullb_page *null_radix_tree_insert(struct nullb *nullb, u64 idx,
struct nullb_page *t_page, bool is_cache)
{
struct radix_tree_root *root;
root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
if (radix_tree_insert(root, idx, t_page)) {
null_free_page(t_page);
t_page = radix_tree_lookup(root, idx);
WARN_ON(!t_page || t_page->page->index != idx);
} else if (is_cache)
nullb->dev->curr_cache += PAGE_SIZE;
return t_page;
}
static void null_free_device_storage(struct nullb_device *dev, bool is_cache)
{
unsigned long pos = 0;
int nr_pages;
struct nullb_page *ret, *t_pages[FREE_BATCH];
struct radix_tree_root *root;
root = is_cache ? &dev->cache : &dev->data;
do {
int i;
nr_pages = radix_tree_gang_lookup(root,
(void **)t_pages, pos, FREE_BATCH);
for (i = 0; i < nr_pages; i++) {
pos = t_pages[i]->page->index;
ret = radix_tree_delete_item(root, pos, t_pages[i]);
WARN_ON(ret != t_pages[i]);
null_free_page(ret);
}
pos++;
} while (nr_pages == FREE_BATCH);
if (is_cache)
dev->curr_cache = 0;
}
static struct nullb_page *__null_lookup_page(struct nullb *nullb,
sector_t sector, bool for_write, bool is_cache)
{
unsigned int sector_bit;
u64 idx;
struct nullb_page *t_page;
struct radix_tree_root *root;
idx = sector >> PAGE_SECTORS_SHIFT;
sector_bit = (sector & SECTOR_MASK);
root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
t_page = radix_tree_lookup(root, idx);
WARN_ON(t_page && t_page->page->index != idx);
if (t_page && (for_write || test_bit(sector_bit, t_page->bitmap)))
return t_page;
return NULL;
}
static struct nullb_page *null_lookup_page(struct nullb *nullb,
sector_t sector, bool for_write, bool ignore_cache)
{
struct nullb_page *page = NULL;
if (!ignore_cache)
page = __null_lookup_page(nullb, sector, for_write, true);
if (page)
return page;
return __null_lookup_page(nullb, sector, for_write, false);
}
static struct nullb_page *null_insert_page(struct nullb *nullb,
sector_t sector, bool ignore_cache)
__releases(&nullb->lock)
__acquires(&nullb->lock)
{
u64 idx;
struct nullb_page *t_page;
t_page = null_lookup_page(nullb, sector, true, ignore_cache);
if (t_page)
return t_page;
spin_unlock_irq(&nullb->lock);
t_page = null_alloc_page(GFP_NOIO);
if (!t_page)
goto out_lock;
if (radix_tree_preload(GFP_NOIO))
goto out_freepage;
spin_lock_irq(&nullb->lock);
idx = sector >> PAGE_SECTORS_SHIFT;
t_page->page->index = idx;
t_page = null_radix_tree_insert(nullb, idx, t_page, !ignore_cache);
radix_tree_preload_end();
return t_page;
out_freepage:
null_free_page(t_page);
out_lock:
spin_lock_irq(&nullb->lock);
return null_lookup_page(nullb, sector, true, ignore_cache);
}
static int null_flush_cache_page(struct nullb *nullb, struct nullb_page *c_page)
{
int i;
unsigned int offset;
u64 idx;
struct nullb_page *t_page, *ret;
void *dst, *src;
idx = c_page->page->index;
t_page = null_insert_page(nullb, idx << PAGE_SECTORS_SHIFT, true);
__clear_bit(NULLB_PAGE_LOCK, c_page->bitmap);
if (test_bit(NULLB_PAGE_FREE, c_page->bitmap)) {
null_free_page(c_page);
if (t_page && null_page_empty(t_page)) {
ret = radix_tree_delete_item(&nullb->dev->data,
idx, t_page);
null_free_page(t_page);
}
return 0;
}
if (!t_page)
return -ENOMEM;
src = kmap_atomic(c_page->page);
dst = kmap_atomic(t_page->page);
for (i = 0; i < PAGE_SECTORS;
i += (nullb->dev->blocksize >> SECTOR_SHIFT)) {
if (test_bit(i, c_page->bitmap)) {
offset = (i << SECTOR_SHIFT);
memcpy(dst + offset, src + offset,
nullb->dev->blocksize);
__set_bit(i, t_page->bitmap);
}
}
kunmap_atomic(dst);
kunmap_atomic(src);
ret = radix_tree_delete_item(&nullb->dev->cache, idx, c_page);
null_free_page(ret);
nullb->dev->curr_cache -= PAGE_SIZE;
return 0;
}
static int null_make_cache_space(struct nullb *nullb, unsigned long n)
{
int i, err, nr_pages;
struct nullb_page *c_pages[FREE_BATCH];
unsigned long flushed = 0, one_round;
again:
if ((nullb->dev->cache_size * 1024 * 1024) >
nullb->dev->curr_cache + n || nullb->dev->curr_cache == 0)
return 0;
nr_pages = radix_tree_gang_lookup(&nullb->dev->cache,
(void **)c_pages, nullb->cache_flush_pos, FREE_BATCH);
/*
* nullb_flush_cache_page could unlock before using the c_pages. To
* avoid race, we don't allow page free
*/
for (i = 0; i < nr_pages; i++) {
nullb->cache_flush_pos = c_pages[i]->page->index;
/*
* We found the page which is being flushed to disk by other
* threads
*/
if (test_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap))
c_pages[i] = NULL;
else
__set_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap);
}
one_round = 0;
for (i = 0; i < nr_pages; i++) {
if (c_pages[i] == NULL)
continue;
err = null_flush_cache_page(nullb, c_pages[i]);
if (err)
return err;
one_round++;
}
flushed += one_round << PAGE_SHIFT;
if (n > flushed) {
if (nr_pages == 0)
nullb->cache_flush_pos = 0;
if (one_round == 0) {
/* give other threads a chance */
spin_unlock_irq(&nullb->lock);
spin_lock_irq(&nullb->lock);
}
goto again;
}
return 0;
}
static int copy_to_nullb(struct nullb *nullb, struct page *source,
unsigned int off, sector_t sector, size_t n, bool is_fua)
{
size_t temp, count = 0;
unsigned int offset;
struct nullb_page *t_page;
void *dst, *src;
while (count < n) {
temp = min_t(size_t, nullb->dev->blocksize, n - count);
if (null_cache_active(nullb) && !is_fua)
null_make_cache_space(nullb, PAGE_SIZE);
offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
t_page = null_insert_page(nullb, sector,
!null_cache_active(nullb) || is_fua);
if (!t_page)
return -ENOSPC;
src = kmap_atomic(source);
dst = kmap_atomic(t_page->page);
memcpy(dst + offset, src + off + count, temp);
kunmap_atomic(dst);
kunmap_atomic(src);
__set_bit(sector & SECTOR_MASK, t_page->bitmap);
if (is_fua)
null_free_sector(nullb, sector, true);
count += temp;
sector += temp >> SECTOR_SHIFT;
}
return 0;
}
static int copy_from_nullb(struct nullb *nullb, struct page *dest,
unsigned int off, sector_t sector, size_t n)
{
size_t temp, count = 0;
unsigned int offset;
struct nullb_page *t_page;
void *dst, *src;
while (count < n) {
temp = min_t(size_t, nullb->dev->blocksize, n - count);
offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
t_page = null_lookup_page(nullb, sector, false,
!null_cache_active(nullb));
dst = kmap_atomic(dest);
if (!t_page) {
memset(dst + off + count, 0, temp);
goto next;
}
src = kmap_atomic(t_page->page);
memcpy(dst + off + count, src + offset, temp);
kunmap_atomic(src);
next:
kunmap_atomic(dst);
count += temp;
sector += temp >> SECTOR_SHIFT;
}
return 0;
}
static void null_handle_discard(struct nullb *nullb, sector_t sector, size_t n)
{
size_t temp;
spin_lock_irq(&nullb->lock);
while (n > 0) {
temp = min_t(size_t, n, nullb->dev->blocksize);
null_free_sector(nullb, sector, false);
if (null_cache_active(nullb))
null_free_sector(nullb, sector, true);
sector += temp >> SECTOR_SHIFT;
n -= temp;
}
spin_unlock_irq(&nullb->lock);
}
static int null_handle_flush(struct nullb *nullb)
{
int err;
if (!null_cache_active(nullb))
return 0;
spin_lock_irq(&nullb->lock);
while (true) {
err = null_make_cache_space(nullb,
nullb->dev->cache_size * 1024 * 1024);
if (err || nullb->dev->curr_cache == 0)
break;
}
WARN_ON(!radix_tree_empty(&nullb->dev->cache));
spin_unlock_irq(&nullb->lock);
return err;
}
static int null_transfer(struct nullb *nullb, struct page *page,
unsigned int len, unsigned int off, bool is_write, sector_t sector,
bool is_fua)
{
int err = 0;
if (!is_write) {
err = copy_from_nullb(nullb, page, off, sector, len);
flush_dcache_page(page);
} else {
flush_dcache_page(page);
err = copy_to_nullb(nullb, page, off, sector, len, is_fua);
}
return err;
}
static int null_handle_rq(struct nullb_cmd *cmd)
{
struct request *rq = cmd->rq;
struct nullb *nullb = cmd->nq->dev->nullb;
int err;
unsigned int len;
sector_t sector;
struct req_iterator iter;
struct bio_vec bvec;
sector = blk_rq_pos(rq);
if (req_op(rq) == REQ_OP_DISCARD) {
null_handle_discard(nullb, sector, blk_rq_bytes(rq));
return 0;
}
spin_lock_irq(&nullb->lock);
rq_for_each_segment(bvec, rq, iter) {
len = bvec.bv_len;
err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
op_is_write(req_op(rq)), sector,
req_op(rq) & REQ_FUA);
if (err) {
spin_unlock_irq(&nullb->lock);
return err;
}
sector += len >> SECTOR_SHIFT;
}
spin_unlock_irq(&nullb->lock);
return 0;
}
static int null_handle_bio(struct nullb_cmd *cmd)
{
struct bio *bio = cmd->bio;
struct nullb *nullb = cmd->nq->dev->nullb;
int err;
unsigned int len;
sector_t sector;
struct bio_vec bvec;
struct bvec_iter iter;
sector = bio->bi_iter.bi_sector;
if (bio_op(bio) == REQ_OP_DISCARD) {
null_handle_discard(nullb, sector,
bio_sectors(bio) << SECTOR_SHIFT);
return 0;
}
spin_lock_irq(&nullb->lock);
bio_for_each_segment(bvec, bio, iter) {
len = bvec.bv_len;
err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
op_is_write(bio_op(bio)), sector,
bio->bi_opf & REQ_FUA);
if (err) {
spin_unlock_irq(&nullb->lock);
return err;
}
sector += len >> SECTOR_SHIFT;
}
spin_unlock_irq(&nullb->lock);
return 0;
}
static void null_stop_queue(struct nullb *nullb)
{
struct request_queue *q = nullb->q;
if (nullb->dev->queue_mode == NULL_Q_MQ)
blk_mq_stop_hw_queues(q);
}
static void null_restart_queue_async(struct nullb *nullb)
{
struct request_queue *q = nullb->q;
if (nullb->dev->queue_mode == NULL_Q_MQ)
blk_mq_start_stopped_hw_queues(q, true);
}
static inline blk_status_t null_handle_throttled(struct nullb_cmd *cmd)
{
struct nullb_device *dev = cmd->nq->dev;
struct nullb *nullb = dev->nullb;
blk_status_t sts = BLK_STS_OK;
struct request *rq = cmd->rq;
if (!hrtimer_active(&nullb->bw_timer))
hrtimer_restart(&nullb->bw_timer);
if (atomic_long_sub_return(blk_rq_bytes(rq), &nullb->cur_bytes) < 0) {
null_stop_queue(nullb);
/* race with timer */
if (atomic_long_read(&nullb->cur_bytes) > 0)
null_restart_queue_async(nullb);
/* requeue request */
sts = BLK_STS_DEV_RESOURCE;
}
return sts;
}
static blk_status_t null_handle_cmd(struct nullb_cmd *cmd, sector_t sector,
sector_t nr_sectors, enum req_opf op)
{
struct nullb_device *dev = cmd->nq->dev;
struct nullb *nullb = dev->nullb;
blk_status_t sts;
int err = 0;
if (test_bit(NULLB_DEV_FL_THROTTLED, &dev->flags)) {
sts = null_handle_throttled(cmd);
if (sts != BLK_STS_OK)
return sts;
}
if (op == REQ_OP_FLUSH) {
cmd->error = errno_to_blk_status(null_handle_flush(nullb));
goto out;
}
if (nullb->dev->badblocks.shift != -1) {
int bad_sectors;
sector_t first_bad;
if (badblocks_check(&nullb->dev->badblocks, sector, nr_sectors,
&first_bad, &bad_sectors)) {
cmd->error = BLK_STS_IOERR;
goto out;
}
}
if (dev->memory_backed) {
if (dev->queue_mode == NULL_Q_BIO)
err = null_handle_bio(cmd);
else
err = null_handle_rq(cmd);
}
cmd->error = errno_to_blk_status(err);
if (!cmd->error && dev->zoned) {
if (op == REQ_OP_WRITE)
null_zone_write(cmd, sector, nr_sectors);
else if (op == REQ_OP_ZONE_RESET)
null_zone_reset(cmd, sector);
else if (op == REQ_OP_ZONE_RESET_ALL)
null_zone_reset(cmd, 0);
}
out:
/* Complete IO by inline, softirq or timer */
switch (dev->irqmode) {
case NULL_IRQ_SOFTIRQ:
switch (dev->queue_mode) {
case NULL_Q_MQ:
blk_mq_complete_request(cmd->rq);
break;
case NULL_Q_BIO:
/*
* XXX: no proper submitting cpu information available.
*/
end_cmd(cmd);
break;
}
break;
case NULL_IRQ_NONE:
end_cmd(cmd);
break;
case NULL_IRQ_TIMER:
null_cmd_end_timer(cmd);
break;
}
return BLK_STS_OK;
}
static enum hrtimer_restart nullb_bwtimer_fn(struct hrtimer *timer)
{
struct nullb *nullb = container_of(timer, struct nullb, bw_timer);
ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
unsigned int mbps = nullb->dev->mbps;
if (atomic_long_read(&nullb->cur_bytes) == mb_per_tick(mbps))
return HRTIMER_NORESTART;
atomic_long_set(&nullb->cur_bytes, mb_per_tick(mbps));
null_restart_queue_async(nullb);
hrtimer_forward_now(&nullb->bw_timer, timer_interval);
return HRTIMER_RESTART;
}
static void nullb_setup_bwtimer(struct nullb *nullb)
{
ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
hrtimer_init(&nullb->bw_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
nullb->bw_timer.function = nullb_bwtimer_fn;
atomic_long_set(&nullb->cur_bytes, mb_per_tick(nullb->dev->mbps));
hrtimer_start(&nullb->bw_timer, timer_interval, HRTIMER_MODE_REL);
}
static struct nullb_queue *nullb_to_queue(struct nullb *nullb)
{
int index = 0;
if (nullb->nr_queues != 1)
index = raw_smp_processor_id() / ((nr_cpu_ids + nullb->nr_queues - 1) / nullb->nr_queues);
return &nullb->queues[index];
}
static blk_qc_t null_queue_bio(struct request_queue *q, struct bio *bio)
{
sector_t sector = bio->bi_iter.bi_sector;
sector_t nr_sectors = bio_sectors(bio);
struct nullb *nullb = q->queuedata;
struct nullb_queue *nq = nullb_to_queue(nullb);
struct nullb_cmd *cmd;
cmd = alloc_cmd(nq, 1);
cmd->bio = bio;
null_handle_cmd(cmd, sector, nr_sectors, bio_op(bio));
return BLK_QC_T_NONE;
}
static bool should_timeout_request(struct request *rq)
{
#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
if (g_timeout_str[0])
return should_fail(&null_timeout_attr, 1);
#endif
return false;
}
static bool should_requeue_request(struct request *rq)
{
#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
if (g_requeue_str[0])
return should_fail(&null_requeue_attr, 1);
#endif
return false;
}
static enum blk_eh_timer_return null_timeout_rq(struct request *rq, bool res)
{
pr_info("null: rq %p timed out\n", rq);
blk_mq_complete_request(rq);
return BLK_EH_DONE;
}
static blk_status_t null_queue_rq(struct blk_mq_hw_ctx *hctx,
const struct blk_mq_queue_data *bd)
{
struct nullb_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
struct nullb_queue *nq = hctx->driver_data;
sector_t nr_sectors = blk_rq_sectors(bd->rq);
sector_t sector = blk_rq_pos(bd->rq);
might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
if (nq->dev->irqmode == NULL_IRQ_TIMER) {
null_blk: set a separate timer for each command For the Timer IRQ mode (i.e., when command completions are delayed), there is one timer for each CPU. Each of these timers . has a completion queue associated with it, containing all the command completions to be executed when the timer fires; . is set, and a new completion-to-execute is inserted into its completion queue, every time the dispatch code for a new command happens to be executed on the CPU related to the timer. This implies that, if the dispatch of a new command happens to be executed on a CPU whose timer has already been set, but has not yet fired, then the timer is set again, to the completion time of the newly arrived command. When the timer eventually fires, all its queued completions are executed. This way of handling delayed command completions entails the following problem: if more than one command completion is inserted into the queue of a timer before the timer fires, then the expiration time for the timer is moved forward every time each of these completions is enqueued. As a consequence, only the last completion enqueued enjoys a correct execution time, while all previous completions are unjustly delayed until the last completion is executed (and at that time they are executed all together). Specifically, if all the above completions are enqueued almost at the same time, then the problem is negligible. On the opposite end, if every completion is enqueued a while after the previous completion was enqueued (in the extreme case, it is enqueued only right before the timer would have expired), then every enqueued completion, except for the last one, experiences an inflated delay, proportional to the number of completions enqueued after it. In the end, commands, and thus I/O requests, may be completed at an arbitrarily lower rate than the desired one. This commit addresses this issue by replacing per-CPU timers with per-command timers, i.e., by associating an individual timer with each command. Signed-off-by: Paolo Valente <paolo.valente@unimore.it> Signed-off-by: Arianna Avanzini <avanzini@google.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-12-01 17:48:17 +07:00
hrtimer_init(&cmd->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
cmd->timer.function = null_cmd_timer_expired;
}
cmd->rq = bd->rq;
cmd->nq = nq;
blk_mq_start_request(bd->rq);
if (should_requeue_request(bd->rq)) {
/*
* Alternate between hitting the core BUSY path, and the
* driver driven requeue path
*/
nq->requeue_selection++;
if (nq->requeue_selection & 1)
return BLK_STS_RESOURCE;
else {
blk_mq_requeue_request(bd->rq, true);
return BLK_STS_OK;
}
}
if (should_timeout_request(bd->rq))
return BLK_STS_OK;
return null_handle_cmd(cmd, sector, nr_sectors, req_op(bd->rq));
}
static const struct blk_mq_ops null_mq_ops = {
.queue_rq = null_queue_rq,
.complete = null_complete_rq,
.timeout = null_timeout_rq,
};
static void cleanup_queue(struct nullb_queue *nq)
{
kfree(nq->tag_map);
kfree(nq->cmds);
}
static void cleanup_queues(struct nullb *nullb)
{
int i;
for (i = 0; i < nullb->nr_queues; i++)
cleanup_queue(&nullb->queues[i]);
kfree(nullb->queues);
}
static void null_del_dev(struct nullb *nullb)
{
struct nullb_device *dev = nullb->dev;
ida_simple_remove(&nullb_indexes, nullb->index);
list_del_init(&nullb->list);
del_gendisk(nullb->disk);
if (test_bit(NULLB_DEV_FL_THROTTLED, &nullb->dev->flags)) {
hrtimer_cancel(&nullb->bw_timer);
atomic_long_set(&nullb->cur_bytes, LONG_MAX);
null_restart_queue_async(nullb);
}
blk_cleanup_queue(nullb->q);
if (dev->queue_mode == NULL_Q_MQ &&
nullb->tag_set == &nullb->__tag_set)
blk_mq_free_tag_set(nullb->tag_set);
put_disk(nullb->disk);
cleanup_queues(nullb);
if (null_cache_active(nullb))
null_free_device_storage(nullb->dev, true);
kfree(nullb);
dev->nullb = NULL;
}
static void null_config_discard(struct nullb *nullb)
{
if (nullb->dev->discard == false)
return;
nullb->q->limits.discard_granularity = nullb->dev->blocksize;
nullb->q->limits.discard_alignment = nullb->dev->blocksize;
blk_queue_max_discard_sectors(nullb->q, UINT_MAX >> 9);
blk_queue_flag_set(QUEUE_FLAG_DISCARD, nullb->q);
}
static int null_open(struct block_device *bdev, fmode_t mode)
{
return 0;
}
static void null_release(struct gendisk *disk, fmode_t mode)
{
}
static const struct block_device_operations null_fops = {
.owner = THIS_MODULE,
.open = null_open,
.release = null_release,
.report_zones = null_zone_report,
};
static void null_init_queue(struct nullb *nullb, struct nullb_queue *nq)
{
BUG_ON(!nullb);
BUG_ON(!nq);
init_waitqueue_head(&nq->wait);
nq->queue_depth = nullb->queue_depth;
nq->dev = nullb->dev;
}
static void null_init_queues(struct nullb *nullb)
{
struct request_queue *q = nullb->q;
struct blk_mq_hw_ctx *hctx;
struct nullb_queue *nq;
int i;
queue_for_each_hw_ctx(q, hctx, i) {
if (!hctx->nr_ctx || !hctx->tags)
continue;
nq = &nullb->queues[i];
hctx->driver_data = nq;
null_init_queue(nullb, nq);
nullb->nr_queues++;
}
}
static int setup_commands(struct nullb_queue *nq)
{
struct nullb_cmd *cmd;
int i, tag_size;
treewide: kzalloc() -> kcalloc() The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-13 04:03:40 +07:00
nq->cmds = kcalloc(nq->queue_depth, sizeof(*cmd), GFP_KERNEL);
if (!nq->cmds)
return -ENOMEM;
tag_size = ALIGN(nq->queue_depth, BITS_PER_LONG) / BITS_PER_LONG;
treewide: kzalloc() -> kcalloc() The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-13 04:03:40 +07:00
nq->tag_map = kcalloc(tag_size, sizeof(unsigned long), GFP_KERNEL);
if (!nq->tag_map) {
kfree(nq->cmds);
return -ENOMEM;
}
for (i = 0; i < nq->queue_depth; i++) {
cmd = &nq->cmds[i];
INIT_LIST_HEAD(&cmd->list);
cmd->ll_list.next = NULL;
cmd->tag = -1U;
}
return 0;
}
static int setup_queues(struct nullb *nullb)
{
treewide: kzalloc() -> kcalloc() The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-13 04:03:40 +07:00
nullb->queues = kcalloc(nullb->dev->submit_queues,
sizeof(struct nullb_queue),
GFP_KERNEL);
if (!nullb->queues)
return -ENOMEM;
nullb->queue_depth = nullb->dev->hw_queue_depth;
return 0;
}
static int init_driver_queues(struct nullb *nullb)
{
struct nullb_queue *nq;
int i, ret = 0;
for (i = 0; i < nullb->dev->submit_queues; i++) {
nq = &nullb->queues[i];
null_init_queue(nullb, nq);
ret = setup_commands(nq);
if (ret)
return ret;
nullb->nr_queues++;
}
return 0;
}
static int null_gendisk_register(struct nullb *nullb)
{
struct gendisk *disk;
sector_t size;
disk = nullb->disk = alloc_disk_node(1, nullb->dev->home_node);
if (!disk)
return -ENOMEM;
size = (sector_t)nullb->dev->size * 1024 * 1024ULL;
set_capacity(disk, size >> 9);
disk->flags |= GENHD_FL_EXT_DEVT | GENHD_FL_SUPPRESS_PARTITION_INFO;
disk->major = null_major;
disk->first_minor = nullb->index;
disk->fops = &null_fops;
disk->private_data = nullb;
disk->queue = nullb->q;
strncpy(disk->disk_name, nullb->disk_name, DISK_NAME_LEN);
block: Introduce blk_revalidate_disk_zones() Drivers exposing zoned block devices have to initialize and maintain correctness (i.e. revalidate) of the device zone bitmaps attached to the device request queue (seq_zones_bitmap and seq_zones_wlock). To simplify coding this, introduce a generic helper function blk_revalidate_disk_zones() suitable for most (and likely all) cases. This new function always update the seq_zones_bitmap and seq_zones_wlock bitmaps as well as the queue nr_zones field when called for a disk using a request based queue. For a disk using a BIO based queue, only the number of zones is updated since these queues do not have schedulers and so do not need the zone bitmaps. With this change, the zone bitmap initialization code in sd_zbc.c can be replaced with a call to this function in sd_zbc_read_zones(), which is called from the disk revalidate block operation method. A call to blk_revalidate_disk_zones() is also added to the null_blk driver for devices created with the zoned mode enabled. Finally, to ensure that zoned devices created with dm-linear or dm-flakey expose the correct number of zones through sysfs, a call to blk_revalidate_disk_zones() is added to dm_table_set_restrictions(). The zone bitmaps allocated and initialized with blk_revalidate_disk_zones() are freed automatically from __blk_release_queue() using the block internal function blk_queue_free_zone_bitmaps(). Reviewed-by: Hannes Reinecke <hare@suse.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-10-12 17:08:50 +07:00
if (nullb->dev->zoned) {
int ret = blk_revalidate_disk_zones(disk);
if (ret != 0)
return ret;
}
add_disk(disk);
return 0;
}
static int null_init_tag_set(struct nullb *nullb, struct blk_mq_tag_set *set)
{
set->ops = &null_mq_ops;
set->nr_hw_queues = nullb ? nullb->dev->submit_queues :
g_submit_queues;
set->queue_depth = nullb ? nullb->dev->hw_queue_depth :
g_hw_queue_depth;
set->numa_node = nullb ? nullb->dev->home_node : g_home_node;
set->cmd_size = sizeof(struct nullb_cmd);
set->flags = BLK_MQ_F_SHOULD_MERGE;
if (g_no_sched)
set->flags |= BLK_MQ_F_NO_SCHED;
set->driver_data = NULL;
if ((nullb && nullb->dev->blocking) || g_blocking)
set->flags |= BLK_MQ_F_BLOCKING;
return blk_mq_alloc_tag_set(set);
}
static void null_validate_conf(struct nullb_device *dev)
{
dev->blocksize = round_down(dev->blocksize, 512);
dev->blocksize = clamp_t(unsigned int, dev->blocksize, 512, 4096);
if (dev->queue_mode == NULL_Q_MQ && dev->use_per_node_hctx) {
if (dev->submit_queues != nr_online_nodes)
dev->submit_queues = nr_online_nodes;
} else if (dev->submit_queues > nr_cpu_ids)
dev->submit_queues = nr_cpu_ids;
else if (dev->submit_queues == 0)
dev->submit_queues = 1;
dev->queue_mode = min_t(unsigned int, dev->queue_mode, NULL_Q_MQ);
dev->irqmode = min_t(unsigned int, dev->irqmode, NULL_IRQ_TIMER);
/* Do memory allocation, so set blocking */
if (dev->memory_backed)
dev->blocking = true;
else /* cache is meaningless */
dev->cache_size = 0;
dev->cache_size = min_t(unsigned long, ULONG_MAX / 1024 / 1024,
dev->cache_size);
dev->mbps = min_t(unsigned int, 1024 * 40, dev->mbps);
/* can not stop a queue */
if (dev->queue_mode == NULL_Q_BIO)
dev->mbps = 0;
}
#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
static bool __null_setup_fault(struct fault_attr *attr, char *str)
{
if (!str[0])
return true;
if (!setup_fault_attr(attr, str))
return false;
attr->verbose = 0;
return true;
}
#endif
static bool null_setup_fault(void)
{
#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
if (!__null_setup_fault(&null_timeout_attr, g_timeout_str))
return false;
if (!__null_setup_fault(&null_requeue_attr, g_requeue_str))
return false;
#endif
return true;
}
static int null_add_dev(struct nullb_device *dev)
{
struct nullb *nullb;
int rv;
null_validate_conf(dev);
nullb = kzalloc_node(sizeof(*nullb), GFP_KERNEL, dev->home_node);
if (!nullb) {
rv = -ENOMEM;
goto out;
}
nullb->dev = dev;
dev->nullb = nullb;
spin_lock_init(&nullb->lock);
rv = setup_queues(nullb);
if (rv)
goto out_free_nullb;
if (dev->queue_mode == NULL_Q_MQ) {
if (shared_tags) {
nullb->tag_set = &tag_set;
rv = 0;
} else {
nullb->tag_set = &nullb->__tag_set;
rv = null_init_tag_set(nullb, nullb->tag_set);
}
if (rv)
goto out_cleanup_queues;
if (!null_setup_fault())
goto out_cleanup_queues;
nullb->tag_set->timeout = 5 * HZ;
nullb->q = blk_mq_init_queue(nullb->tag_set);
if (IS_ERR(nullb->q)) {
rv = -ENOMEM;
goto out_cleanup_tags;
}
null_init_queues(nullb);
} else if (dev->queue_mode == NULL_Q_BIO) {
nullb->q = blk_alloc_queue_node(GFP_KERNEL, dev->home_node);
if (!nullb->q) {
rv = -ENOMEM;
goto out_cleanup_queues;
}
blk_queue_make_request(nullb->q, null_queue_bio);
rv = init_driver_queues(nullb);
if (rv)
goto out_cleanup_blk_queue;
}
if (dev->mbps) {
set_bit(NULLB_DEV_FL_THROTTLED, &dev->flags);
nullb_setup_bwtimer(nullb);
}
if (dev->cache_size > 0) {
set_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
blk_queue_write_cache(nullb->q, true, true);
}
if (dev->zoned) {
rv = null_zone_init(dev);
if (rv)
goto out_cleanup_blk_queue;
blk_queue_chunk_sectors(nullb->q, dev->zone_size_sects);
nullb->q->limits.zoned = BLK_ZONED_HM;
blk_queue_flag_set(QUEUE_FLAG_ZONE_RESETALL, nullb->q);
}
nullb->q->queuedata = nullb;
blk_queue_flag_set(QUEUE_FLAG_NONROT, nullb->q);
blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, nullb->q);
mutex_lock(&lock);
nullb->index = ida_simple_get(&nullb_indexes, 0, 0, GFP_KERNEL);
dev->index = nullb->index;
mutex_unlock(&lock);
blk_queue_logical_block_size(nullb->q, dev->blocksize);
blk_queue_physical_block_size(nullb->q, dev->blocksize);
null_config_discard(nullb);
sprintf(nullb->disk_name, "nullb%d", nullb->index);
rv = null_gendisk_register(nullb);
if (rv)
goto out_cleanup_zone;
mutex_lock(&lock);
list_add_tail(&nullb->list, &nullb_list);
mutex_unlock(&lock);
return 0;
out_cleanup_zone:
if (dev->zoned)
null_zone_exit(dev);
out_cleanup_blk_queue:
blk_cleanup_queue(nullb->q);
out_cleanup_tags:
if (dev->queue_mode == NULL_Q_MQ && nullb->tag_set == &nullb->__tag_set)
blk_mq_free_tag_set(nullb->tag_set);
out_cleanup_queues:
cleanup_queues(nullb);
out_free_nullb:
kfree(nullb);
out:
return rv;
}
static int __init null_init(void)
{
int ret = 0;
unsigned int i;
struct nullb *nullb;
struct nullb_device *dev;
if (g_bs > PAGE_SIZE) {
pr_warn("null_blk: invalid block size\n");
pr_warn("null_blk: defaults block size to %lu\n", PAGE_SIZE);
g_bs = PAGE_SIZE;
}
if (!is_power_of_2(g_zone_size)) {
pr_err("null_blk: zone_size must be power-of-two\n");
return -EINVAL;
}
if (g_home_node != NUMA_NO_NODE && g_home_node >= nr_online_nodes) {
pr_err("null_blk: invalid home_node value\n");
g_home_node = NUMA_NO_NODE;
}
if (g_queue_mode == NULL_Q_RQ) {
pr_err("null_blk: legacy IO path no longer available\n");
return -EINVAL;
}
if (g_queue_mode == NULL_Q_MQ && g_use_per_node_hctx) {
if (g_submit_queues != nr_online_nodes) {
pr_warn("null_blk: submit_queues param is set to %u.\n",
nr_online_nodes);
g_submit_queues = nr_online_nodes;
}
} else if (g_submit_queues > nr_cpu_ids)
g_submit_queues = nr_cpu_ids;
else if (g_submit_queues <= 0)
g_submit_queues = 1;
if (g_queue_mode == NULL_Q_MQ && shared_tags) {
ret = null_init_tag_set(NULL, &tag_set);
if (ret)
return ret;
}
config_group_init(&nullb_subsys.su_group);
mutex_init(&nullb_subsys.su_mutex);
ret = configfs_register_subsystem(&nullb_subsys);
if (ret)
goto err_tagset;
mutex_init(&lock);
null_major = register_blkdev(0, "nullb");
if (null_major < 0) {
ret = null_major;
goto err_conf;
}
for (i = 0; i < nr_devices; i++) {
dev = null_alloc_dev();
if (!dev) {
ret = -ENOMEM;
goto err_dev;
}
ret = null_add_dev(dev);
if (ret) {
null_free_dev(dev);
goto err_dev;
}
}
pr_info("null: module loaded\n");
return 0;
err_dev:
while (!list_empty(&nullb_list)) {
nullb = list_entry(nullb_list.next, struct nullb, list);
dev = nullb->dev;
null_del_dev(nullb);
null_free_dev(dev);
}
unregister_blkdev(null_major, "nullb");
err_conf:
configfs_unregister_subsystem(&nullb_subsys);
err_tagset:
if (g_queue_mode == NULL_Q_MQ && shared_tags)
blk_mq_free_tag_set(&tag_set);
return ret;
}
static void __exit null_exit(void)
{
struct nullb *nullb;
configfs_unregister_subsystem(&nullb_subsys);
unregister_blkdev(null_major, "nullb");
mutex_lock(&lock);
while (!list_empty(&nullb_list)) {
struct nullb_device *dev;
nullb = list_entry(nullb_list.next, struct nullb, list);
dev = nullb->dev;
null_del_dev(nullb);
null_free_dev(dev);
}
mutex_unlock(&lock);
if (g_queue_mode == NULL_Q_MQ && shared_tags)
blk_mq_free_tag_set(&tag_set);
}
module_init(null_init);
module_exit(null_exit);
MODULE_AUTHOR("Jens Axboe <axboe@kernel.dk>");
MODULE_LICENSE("GPL");