linux_dsm_epyc7002/arch/powerpc/kernel/mce.c

449 lines
13 KiB
C
Raw Normal View History

powerpc/book3s: Decode and save machine check event. Now that we handle machine check in linux, the MCE decoding should also take place in linux host. This info is crucial to log before we go down in case we can not handle the machine check errors. This patch decodes and populates a machine check event which contain high level meaning full MCE information. We do this in real mode C code with ME bit on. The MCE information is still available on emergency stack (in pt_regs structure format). Even if we take another exception at this point the MCE early handler will allocate a new stack frame on top of current one. So when we return back here we still have our MCE information safe on current stack. We use per cpu buffer to save high level MCE information. Each per cpu buffer is an array of machine check event structure indexed by per cpu counter mce_nest_count. The mce_nest_count is incremented every time we enter machine check early handler in real mode to get the current free slot (index = mce_nest_count - 1). The mce_nest_count is decremented once the MCE info is consumed by virtual mode machine exception handler. This patch provides save_mce_event(), get_mce_event() and release_mce_event() generic routines that can be used by machine check handlers to populate and retrieve the event. The routine release_mce_event() will free the event slot so that it can be reused. Caller can invoke get_mce_event() with a release flag either to release the event slot immediately OR keep it so that it can be fetched again. The event slot can be also released anytime by invoking release_mce_event(). This patch also updates kvm code to invoke get_mce_event to retrieve generic mce event rather than paca->opal_mce_evt. The KVM code always calls get_mce_event() with release flags set to false so that event is available for linus host machine If machine check occurs while we are in guest, KVM tries to handle the error. If KVM is able to handle MC error successfully, it enters the guest and delivers the machine check to guest. If KVM is not able to handle MC error, it exists the guest and passes the control to linux host machine check handler which then logs MC event and decides how to handle it in linux host. In failure case, KVM needs to make sure that the MC event is available for linux host to consume. Hence KVM always calls get_mce_event() with release flags set to false and later it invokes release_mce_event() only if it succeeds to handle error. Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-10-30 21:35:40 +07:00
/*
* Machine check exception handling.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* Copyright 2013 IBM Corporation
* Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
*/
#undef DEBUG
#define pr_fmt(fmt) "mce: " fmt
#include <linux/types.h>
#include <linux/ptrace.h>
#include <linux/percpu.h>
#include <linux/export.h>
#include <linux/irq_work.h>
powerpc/book3s: Decode and save machine check event. Now that we handle machine check in linux, the MCE decoding should also take place in linux host. This info is crucial to log before we go down in case we can not handle the machine check errors. This patch decodes and populates a machine check event which contain high level meaning full MCE information. We do this in real mode C code with ME bit on. The MCE information is still available on emergency stack (in pt_regs structure format). Even if we take another exception at this point the MCE early handler will allocate a new stack frame on top of current one. So when we return back here we still have our MCE information safe on current stack. We use per cpu buffer to save high level MCE information. Each per cpu buffer is an array of machine check event structure indexed by per cpu counter mce_nest_count. The mce_nest_count is incremented every time we enter machine check early handler in real mode to get the current free slot (index = mce_nest_count - 1). The mce_nest_count is decremented once the MCE info is consumed by virtual mode machine exception handler. This patch provides save_mce_event(), get_mce_event() and release_mce_event() generic routines that can be used by machine check handlers to populate and retrieve the event. The routine release_mce_event() will free the event slot so that it can be reused. Caller can invoke get_mce_event() with a release flag either to release the event slot immediately OR keep it so that it can be fetched again. The event slot can be also released anytime by invoking release_mce_event(). This patch also updates kvm code to invoke get_mce_event to retrieve generic mce event rather than paca->opal_mce_evt. The KVM code always calls get_mce_event() with release flags set to false so that event is available for linus host machine If machine check occurs while we are in guest, KVM tries to handle the error. If KVM is able to handle MC error successfully, it enters the guest and delivers the machine check to guest. If KVM is not able to handle MC error, it exists the guest and passes the control to linux host machine check handler which then logs MC event and decides how to handle it in linux host. In failure case, KVM needs to make sure that the MC event is available for linux host to consume. Hence KVM always calls get_mce_event() with release flags set to false and later it invokes release_mce_event() only if it succeeds to handle error. Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-10-30 21:35:40 +07:00
#include <asm/mce.h>
static DEFINE_PER_CPU(int, mce_nest_count);
static DEFINE_PER_CPU(struct machine_check_event[MAX_MC_EVT], mce_event);
/* Queue for delayed MCE events. */
static DEFINE_PER_CPU(int, mce_queue_count);
static DEFINE_PER_CPU(struct machine_check_event[MAX_MC_EVT], mce_event_queue);
static void machine_check_process_queued_event(struct irq_work *work);
static struct irq_work mce_event_process_work = {
.func = machine_check_process_queued_event,
};
powerpc/book3s: Decode and save machine check event. Now that we handle machine check in linux, the MCE decoding should also take place in linux host. This info is crucial to log before we go down in case we can not handle the machine check errors. This patch decodes and populates a machine check event which contain high level meaning full MCE information. We do this in real mode C code with ME bit on. The MCE information is still available on emergency stack (in pt_regs structure format). Even if we take another exception at this point the MCE early handler will allocate a new stack frame on top of current one. So when we return back here we still have our MCE information safe on current stack. We use per cpu buffer to save high level MCE information. Each per cpu buffer is an array of machine check event structure indexed by per cpu counter mce_nest_count. The mce_nest_count is incremented every time we enter machine check early handler in real mode to get the current free slot (index = mce_nest_count - 1). The mce_nest_count is decremented once the MCE info is consumed by virtual mode machine exception handler. This patch provides save_mce_event(), get_mce_event() and release_mce_event() generic routines that can be used by machine check handlers to populate and retrieve the event. The routine release_mce_event() will free the event slot so that it can be reused. Caller can invoke get_mce_event() with a release flag either to release the event slot immediately OR keep it so that it can be fetched again. The event slot can be also released anytime by invoking release_mce_event(). This patch also updates kvm code to invoke get_mce_event to retrieve generic mce event rather than paca->opal_mce_evt. The KVM code always calls get_mce_event() with release flags set to false so that event is available for linus host machine If machine check occurs while we are in guest, KVM tries to handle the error. If KVM is able to handle MC error successfully, it enters the guest and delivers the machine check to guest. If KVM is not able to handle MC error, it exists the guest and passes the control to linux host machine check handler which then logs MC event and decides how to handle it in linux host. In failure case, KVM needs to make sure that the MC event is available for linux host to consume. Hence KVM always calls get_mce_event() with release flags set to false and later it invokes release_mce_event() only if it succeeds to handle error. Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-10-30 21:35:40 +07:00
static void mce_set_error_info(struct machine_check_event *mce,
struct mce_error_info *mce_err)
{
mce->error_type = mce_err->error_type;
switch (mce_err->error_type) {
case MCE_ERROR_TYPE_UE:
mce->u.ue_error.ue_error_type = mce_err->u.ue_error_type;
break;
case MCE_ERROR_TYPE_SLB:
mce->u.slb_error.slb_error_type = mce_err->u.slb_error_type;
break;
case MCE_ERROR_TYPE_ERAT:
mce->u.erat_error.erat_error_type = mce_err->u.erat_error_type;
break;
case MCE_ERROR_TYPE_TLB:
mce->u.tlb_error.tlb_error_type = mce_err->u.tlb_error_type;
break;
case MCE_ERROR_TYPE_USER:
mce->u.user_error.user_error_type = mce_err->u.user_error_type;
break;
case MCE_ERROR_TYPE_RA:
mce->u.ra_error.ra_error_type = mce_err->u.ra_error_type;
break;
case MCE_ERROR_TYPE_LINK:
mce->u.link_error.link_error_type = mce_err->u.link_error_type;
break;
powerpc/book3s: Decode and save machine check event. Now that we handle machine check in linux, the MCE decoding should also take place in linux host. This info is crucial to log before we go down in case we can not handle the machine check errors. This patch decodes and populates a machine check event which contain high level meaning full MCE information. We do this in real mode C code with ME bit on. The MCE information is still available on emergency stack (in pt_regs structure format). Even if we take another exception at this point the MCE early handler will allocate a new stack frame on top of current one. So when we return back here we still have our MCE information safe on current stack. We use per cpu buffer to save high level MCE information. Each per cpu buffer is an array of machine check event structure indexed by per cpu counter mce_nest_count. The mce_nest_count is incremented every time we enter machine check early handler in real mode to get the current free slot (index = mce_nest_count - 1). The mce_nest_count is decremented once the MCE info is consumed by virtual mode machine exception handler. This patch provides save_mce_event(), get_mce_event() and release_mce_event() generic routines that can be used by machine check handlers to populate and retrieve the event. The routine release_mce_event() will free the event slot so that it can be reused. Caller can invoke get_mce_event() with a release flag either to release the event slot immediately OR keep it so that it can be fetched again. The event slot can be also released anytime by invoking release_mce_event(). This patch also updates kvm code to invoke get_mce_event to retrieve generic mce event rather than paca->opal_mce_evt. The KVM code always calls get_mce_event() with release flags set to false so that event is available for linus host machine If machine check occurs while we are in guest, KVM tries to handle the error. If KVM is able to handle MC error successfully, it enters the guest and delivers the machine check to guest. If KVM is not able to handle MC error, it exists the guest and passes the control to linux host machine check handler which then logs MC event and decides how to handle it in linux host. In failure case, KVM needs to make sure that the MC event is available for linux host to consume. Hence KVM always calls get_mce_event() with release flags set to false and later it invokes release_mce_event() only if it succeeds to handle error. Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-10-30 21:35:40 +07:00
case MCE_ERROR_TYPE_UNKNOWN:
default:
break;
}
}
/*
* Decode and save high level MCE information into per cpu buffer which
* is an array of machine_check_event structure.
*/
void save_mce_event(struct pt_regs *regs, long handled,
struct mce_error_info *mce_err,
uint64_t nip, uint64_t addr)
powerpc/book3s: Decode and save machine check event. Now that we handle machine check in linux, the MCE decoding should also take place in linux host. This info is crucial to log before we go down in case we can not handle the machine check errors. This patch decodes and populates a machine check event which contain high level meaning full MCE information. We do this in real mode C code with ME bit on. The MCE information is still available on emergency stack (in pt_regs structure format). Even if we take another exception at this point the MCE early handler will allocate a new stack frame on top of current one. So when we return back here we still have our MCE information safe on current stack. We use per cpu buffer to save high level MCE information. Each per cpu buffer is an array of machine check event structure indexed by per cpu counter mce_nest_count. The mce_nest_count is incremented every time we enter machine check early handler in real mode to get the current free slot (index = mce_nest_count - 1). The mce_nest_count is decremented once the MCE info is consumed by virtual mode machine exception handler. This patch provides save_mce_event(), get_mce_event() and release_mce_event() generic routines that can be used by machine check handlers to populate and retrieve the event. The routine release_mce_event() will free the event slot so that it can be reused. Caller can invoke get_mce_event() with a release flag either to release the event slot immediately OR keep it so that it can be fetched again. The event slot can be also released anytime by invoking release_mce_event(). This patch also updates kvm code to invoke get_mce_event to retrieve generic mce event rather than paca->opal_mce_evt. The KVM code always calls get_mce_event() with release flags set to false so that event is available for linus host machine If machine check occurs while we are in guest, KVM tries to handle the error. If KVM is able to handle MC error successfully, it enters the guest and delivers the machine check to guest. If KVM is not able to handle MC error, it exists the guest and passes the control to linux host machine check handler which then logs MC event and decides how to handle it in linux host. In failure case, KVM needs to make sure that the MC event is available for linux host to consume. Hence KVM always calls get_mce_event() with release flags set to false and later it invokes release_mce_event() only if it succeeds to handle error. Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-10-30 21:35:40 +07:00
{
int index = __this_cpu_inc_return(mce_nest_count) - 1;
powerpc: Replace __get_cpu_var uses This still has not been merged and now powerpc is the only arch that does not have this change. Sorry about missing linuxppc-dev before. V2->V2 - Fix up to work against 3.18-rc1 __get_cpu_var() is used for multiple purposes in the kernel source. One of them is address calculation via the form &__get_cpu_var(x). This calculates the address for the instance of the percpu variable of the current processor based on an offset. Other use cases are for storing and retrieving data from the current processors percpu area. __get_cpu_var() can be used as an lvalue when writing data or on the right side of an assignment. __get_cpu_var() is defined as : __get_cpu_var() always only does an address determination. However, store and retrieve operations could use a segment prefix (or global register on other platforms) to avoid the address calculation. this_cpu_write() and this_cpu_read() can directly take an offset into a percpu area and use optimized assembly code to read and write per cpu variables. This patch converts __get_cpu_var into either an explicit address calculation using this_cpu_ptr() or into a use of this_cpu operations that use the offset. Thereby address calculations are avoided and less registers are used when code is generated. At the end of the patch set all uses of __get_cpu_var have been removed so the macro is removed too. The patch set includes passes over all arches as well. Once these operations are used throughout then specialized macros can be defined in non -x86 arches as well in order to optimize per cpu access by f.e. using a global register that may be set to the per cpu base. Transformations done to __get_cpu_var() 1. Determine the address of the percpu instance of the current processor. DEFINE_PER_CPU(int, y); int *x = &__get_cpu_var(y); Converts to int *x = this_cpu_ptr(&y); 2. Same as #1 but this time an array structure is involved. DEFINE_PER_CPU(int, y[20]); int *x = __get_cpu_var(y); Converts to int *x = this_cpu_ptr(y); 3. Retrieve the content of the current processors instance of a per cpu variable. DEFINE_PER_CPU(int, y); int x = __get_cpu_var(y) Converts to int x = __this_cpu_read(y); 4. Retrieve the content of a percpu struct DEFINE_PER_CPU(struct mystruct, y); struct mystruct x = __get_cpu_var(y); Converts to memcpy(&x, this_cpu_ptr(&y), sizeof(x)); 5. Assignment to a per cpu variable DEFINE_PER_CPU(int, y) __get_cpu_var(y) = x; Converts to __this_cpu_write(y, x); 6. Increment/Decrement etc of a per cpu variable DEFINE_PER_CPU(int, y); __get_cpu_var(y)++ Converts to __this_cpu_inc(y) Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> CC: Paul Mackerras <paulus@samba.org> Signed-off-by: Christoph Lameter <cl@linux.com> [mpe: Fix build errors caused by set/or_softirq_pending(), and rework assignment in __set_breakpoint() to use memcpy().] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2014-10-22 03:23:25 +07:00
struct machine_check_event *mce = this_cpu_ptr(&mce_event[index]);
powerpc/book3s: Decode and save machine check event. Now that we handle machine check in linux, the MCE decoding should also take place in linux host. This info is crucial to log before we go down in case we can not handle the machine check errors. This patch decodes and populates a machine check event which contain high level meaning full MCE information. We do this in real mode C code with ME bit on. The MCE information is still available on emergency stack (in pt_regs structure format). Even if we take another exception at this point the MCE early handler will allocate a new stack frame on top of current one. So when we return back here we still have our MCE information safe on current stack. We use per cpu buffer to save high level MCE information. Each per cpu buffer is an array of machine check event structure indexed by per cpu counter mce_nest_count. The mce_nest_count is incremented every time we enter machine check early handler in real mode to get the current free slot (index = mce_nest_count - 1). The mce_nest_count is decremented once the MCE info is consumed by virtual mode machine exception handler. This patch provides save_mce_event(), get_mce_event() and release_mce_event() generic routines that can be used by machine check handlers to populate and retrieve the event. The routine release_mce_event() will free the event slot so that it can be reused. Caller can invoke get_mce_event() with a release flag either to release the event slot immediately OR keep it so that it can be fetched again. The event slot can be also released anytime by invoking release_mce_event(). This patch also updates kvm code to invoke get_mce_event to retrieve generic mce event rather than paca->opal_mce_evt. The KVM code always calls get_mce_event() with release flags set to false so that event is available for linus host machine If machine check occurs while we are in guest, KVM tries to handle the error. If KVM is able to handle MC error successfully, it enters the guest and delivers the machine check to guest. If KVM is not able to handle MC error, it exists the guest and passes the control to linux host machine check handler which then logs MC event and decides how to handle it in linux host. In failure case, KVM needs to make sure that the MC event is available for linux host to consume. Hence KVM always calls get_mce_event() with release flags set to false and later it invokes release_mce_event() only if it succeeds to handle error. Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-10-30 21:35:40 +07:00
/*
* Return if we don't have enough space to log mce event.
* mce_nest_count may go beyond MAX_MC_EVT but that's ok,
* the check below will stop buffer overrun.
*/
if (index >= MAX_MC_EVT)
return;
/* Populate generic machine check info */
mce->version = MCE_V1;
mce->srr0 = nip;
powerpc/book3s: Decode and save machine check event. Now that we handle machine check in linux, the MCE decoding should also take place in linux host. This info is crucial to log before we go down in case we can not handle the machine check errors. This patch decodes and populates a machine check event which contain high level meaning full MCE information. We do this in real mode C code with ME bit on. The MCE information is still available on emergency stack (in pt_regs structure format). Even if we take another exception at this point the MCE early handler will allocate a new stack frame on top of current one. So when we return back here we still have our MCE information safe on current stack. We use per cpu buffer to save high level MCE information. Each per cpu buffer is an array of machine check event structure indexed by per cpu counter mce_nest_count. The mce_nest_count is incremented every time we enter machine check early handler in real mode to get the current free slot (index = mce_nest_count - 1). The mce_nest_count is decremented once the MCE info is consumed by virtual mode machine exception handler. This patch provides save_mce_event(), get_mce_event() and release_mce_event() generic routines that can be used by machine check handlers to populate and retrieve the event. The routine release_mce_event() will free the event slot so that it can be reused. Caller can invoke get_mce_event() with a release flag either to release the event slot immediately OR keep it so that it can be fetched again. The event slot can be also released anytime by invoking release_mce_event(). This patch also updates kvm code to invoke get_mce_event to retrieve generic mce event rather than paca->opal_mce_evt. The KVM code always calls get_mce_event() with release flags set to false so that event is available for linus host machine If machine check occurs while we are in guest, KVM tries to handle the error. If KVM is able to handle MC error successfully, it enters the guest and delivers the machine check to guest. If KVM is not able to handle MC error, it exists the guest and passes the control to linux host machine check handler which then logs MC event and decides how to handle it in linux host. In failure case, KVM needs to make sure that the MC event is available for linux host to consume. Hence KVM always calls get_mce_event() with release flags set to false and later it invokes release_mce_event() only if it succeeds to handle error. Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-10-30 21:35:40 +07:00
mce->srr1 = regs->msr;
mce->gpr3 = regs->gpr[3];
mce->in_use = 1;
/* Mark it recovered if we have handled it and MSR(RI=1). */
if (handled && (regs->msr & MSR_RI))
powerpc/book3s: Decode and save machine check event. Now that we handle machine check in linux, the MCE decoding should also take place in linux host. This info is crucial to log before we go down in case we can not handle the machine check errors. This patch decodes and populates a machine check event which contain high level meaning full MCE information. We do this in real mode C code with ME bit on. The MCE information is still available on emergency stack (in pt_regs structure format). Even if we take another exception at this point the MCE early handler will allocate a new stack frame on top of current one. So when we return back here we still have our MCE information safe on current stack. We use per cpu buffer to save high level MCE information. Each per cpu buffer is an array of machine check event structure indexed by per cpu counter mce_nest_count. The mce_nest_count is incremented every time we enter machine check early handler in real mode to get the current free slot (index = mce_nest_count - 1). The mce_nest_count is decremented once the MCE info is consumed by virtual mode machine exception handler. This patch provides save_mce_event(), get_mce_event() and release_mce_event() generic routines that can be used by machine check handlers to populate and retrieve the event. The routine release_mce_event() will free the event slot so that it can be reused. Caller can invoke get_mce_event() with a release flag either to release the event slot immediately OR keep it so that it can be fetched again. The event slot can be also released anytime by invoking release_mce_event(). This patch also updates kvm code to invoke get_mce_event to retrieve generic mce event rather than paca->opal_mce_evt. The KVM code always calls get_mce_event() with release flags set to false so that event is available for linus host machine If machine check occurs while we are in guest, KVM tries to handle the error. If KVM is able to handle MC error successfully, it enters the guest and delivers the machine check to guest. If KVM is not able to handle MC error, it exists the guest and passes the control to linux host machine check handler which then logs MC event and decides how to handle it in linux host. In failure case, KVM needs to make sure that the MC event is available for linux host to consume. Hence KVM always calls get_mce_event() with release flags set to false and later it invokes release_mce_event() only if it succeeds to handle error. Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-10-30 21:35:40 +07:00
mce->disposition = MCE_DISPOSITION_RECOVERED;
else
mce->disposition = MCE_DISPOSITION_NOT_RECOVERED;
mce->initiator = mce_err->initiator;
mce->severity = mce_err->severity;
powerpc/book3s: Decode and save machine check event. Now that we handle machine check in linux, the MCE decoding should also take place in linux host. This info is crucial to log before we go down in case we can not handle the machine check errors. This patch decodes and populates a machine check event which contain high level meaning full MCE information. We do this in real mode C code with ME bit on. The MCE information is still available on emergency stack (in pt_regs structure format). Even if we take another exception at this point the MCE early handler will allocate a new stack frame on top of current one. So when we return back here we still have our MCE information safe on current stack. We use per cpu buffer to save high level MCE information. Each per cpu buffer is an array of machine check event structure indexed by per cpu counter mce_nest_count. The mce_nest_count is incremented every time we enter machine check early handler in real mode to get the current free slot (index = mce_nest_count - 1). The mce_nest_count is decremented once the MCE info is consumed by virtual mode machine exception handler. This patch provides save_mce_event(), get_mce_event() and release_mce_event() generic routines that can be used by machine check handlers to populate and retrieve the event. The routine release_mce_event() will free the event slot so that it can be reused. Caller can invoke get_mce_event() with a release flag either to release the event slot immediately OR keep it so that it can be fetched again. The event slot can be also released anytime by invoking release_mce_event(). This patch also updates kvm code to invoke get_mce_event to retrieve generic mce event rather than paca->opal_mce_evt. The KVM code always calls get_mce_event() with release flags set to false so that event is available for linus host machine If machine check occurs while we are in guest, KVM tries to handle the error. If KVM is able to handle MC error successfully, it enters the guest and delivers the machine check to guest. If KVM is not able to handle MC error, it exists the guest and passes the control to linux host machine check handler which then logs MC event and decides how to handle it in linux host. In failure case, KVM needs to make sure that the MC event is available for linux host to consume. Hence KVM always calls get_mce_event() with release flags set to false and later it invokes release_mce_event() only if it succeeds to handle error. Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-10-30 21:35:40 +07:00
/*
* Populate the mce error_type and type-specific error_type.
*/
mce_set_error_info(mce, mce_err);
if (!addr)
return;
if (mce->error_type == MCE_ERROR_TYPE_TLB) {
mce->u.tlb_error.effective_address_provided = true;
mce->u.tlb_error.effective_address = addr;
} else if (mce->error_type == MCE_ERROR_TYPE_SLB) {
mce->u.slb_error.effective_address_provided = true;
mce->u.slb_error.effective_address = addr;
} else if (mce->error_type == MCE_ERROR_TYPE_ERAT) {
mce->u.erat_error.effective_address_provided = true;
mce->u.erat_error.effective_address = addr;
} else if (mce->error_type == MCE_ERROR_TYPE_USER) {
mce->u.user_error.effective_address_provided = true;
mce->u.user_error.effective_address = addr;
} else if (mce->error_type == MCE_ERROR_TYPE_RA) {
mce->u.ra_error.effective_address_provided = true;
mce->u.ra_error.effective_address = addr;
} else if (mce->error_type == MCE_ERROR_TYPE_LINK) {
mce->u.link_error.effective_address_provided = true;
mce->u.link_error.effective_address = addr;
powerpc/book3s: Decode and save machine check event. Now that we handle machine check in linux, the MCE decoding should also take place in linux host. This info is crucial to log before we go down in case we can not handle the machine check errors. This patch decodes and populates a machine check event which contain high level meaning full MCE information. We do this in real mode C code with ME bit on. The MCE information is still available on emergency stack (in pt_regs structure format). Even if we take another exception at this point the MCE early handler will allocate a new stack frame on top of current one. So when we return back here we still have our MCE information safe on current stack. We use per cpu buffer to save high level MCE information. Each per cpu buffer is an array of machine check event structure indexed by per cpu counter mce_nest_count. The mce_nest_count is incremented every time we enter machine check early handler in real mode to get the current free slot (index = mce_nest_count - 1). The mce_nest_count is decremented once the MCE info is consumed by virtual mode machine exception handler. This patch provides save_mce_event(), get_mce_event() and release_mce_event() generic routines that can be used by machine check handlers to populate and retrieve the event. The routine release_mce_event() will free the event slot so that it can be reused. Caller can invoke get_mce_event() with a release flag either to release the event slot immediately OR keep it so that it can be fetched again. The event slot can be also released anytime by invoking release_mce_event(). This patch also updates kvm code to invoke get_mce_event to retrieve generic mce event rather than paca->opal_mce_evt. The KVM code always calls get_mce_event() with release flags set to false so that event is available for linus host machine If machine check occurs while we are in guest, KVM tries to handle the error. If KVM is able to handle MC error successfully, it enters the guest and delivers the machine check to guest. If KVM is not able to handle MC error, it exists the guest and passes the control to linux host machine check handler which then logs MC event and decides how to handle it in linux host. In failure case, KVM needs to make sure that the MC event is available for linux host to consume. Hence KVM always calls get_mce_event() with release flags set to false and later it invokes release_mce_event() only if it succeeds to handle error. Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-10-30 21:35:40 +07:00
} else if (mce->error_type == MCE_ERROR_TYPE_UE) {
mce->u.ue_error.effective_address_provided = true;
mce->u.ue_error.effective_address = addr;
}
return;
}
/*
* get_mce_event:
* mce Pointer to machine_check_event structure to be filled.
* release Flag to indicate whether to free the event slot or not.
* 0 <= do not release the mce event. Caller will invoke
* release_mce_event() once event has been consumed.
* 1 <= release the slot.
*
* return 1 = success
* 0 = failure
*
* get_mce_event() will be called by platform specific machine check
* handle routine and in KVM.
* When we call get_mce_event(), we are still in interrupt context and
* preemption will not be scheduled until ret_from_expect() routine
* is called.
*/
int get_mce_event(struct machine_check_event *mce, bool release)
{
powerpc: Replace __get_cpu_var uses This still has not been merged and now powerpc is the only arch that does not have this change. Sorry about missing linuxppc-dev before. V2->V2 - Fix up to work against 3.18-rc1 __get_cpu_var() is used for multiple purposes in the kernel source. One of them is address calculation via the form &__get_cpu_var(x). This calculates the address for the instance of the percpu variable of the current processor based on an offset. Other use cases are for storing and retrieving data from the current processors percpu area. __get_cpu_var() can be used as an lvalue when writing data or on the right side of an assignment. __get_cpu_var() is defined as : __get_cpu_var() always only does an address determination. However, store and retrieve operations could use a segment prefix (or global register on other platforms) to avoid the address calculation. this_cpu_write() and this_cpu_read() can directly take an offset into a percpu area and use optimized assembly code to read and write per cpu variables. This patch converts __get_cpu_var into either an explicit address calculation using this_cpu_ptr() or into a use of this_cpu operations that use the offset. Thereby address calculations are avoided and less registers are used when code is generated. At the end of the patch set all uses of __get_cpu_var have been removed so the macro is removed too. The patch set includes passes over all arches as well. Once these operations are used throughout then specialized macros can be defined in non -x86 arches as well in order to optimize per cpu access by f.e. using a global register that may be set to the per cpu base. Transformations done to __get_cpu_var() 1. Determine the address of the percpu instance of the current processor. DEFINE_PER_CPU(int, y); int *x = &__get_cpu_var(y); Converts to int *x = this_cpu_ptr(&y); 2. Same as #1 but this time an array structure is involved. DEFINE_PER_CPU(int, y[20]); int *x = __get_cpu_var(y); Converts to int *x = this_cpu_ptr(y); 3. Retrieve the content of the current processors instance of a per cpu variable. DEFINE_PER_CPU(int, y); int x = __get_cpu_var(y) Converts to int x = __this_cpu_read(y); 4. Retrieve the content of a percpu struct DEFINE_PER_CPU(struct mystruct, y); struct mystruct x = __get_cpu_var(y); Converts to memcpy(&x, this_cpu_ptr(&y), sizeof(x)); 5. Assignment to a per cpu variable DEFINE_PER_CPU(int, y) __get_cpu_var(y) = x; Converts to __this_cpu_write(y, x); 6. Increment/Decrement etc of a per cpu variable DEFINE_PER_CPU(int, y); __get_cpu_var(y)++ Converts to __this_cpu_inc(y) Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> CC: Paul Mackerras <paulus@samba.org> Signed-off-by: Christoph Lameter <cl@linux.com> [mpe: Fix build errors caused by set/or_softirq_pending(), and rework assignment in __set_breakpoint() to use memcpy().] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2014-10-22 03:23:25 +07:00
int index = __this_cpu_read(mce_nest_count) - 1;
powerpc/book3s: Decode and save machine check event. Now that we handle machine check in linux, the MCE decoding should also take place in linux host. This info is crucial to log before we go down in case we can not handle the machine check errors. This patch decodes and populates a machine check event which contain high level meaning full MCE information. We do this in real mode C code with ME bit on. The MCE information is still available on emergency stack (in pt_regs structure format). Even if we take another exception at this point the MCE early handler will allocate a new stack frame on top of current one. So when we return back here we still have our MCE information safe on current stack. We use per cpu buffer to save high level MCE information. Each per cpu buffer is an array of machine check event structure indexed by per cpu counter mce_nest_count. The mce_nest_count is incremented every time we enter machine check early handler in real mode to get the current free slot (index = mce_nest_count - 1). The mce_nest_count is decremented once the MCE info is consumed by virtual mode machine exception handler. This patch provides save_mce_event(), get_mce_event() and release_mce_event() generic routines that can be used by machine check handlers to populate and retrieve the event. The routine release_mce_event() will free the event slot so that it can be reused. Caller can invoke get_mce_event() with a release flag either to release the event slot immediately OR keep it so that it can be fetched again. The event slot can be also released anytime by invoking release_mce_event(). This patch also updates kvm code to invoke get_mce_event to retrieve generic mce event rather than paca->opal_mce_evt. The KVM code always calls get_mce_event() with release flags set to false so that event is available for linus host machine If machine check occurs while we are in guest, KVM tries to handle the error. If KVM is able to handle MC error successfully, it enters the guest and delivers the machine check to guest. If KVM is not able to handle MC error, it exists the guest and passes the control to linux host machine check handler which then logs MC event and decides how to handle it in linux host. In failure case, KVM needs to make sure that the MC event is available for linux host to consume. Hence KVM always calls get_mce_event() with release flags set to false and later it invokes release_mce_event() only if it succeeds to handle error. Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-10-30 21:35:40 +07:00
struct machine_check_event *mc_evt;
int ret = 0;
/* Sanity check */
if (index < 0)
return ret;
/* Check if we have MCE info to process. */
if (index < MAX_MC_EVT) {
powerpc: Replace __get_cpu_var uses This still has not been merged and now powerpc is the only arch that does not have this change. Sorry about missing linuxppc-dev before. V2->V2 - Fix up to work against 3.18-rc1 __get_cpu_var() is used for multiple purposes in the kernel source. One of them is address calculation via the form &__get_cpu_var(x). This calculates the address for the instance of the percpu variable of the current processor based on an offset. Other use cases are for storing and retrieving data from the current processors percpu area. __get_cpu_var() can be used as an lvalue when writing data or on the right side of an assignment. __get_cpu_var() is defined as : __get_cpu_var() always only does an address determination. However, store and retrieve operations could use a segment prefix (or global register on other platforms) to avoid the address calculation. this_cpu_write() and this_cpu_read() can directly take an offset into a percpu area and use optimized assembly code to read and write per cpu variables. This patch converts __get_cpu_var into either an explicit address calculation using this_cpu_ptr() or into a use of this_cpu operations that use the offset. Thereby address calculations are avoided and less registers are used when code is generated. At the end of the patch set all uses of __get_cpu_var have been removed so the macro is removed too. The patch set includes passes over all arches as well. Once these operations are used throughout then specialized macros can be defined in non -x86 arches as well in order to optimize per cpu access by f.e. using a global register that may be set to the per cpu base. Transformations done to __get_cpu_var() 1. Determine the address of the percpu instance of the current processor. DEFINE_PER_CPU(int, y); int *x = &__get_cpu_var(y); Converts to int *x = this_cpu_ptr(&y); 2. Same as #1 but this time an array structure is involved. DEFINE_PER_CPU(int, y[20]); int *x = __get_cpu_var(y); Converts to int *x = this_cpu_ptr(y); 3. Retrieve the content of the current processors instance of a per cpu variable. DEFINE_PER_CPU(int, y); int x = __get_cpu_var(y) Converts to int x = __this_cpu_read(y); 4. Retrieve the content of a percpu struct DEFINE_PER_CPU(struct mystruct, y); struct mystruct x = __get_cpu_var(y); Converts to memcpy(&x, this_cpu_ptr(&y), sizeof(x)); 5. Assignment to a per cpu variable DEFINE_PER_CPU(int, y) __get_cpu_var(y) = x; Converts to __this_cpu_write(y, x); 6. Increment/Decrement etc of a per cpu variable DEFINE_PER_CPU(int, y); __get_cpu_var(y)++ Converts to __this_cpu_inc(y) Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> CC: Paul Mackerras <paulus@samba.org> Signed-off-by: Christoph Lameter <cl@linux.com> [mpe: Fix build errors caused by set/or_softirq_pending(), and rework assignment in __set_breakpoint() to use memcpy().] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2014-10-22 03:23:25 +07:00
mc_evt = this_cpu_ptr(&mce_event[index]);
powerpc/book3s: Decode and save machine check event. Now that we handle machine check in linux, the MCE decoding should also take place in linux host. This info is crucial to log before we go down in case we can not handle the machine check errors. This patch decodes and populates a machine check event which contain high level meaning full MCE information. We do this in real mode C code with ME bit on. The MCE information is still available on emergency stack (in pt_regs structure format). Even if we take another exception at this point the MCE early handler will allocate a new stack frame on top of current one. So when we return back here we still have our MCE information safe on current stack. We use per cpu buffer to save high level MCE information. Each per cpu buffer is an array of machine check event structure indexed by per cpu counter mce_nest_count. The mce_nest_count is incremented every time we enter machine check early handler in real mode to get the current free slot (index = mce_nest_count - 1). The mce_nest_count is decremented once the MCE info is consumed by virtual mode machine exception handler. This patch provides save_mce_event(), get_mce_event() and release_mce_event() generic routines that can be used by machine check handlers to populate and retrieve the event. The routine release_mce_event() will free the event slot so that it can be reused. Caller can invoke get_mce_event() with a release flag either to release the event slot immediately OR keep it so that it can be fetched again. The event slot can be also released anytime by invoking release_mce_event(). This patch also updates kvm code to invoke get_mce_event to retrieve generic mce event rather than paca->opal_mce_evt. The KVM code always calls get_mce_event() with release flags set to false so that event is available for linus host machine If machine check occurs while we are in guest, KVM tries to handle the error. If KVM is able to handle MC error successfully, it enters the guest and delivers the machine check to guest. If KVM is not able to handle MC error, it exists the guest and passes the control to linux host machine check handler which then logs MC event and decides how to handle it in linux host. In failure case, KVM needs to make sure that the MC event is available for linux host to consume. Hence KVM always calls get_mce_event() with release flags set to false and later it invokes release_mce_event() only if it succeeds to handle error. Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-10-30 21:35:40 +07:00
/* Copy the event structure and release the original */
if (mce)
*mce = *mc_evt;
if (release)
mc_evt->in_use = 0;
ret = 1;
}
/* Decrement the count to free the slot. */
if (release)
powerpc: Replace __get_cpu_var uses This still has not been merged and now powerpc is the only arch that does not have this change. Sorry about missing linuxppc-dev before. V2->V2 - Fix up to work against 3.18-rc1 __get_cpu_var() is used for multiple purposes in the kernel source. One of them is address calculation via the form &__get_cpu_var(x). This calculates the address for the instance of the percpu variable of the current processor based on an offset. Other use cases are for storing and retrieving data from the current processors percpu area. __get_cpu_var() can be used as an lvalue when writing data or on the right side of an assignment. __get_cpu_var() is defined as : __get_cpu_var() always only does an address determination. However, store and retrieve operations could use a segment prefix (or global register on other platforms) to avoid the address calculation. this_cpu_write() and this_cpu_read() can directly take an offset into a percpu area and use optimized assembly code to read and write per cpu variables. This patch converts __get_cpu_var into either an explicit address calculation using this_cpu_ptr() or into a use of this_cpu operations that use the offset. Thereby address calculations are avoided and less registers are used when code is generated. At the end of the patch set all uses of __get_cpu_var have been removed so the macro is removed too. The patch set includes passes over all arches as well. Once these operations are used throughout then specialized macros can be defined in non -x86 arches as well in order to optimize per cpu access by f.e. using a global register that may be set to the per cpu base. Transformations done to __get_cpu_var() 1. Determine the address of the percpu instance of the current processor. DEFINE_PER_CPU(int, y); int *x = &__get_cpu_var(y); Converts to int *x = this_cpu_ptr(&y); 2. Same as #1 but this time an array structure is involved. DEFINE_PER_CPU(int, y[20]); int *x = __get_cpu_var(y); Converts to int *x = this_cpu_ptr(y); 3. Retrieve the content of the current processors instance of a per cpu variable. DEFINE_PER_CPU(int, y); int x = __get_cpu_var(y) Converts to int x = __this_cpu_read(y); 4. Retrieve the content of a percpu struct DEFINE_PER_CPU(struct mystruct, y); struct mystruct x = __get_cpu_var(y); Converts to memcpy(&x, this_cpu_ptr(&y), sizeof(x)); 5. Assignment to a per cpu variable DEFINE_PER_CPU(int, y) __get_cpu_var(y) = x; Converts to __this_cpu_write(y, x); 6. Increment/Decrement etc of a per cpu variable DEFINE_PER_CPU(int, y); __get_cpu_var(y)++ Converts to __this_cpu_inc(y) Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> CC: Paul Mackerras <paulus@samba.org> Signed-off-by: Christoph Lameter <cl@linux.com> [mpe: Fix build errors caused by set/or_softirq_pending(), and rework assignment in __set_breakpoint() to use memcpy().] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2014-10-22 03:23:25 +07:00
__this_cpu_dec(mce_nest_count);
powerpc/book3s: Decode and save machine check event. Now that we handle machine check in linux, the MCE decoding should also take place in linux host. This info is crucial to log before we go down in case we can not handle the machine check errors. This patch decodes and populates a machine check event which contain high level meaning full MCE information. We do this in real mode C code with ME bit on. The MCE information is still available on emergency stack (in pt_regs structure format). Even if we take another exception at this point the MCE early handler will allocate a new stack frame on top of current one. So when we return back here we still have our MCE information safe on current stack. We use per cpu buffer to save high level MCE information. Each per cpu buffer is an array of machine check event structure indexed by per cpu counter mce_nest_count. The mce_nest_count is incremented every time we enter machine check early handler in real mode to get the current free slot (index = mce_nest_count - 1). The mce_nest_count is decremented once the MCE info is consumed by virtual mode machine exception handler. This patch provides save_mce_event(), get_mce_event() and release_mce_event() generic routines that can be used by machine check handlers to populate and retrieve the event. The routine release_mce_event() will free the event slot so that it can be reused. Caller can invoke get_mce_event() with a release flag either to release the event slot immediately OR keep it so that it can be fetched again. The event slot can be also released anytime by invoking release_mce_event(). This patch also updates kvm code to invoke get_mce_event to retrieve generic mce event rather than paca->opal_mce_evt. The KVM code always calls get_mce_event() with release flags set to false so that event is available for linus host machine If machine check occurs while we are in guest, KVM tries to handle the error. If KVM is able to handle MC error successfully, it enters the guest and delivers the machine check to guest. If KVM is not able to handle MC error, it exists the guest and passes the control to linux host machine check handler which then logs MC event and decides how to handle it in linux host. In failure case, KVM needs to make sure that the MC event is available for linux host to consume. Hence KVM always calls get_mce_event() with release flags set to false and later it invokes release_mce_event() only if it succeeds to handle error. Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-10-30 21:35:40 +07:00
return ret;
}
void release_mce_event(void)
{
get_mce_event(NULL, true);
}
/*
* Queue up the MCE event which then can be handled later.
*/
void machine_check_queue_event(void)
{
int index;
struct machine_check_event evt;
if (!get_mce_event(&evt, MCE_EVENT_RELEASE))
return;
index = __this_cpu_inc_return(mce_queue_count) - 1;
/* If queue is full, just return for now. */
if (index >= MAX_MC_EVT) {
powerpc: Replace __get_cpu_var uses This still has not been merged and now powerpc is the only arch that does not have this change. Sorry about missing linuxppc-dev before. V2->V2 - Fix up to work against 3.18-rc1 __get_cpu_var() is used for multiple purposes in the kernel source. One of them is address calculation via the form &__get_cpu_var(x). This calculates the address for the instance of the percpu variable of the current processor based on an offset. Other use cases are for storing and retrieving data from the current processors percpu area. __get_cpu_var() can be used as an lvalue when writing data or on the right side of an assignment. __get_cpu_var() is defined as : __get_cpu_var() always only does an address determination. However, store and retrieve operations could use a segment prefix (or global register on other platforms) to avoid the address calculation. this_cpu_write() and this_cpu_read() can directly take an offset into a percpu area and use optimized assembly code to read and write per cpu variables. This patch converts __get_cpu_var into either an explicit address calculation using this_cpu_ptr() or into a use of this_cpu operations that use the offset. Thereby address calculations are avoided and less registers are used when code is generated. At the end of the patch set all uses of __get_cpu_var have been removed so the macro is removed too. The patch set includes passes over all arches as well. Once these operations are used throughout then specialized macros can be defined in non -x86 arches as well in order to optimize per cpu access by f.e. using a global register that may be set to the per cpu base. Transformations done to __get_cpu_var() 1. Determine the address of the percpu instance of the current processor. DEFINE_PER_CPU(int, y); int *x = &__get_cpu_var(y); Converts to int *x = this_cpu_ptr(&y); 2. Same as #1 but this time an array structure is involved. DEFINE_PER_CPU(int, y[20]); int *x = __get_cpu_var(y); Converts to int *x = this_cpu_ptr(y); 3. Retrieve the content of the current processors instance of a per cpu variable. DEFINE_PER_CPU(int, y); int x = __get_cpu_var(y) Converts to int x = __this_cpu_read(y); 4. Retrieve the content of a percpu struct DEFINE_PER_CPU(struct mystruct, y); struct mystruct x = __get_cpu_var(y); Converts to memcpy(&x, this_cpu_ptr(&y), sizeof(x)); 5. Assignment to a per cpu variable DEFINE_PER_CPU(int, y) __get_cpu_var(y) = x; Converts to __this_cpu_write(y, x); 6. Increment/Decrement etc of a per cpu variable DEFINE_PER_CPU(int, y); __get_cpu_var(y)++ Converts to __this_cpu_inc(y) Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> CC: Paul Mackerras <paulus@samba.org> Signed-off-by: Christoph Lameter <cl@linux.com> [mpe: Fix build errors caused by set/or_softirq_pending(), and rework assignment in __set_breakpoint() to use memcpy().] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2014-10-22 03:23:25 +07:00
__this_cpu_dec(mce_queue_count);
return;
}
powerpc: Replace __get_cpu_var uses This still has not been merged and now powerpc is the only arch that does not have this change. Sorry about missing linuxppc-dev before. V2->V2 - Fix up to work against 3.18-rc1 __get_cpu_var() is used for multiple purposes in the kernel source. One of them is address calculation via the form &__get_cpu_var(x). This calculates the address for the instance of the percpu variable of the current processor based on an offset. Other use cases are for storing and retrieving data from the current processors percpu area. __get_cpu_var() can be used as an lvalue when writing data or on the right side of an assignment. __get_cpu_var() is defined as : __get_cpu_var() always only does an address determination. However, store and retrieve operations could use a segment prefix (or global register on other platforms) to avoid the address calculation. this_cpu_write() and this_cpu_read() can directly take an offset into a percpu area and use optimized assembly code to read and write per cpu variables. This patch converts __get_cpu_var into either an explicit address calculation using this_cpu_ptr() or into a use of this_cpu operations that use the offset. Thereby address calculations are avoided and less registers are used when code is generated. At the end of the patch set all uses of __get_cpu_var have been removed so the macro is removed too. The patch set includes passes over all arches as well. Once these operations are used throughout then specialized macros can be defined in non -x86 arches as well in order to optimize per cpu access by f.e. using a global register that may be set to the per cpu base. Transformations done to __get_cpu_var() 1. Determine the address of the percpu instance of the current processor. DEFINE_PER_CPU(int, y); int *x = &__get_cpu_var(y); Converts to int *x = this_cpu_ptr(&y); 2. Same as #1 but this time an array structure is involved. DEFINE_PER_CPU(int, y[20]); int *x = __get_cpu_var(y); Converts to int *x = this_cpu_ptr(y); 3. Retrieve the content of the current processors instance of a per cpu variable. DEFINE_PER_CPU(int, y); int x = __get_cpu_var(y) Converts to int x = __this_cpu_read(y); 4. Retrieve the content of a percpu struct DEFINE_PER_CPU(struct mystruct, y); struct mystruct x = __get_cpu_var(y); Converts to memcpy(&x, this_cpu_ptr(&y), sizeof(x)); 5. Assignment to a per cpu variable DEFINE_PER_CPU(int, y) __get_cpu_var(y) = x; Converts to __this_cpu_write(y, x); 6. Increment/Decrement etc of a per cpu variable DEFINE_PER_CPU(int, y); __get_cpu_var(y)++ Converts to __this_cpu_inc(y) Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> CC: Paul Mackerras <paulus@samba.org> Signed-off-by: Christoph Lameter <cl@linux.com> [mpe: Fix build errors caused by set/or_softirq_pending(), and rework assignment in __set_breakpoint() to use memcpy().] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2014-10-22 03:23:25 +07:00
memcpy(this_cpu_ptr(&mce_event_queue[index]), &evt, sizeof(evt));
/* Queue irq work to process this event later. */
irq_work_queue(&mce_event_process_work);
}
/*
* process pending MCE event from the mce event queue. This function will be
* called during syscall exit.
*/
static void machine_check_process_queued_event(struct irq_work *work)
{
int index;
add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
/*
* For now just print it to console.
* TODO: log this error event to FSP or nvram.
*/
powerpc: Replace __get_cpu_var uses This still has not been merged and now powerpc is the only arch that does not have this change. Sorry about missing linuxppc-dev before. V2->V2 - Fix up to work against 3.18-rc1 __get_cpu_var() is used for multiple purposes in the kernel source. One of them is address calculation via the form &__get_cpu_var(x). This calculates the address for the instance of the percpu variable of the current processor based on an offset. Other use cases are for storing and retrieving data from the current processors percpu area. __get_cpu_var() can be used as an lvalue when writing data or on the right side of an assignment. __get_cpu_var() is defined as : __get_cpu_var() always only does an address determination. However, store and retrieve operations could use a segment prefix (or global register on other platforms) to avoid the address calculation. this_cpu_write() and this_cpu_read() can directly take an offset into a percpu area and use optimized assembly code to read and write per cpu variables. This patch converts __get_cpu_var into either an explicit address calculation using this_cpu_ptr() or into a use of this_cpu operations that use the offset. Thereby address calculations are avoided and less registers are used when code is generated. At the end of the patch set all uses of __get_cpu_var have been removed so the macro is removed too. The patch set includes passes over all arches as well. Once these operations are used throughout then specialized macros can be defined in non -x86 arches as well in order to optimize per cpu access by f.e. using a global register that may be set to the per cpu base. Transformations done to __get_cpu_var() 1. Determine the address of the percpu instance of the current processor. DEFINE_PER_CPU(int, y); int *x = &__get_cpu_var(y); Converts to int *x = this_cpu_ptr(&y); 2. Same as #1 but this time an array structure is involved. DEFINE_PER_CPU(int, y[20]); int *x = __get_cpu_var(y); Converts to int *x = this_cpu_ptr(y); 3. Retrieve the content of the current processors instance of a per cpu variable. DEFINE_PER_CPU(int, y); int x = __get_cpu_var(y) Converts to int x = __this_cpu_read(y); 4. Retrieve the content of a percpu struct DEFINE_PER_CPU(struct mystruct, y); struct mystruct x = __get_cpu_var(y); Converts to memcpy(&x, this_cpu_ptr(&y), sizeof(x)); 5. Assignment to a per cpu variable DEFINE_PER_CPU(int, y) __get_cpu_var(y) = x; Converts to __this_cpu_write(y, x); 6. Increment/Decrement etc of a per cpu variable DEFINE_PER_CPU(int, y); __get_cpu_var(y)++ Converts to __this_cpu_inc(y) Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> CC: Paul Mackerras <paulus@samba.org> Signed-off-by: Christoph Lameter <cl@linux.com> [mpe: Fix build errors caused by set/or_softirq_pending(), and rework assignment in __set_breakpoint() to use memcpy().] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2014-10-22 03:23:25 +07:00
while (__this_cpu_read(mce_queue_count) > 0) {
index = __this_cpu_read(mce_queue_count) - 1;
machine_check_print_event_info(
this_cpu_ptr(&mce_event_queue[index]), false);
powerpc: Replace __get_cpu_var uses This still has not been merged and now powerpc is the only arch that does not have this change. Sorry about missing linuxppc-dev before. V2->V2 - Fix up to work against 3.18-rc1 __get_cpu_var() is used for multiple purposes in the kernel source. One of them is address calculation via the form &__get_cpu_var(x). This calculates the address for the instance of the percpu variable of the current processor based on an offset. Other use cases are for storing and retrieving data from the current processors percpu area. __get_cpu_var() can be used as an lvalue when writing data or on the right side of an assignment. __get_cpu_var() is defined as : __get_cpu_var() always only does an address determination. However, store and retrieve operations could use a segment prefix (or global register on other platforms) to avoid the address calculation. this_cpu_write() and this_cpu_read() can directly take an offset into a percpu area and use optimized assembly code to read and write per cpu variables. This patch converts __get_cpu_var into either an explicit address calculation using this_cpu_ptr() or into a use of this_cpu operations that use the offset. Thereby address calculations are avoided and less registers are used when code is generated. At the end of the patch set all uses of __get_cpu_var have been removed so the macro is removed too. The patch set includes passes over all arches as well. Once these operations are used throughout then specialized macros can be defined in non -x86 arches as well in order to optimize per cpu access by f.e. using a global register that may be set to the per cpu base. Transformations done to __get_cpu_var() 1. Determine the address of the percpu instance of the current processor. DEFINE_PER_CPU(int, y); int *x = &__get_cpu_var(y); Converts to int *x = this_cpu_ptr(&y); 2. Same as #1 but this time an array structure is involved. DEFINE_PER_CPU(int, y[20]); int *x = __get_cpu_var(y); Converts to int *x = this_cpu_ptr(y); 3. Retrieve the content of the current processors instance of a per cpu variable. DEFINE_PER_CPU(int, y); int x = __get_cpu_var(y) Converts to int x = __this_cpu_read(y); 4. Retrieve the content of a percpu struct DEFINE_PER_CPU(struct mystruct, y); struct mystruct x = __get_cpu_var(y); Converts to memcpy(&x, this_cpu_ptr(&y), sizeof(x)); 5. Assignment to a per cpu variable DEFINE_PER_CPU(int, y) __get_cpu_var(y) = x; Converts to __this_cpu_write(y, x); 6. Increment/Decrement etc of a per cpu variable DEFINE_PER_CPU(int, y); __get_cpu_var(y)++ Converts to __this_cpu_inc(y) Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> CC: Paul Mackerras <paulus@samba.org> Signed-off-by: Christoph Lameter <cl@linux.com> [mpe: Fix build errors caused by set/or_softirq_pending(), and rework assignment in __set_breakpoint() to use memcpy().] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2014-10-22 03:23:25 +07:00
__this_cpu_dec(mce_queue_count);
}
}
void machine_check_print_event_info(struct machine_check_event *evt,
bool user_mode)
{
const char *level, *sevstr, *subtype;
static const char *mc_ue_types[] = {
"Indeterminate",
"Instruction fetch",
"Page table walk ifetch",
"Load/Store",
"Page table walk Load/Store",
};
static const char *mc_slb_types[] = {
"Indeterminate",
"Parity",
"Multihit",
};
static const char *mc_erat_types[] = {
"Indeterminate",
"Parity",
"Multihit",
};
static const char *mc_tlb_types[] = {
"Indeterminate",
"Parity",
"Multihit",
};
static const char *mc_user_types[] = {
"Indeterminate",
"tlbie(l) invalid",
};
static const char *mc_ra_types[] = {
"Indeterminate",
"Instruction fetch (bad)",
"Instruction fetch (foreign)",
"Page table walk ifetch (bad)",
"Page table walk ifetch (foreign)",
"Load (bad)",
"Store (bad)",
"Page table walk Load/Store (bad)",
"Page table walk Load/Store (foreign)",
"Load/Store (foreign)",
};
static const char *mc_link_types[] = {
"Indeterminate",
"Instruction fetch (timeout)",
"Page table walk ifetch (timeout)",
"Load (timeout)",
"Store (timeout)",
"Page table walk Load/Store (timeout)",
};
/* Print things out */
if (evt->version != MCE_V1) {
pr_err("Machine Check Exception, Unknown event version %d !\n",
evt->version);
return;
}
switch (evt->severity) {
case MCE_SEV_NO_ERROR:
level = KERN_INFO;
sevstr = "Harmless";
break;
case MCE_SEV_WARNING:
level = KERN_WARNING;
sevstr = "";
break;
case MCE_SEV_ERROR_SYNC:
level = KERN_ERR;
sevstr = "Severe";
break;
case MCE_SEV_FATAL:
default:
level = KERN_ERR;
sevstr = "Fatal";
break;
}
printk("%s%s Machine check interrupt [%s]\n", level, sevstr,
evt->disposition == MCE_DISPOSITION_RECOVERED ?
"Recovered" : "Not recovered");
if (user_mode) {
printk("%s NIP: [%016llx] PID: %d Comm: %s\n", level,
evt->srr0, current->pid, current->comm);
} else {
printk("%s NIP [%016llx]: %pS\n", level, evt->srr0,
(void *)evt->srr0);
}
printk("%s Initiator: %s\n", level,
evt->initiator == MCE_INITIATOR_CPU ? "CPU" : "Unknown");
switch (evt->error_type) {
case MCE_ERROR_TYPE_UE:
subtype = evt->u.ue_error.ue_error_type <
ARRAY_SIZE(mc_ue_types) ?
mc_ue_types[evt->u.ue_error.ue_error_type]
: "Unknown";
printk("%s Error type: UE [%s]\n", level, subtype);
if (evt->u.ue_error.effective_address_provided)
printk("%s Effective address: %016llx\n",
level, evt->u.ue_error.effective_address);
if (evt->u.ue_error.physical_address_provided)
printk("%s Physical address: %016llx\n",
level, evt->u.ue_error.physical_address);
break;
case MCE_ERROR_TYPE_SLB:
subtype = evt->u.slb_error.slb_error_type <
ARRAY_SIZE(mc_slb_types) ?
mc_slb_types[evt->u.slb_error.slb_error_type]
: "Unknown";
printk("%s Error type: SLB [%s]\n", level, subtype);
if (evt->u.slb_error.effective_address_provided)
printk("%s Effective address: %016llx\n",
level, evt->u.slb_error.effective_address);
break;
case MCE_ERROR_TYPE_ERAT:
subtype = evt->u.erat_error.erat_error_type <
ARRAY_SIZE(mc_erat_types) ?
mc_erat_types[evt->u.erat_error.erat_error_type]
: "Unknown";
printk("%s Error type: ERAT [%s]\n", level, subtype);
if (evt->u.erat_error.effective_address_provided)
printk("%s Effective address: %016llx\n",
level, evt->u.erat_error.effective_address);
break;
case MCE_ERROR_TYPE_TLB:
subtype = evt->u.tlb_error.tlb_error_type <
ARRAY_SIZE(mc_tlb_types) ?
mc_tlb_types[evt->u.tlb_error.tlb_error_type]
: "Unknown";
printk("%s Error type: TLB [%s]\n", level, subtype);
if (evt->u.tlb_error.effective_address_provided)
printk("%s Effective address: %016llx\n",
level, evt->u.tlb_error.effective_address);
break;
case MCE_ERROR_TYPE_USER:
subtype = evt->u.user_error.user_error_type <
ARRAY_SIZE(mc_user_types) ?
mc_user_types[evt->u.user_error.user_error_type]
: "Unknown";
printk("%s Error type: User [%s]\n", level, subtype);
if (evt->u.user_error.effective_address_provided)
printk("%s Effective address: %016llx\n",
level, evt->u.user_error.effective_address);
break;
case MCE_ERROR_TYPE_RA:
subtype = evt->u.ra_error.ra_error_type <
ARRAY_SIZE(mc_ra_types) ?
mc_ra_types[evt->u.ra_error.ra_error_type]
: "Unknown";
printk("%s Error type: Real address [%s]\n", level, subtype);
if (evt->u.ra_error.effective_address_provided)
printk("%s Effective address: %016llx\n",
level, evt->u.ra_error.effective_address);
break;
case MCE_ERROR_TYPE_LINK:
subtype = evt->u.link_error.link_error_type <
ARRAY_SIZE(mc_link_types) ?
mc_link_types[evt->u.link_error.link_error_type]
: "Unknown";
printk("%s Error type: Link [%s]\n", level, subtype);
if (evt->u.link_error.effective_address_provided)
printk("%s Effective address: %016llx\n",
level, evt->u.link_error.effective_address);
break;
default:
case MCE_ERROR_TYPE_UNKNOWN:
printk("%s Error type: Unknown\n", level);
break;
}
}
EXPORT_SYMBOL_GPL(machine_check_print_event_info);
uint64_t get_mce_fault_addr(struct machine_check_event *evt)
{
switch (evt->error_type) {
case MCE_ERROR_TYPE_UE:
if (evt->u.ue_error.effective_address_provided)
return evt->u.ue_error.effective_address;
break;
case MCE_ERROR_TYPE_SLB:
if (evt->u.slb_error.effective_address_provided)
return evt->u.slb_error.effective_address;
break;
case MCE_ERROR_TYPE_ERAT:
if (evt->u.erat_error.effective_address_provided)
return evt->u.erat_error.effective_address;
break;
case MCE_ERROR_TYPE_TLB:
if (evt->u.tlb_error.effective_address_provided)
return evt->u.tlb_error.effective_address;
break;
case MCE_ERROR_TYPE_USER:
if (evt->u.user_error.effective_address_provided)
return evt->u.user_error.effective_address;
break;
case MCE_ERROR_TYPE_RA:
if (evt->u.ra_error.effective_address_provided)
return evt->u.ra_error.effective_address;
break;
case MCE_ERROR_TYPE_LINK:
if (evt->u.link_error.effective_address_provided)
return evt->u.link_error.effective_address;
break;
default:
case MCE_ERROR_TYPE_UNKNOWN:
break;
}
return 0;
}
EXPORT_SYMBOL(get_mce_fault_addr);