linux_dsm_epyc7002/arch/powerpc/platforms/powernv/npu-dma.c

362 lines
8.5 KiB
C
Raw Normal View History

/*
* This file implements the DMA operations for NVLink devices. The NPU
* devices all point to the same iommu table as the parent PCI device.
*
* Copyright Alistair Popple, IBM Corporation 2015.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of version 2 of the GNU General Public
* License as published by the Free Software Foundation.
*/
#include <linux/export.h>
#include <linux/pci.h>
#include <linux/memblock.h>
powerpc/powernv/npu: Enable NVLink pass through IBM POWER8 NVlink systems come with Tesla K40-ish GPUs each of which also has a couple of fast speed links (NVLink). The interface to links is exposed as an emulated PCI bridge which is included into the same IOMMU group as the corresponding GPU. In the kernel, NPUs get a separate PHB of the PNV_PHB_NPU type and a PE which behave pretty much as the standard IODA2 PHB except NPU PHB has just a single TVE in the hardware which means it can have either 32bit window or 64bit window or DMA bypass but never two of these. In order to make these links work when GPU is passed to the guest, these bridges need to be passed as well; otherwise performance will degrade. This implements and exports API to manage NPU state in regard to VFIO; it replicates iommu_table_group_ops. This defines a new pnv_pci_ioda2_npu_ops which is assigned to the IODA2 bridge if there are NPUs for a GPU on the bridge. The new callbacks call the default IODA2 callbacks plus new NPU API. This adds a gpe_table_group_to_npe() helper to find NPU PE for the IODA2 table_group, it is not expected to fail as the helper is only called from the pnv_pci_ioda2_npu_ops. This does not define NPU-specific .release_ownership() so after VFIO is finished, DMA on NPU is disabled which is ok as the nvidia driver sets DMA mask when probing which enable 32 or 64bit DMA on NPU. This adds a pnv_pci_npu_setup_iommu() helper which adds NPUs to the GPU group if any found. The helper uses helpers to look for the "ibm,gpu" property in the device tree which is a phandle of the corresponding GPU. This adds an additional loop over PEs in pnv_ioda_setup_dma() as the main loop skips NPU PEs as they do not have 32bit DMA segments. As pnv_npu_set_window() and pnv_npu_unset_window() are started being used by the new IODA2-NPU IOMMU group, this makes the helpers public and adds the DMA window number parameter. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-By: Alistair Popple <alistair@popple.id.au> [mpe: Add pnv_pci_ioda_setup_iommu_api() to fix build with IOMMU_API=n] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-04-29 15:55:24 +07:00
#include <linux/iommu.h>
#include <asm/iommu.h>
#include <asm/pnv-pci.h>
#include <asm/msi_bitmap.h>
#include <asm/opal.h>
#include "powernv.h"
#include "pci.h"
/*
* Other types of TCE cache invalidation are not functional in the
* hardware.
*/
static struct pci_dev *get_pci_dev(struct device_node *dn)
{
return PCI_DN(dn)->pcidev;
}
/* Given a NPU device get the associated PCI device. */
struct pci_dev *pnv_pci_get_gpu_dev(struct pci_dev *npdev)
{
struct device_node *dn;
struct pci_dev *gpdev;
/* Get assoicated PCI device */
dn = of_parse_phandle(npdev->dev.of_node, "ibm,gpu", 0);
if (!dn)
return NULL;
gpdev = get_pci_dev(dn);
of_node_put(dn);
return gpdev;
}
EXPORT_SYMBOL(pnv_pci_get_gpu_dev);
/* Given the real PCI device get a linked NPU device. */
struct pci_dev *pnv_pci_get_npu_dev(struct pci_dev *gpdev, int index)
{
struct device_node *dn;
struct pci_dev *npdev;
/* Get assoicated PCI device */
dn = of_parse_phandle(gpdev->dev.of_node, "ibm,npu", index);
if (!dn)
return NULL;
npdev = get_pci_dev(dn);
of_node_put(dn);
return npdev;
}
EXPORT_SYMBOL(pnv_pci_get_npu_dev);
#define NPU_DMA_OP_UNSUPPORTED() \
dev_err_once(dev, "%s operation unsupported for NVLink devices\n", \
__func__)
static void *dma_npu_alloc(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t flag,
dma-mapping: use unsigned long for dma_attrs The dma-mapping core and the implementations do not change the DMA attributes passed by pointer. Thus the pointer can point to const data. However the attributes do not have to be a bitfield. Instead unsigned long will do fine: 1. This is just simpler. Both in terms of reading the code and setting attributes. Instead of initializing local attributes on the stack and passing pointer to it to dma_set_attr(), just set the bits. 2. It brings safeness and checking for const correctness because the attributes are passed by value. Semantic patches for this change (at least most of them): virtual patch virtual context @r@ identifier f, attrs; @@ f(..., - struct dma_attrs *attrs + unsigned long attrs , ...) { ... } @@ identifier r.f; @@ f(..., - NULL + 0 ) and // Options: --all-includes virtual patch virtual context @r@ identifier f, attrs; type t; @@ t f(..., struct dma_attrs *attrs); @@ identifier r.f; @@ f(..., - NULL + 0 ) Link: http://lkml.kernel.org/r/1468399300-5399-2-git-send-email-k.kozlowski@samsung.com Signed-off-by: Krzysztof Kozlowski <k.kozlowski@samsung.com> Acked-by: Vineet Gupta <vgupta@synopsys.com> Acked-by: Robin Murphy <robin.murphy@arm.com> Acked-by: Hans-Christian Noren Egtvedt <egtvedt@samfundet.no> Acked-by: Mark Salter <msalter@redhat.com> [c6x] Acked-by: Jesper Nilsson <jesper.nilsson@axis.com> [cris] Acked-by: Daniel Vetter <daniel.vetter@ffwll.ch> [drm] Reviewed-by: Bart Van Assche <bart.vanassche@sandisk.com> Acked-by: Joerg Roedel <jroedel@suse.de> [iommu] Acked-by: Fabien Dessenne <fabien.dessenne@st.com> [bdisp] Reviewed-by: Marek Szyprowski <m.szyprowski@samsung.com> [vb2-core] Acked-by: David Vrabel <david.vrabel@citrix.com> [xen] Acked-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> [xen swiotlb] Acked-by: Joerg Roedel <jroedel@suse.de> [iommu] Acked-by: Richard Kuo <rkuo@codeaurora.org> [hexagon] Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> [m68k] Acked-by: Gerald Schaefer <gerald.schaefer@de.ibm.com> [s390] Acked-by: Bjorn Andersson <bjorn.andersson@linaro.org> Acked-by: Hans-Christian Noren Egtvedt <egtvedt@samfundet.no> [avr32] Acked-by: Vineet Gupta <vgupta@synopsys.com> [arc] Acked-by: Robin Murphy <robin.murphy@arm.com> [arm64 and dma-iommu] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-04 03:46:00 +07:00
unsigned long attrs)
{
NPU_DMA_OP_UNSUPPORTED();
return NULL;
}
static void dma_npu_free(struct device *dev, size_t size,
void *vaddr, dma_addr_t dma_handle,
dma-mapping: use unsigned long for dma_attrs The dma-mapping core and the implementations do not change the DMA attributes passed by pointer. Thus the pointer can point to const data. However the attributes do not have to be a bitfield. Instead unsigned long will do fine: 1. This is just simpler. Both in terms of reading the code and setting attributes. Instead of initializing local attributes on the stack and passing pointer to it to dma_set_attr(), just set the bits. 2. It brings safeness and checking for const correctness because the attributes are passed by value. Semantic patches for this change (at least most of them): virtual patch virtual context @r@ identifier f, attrs; @@ f(..., - struct dma_attrs *attrs + unsigned long attrs , ...) { ... } @@ identifier r.f; @@ f(..., - NULL + 0 ) and // Options: --all-includes virtual patch virtual context @r@ identifier f, attrs; type t; @@ t f(..., struct dma_attrs *attrs); @@ identifier r.f; @@ f(..., - NULL + 0 ) Link: http://lkml.kernel.org/r/1468399300-5399-2-git-send-email-k.kozlowski@samsung.com Signed-off-by: Krzysztof Kozlowski <k.kozlowski@samsung.com> Acked-by: Vineet Gupta <vgupta@synopsys.com> Acked-by: Robin Murphy <robin.murphy@arm.com> Acked-by: Hans-Christian Noren Egtvedt <egtvedt@samfundet.no> Acked-by: Mark Salter <msalter@redhat.com> [c6x] Acked-by: Jesper Nilsson <jesper.nilsson@axis.com> [cris] Acked-by: Daniel Vetter <daniel.vetter@ffwll.ch> [drm] Reviewed-by: Bart Van Assche <bart.vanassche@sandisk.com> Acked-by: Joerg Roedel <jroedel@suse.de> [iommu] Acked-by: Fabien Dessenne <fabien.dessenne@st.com> [bdisp] Reviewed-by: Marek Szyprowski <m.szyprowski@samsung.com> [vb2-core] Acked-by: David Vrabel <david.vrabel@citrix.com> [xen] Acked-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> [xen swiotlb] Acked-by: Joerg Roedel <jroedel@suse.de> [iommu] Acked-by: Richard Kuo <rkuo@codeaurora.org> [hexagon] Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> [m68k] Acked-by: Gerald Schaefer <gerald.schaefer@de.ibm.com> [s390] Acked-by: Bjorn Andersson <bjorn.andersson@linaro.org> Acked-by: Hans-Christian Noren Egtvedt <egtvedt@samfundet.no> [avr32] Acked-by: Vineet Gupta <vgupta@synopsys.com> [arc] Acked-by: Robin Murphy <robin.murphy@arm.com> [arm64 and dma-iommu] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-04 03:46:00 +07:00
unsigned long attrs)
{
NPU_DMA_OP_UNSUPPORTED();
}
static dma_addr_t dma_npu_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction direction,
dma-mapping: use unsigned long for dma_attrs The dma-mapping core and the implementations do not change the DMA attributes passed by pointer. Thus the pointer can point to const data. However the attributes do not have to be a bitfield. Instead unsigned long will do fine: 1. This is just simpler. Both in terms of reading the code and setting attributes. Instead of initializing local attributes on the stack and passing pointer to it to dma_set_attr(), just set the bits. 2. It brings safeness and checking for const correctness because the attributes are passed by value. Semantic patches for this change (at least most of them): virtual patch virtual context @r@ identifier f, attrs; @@ f(..., - struct dma_attrs *attrs + unsigned long attrs , ...) { ... } @@ identifier r.f; @@ f(..., - NULL + 0 ) and // Options: --all-includes virtual patch virtual context @r@ identifier f, attrs; type t; @@ t f(..., struct dma_attrs *attrs); @@ identifier r.f; @@ f(..., - NULL + 0 ) Link: http://lkml.kernel.org/r/1468399300-5399-2-git-send-email-k.kozlowski@samsung.com Signed-off-by: Krzysztof Kozlowski <k.kozlowski@samsung.com> Acked-by: Vineet Gupta <vgupta@synopsys.com> Acked-by: Robin Murphy <robin.murphy@arm.com> Acked-by: Hans-Christian Noren Egtvedt <egtvedt@samfundet.no> Acked-by: Mark Salter <msalter@redhat.com> [c6x] Acked-by: Jesper Nilsson <jesper.nilsson@axis.com> [cris] Acked-by: Daniel Vetter <daniel.vetter@ffwll.ch> [drm] Reviewed-by: Bart Van Assche <bart.vanassche@sandisk.com> Acked-by: Joerg Roedel <jroedel@suse.de> [iommu] Acked-by: Fabien Dessenne <fabien.dessenne@st.com> [bdisp] Reviewed-by: Marek Szyprowski <m.szyprowski@samsung.com> [vb2-core] Acked-by: David Vrabel <david.vrabel@citrix.com> [xen] Acked-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> [xen swiotlb] Acked-by: Joerg Roedel <jroedel@suse.de> [iommu] Acked-by: Richard Kuo <rkuo@codeaurora.org> [hexagon] Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> [m68k] Acked-by: Gerald Schaefer <gerald.schaefer@de.ibm.com> [s390] Acked-by: Bjorn Andersson <bjorn.andersson@linaro.org> Acked-by: Hans-Christian Noren Egtvedt <egtvedt@samfundet.no> [avr32] Acked-by: Vineet Gupta <vgupta@synopsys.com> [arc] Acked-by: Robin Murphy <robin.murphy@arm.com> [arm64 and dma-iommu] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-04 03:46:00 +07:00
unsigned long attrs)
{
NPU_DMA_OP_UNSUPPORTED();
return 0;
}
static int dma_npu_map_sg(struct device *dev, struct scatterlist *sglist,
int nelems, enum dma_data_direction direction,
dma-mapping: use unsigned long for dma_attrs The dma-mapping core and the implementations do not change the DMA attributes passed by pointer. Thus the pointer can point to const data. However the attributes do not have to be a bitfield. Instead unsigned long will do fine: 1. This is just simpler. Both in terms of reading the code and setting attributes. Instead of initializing local attributes on the stack and passing pointer to it to dma_set_attr(), just set the bits. 2. It brings safeness and checking for const correctness because the attributes are passed by value. Semantic patches for this change (at least most of them): virtual patch virtual context @r@ identifier f, attrs; @@ f(..., - struct dma_attrs *attrs + unsigned long attrs , ...) { ... } @@ identifier r.f; @@ f(..., - NULL + 0 ) and // Options: --all-includes virtual patch virtual context @r@ identifier f, attrs; type t; @@ t f(..., struct dma_attrs *attrs); @@ identifier r.f; @@ f(..., - NULL + 0 ) Link: http://lkml.kernel.org/r/1468399300-5399-2-git-send-email-k.kozlowski@samsung.com Signed-off-by: Krzysztof Kozlowski <k.kozlowski@samsung.com> Acked-by: Vineet Gupta <vgupta@synopsys.com> Acked-by: Robin Murphy <robin.murphy@arm.com> Acked-by: Hans-Christian Noren Egtvedt <egtvedt@samfundet.no> Acked-by: Mark Salter <msalter@redhat.com> [c6x] Acked-by: Jesper Nilsson <jesper.nilsson@axis.com> [cris] Acked-by: Daniel Vetter <daniel.vetter@ffwll.ch> [drm] Reviewed-by: Bart Van Assche <bart.vanassche@sandisk.com> Acked-by: Joerg Roedel <jroedel@suse.de> [iommu] Acked-by: Fabien Dessenne <fabien.dessenne@st.com> [bdisp] Reviewed-by: Marek Szyprowski <m.szyprowski@samsung.com> [vb2-core] Acked-by: David Vrabel <david.vrabel@citrix.com> [xen] Acked-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> [xen swiotlb] Acked-by: Joerg Roedel <jroedel@suse.de> [iommu] Acked-by: Richard Kuo <rkuo@codeaurora.org> [hexagon] Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> [m68k] Acked-by: Gerald Schaefer <gerald.schaefer@de.ibm.com> [s390] Acked-by: Bjorn Andersson <bjorn.andersson@linaro.org> Acked-by: Hans-Christian Noren Egtvedt <egtvedt@samfundet.no> [avr32] Acked-by: Vineet Gupta <vgupta@synopsys.com> [arc] Acked-by: Robin Murphy <robin.murphy@arm.com> [arm64 and dma-iommu] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-04 03:46:00 +07:00
unsigned long attrs)
{
NPU_DMA_OP_UNSUPPORTED();
return 0;
}
static int dma_npu_dma_supported(struct device *dev, u64 mask)
{
NPU_DMA_OP_UNSUPPORTED();
return 0;
}
static u64 dma_npu_get_required_mask(struct device *dev)
{
NPU_DMA_OP_UNSUPPORTED();
return 0;
}
struct dma_map_ops dma_npu_ops = {
.map_page = dma_npu_map_page,
.map_sg = dma_npu_map_sg,
.alloc = dma_npu_alloc,
.free = dma_npu_free,
.dma_supported = dma_npu_dma_supported,
.get_required_mask = dma_npu_get_required_mask,
};
/*
* Returns the PE assoicated with the PCI device of the given
* NPU. Returns the linked pci device if pci_dev != NULL.
*/
static struct pnv_ioda_pe *get_gpu_pci_dev_and_pe(struct pnv_ioda_pe *npe,
struct pci_dev **gpdev)
{
struct pnv_phb *phb;
struct pci_controller *hose;
struct pci_dev *pdev;
struct pnv_ioda_pe *pe;
struct pci_dn *pdn;
pdev = pnv_pci_get_gpu_dev(npe->pdev);
if (!pdev)
return NULL;
pdn = pci_get_pdn(pdev);
if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
return NULL;
hose = pci_bus_to_host(pdev->bus);
phb = hose->private_data;
pe = &phb->ioda.pe_array[pdn->pe_number];
if (gpdev)
*gpdev = pdev;
return pe;
}
powerpc/powernv/npu: Enable NVLink pass through IBM POWER8 NVlink systems come with Tesla K40-ish GPUs each of which also has a couple of fast speed links (NVLink). The interface to links is exposed as an emulated PCI bridge which is included into the same IOMMU group as the corresponding GPU. In the kernel, NPUs get a separate PHB of the PNV_PHB_NPU type and a PE which behave pretty much as the standard IODA2 PHB except NPU PHB has just a single TVE in the hardware which means it can have either 32bit window or 64bit window or DMA bypass but never two of these. In order to make these links work when GPU is passed to the guest, these bridges need to be passed as well; otherwise performance will degrade. This implements and exports API to manage NPU state in regard to VFIO; it replicates iommu_table_group_ops. This defines a new pnv_pci_ioda2_npu_ops which is assigned to the IODA2 bridge if there are NPUs for a GPU on the bridge. The new callbacks call the default IODA2 callbacks plus new NPU API. This adds a gpe_table_group_to_npe() helper to find NPU PE for the IODA2 table_group, it is not expected to fail as the helper is only called from the pnv_pci_ioda2_npu_ops. This does not define NPU-specific .release_ownership() so after VFIO is finished, DMA on NPU is disabled which is ok as the nvidia driver sets DMA mask when probing which enable 32 or 64bit DMA on NPU. This adds a pnv_pci_npu_setup_iommu() helper which adds NPUs to the GPU group if any found. The helper uses helpers to look for the "ibm,gpu" property in the device tree which is a phandle of the corresponding GPU. This adds an additional loop over PEs in pnv_ioda_setup_dma() as the main loop skips NPU PEs as they do not have 32bit DMA segments. As pnv_npu_set_window() and pnv_npu_unset_window() are started being used by the new IODA2-NPU IOMMU group, this makes the helpers public and adds the DMA window number parameter. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-By: Alistair Popple <alistair@popple.id.au> [mpe: Add pnv_pci_ioda_setup_iommu_api() to fix build with IOMMU_API=n] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-04-29 15:55:24 +07:00
long pnv_npu_set_window(struct pnv_ioda_pe *npe, int num,
struct iommu_table *tbl)
{
struct pnv_phb *phb = npe->phb;
int64_t rc;
const unsigned long size = tbl->it_indirect_levels ?
tbl->it_level_size : tbl->it_size;
const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
const __u64 win_size = tbl->it_size << tbl->it_page_shift;
pe_info(npe, "Setting up window %llx..%llx pg=%lx\n",
start_addr, start_addr + win_size - 1,
IOMMU_PAGE_SIZE(tbl));
rc = opal_pci_map_pe_dma_window(phb->opal_id,
npe->pe_number,
npe->pe_number,
tbl->it_indirect_levels + 1,
__pa(tbl->it_base),
size << 3,
IOMMU_PAGE_SIZE(tbl));
if (rc) {
pe_err(npe, "Failed to configure TCE table, err %lld\n", rc);
return rc;
}
pnv_pci_phb3_tce_invalidate_entire(phb, false);
/* Add the table to the list so its TCE cache will get invalidated */
powerpc/powernv/npu: Enable NVLink pass through IBM POWER8 NVlink systems come with Tesla K40-ish GPUs each of which also has a couple of fast speed links (NVLink). The interface to links is exposed as an emulated PCI bridge which is included into the same IOMMU group as the corresponding GPU. In the kernel, NPUs get a separate PHB of the PNV_PHB_NPU type and a PE which behave pretty much as the standard IODA2 PHB except NPU PHB has just a single TVE in the hardware which means it can have either 32bit window or 64bit window or DMA bypass but never two of these. In order to make these links work when GPU is passed to the guest, these bridges need to be passed as well; otherwise performance will degrade. This implements and exports API to manage NPU state in regard to VFIO; it replicates iommu_table_group_ops. This defines a new pnv_pci_ioda2_npu_ops which is assigned to the IODA2 bridge if there are NPUs for a GPU on the bridge. The new callbacks call the default IODA2 callbacks plus new NPU API. This adds a gpe_table_group_to_npe() helper to find NPU PE for the IODA2 table_group, it is not expected to fail as the helper is only called from the pnv_pci_ioda2_npu_ops. This does not define NPU-specific .release_ownership() so after VFIO is finished, DMA on NPU is disabled which is ok as the nvidia driver sets DMA mask when probing which enable 32 or 64bit DMA on NPU. This adds a pnv_pci_npu_setup_iommu() helper which adds NPUs to the GPU group if any found. The helper uses helpers to look for the "ibm,gpu" property in the device tree which is a phandle of the corresponding GPU. This adds an additional loop over PEs in pnv_ioda_setup_dma() as the main loop skips NPU PEs as they do not have 32bit DMA segments. As pnv_npu_set_window() and pnv_npu_unset_window() are started being used by the new IODA2-NPU IOMMU group, this makes the helpers public and adds the DMA window number parameter. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-By: Alistair Popple <alistair@popple.id.au> [mpe: Add pnv_pci_ioda_setup_iommu_api() to fix build with IOMMU_API=n] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-04-29 15:55:24 +07:00
pnv_pci_link_table_and_group(phb->hose->node, num,
tbl, &npe->table_group);
return 0;
}
powerpc/powernv/npu: Enable NVLink pass through IBM POWER8 NVlink systems come with Tesla K40-ish GPUs each of which also has a couple of fast speed links (NVLink). The interface to links is exposed as an emulated PCI bridge which is included into the same IOMMU group as the corresponding GPU. In the kernel, NPUs get a separate PHB of the PNV_PHB_NPU type and a PE which behave pretty much as the standard IODA2 PHB except NPU PHB has just a single TVE in the hardware which means it can have either 32bit window or 64bit window or DMA bypass but never two of these. In order to make these links work when GPU is passed to the guest, these bridges need to be passed as well; otherwise performance will degrade. This implements and exports API to manage NPU state in regard to VFIO; it replicates iommu_table_group_ops. This defines a new pnv_pci_ioda2_npu_ops which is assigned to the IODA2 bridge if there are NPUs for a GPU on the bridge. The new callbacks call the default IODA2 callbacks plus new NPU API. This adds a gpe_table_group_to_npe() helper to find NPU PE for the IODA2 table_group, it is not expected to fail as the helper is only called from the pnv_pci_ioda2_npu_ops. This does not define NPU-specific .release_ownership() so after VFIO is finished, DMA on NPU is disabled which is ok as the nvidia driver sets DMA mask when probing which enable 32 or 64bit DMA on NPU. This adds a pnv_pci_npu_setup_iommu() helper which adds NPUs to the GPU group if any found. The helper uses helpers to look for the "ibm,gpu" property in the device tree which is a phandle of the corresponding GPU. This adds an additional loop over PEs in pnv_ioda_setup_dma() as the main loop skips NPU PEs as they do not have 32bit DMA segments. As pnv_npu_set_window() and pnv_npu_unset_window() are started being used by the new IODA2-NPU IOMMU group, this makes the helpers public and adds the DMA window number parameter. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-By: Alistair Popple <alistair@popple.id.au> [mpe: Add pnv_pci_ioda_setup_iommu_api() to fix build with IOMMU_API=n] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-04-29 15:55:24 +07:00
long pnv_npu_unset_window(struct pnv_ioda_pe *npe, int num)
{
struct pnv_phb *phb = npe->phb;
int64_t rc;
pe_info(npe, "Removing DMA window\n");
rc = opal_pci_map_pe_dma_window(phb->opal_id, npe->pe_number,
npe->pe_number,
0/* levels */, 0/* table address */,
0/* table size */, 0/* page size */);
if (rc) {
pe_err(npe, "Unmapping failed, ret = %lld\n", rc);
return rc;
}
pnv_pci_phb3_tce_invalidate_entire(phb, false);
powerpc/powernv/npu: Enable NVLink pass through IBM POWER8 NVlink systems come with Tesla K40-ish GPUs each of which also has a couple of fast speed links (NVLink). The interface to links is exposed as an emulated PCI bridge which is included into the same IOMMU group as the corresponding GPU. In the kernel, NPUs get a separate PHB of the PNV_PHB_NPU type and a PE which behave pretty much as the standard IODA2 PHB except NPU PHB has just a single TVE in the hardware which means it can have either 32bit window or 64bit window or DMA bypass but never two of these. In order to make these links work when GPU is passed to the guest, these bridges need to be passed as well; otherwise performance will degrade. This implements and exports API to manage NPU state in regard to VFIO; it replicates iommu_table_group_ops. This defines a new pnv_pci_ioda2_npu_ops which is assigned to the IODA2 bridge if there are NPUs for a GPU on the bridge. The new callbacks call the default IODA2 callbacks plus new NPU API. This adds a gpe_table_group_to_npe() helper to find NPU PE for the IODA2 table_group, it is not expected to fail as the helper is only called from the pnv_pci_ioda2_npu_ops. This does not define NPU-specific .release_ownership() so after VFIO is finished, DMA on NPU is disabled which is ok as the nvidia driver sets DMA mask when probing which enable 32 or 64bit DMA on NPU. This adds a pnv_pci_npu_setup_iommu() helper which adds NPUs to the GPU group if any found. The helper uses helpers to look for the "ibm,gpu" property in the device tree which is a phandle of the corresponding GPU. This adds an additional loop over PEs in pnv_ioda_setup_dma() as the main loop skips NPU PEs as they do not have 32bit DMA segments. As pnv_npu_set_window() and pnv_npu_unset_window() are started being used by the new IODA2-NPU IOMMU group, this makes the helpers public and adds the DMA window number parameter. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-By: Alistair Popple <alistair@popple.id.au> [mpe: Add pnv_pci_ioda_setup_iommu_api() to fix build with IOMMU_API=n] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-04-29 15:55:24 +07:00
pnv_pci_unlink_table_and_group(npe->table_group.tables[num],
&npe->table_group);
return 0;
}
/*
powerpc/powernv/npu: Simplify DMA setup NPU devices are emulated in firmware and mainly used for NPU NVLink training; one NPU device is per a hardware link. Their DMA/TCE setup must match the GPU which is connected via PCIe and NVLink so any changes to the DMA/TCE setup on the GPU PCIe device need to be propagated to the NVLink device as this is what device drivers expect and it doesn't make much sense to do anything else. This makes NPU DMA setup explicit. pnv_npu_ioda_controller_ops::pnv_npu_dma_set_mask is moved to pci-ioda, made static and prints warning as dma_set_mask() should never be called on this function as in any case it will not configure GPU; so we make this explicit. Instead of using PNV_IODA_PE_PEER and peers[] (which the next patch will remove), we test every PCI device if there are corresponding NVLink devices. If there are any, we propagate bypass mode to just found NPU devices by calling the setup helper directly (which takes @bypass) and avoid guessing (i.e. calculating from DMA mask) whether we need bypass or not on NPU devices. Since DMA setup happens in very rare occasion, this will not slow down booting or VFIO start/stop much. This renames pnv_npu_disable_bypass to pnv_npu_dma_set_32 to make it more clear what the function really does which is programming 32bit table address to the TVT ("disabling bypass" means writing zeroes to the TVT). This removes pnv_npu_dma_set_bypass() from pnv_npu_ioda_fixup() as the DMA configuration on NPU does not matter until dma_set_mask() is called on GPU and that will do the NPU DMA configuration. This removes phb->dma_dev_setup initialization for NPU as pnv_pci_ioda_dma_dev_setup is no-op for it anyway. This stops using npe->tce_bypass_base as it never changes and values other than zero are not supported. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Alistair Popple <alistair@popple.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-04-29 15:55:20 +07:00
* Enables 32 bit DMA on NPU.
*/
powerpc/powernv/npu: Simplify DMA setup NPU devices are emulated in firmware and mainly used for NPU NVLink training; one NPU device is per a hardware link. Their DMA/TCE setup must match the GPU which is connected via PCIe and NVLink so any changes to the DMA/TCE setup on the GPU PCIe device need to be propagated to the NVLink device as this is what device drivers expect and it doesn't make much sense to do anything else. This makes NPU DMA setup explicit. pnv_npu_ioda_controller_ops::pnv_npu_dma_set_mask is moved to pci-ioda, made static and prints warning as dma_set_mask() should never be called on this function as in any case it will not configure GPU; so we make this explicit. Instead of using PNV_IODA_PE_PEER and peers[] (which the next patch will remove), we test every PCI device if there are corresponding NVLink devices. If there are any, we propagate bypass mode to just found NPU devices by calling the setup helper directly (which takes @bypass) and avoid guessing (i.e. calculating from DMA mask) whether we need bypass or not on NPU devices. Since DMA setup happens in very rare occasion, this will not slow down booting or VFIO start/stop much. This renames pnv_npu_disable_bypass to pnv_npu_dma_set_32 to make it more clear what the function really does which is programming 32bit table address to the TVT ("disabling bypass" means writing zeroes to the TVT). This removes pnv_npu_dma_set_bypass() from pnv_npu_ioda_fixup() as the DMA configuration on NPU does not matter until dma_set_mask() is called on GPU and that will do the NPU DMA configuration. This removes phb->dma_dev_setup initialization for NPU as pnv_pci_ioda_dma_dev_setup is no-op for it anyway. This stops using npe->tce_bypass_base as it never changes and values other than zero are not supported. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Alistair Popple <alistair@popple.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-04-29 15:55:20 +07:00
static void pnv_npu_dma_set_32(struct pnv_ioda_pe *npe)
{
struct pci_dev *gpdev;
struct pnv_ioda_pe *gpe;
int64_t rc;
/*
* Find the assoicated PCI devices and get the dma window
* information from there.
*/
if (!npe->pdev || !(npe->flags & PNV_IODA_PE_DEV))
return;
gpe = get_gpu_pci_dev_and_pe(npe, &gpdev);
if (!gpe)
return;
powerpc/powernv/npu: Enable NVLink pass through IBM POWER8 NVlink systems come with Tesla K40-ish GPUs each of which also has a couple of fast speed links (NVLink). The interface to links is exposed as an emulated PCI bridge which is included into the same IOMMU group as the corresponding GPU. In the kernel, NPUs get a separate PHB of the PNV_PHB_NPU type and a PE which behave pretty much as the standard IODA2 PHB except NPU PHB has just a single TVE in the hardware which means it can have either 32bit window or 64bit window or DMA bypass but never two of these. In order to make these links work when GPU is passed to the guest, these bridges need to be passed as well; otherwise performance will degrade. This implements and exports API to manage NPU state in regard to VFIO; it replicates iommu_table_group_ops. This defines a new pnv_pci_ioda2_npu_ops which is assigned to the IODA2 bridge if there are NPUs for a GPU on the bridge. The new callbacks call the default IODA2 callbacks plus new NPU API. This adds a gpe_table_group_to_npe() helper to find NPU PE for the IODA2 table_group, it is not expected to fail as the helper is only called from the pnv_pci_ioda2_npu_ops. This does not define NPU-specific .release_ownership() so after VFIO is finished, DMA on NPU is disabled which is ok as the nvidia driver sets DMA mask when probing which enable 32 or 64bit DMA on NPU. This adds a pnv_pci_npu_setup_iommu() helper which adds NPUs to the GPU group if any found. The helper uses helpers to look for the "ibm,gpu" property in the device tree which is a phandle of the corresponding GPU. This adds an additional loop over PEs in pnv_ioda_setup_dma() as the main loop skips NPU PEs as they do not have 32bit DMA segments. As pnv_npu_set_window() and pnv_npu_unset_window() are started being used by the new IODA2-NPU IOMMU group, this makes the helpers public and adds the DMA window number parameter. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-By: Alistair Popple <alistair@popple.id.au> [mpe: Add pnv_pci_ioda_setup_iommu_api() to fix build with IOMMU_API=n] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-04-29 15:55:24 +07:00
rc = pnv_npu_set_window(npe, 0, gpe->table_group.tables[0]);
/*
* We don't initialise npu_pe->tce32_table as we always use
* dma_npu_ops which are nops.
*/
set_dma_ops(&npe->pdev->dev, &dma_npu_ops);
}
/*
powerpc/powernv/npu: Simplify DMA setup NPU devices are emulated in firmware and mainly used for NPU NVLink training; one NPU device is per a hardware link. Their DMA/TCE setup must match the GPU which is connected via PCIe and NVLink so any changes to the DMA/TCE setup on the GPU PCIe device need to be propagated to the NVLink device as this is what device drivers expect and it doesn't make much sense to do anything else. This makes NPU DMA setup explicit. pnv_npu_ioda_controller_ops::pnv_npu_dma_set_mask is moved to pci-ioda, made static and prints warning as dma_set_mask() should never be called on this function as in any case it will not configure GPU; so we make this explicit. Instead of using PNV_IODA_PE_PEER and peers[] (which the next patch will remove), we test every PCI device if there are corresponding NVLink devices. If there are any, we propagate bypass mode to just found NPU devices by calling the setup helper directly (which takes @bypass) and avoid guessing (i.e. calculating from DMA mask) whether we need bypass or not on NPU devices. Since DMA setup happens in very rare occasion, this will not slow down booting or VFIO start/stop much. This renames pnv_npu_disable_bypass to pnv_npu_dma_set_32 to make it more clear what the function really does which is programming 32bit table address to the TVT ("disabling bypass" means writing zeroes to the TVT). This removes pnv_npu_dma_set_bypass() from pnv_npu_ioda_fixup() as the DMA configuration on NPU does not matter until dma_set_mask() is called on GPU and that will do the NPU DMA configuration. This removes phb->dma_dev_setup initialization for NPU as pnv_pci_ioda_dma_dev_setup is no-op for it anyway. This stops using npe->tce_bypass_base as it never changes and values other than zero are not supported. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Alistair Popple <alistair@popple.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-04-29 15:55:20 +07:00
* Enables bypass mode on the NPU. The NPU only supports one
* window per link, so bypass needs to be explicitly enabled or
* disabled. Unlike for a PHB3 bypass and non-bypass modes can't be
* active at the same time.
*/
powerpc/powernv/npu: Simplify DMA setup NPU devices are emulated in firmware and mainly used for NPU NVLink training; one NPU device is per a hardware link. Their DMA/TCE setup must match the GPU which is connected via PCIe and NVLink so any changes to the DMA/TCE setup on the GPU PCIe device need to be propagated to the NVLink device as this is what device drivers expect and it doesn't make much sense to do anything else. This makes NPU DMA setup explicit. pnv_npu_ioda_controller_ops::pnv_npu_dma_set_mask is moved to pci-ioda, made static and prints warning as dma_set_mask() should never be called on this function as in any case it will not configure GPU; so we make this explicit. Instead of using PNV_IODA_PE_PEER and peers[] (which the next patch will remove), we test every PCI device if there are corresponding NVLink devices. If there are any, we propagate bypass mode to just found NPU devices by calling the setup helper directly (which takes @bypass) and avoid guessing (i.e. calculating from DMA mask) whether we need bypass or not on NPU devices. Since DMA setup happens in very rare occasion, this will not slow down booting or VFIO start/stop much. This renames pnv_npu_disable_bypass to pnv_npu_dma_set_32 to make it more clear what the function really does which is programming 32bit table address to the TVT ("disabling bypass" means writing zeroes to the TVT). This removes pnv_npu_dma_set_bypass() from pnv_npu_ioda_fixup() as the DMA configuration on NPU does not matter until dma_set_mask() is called on GPU and that will do the NPU DMA configuration. This removes phb->dma_dev_setup initialization for NPU as pnv_pci_ioda_dma_dev_setup is no-op for it anyway. This stops using npe->tce_bypass_base as it never changes and values other than zero are not supported. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Alistair Popple <alistair@popple.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-04-29 15:55:20 +07:00
static int pnv_npu_dma_set_bypass(struct pnv_ioda_pe *npe)
{
struct pnv_phb *phb = npe->phb;
int64_t rc = 0;
powerpc/powernv/npu: Simplify DMA setup NPU devices are emulated in firmware and mainly used for NPU NVLink training; one NPU device is per a hardware link. Their DMA/TCE setup must match the GPU which is connected via PCIe and NVLink so any changes to the DMA/TCE setup on the GPU PCIe device need to be propagated to the NVLink device as this is what device drivers expect and it doesn't make much sense to do anything else. This makes NPU DMA setup explicit. pnv_npu_ioda_controller_ops::pnv_npu_dma_set_mask is moved to pci-ioda, made static and prints warning as dma_set_mask() should never be called on this function as in any case it will not configure GPU; so we make this explicit. Instead of using PNV_IODA_PE_PEER and peers[] (which the next patch will remove), we test every PCI device if there are corresponding NVLink devices. If there are any, we propagate bypass mode to just found NPU devices by calling the setup helper directly (which takes @bypass) and avoid guessing (i.e. calculating from DMA mask) whether we need bypass or not on NPU devices. Since DMA setup happens in very rare occasion, this will not slow down booting or VFIO start/stop much. This renames pnv_npu_disable_bypass to pnv_npu_dma_set_32 to make it more clear what the function really does which is programming 32bit table address to the TVT ("disabling bypass" means writing zeroes to the TVT). This removes pnv_npu_dma_set_bypass() from pnv_npu_ioda_fixup() as the DMA configuration on NPU does not matter until dma_set_mask() is called on GPU and that will do the NPU DMA configuration. This removes phb->dma_dev_setup initialization for NPU as pnv_pci_ioda_dma_dev_setup is no-op for it anyway. This stops using npe->tce_bypass_base as it never changes and values other than zero are not supported. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Alistair Popple <alistair@popple.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-04-29 15:55:20 +07:00
phys_addr_t top = memblock_end_of_DRAM();
if (phb->type != PNV_PHB_NPU || !npe->pdev)
return -EINVAL;
powerpc/powernv/npu: Enable NVLink pass through IBM POWER8 NVlink systems come with Tesla K40-ish GPUs each of which also has a couple of fast speed links (NVLink). The interface to links is exposed as an emulated PCI bridge which is included into the same IOMMU group as the corresponding GPU. In the kernel, NPUs get a separate PHB of the PNV_PHB_NPU type and a PE which behave pretty much as the standard IODA2 PHB except NPU PHB has just a single TVE in the hardware which means it can have either 32bit window or 64bit window or DMA bypass but never two of these. In order to make these links work when GPU is passed to the guest, these bridges need to be passed as well; otherwise performance will degrade. This implements and exports API to manage NPU state in regard to VFIO; it replicates iommu_table_group_ops. This defines a new pnv_pci_ioda2_npu_ops which is assigned to the IODA2 bridge if there are NPUs for a GPU on the bridge. The new callbacks call the default IODA2 callbacks plus new NPU API. This adds a gpe_table_group_to_npe() helper to find NPU PE for the IODA2 table_group, it is not expected to fail as the helper is only called from the pnv_pci_ioda2_npu_ops. This does not define NPU-specific .release_ownership() so after VFIO is finished, DMA on NPU is disabled which is ok as the nvidia driver sets DMA mask when probing which enable 32 or 64bit DMA on NPU. This adds a pnv_pci_npu_setup_iommu() helper which adds NPUs to the GPU group if any found. The helper uses helpers to look for the "ibm,gpu" property in the device tree which is a phandle of the corresponding GPU. This adds an additional loop over PEs in pnv_ioda_setup_dma() as the main loop skips NPU PEs as they do not have 32bit DMA segments. As pnv_npu_set_window() and pnv_npu_unset_window() are started being used by the new IODA2-NPU IOMMU group, this makes the helpers public and adds the DMA window number parameter. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-By: Alistair Popple <alistair@popple.id.au> [mpe: Add pnv_pci_ioda_setup_iommu_api() to fix build with IOMMU_API=n] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-04-29 15:55:24 +07:00
rc = pnv_npu_unset_window(npe, 0);
if (rc != OPAL_SUCCESS)
return rc;
powerpc/powernv/npu: Simplify DMA setup NPU devices are emulated in firmware and mainly used for NPU NVLink training; one NPU device is per a hardware link. Their DMA/TCE setup must match the GPU which is connected via PCIe and NVLink so any changes to the DMA/TCE setup on the GPU PCIe device need to be propagated to the NVLink device as this is what device drivers expect and it doesn't make much sense to do anything else. This makes NPU DMA setup explicit. pnv_npu_ioda_controller_ops::pnv_npu_dma_set_mask is moved to pci-ioda, made static and prints warning as dma_set_mask() should never be called on this function as in any case it will not configure GPU; so we make this explicit. Instead of using PNV_IODA_PE_PEER and peers[] (which the next patch will remove), we test every PCI device if there are corresponding NVLink devices. If there are any, we propagate bypass mode to just found NPU devices by calling the setup helper directly (which takes @bypass) and avoid guessing (i.e. calculating from DMA mask) whether we need bypass or not on NPU devices. Since DMA setup happens in very rare occasion, this will not slow down booting or VFIO start/stop much. This renames pnv_npu_disable_bypass to pnv_npu_dma_set_32 to make it more clear what the function really does which is programming 32bit table address to the TVT ("disabling bypass" means writing zeroes to the TVT). This removes pnv_npu_dma_set_bypass() from pnv_npu_ioda_fixup() as the DMA configuration on NPU does not matter until dma_set_mask() is called on GPU and that will do the NPU DMA configuration. This removes phb->dma_dev_setup initialization for NPU as pnv_pci_ioda_dma_dev_setup is no-op for it anyway. This stops using npe->tce_bypass_base as it never changes and values other than zero are not supported. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Alistair Popple <alistair@popple.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-04-29 15:55:20 +07:00
/* Enable the bypass window */
top = roundup_pow_of_two(top);
dev_info(&npe->pdev->dev, "Enabling bypass for PE %d\n",
npe->pe_number);
rc = opal_pci_map_pe_dma_window_real(phb->opal_id,
npe->pe_number, npe->pe_number,
0 /* bypass base */, top);
if (rc == OPAL_SUCCESS)
pnv_pci_phb3_tce_invalidate_entire(phb, false);
return rc;
}
powerpc/powernv/npu: Simplify DMA setup NPU devices are emulated in firmware and mainly used for NPU NVLink training; one NPU device is per a hardware link. Their DMA/TCE setup must match the GPU which is connected via PCIe and NVLink so any changes to the DMA/TCE setup on the GPU PCIe device need to be propagated to the NVLink device as this is what device drivers expect and it doesn't make much sense to do anything else. This makes NPU DMA setup explicit. pnv_npu_ioda_controller_ops::pnv_npu_dma_set_mask is moved to pci-ioda, made static and prints warning as dma_set_mask() should never be called on this function as in any case it will not configure GPU; so we make this explicit. Instead of using PNV_IODA_PE_PEER and peers[] (which the next patch will remove), we test every PCI device if there are corresponding NVLink devices. If there are any, we propagate bypass mode to just found NPU devices by calling the setup helper directly (which takes @bypass) and avoid guessing (i.e. calculating from DMA mask) whether we need bypass or not on NPU devices. Since DMA setup happens in very rare occasion, this will not slow down booting or VFIO start/stop much. This renames pnv_npu_disable_bypass to pnv_npu_dma_set_32 to make it more clear what the function really does which is programming 32bit table address to the TVT ("disabling bypass" means writing zeroes to the TVT). This removes pnv_npu_dma_set_bypass() from pnv_npu_ioda_fixup() as the DMA configuration on NPU does not matter until dma_set_mask() is called on GPU and that will do the NPU DMA configuration. This removes phb->dma_dev_setup initialization for NPU as pnv_pci_ioda_dma_dev_setup is no-op for it anyway. This stops using npe->tce_bypass_base as it never changes and values other than zero are not supported. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Alistair Popple <alistair@popple.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-04-29 15:55:20 +07:00
void pnv_npu_try_dma_set_bypass(struct pci_dev *gpdev, bool bypass)
{
powerpc/powernv/npu: Simplify DMA setup NPU devices are emulated in firmware and mainly used for NPU NVLink training; one NPU device is per a hardware link. Their DMA/TCE setup must match the GPU which is connected via PCIe and NVLink so any changes to the DMA/TCE setup on the GPU PCIe device need to be propagated to the NVLink device as this is what device drivers expect and it doesn't make much sense to do anything else. This makes NPU DMA setup explicit. pnv_npu_ioda_controller_ops::pnv_npu_dma_set_mask is moved to pci-ioda, made static and prints warning as dma_set_mask() should never be called on this function as in any case it will not configure GPU; so we make this explicit. Instead of using PNV_IODA_PE_PEER and peers[] (which the next patch will remove), we test every PCI device if there are corresponding NVLink devices. If there are any, we propagate bypass mode to just found NPU devices by calling the setup helper directly (which takes @bypass) and avoid guessing (i.e. calculating from DMA mask) whether we need bypass or not on NPU devices. Since DMA setup happens in very rare occasion, this will not slow down booting or VFIO start/stop much. This renames pnv_npu_disable_bypass to pnv_npu_dma_set_32 to make it more clear what the function really does which is programming 32bit table address to the TVT ("disabling bypass" means writing zeroes to the TVT). This removes pnv_npu_dma_set_bypass() from pnv_npu_ioda_fixup() as the DMA configuration on NPU does not matter until dma_set_mask() is called on GPU and that will do the NPU DMA configuration. This removes phb->dma_dev_setup initialization for NPU as pnv_pci_ioda_dma_dev_setup is no-op for it anyway. This stops using npe->tce_bypass_base as it never changes and values other than zero are not supported. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Alistair Popple <alistair@popple.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-04-29 15:55:20 +07:00
int i;
struct pnv_phb *phb;
struct pci_dn *pdn;
struct pnv_ioda_pe *npe;
struct pci_dev *npdev;
powerpc/powernv/npu: Simplify DMA setup NPU devices are emulated in firmware and mainly used for NPU NVLink training; one NPU device is per a hardware link. Their DMA/TCE setup must match the GPU which is connected via PCIe and NVLink so any changes to the DMA/TCE setup on the GPU PCIe device need to be propagated to the NVLink device as this is what device drivers expect and it doesn't make much sense to do anything else. This makes NPU DMA setup explicit. pnv_npu_ioda_controller_ops::pnv_npu_dma_set_mask is moved to pci-ioda, made static and prints warning as dma_set_mask() should never be called on this function as in any case it will not configure GPU; so we make this explicit. Instead of using PNV_IODA_PE_PEER and peers[] (which the next patch will remove), we test every PCI device if there are corresponding NVLink devices. If there are any, we propagate bypass mode to just found NPU devices by calling the setup helper directly (which takes @bypass) and avoid guessing (i.e. calculating from DMA mask) whether we need bypass or not on NPU devices. Since DMA setup happens in very rare occasion, this will not slow down booting or VFIO start/stop much. This renames pnv_npu_disable_bypass to pnv_npu_dma_set_32 to make it more clear what the function really does which is programming 32bit table address to the TVT ("disabling bypass" means writing zeroes to the TVT). This removes pnv_npu_dma_set_bypass() from pnv_npu_ioda_fixup() as the DMA configuration on NPU does not matter until dma_set_mask() is called on GPU and that will do the NPU DMA configuration. This removes phb->dma_dev_setup initialization for NPU as pnv_pci_ioda_dma_dev_setup is no-op for it anyway. This stops using npe->tce_bypass_base as it never changes and values other than zero are not supported. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Alistair Popple <alistair@popple.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-04-29 15:55:20 +07:00
for (i = 0; ; ++i) {
npdev = pnv_pci_get_npu_dev(gpdev, i);
powerpc/powernv/npu: Simplify DMA setup NPU devices are emulated in firmware and mainly used for NPU NVLink training; one NPU device is per a hardware link. Their DMA/TCE setup must match the GPU which is connected via PCIe and NVLink so any changes to the DMA/TCE setup on the GPU PCIe device need to be propagated to the NVLink device as this is what device drivers expect and it doesn't make much sense to do anything else. This makes NPU DMA setup explicit. pnv_npu_ioda_controller_ops::pnv_npu_dma_set_mask is moved to pci-ioda, made static and prints warning as dma_set_mask() should never be called on this function as in any case it will not configure GPU; so we make this explicit. Instead of using PNV_IODA_PE_PEER and peers[] (which the next patch will remove), we test every PCI device if there are corresponding NVLink devices. If there are any, we propagate bypass mode to just found NPU devices by calling the setup helper directly (which takes @bypass) and avoid guessing (i.e. calculating from DMA mask) whether we need bypass or not on NPU devices. Since DMA setup happens in very rare occasion, this will not slow down booting or VFIO start/stop much. This renames pnv_npu_disable_bypass to pnv_npu_dma_set_32 to make it more clear what the function really does which is programming 32bit table address to the TVT ("disabling bypass" means writing zeroes to the TVT). This removes pnv_npu_dma_set_bypass() from pnv_npu_ioda_fixup() as the DMA configuration on NPU does not matter until dma_set_mask() is called on GPU and that will do the NPU DMA configuration. This removes phb->dma_dev_setup initialization for NPU as pnv_pci_ioda_dma_dev_setup is no-op for it anyway. This stops using npe->tce_bypass_base as it never changes and values other than zero are not supported. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Alistair Popple <alistair@popple.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-04-29 15:55:20 +07:00
if (!npdev)
break;
powerpc/powernv/npu: Simplify DMA setup NPU devices are emulated in firmware and mainly used for NPU NVLink training; one NPU device is per a hardware link. Their DMA/TCE setup must match the GPU which is connected via PCIe and NVLink so any changes to the DMA/TCE setup on the GPU PCIe device need to be propagated to the NVLink device as this is what device drivers expect and it doesn't make much sense to do anything else. This makes NPU DMA setup explicit. pnv_npu_ioda_controller_ops::pnv_npu_dma_set_mask is moved to pci-ioda, made static and prints warning as dma_set_mask() should never be called on this function as in any case it will not configure GPU; so we make this explicit. Instead of using PNV_IODA_PE_PEER and peers[] (which the next patch will remove), we test every PCI device if there are corresponding NVLink devices. If there are any, we propagate bypass mode to just found NPU devices by calling the setup helper directly (which takes @bypass) and avoid guessing (i.e. calculating from DMA mask) whether we need bypass or not on NPU devices. Since DMA setup happens in very rare occasion, this will not slow down booting or VFIO start/stop much. This renames pnv_npu_disable_bypass to pnv_npu_dma_set_32 to make it more clear what the function really does which is programming 32bit table address to the TVT ("disabling bypass" means writing zeroes to the TVT). This removes pnv_npu_dma_set_bypass() from pnv_npu_ioda_fixup() as the DMA configuration on NPU does not matter until dma_set_mask() is called on GPU and that will do the NPU DMA configuration. This removes phb->dma_dev_setup initialization for NPU as pnv_pci_ioda_dma_dev_setup is no-op for it anyway. This stops using npe->tce_bypass_base as it never changes and values other than zero are not supported. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Alistair Popple <alistair@popple.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-04-29 15:55:20 +07:00
pdn = pci_get_pdn(npdev);
if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
return;
powerpc/powernv/npu: Simplify DMA setup NPU devices are emulated in firmware and mainly used for NPU NVLink training; one NPU device is per a hardware link. Their DMA/TCE setup must match the GPU which is connected via PCIe and NVLink so any changes to the DMA/TCE setup on the GPU PCIe device need to be propagated to the NVLink device as this is what device drivers expect and it doesn't make much sense to do anything else. This makes NPU DMA setup explicit. pnv_npu_ioda_controller_ops::pnv_npu_dma_set_mask is moved to pci-ioda, made static and prints warning as dma_set_mask() should never be called on this function as in any case it will not configure GPU; so we make this explicit. Instead of using PNV_IODA_PE_PEER and peers[] (which the next patch will remove), we test every PCI device if there are corresponding NVLink devices. If there are any, we propagate bypass mode to just found NPU devices by calling the setup helper directly (which takes @bypass) and avoid guessing (i.e. calculating from DMA mask) whether we need bypass or not on NPU devices. Since DMA setup happens in very rare occasion, this will not slow down booting or VFIO start/stop much. This renames pnv_npu_disable_bypass to pnv_npu_dma_set_32 to make it more clear what the function really does which is programming 32bit table address to the TVT ("disabling bypass" means writing zeroes to the TVT). This removes pnv_npu_dma_set_bypass() from pnv_npu_ioda_fixup() as the DMA configuration on NPU does not matter until dma_set_mask() is called on GPU and that will do the NPU DMA configuration. This removes phb->dma_dev_setup initialization for NPU as pnv_pci_ioda_dma_dev_setup is no-op for it anyway. This stops using npe->tce_bypass_base as it never changes and values other than zero are not supported. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Alistair Popple <alistair@popple.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-04-29 15:55:20 +07:00
phb = pci_bus_to_host(npdev->bus)->private_data;
powerpc/powernv/npu: Simplify DMA setup NPU devices are emulated in firmware and mainly used for NPU NVLink training; one NPU device is per a hardware link. Their DMA/TCE setup must match the GPU which is connected via PCIe and NVLink so any changes to the DMA/TCE setup on the GPU PCIe device need to be propagated to the NVLink device as this is what device drivers expect and it doesn't make much sense to do anything else. This makes NPU DMA setup explicit. pnv_npu_ioda_controller_ops::pnv_npu_dma_set_mask is moved to pci-ioda, made static and prints warning as dma_set_mask() should never be called on this function as in any case it will not configure GPU; so we make this explicit. Instead of using PNV_IODA_PE_PEER and peers[] (which the next patch will remove), we test every PCI device if there are corresponding NVLink devices. If there are any, we propagate bypass mode to just found NPU devices by calling the setup helper directly (which takes @bypass) and avoid guessing (i.e. calculating from DMA mask) whether we need bypass or not on NPU devices. Since DMA setup happens in very rare occasion, this will not slow down booting or VFIO start/stop much. This renames pnv_npu_disable_bypass to pnv_npu_dma_set_32 to make it more clear what the function really does which is programming 32bit table address to the TVT ("disabling bypass" means writing zeroes to the TVT). This removes pnv_npu_dma_set_bypass() from pnv_npu_ioda_fixup() as the DMA configuration on NPU does not matter until dma_set_mask() is called on GPU and that will do the NPU DMA configuration. This removes phb->dma_dev_setup initialization for NPU as pnv_pci_ioda_dma_dev_setup is no-op for it anyway. This stops using npe->tce_bypass_base as it never changes and values other than zero are not supported. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Alistair Popple <alistair@popple.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-04-29 15:55:20 +07:00
/* We only do bypass if it's enabled on the linked device */
npe = &phb->ioda.pe_array[pdn->pe_number];
powerpc/powernv/npu: Simplify DMA setup NPU devices are emulated in firmware and mainly used for NPU NVLink training; one NPU device is per a hardware link. Their DMA/TCE setup must match the GPU which is connected via PCIe and NVLink so any changes to the DMA/TCE setup on the GPU PCIe device need to be propagated to the NVLink device as this is what device drivers expect and it doesn't make much sense to do anything else. This makes NPU DMA setup explicit. pnv_npu_ioda_controller_ops::pnv_npu_dma_set_mask is moved to pci-ioda, made static and prints warning as dma_set_mask() should never be called on this function as in any case it will not configure GPU; so we make this explicit. Instead of using PNV_IODA_PE_PEER and peers[] (which the next patch will remove), we test every PCI device if there are corresponding NVLink devices. If there are any, we propagate bypass mode to just found NPU devices by calling the setup helper directly (which takes @bypass) and avoid guessing (i.e. calculating from DMA mask) whether we need bypass or not on NPU devices. Since DMA setup happens in very rare occasion, this will not slow down booting or VFIO start/stop much. This renames pnv_npu_disable_bypass to pnv_npu_dma_set_32 to make it more clear what the function really does which is programming 32bit table address to the TVT ("disabling bypass" means writing zeroes to the TVT). This removes pnv_npu_dma_set_bypass() from pnv_npu_ioda_fixup() as the DMA configuration on NPU does not matter until dma_set_mask() is called on GPU and that will do the NPU DMA configuration. This removes phb->dma_dev_setup initialization for NPU as pnv_pci_ioda_dma_dev_setup is no-op for it anyway. This stops using npe->tce_bypass_base as it never changes and values other than zero are not supported. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Alistair Popple <alistair@popple.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-04-29 15:55:20 +07:00
if (bypass) {
dev_info(&npdev->dev,
"Using 64-bit DMA iommu bypass\n");
pnv_npu_dma_set_bypass(npe);
} else {
dev_info(&npdev->dev, "Using 32-bit DMA via iommu\n");
pnv_npu_dma_set_32(npe);
}
}
}
powerpc/powernv/npu: Enable NVLink pass through IBM POWER8 NVlink systems come with Tesla K40-ish GPUs each of which also has a couple of fast speed links (NVLink). The interface to links is exposed as an emulated PCI bridge which is included into the same IOMMU group as the corresponding GPU. In the kernel, NPUs get a separate PHB of the PNV_PHB_NPU type and a PE which behave pretty much as the standard IODA2 PHB except NPU PHB has just a single TVE in the hardware which means it can have either 32bit window or 64bit window or DMA bypass but never two of these. In order to make these links work when GPU is passed to the guest, these bridges need to be passed as well; otherwise performance will degrade. This implements and exports API to manage NPU state in regard to VFIO; it replicates iommu_table_group_ops. This defines a new pnv_pci_ioda2_npu_ops which is assigned to the IODA2 bridge if there are NPUs for a GPU on the bridge. The new callbacks call the default IODA2 callbacks plus new NPU API. This adds a gpe_table_group_to_npe() helper to find NPU PE for the IODA2 table_group, it is not expected to fail as the helper is only called from the pnv_pci_ioda2_npu_ops. This does not define NPU-specific .release_ownership() so after VFIO is finished, DMA on NPU is disabled which is ok as the nvidia driver sets DMA mask when probing which enable 32 or 64bit DMA on NPU. This adds a pnv_pci_npu_setup_iommu() helper which adds NPUs to the GPU group if any found. The helper uses helpers to look for the "ibm,gpu" property in the device tree which is a phandle of the corresponding GPU. This adds an additional loop over PEs in pnv_ioda_setup_dma() as the main loop skips NPU PEs as they do not have 32bit DMA segments. As pnv_npu_set_window() and pnv_npu_unset_window() are started being used by the new IODA2-NPU IOMMU group, this makes the helpers public and adds the DMA window number parameter. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-By: Alistair Popple <alistair@popple.id.au> [mpe: Add pnv_pci_ioda_setup_iommu_api() to fix build with IOMMU_API=n] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-04-29 15:55:24 +07:00
/* Switch ownership from platform code to external user (e.g. VFIO) */
void pnv_npu_take_ownership(struct pnv_ioda_pe *npe)
{
struct pnv_phb *phb = npe->phb;
int64_t rc;
/*
* Note: NPU has just a single TVE in the hardware which means that
* while used by the kernel, it can have either 32bit window or
* DMA bypass but never both. So we deconfigure 32bit window only
* if it was enabled at the moment of ownership change.
*/
if (npe->table_group.tables[0]) {
pnv_npu_unset_window(npe, 0);
return;
}
/* Disable bypass */
rc = opal_pci_map_pe_dma_window_real(phb->opal_id,
npe->pe_number, npe->pe_number,
0 /* bypass base */, 0);
if (rc) {
pe_err(npe, "Failed to disable bypass, err %lld\n", rc);
return;
}
pnv_pci_phb3_tce_invalidate_entire(npe->phb, false);
powerpc/powernv/npu: Enable NVLink pass through IBM POWER8 NVlink systems come with Tesla K40-ish GPUs each of which also has a couple of fast speed links (NVLink). The interface to links is exposed as an emulated PCI bridge which is included into the same IOMMU group as the corresponding GPU. In the kernel, NPUs get a separate PHB of the PNV_PHB_NPU type and a PE which behave pretty much as the standard IODA2 PHB except NPU PHB has just a single TVE in the hardware which means it can have either 32bit window or 64bit window or DMA bypass but never two of these. In order to make these links work when GPU is passed to the guest, these bridges need to be passed as well; otherwise performance will degrade. This implements and exports API to manage NPU state in regard to VFIO; it replicates iommu_table_group_ops. This defines a new pnv_pci_ioda2_npu_ops which is assigned to the IODA2 bridge if there are NPUs for a GPU on the bridge. The new callbacks call the default IODA2 callbacks plus new NPU API. This adds a gpe_table_group_to_npe() helper to find NPU PE for the IODA2 table_group, it is not expected to fail as the helper is only called from the pnv_pci_ioda2_npu_ops. This does not define NPU-specific .release_ownership() so after VFIO is finished, DMA on NPU is disabled which is ok as the nvidia driver sets DMA mask when probing which enable 32 or 64bit DMA on NPU. This adds a pnv_pci_npu_setup_iommu() helper which adds NPUs to the GPU group if any found. The helper uses helpers to look for the "ibm,gpu" property in the device tree which is a phandle of the corresponding GPU. This adds an additional loop over PEs in pnv_ioda_setup_dma() as the main loop skips NPU PEs as they do not have 32bit DMA segments. As pnv_npu_set_window() and pnv_npu_unset_window() are started being used by the new IODA2-NPU IOMMU group, this makes the helpers public and adds the DMA window number parameter. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-By: Alistair Popple <alistair@popple.id.au> [mpe: Add pnv_pci_ioda_setup_iommu_api() to fix build with IOMMU_API=n] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-04-29 15:55:24 +07:00
}
struct pnv_ioda_pe *pnv_pci_npu_setup_iommu(struct pnv_ioda_pe *npe)
{
struct pnv_phb *phb = npe->phb;
struct pci_bus *pbus = phb->hose->bus;
struct pci_dev *npdev, *gpdev = NULL, *gptmp;
struct pnv_ioda_pe *gpe = get_gpu_pci_dev_and_pe(npe, &gpdev);
if (!gpe || !gpdev)
return NULL;
list_for_each_entry(npdev, &pbus->devices, bus_list) {
gptmp = pnv_pci_get_gpu_dev(npdev);
if (gptmp != gpdev)
continue;
pe_info(gpe, "Attached NPU %s\n", dev_name(&npdev->dev));
iommu_group_add_device(gpe->table_group.group, &npdev->dev);
}
return gpe;
}