linux_dsm_epyc7002/include/linux/swiotlb.h

111 lines
2.8 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 21:07:57 +07:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef __LINUX_SWIOTLB_H
#define __LINUX_SWIOTLB_H
#include <linux/dma-direction.h>
#include <linux/init.h>
#include <linux/types.h>
struct device;
struct page;
struct scatterlist;
enum swiotlb_force {
SWIOTLB_NORMAL, /* Default - depending on HW DMA mask etc. */
SWIOTLB_FORCE, /* swiotlb=force */
SWIOTLB_NO_FORCE, /* swiotlb=noforce */
};
/*
* Maximum allowable number of contiguous slabs to map,
* must be a power of 2. What is the appropriate value ?
* The complexity of {map,unmap}_single is linearly dependent on this value.
*/
#define IO_TLB_SEGSIZE 128
/*
* log of the size of each IO TLB slab. The number of slabs is command line
* controllable.
*/
#define IO_TLB_SHIFT 11
extern void swiotlb_init(int verbose);
x86: Don't panic if can not alloc buffer for swiotlb Normal boot path on system with iommu support: swiotlb buffer will be allocated early at first and then try to initialize iommu, if iommu for intel or AMD could setup properly, swiotlb buffer will be freed. The early allocating is with bootmem, and could panic when we try to use kdump with buffer above 4G only, or with memmap to limit mem under 4G. for example: memmap=4095M$1M to remove memory under 4G. According to Eric, add _nopanic version and no_iotlb_memory to fail map single later if swiotlb is still needed. -v2: don't pass nopanic, and use -ENOMEM return value according to Eric. panic early instead of using swiotlb_full to panic...according to Eric/Konrad. -v3: make swiotlb_init to be notpanic, but will affect: arm64, ia64, powerpc, tile, unicore32, x86. -v4: cleanup swiotlb_init by removing swiotlb_init_with_default_size. Suggested-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-36-git-send-email-yinghai@kernel.org Reviewed-and-tested-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Joerg Roedel <joro@8bytes.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Kyungmin Park <kyungmin.park@samsung.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Andrzej Pietrasiewicz <andrzej.p@samsung.com> Cc: linux-mips@linux-mips.org Cc: xen-devel@lists.xensource.com Cc: virtualization@lists.linux-foundation.org Cc: Shuah Khan <shuahkhan@gmail.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-25 03:20:16 +07:00
int swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose);
extern unsigned long swiotlb_nr_tbl(void);
unsigned long swiotlb_size_or_default(void);
extern int swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs);
x86, swiotlb: Add memory encryption support Since DMA addresses will effectively look like 48-bit addresses when the memory encryption mask is set, SWIOTLB is needed if the DMA mask of the device performing the DMA does not support 48-bits. SWIOTLB will be initialized to create decrypted bounce buffers for use by these devices. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Brijesh Singh <brijesh.singh@amd.com> Cc: Dave Young <dyoung@redhat.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Toshimitsu Kani <toshi.kani@hpe.com> Cc: kasan-dev@googlegroups.com Cc: kvm@vger.kernel.org Cc: linux-arch@vger.kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-efi@vger.kernel.org Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/aa2d29b78ae7d508db8881e46a3215231b9327a7.1500319216.git.thomas.lendacky@amd.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-07-18 04:10:21 +07:00
extern void __init swiotlb_update_mem_attributes(void);
/*
* Enumeration for sync targets
*/
enum dma_sync_target {
SYNC_FOR_CPU = 0,
SYNC_FOR_DEVICE = 1,
};
extern phys_addr_t swiotlb_tbl_map_single(struct device *hwdev,
dma_addr_t tbl_dma_addr,
phys_addr_t phys,
size_t mapping_size,
size_t alloc_size,
enum dma_data_direction dir,
unsigned long attrs);
extern void swiotlb_tbl_unmap_single(struct device *hwdev,
phys_addr_t tlb_addr,
size_t mapping_size,
size_t alloc_size,
enum dma_data_direction dir,
unsigned long attrs);
extern void swiotlb_tbl_sync_single(struct device *hwdev,
phys_addr_t tlb_addr,
size_t size, enum dma_data_direction dir,
enum dma_sync_target target);
dma_addr_t swiotlb_map(struct device *dev, phys_addr_t phys,
size_t size, enum dma_data_direction dir, unsigned long attrs);
#ifdef CONFIG_SWIOTLB
extern enum swiotlb_force swiotlb_force;
extern phys_addr_t io_tlb_start, io_tlb_end;
static inline bool is_swiotlb_buffer(phys_addr_t paddr)
{
return paddr >= io_tlb_start && paddr < io_tlb_end;
}
void __init swiotlb_exit(void);
unsigned int swiotlb_max_segment(void);
size_t swiotlb_max_mapping_size(struct device *dev);
bool is_swiotlb_active(void);
#else
#define swiotlb_force SWIOTLB_NO_FORCE
static inline bool is_swiotlb_buffer(phys_addr_t paddr)
{
return false;
}
static inline void swiotlb_exit(void)
{
}
static inline unsigned int swiotlb_max_segment(void)
{
return 0;
}
static inline size_t swiotlb_max_mapping_size(struct device *dev)
{
return SIZE_MAX;
}
static inline bool is_swiotlb_active(void)
{
return false;
}
#endif /* CONFIG_SWIOTLB */
extern void swiotlb_print_info(void);
extern void swiotlb_set_max_segment(unsigned int);
x86: enable DMA CMA with swiotlb The DMA Contiguous Memory Allocator support on x86 is disabled when swiotlb config option is enabled. So DMA CMA is always disabled on x86_64 because swiotlb is always enabled. This attempts to support for DMA CMA with enabling swiotlb config option. The contiguous memory allocator on x86 is integrated in the function dma_generic_alloc_coherent() which is .alloc callback in nommu_dma_ops for dma_alloc_coherent(). x86_swiotlb_alloc_coherent() which is .alloc callback in swiotlb_dma_ops tries to allocate with dma_generic_alloc_coherent() firstly and then swiotlb_alloc_coherent() is called as a fallback. The main part of supporting DMA CMA with swiotlb is that changing x86_swiotlb_free_coherent() which is .free callback in swiotlb_dma_ops for dma_free_coherent() so that it can distinguish memory allocated by dma_generic_alloc_coherent() from one allocated by swiotlb_alloc_coherent() and release it with dma_generic_free_coherent() which can handle contiguous memory. This change requires making is_swiotlb_buffer() global function. This also needs to change .free callback in the dma_map_ops for amd_gart and sta2x11, because these dma_ops are also using dma_generic_alloc_coherent(). Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com> Acked-by: Marek Szyprowski <m.szyprowski@samsung.com> Acked-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Don Dutile <ddutile@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Yinghai Lu <yinghai@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-05 06:06:50 +07:00
#endif /* __LINUX_SWIOTLB_H */