linux_dsm_epyc7002/drivers/net/ethernet/xscale/ixp4xx_eth.c

1527 lines
39 KiB
C
Raw Normal View History

/*
* Intel IXP4xx Ethernet driver for Linux
*
* Copyright (C) 2007 Krzysztof Halasa <khc@pm.waw.pl>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License
* as published by the Free Software Foundation.
*
* Ethernet port config (0x00 is not present on IXP42X):
*
* logical port 0x00 0x10 0x20
* NPE 0 (NPE-A) 1 (NPE-B) 2 (NPE-C)
* physical PortId 2 0 1
* TX queue 23 24 25
* RX-free queue 26 27 28
* TX-done queue is always 31, per-port RX and TX-ready queues are configurable
*
*
* Queue entries:
* bits 0 -> 1 - NPE ID (RX and TX-done)
* bits 0 -> 2 - priority (TX, per 802.1D)
* bits 3 -> 4 - port ID (user-set?)
* bits 5 -> 31 - physical descriptor address
*/
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/etherdevice.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/net_tstamp.h>
#include <linux/of.h>
#include <linux/phy.h>
#include <linux/platform_device.h>
#include <linux/ptp_classify.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 15:04:11 +07:00
#include <linux/slab.h>
#include <linux/module.h>
#include <mach/ixp46x_ts.h>
#include <linux/soc/ixp4xx/npe.h>
#include <linux/soc/ixp4xx/qmgr.h>
#define DEBUG_DESC 0
#define DEBUG_RX 0
#define DEBUG_TX 0
#define DEBUG_PKT_BYTES 0
#define DEBUG_MDIO 0
#define DEBUG_CLOSE 0
#define DRV_NAME "ixp4xx_eth"
#define MAX_NPES 3
#define RX_DESCS 64 /* also length of all RX queues */
#define TX_DESCS 16 /* also length of all TX queues */
#define TXDONE_QUEUE_LEN 64 /* dwords */
#define POOL_ALLOC_SIZE (sizeof(struct desc) * (RX_DESCS + TX_DESCS))
#define REGS_SIZE 0x1000
#define MAX_MRU 1536 /* 0x600 */
#define RX_BUFF_SIZE ALIGN((NET_IP_ALIGN) + MAX_MRU, 4)
#define NAPI_WEIGHT 16
#define MDIO_INTERVAL (3 * HZ)
#define MAX_MDIO_RETRIES 100 /* microseconds, typically 30 cycles */
#define MAX_CLOSE_WAIT 1000 /* microseconds, typically 2-3 cycles */
#define NPE_ID(port_id) ((port_id) >> 4)
#define PHYSICAL_ID(port_id) ((NPE_ID(port_id) + 2) % 3)
#define TX_QUEUE(port_id) (NPE_ID(port_id) + 23)
#define RXFREE_QUEUE(port_id) (NPE_ID(port_id) + 26)
#define TXDONE_QUEUE 31
#define PTP_SLAVE_MODE 1
#define PTP_MASTER_MODE 2
#define PORT2CHANNEL(p) NPE_ID(p->id)
/* TX Control Registers */
#define TX_CNTRL0_TX_EN 0x01
#define TX_CNTRL0_HALFDUPLEX 0x02
#define TX_CNTRL0_RETRY 0x04
#define TX_CNTRL0_PAD_EN 0x08
#define TX_CNTRL0_APPEND_FCS 0x10
#define TX_CNTRL0_2DEFER 0x20
#define TX_CNTRL0_RMII 0x40 /* reduced MII */
#define TX_CNTRL1_RETRIES 0x0F /* 4 bits */
/* RX Control Registers */
#define RX_CNTRL0_RX_EN 0x01
#define RX_CNTRL0_PADSTRIP_EN 0x02
#define RX_CNTRL0_SEND_FCS 0x04
#define RX_CNTRL0_PAUSE_EN 0x08
#define RX_CNTRL0_LOOP_EN 0x10
#define RX_CNTRL0_ADDR_FLTR_EN 0x20
#define RX_CNTRL0_RX_RUNT_EN 0x40
#define RX_CNTRL0_BCAST_DIS 0x80
#define RX_CNTRL1_DEFER_EN 0x01
/* Core Control Register */
#define CORE_RESET 0x01
#define CORE_RX_FIFO_FLUSH 0x02
#define CORE_TX_FIFO_FLUSH 0x04
#define CORE_SEND_JAM 0x08
#define CORE_MDC_EN 0x10 /* MDIO using NPE-B ETH-0 only */
#define DEFAULT_TX_CNTRL0 (TX_CNTRL0_TX_EN | TX_CNTRL0_RETRY | \
TX_CNTRL0_PAD_EN | TX_CNTRL0_APPEND_FCS | \
TX_CNTRL0_2DEFER)
#define DEFAULT_RX_CNTRL0 RX_CNTRL0_RX_EN
#define DEFAULT_CORE_CNTRL CORE_MDC_EN
/* NPE message codes */
#define NPE_GETSTATUS 0x00
#define NPE_EDB_SETPORTADDRESS 0x01
#define NPE_EDB_GETMACADDRESSDATABASE 0x02
#define NPE_EDB_SETMACADDRESSSDATABASE 0x03
#define NPE_GETSTATS 0x04
#define NPE_RESETSTATS 0x05
#define NPE_SETMAXFRAMELENGTHS 0x06
#define NPE_VLAN_SETRXTAGMODE 0x07
#define NPE_VLAN_SETDEFAULTRXVID 0x08
#define NPE_VLAN_SETPORTVLANTABLEENTRY 0x09
#define NPE_VLAN_SETPORTVLANTABLERANGE 0x0A
#define NPE_VLAN_SETRXQOSENTRY 0x0B
#define NPE_VLAN_SETPORTIDEXTRACTIONMODE 0x0C
#define NPE_STP_SETBLOCKINGSTATE 0x0D
#define NPE_FW_SETFIREWALLMODE 0x0E
#define NPE_PC_SETFRAMECONTROLDURATIONID 0x0F
#define NPE_PC_SETAPMACTABLE 0x11
#define NPE_SETLOOPBACK_MODE 0x12
#define NPE_PC_SETBSSIDTABLE 0x13
#define NPE_ADDRESS_FILTER_CONFIG 0x14
#define NPE_APPENDFCSCONFIG 0x15
#define NPE_NOTIFY_MAC_RECOVERY_DONE 0x16
#define NPE_MAC_RECOVERY_START 0x17
#ifdef __ARMEB__
typedef struct sk_buff buffer_t;
#define free_buffer dev_kfree_skb
#define free_buffer_irq dev_consume_skb_irq
#else
typedef void buffer_t;
#define free_buffer kfree
#define free_buffer_irq kfree
#endif
struct eth_regs {
u32 tx_control[2], __res1[2]; /* 000 */
u32 rx_control[2], __res2[2]; /* 010 */
u32 random_seed, __res3[3]; /* 020 */
u32 partial_empty_threshold, __res4; /* 030 */
u32 partial_full_threshold, __res5; /* 038 */
u32 tx_start_bytes, __res6[3]; /* 040 */
u32 tx_deferral, rx_deferral, __res7[2];/* 050 */
u32 tx_2part_deferral[2], __res8[2]; /* 060 */
u32 slot_time, __res9[3]; /* 070 */
u32 mdio_command[4]; /* 080 */
u32 mdio_status[4]; /* 090 */
u32 mcast_mask[6], __res10[2]; /* 0A0 */
u32 mcast_addr[6], __res11[2]; /* 0C0 */
u32 int_clock_threshold, __res12[3]; /* 0E0 */
u32 hw_addr[6], __res13[61]; /* 0F0 */
u32 core_control; /* 1FC */
};
struct port {
struct resource *mem_res;
struct eth_regs __iomem *regs;
struct npe *npe;
struct net_device *netdev;
struct napi_struct napi;
struct eth_plat_info *plat;
buffer_t *rx_buff_tab[RX_DESCS], *tx_buff_tab[TX_DESCS];
struct desc *desc_tab; /* coherent */
u32 desc_tab_phys;
int id; /* logical port ID */
int speed, duplex;
u8 firmware[4];
int hwts_tx_en;
int hwts_rx_en;
};
/* NPE message structure */
struct msg {
#ifdef __ARMEB__
u8 cmd, eth_id, byte2, byte3;
u8 byte4, byte5, byte6, byte7;
#else
u8 byte3, byte2, eth_id, cmd;
u8 byte7, byte6, byte5, byte4;
#endif
};
/* Ethernet packet descriptor */
struct desc {
u32 next; /* pointer to next buffer, unused */
#ifdef __ARMEB__
u16 buf_len; /* buffer length */
u16 pkt_len; /* packet length */
u32 data; /* pointer to data buffer in RAM */
u8 dest_id;
u8 src_id;
u16 flags;
u8 qos;
u8 padlen;
u16 vlan_tci;
#else
u16 pkt_len; /* packet length */
u16 buf_len; /* buffer length */
u32 data; /* pointer to data buffer in RAM */
u16 flags;
u8 src_id;
u8 dest_id;
u16 vlan_tci;
u8 padlen;
u8 qos;
#endif
#ifdef __ARMEB__
u8 dst_mac_0, dst_mac_1, dst_mac_2, dst_mac_3;
u8 dst_mac_4, dst_mac_5, src_mac_0, src_mac_1;
u8 src_mac_2, src_mac_3, src_mac_4, src_mac_5;
#else
u8 dst_mac_3, dst_mac_2, dst_mac_1, dst_mac_0;
u8 src_mac_1, src_mac_0, dst_mac_5, dst_mac_4;
u8 src_mac_5, src_mac_4, src_mac_3, src_mac_2;
#endif
};
#define rx_desc_phys(port, n) ((port)->desc_tab_phys + \
(n) * sizeof(struct desc))
#define rx_desc_ptr(port, n) (&(port)->desc_tab[n])
#define tx_desc_phys(port, n) ((port)->desc_tab_phys + \
((n) + RX_DESCS) * sizeof(struct desc))
#define tx_desc_ptr(port, n) (&(port)->desc_tab[(n) + RX_DESCS])
#ifndef __ARMEB__
static inline void memcpy_swab32(u32 *dest, u32 *src, int cnt)
{
int i;
for (i = 0; i < cnt; i++)
dest[i] = swab32(src[i]);
}
#endif
static spinlock_t mdio_lock;
static struct eth_regs __iomem *mdio_regs; /* mdio command and status only */
static struct mii_bus *mdio_bus;
static int ports_open;
static struct port *npe_port_tab[MAX_NPES];
static struct dma_pool *dma_pool;
static int ixp_ptp_match(struct sk_buff *skb, u16 uid_hi, u32 uid_lo, u16 seqid)
{
u8 *data = skb->data;
unsigned int offset;
u16 *hi, *id;
u32 lo;
if (ptp_classify_raw(skb) != PTP_CLASS_V1_IPV4)
return 0;
offset = ETH_HLEN + IPV4_HLEN(data) + UDP_HLEN;
if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(seqid))
return 0;
hi = (u16 *)(data + offset + OFF_PTP_SOURCE_UUID);
id = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID);
memcpy(&lo, &hi[1], sizeof(lo));
return (uid_hi == ntohs(*hi) &&
uid_lo == ntohl(lo) &&
seqid == ntohs(*id));
}
static void ixp_rx_timestamp(struct port *port, struct sk_buff *skb)
{
struct skb_shared_hwtstamps *shhwtstamps;
struct ixp46x_ts_regs *regs;
u64 ns;
u32 ch, hi, lo, val;
u16 uid, seq;
if (!port->hwts_rx_en)
return;
ch = PORT2CHANNEL(port);
regs = (struct ixp46x_ts_regs __iomem *) IXP4XX_TIMESYNC_BASE_VIRT;
val = __raw_readl(&regs->channel[ch].ch_event);
if (!(val & RX_SNAPSHOT_LOCKED))
return;
lo = __raw_readl(&regs->channel[ch].src_uuid_lo);
hi = __raw_readl(&regs->channel[ch].src_uuid_hi);
uid = hi & 0xffff;
seq = (hi >> 16) & 0xffff;
if (!ixp_ptp_match(skb, htons(uid), htonl(lo), htons(seq)))
goto out;
lo = __raw_readl(&regs->channel[ch].rx_snap_lo);
hi = __raw_readl(&regs->channel[ch].rx_snap_hi);
ns = ((u64) hi) << 32;
ns |= lo;
ns <<= TICKS_NS_SHIFT;
shhwtstamps = skb_hwtstamps(skb);
memset(shhwtstamps, 0, sizeof(*shhwtstamps));
shhwtstamps->hwtstamp = ns_to_ktime(ns);
out:
__raw_writel(RX_SNAPSHOT_LOCKED, &regs->channel[ch].ch_event);
}
static void ixp_tx_timestamp(struct port *port, struct sk_buff *skb)
{
struct skb_shared_hwtstamps shhwtstamps;
struct ixp46x_ts_regs *regs;
struct skb_shared_info *shtx;
u64 ns;
u32 ch, cnt, hi, lo, val;
shtx = skb_shinfo(skb);
if (unlikely(shtx->tx_flags & SKBTX_HW_TSTAMP && port->hwts_tx_en))
shtx->tx_flags |= SKBTX_IN_PROGRESS;
else
return;
ch = PORT2CHANNEL(port);
regs = (struct ixp46x_ts_regs __iomem *) IXP4XX_TIMESYNC_BASE_VIRT;
/*
* This really stinks, but we have to poll for the Tx time stamp.
* Usually, the time stamp is ready after 4 to 6 microseconds.
*/
for (cnt = 0; cnt < 100; cnt++) {
val = __raw_readl(&regs->channel[ch].ch_event);
if (val & TX_SNAPSHOT_LOCKED)
break;
udelay(1);
}
if (!(val & TX_SNAPSHOT_LOCKED)) {
shtx->tx_flags &= ~SKBTX_IN_PROGRESS;
return;
}
lo = __raw_readl(&regs->channel[ch].tx_snap_lo);
hi = __raw_readl(&regs->channel[ch].tx_snap_hi);
ns = ((u64) hi) << 32;
ns |= lo;
ns <<= TICKS_NS_SHIFT;
memset(&shhwtstamps, 0, sizeof(shhwtstamps));
shhwtstamps.hwtstamp = ns_to_ktime(ns);
skb_tstamp_tx(skb, &shhwtstamps);
__raw_writel(TX_SNAPSHOT_LOCKED, &regs->channel[ch].ch_event);
}
static int hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
{
struct hwtstamp_config cfg;
struct ixp46x_ts_regs *regs;
struct port *port = netdev_priv(netdev);
int ch;
if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
return -EFAULT;
if (cfg.flags) /* reserved for future extensions */
return -EINVAL;
ch = PORT2CHANNEL(port);
regs = (struct ixp46x_ts_regs __iomem *) IXP4XX_TIMESYNC_BASE_VIRT;
if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
return -ERANGE;
switch (cfg.rx_filter) {
case HWTSTAMP_FILTER_NONE:
port->hwts_rx_en = 0;
break;
case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
port->hwts_rx_en = PTP_SLAVE_MODE;
__raw_writel(0, &regs->channel[ch].ch_control);
break;
case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
port->hwts_rx_en = PTP_MASTER_MODE;
__raw_writel(MASTER_MODE, &regs->channel[ch].ch_control);
break;
default:
return -ERANGE;
}
port->hwts_tx_en = cfg.tx_type == HWTSTAMP_TX_ON;
/* Clear out any old time stamps. */
__raw_writel(TX_SNAPSHOT_LOCKED | RX_SNAPSHOT_LOCKED,
&regs->channel[ch].ch_event);
return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
}
static int hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
{
struct hwtstamp_config cfg;
struct port *port = netdev_priv(netdev);
cfg.flags = 0;
cfg.tx_type = port->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
switch (port->hwts_rx_en) {
case 0:
cfg.rx_filter = HWTSTAMP_FILTER_NONE;
break;
case PTP_SLAVE_MODE:
cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
break;
case PTP_MASTER_MODE:
cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
break;
default:
WARN_ON_ONCE(1);
return -ERANGE;
}
return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
}
static int ixp4xx_mdio_cmd(struct mii_bus *bus, int phy_id, int location,
int write, u16 cmd)
{
int cycles = 0;
if (__raw_readl(&mdio_regs->mdio_command[3]) & 0x80) {
printk(KERN_ERR "%s: MII not ready to transmit\n", bus->name);
return -1;
}
if (write) {
__raw_writel(cmd & 0xFF, &mdio_regs->mdio_command[0]);
__raw_writel(cmd >> 8, &mdio_regs->mdio_command[1]);
}
__raw_writel(((phy_id << 5) | location) & 0xFF,
&mdio_regs->mdio_command[2]);
__raw_writel((phy_id >> 3) | (write << 2) | 0x80 /* GO */,
&mdio_regs->mdio_command[3]);
while ((cycles < MAX_MDIO_RETRIES) &&
(__raw_readl(&mdio_regs->mdio_command[3]) & 0x80)) {
udelay(1);
cycles++;
}
if (cycles == MAX_MDIO_RETRIES) {
printk(KERN_ERR "%s #%i: MII write failed\n", bus->name,
phy_id);
return -1;
}
#if DEBUG_MDIO
printk(KERN_DEBUG "%s #%i: mdio_%s() took %i cycles\n", bus->name,
phy_id, write ? "write" : "read", cycles);
#endif
if (write)
return 0;
if (__raw_readl(&mdio_regs->mdio_status[3]) & 0x80) {
#if DEBUG_MDIO
printk(KERN_DEBUG "%s #%i: MII read failed\n", bus->name,
phy_id);
#endif
return 0xFFFF; /* don't return error */
}
return (__raw_readl(&mdio_regs->mdio_status[0]) & 0xFF) |
((__raw_readl(&mdio_regs->mdio_status[1]) & 0xFF) << 8);
}
static int ixp4xx_mdio_read(struct mii_bus *bus, int phy_id, int location)
{
unsigned long flags;
int ret;
spin_lock_irqsave(&mdio_lock, flags);
ret = ixp4xx_mdio_cmd(bus, phy_id, location, 0, 0);
spin_unlock_irqrestore(&mdio_lock, flags);
#if DEBUG_MDIO
printk(KERN_DEBUG "%s #%i: MII read [%i] -> 0x%X\n", bus->name,
phy_id, location, ret);
#endif
return ret;
}
static int ixp4xx_mdio_write(struct mii_bus *bus, int phy_id, int location,
u16 val)
{
unsigned long flags;
int ret;
spin_lock_irqsave(&mdio_lock, flags);
ret = ixp4xx_mdio_cmd(bus, phy_id, location, 1, val);
spin_unlock_irqrestore(&mdio_lock, flags);
#if DEBUG_MDIO
printk(KERN_DEBUG "%s #%i: MII write [%i] <- 0x%X, err = %i\n",
bus->name, phy_id, location, val, ret);
#endif
return ret;
}
static int ixp4xx_mdio_register(void)
{
int err;
if (!(mdio_bus = mdiobus_alloc()))
return -ENOMEM;
if (cpu_is_ixp43x()) {
/* IXP43x lacks NPE-B and uses NPE-C for MII PHY access */
if (!(ixp4xx_read_feature_bits() & IXP4XX_FEATURE_NPEC_ETH))
return -ENODEV;
mdio_regs = (struct eth_regs __iomem *)IXP4XX_EthC_BASE_VIRT;
} else {
/* All MII PHY accesses use NPE-B Ethernet registers */
if (!(ixp4xx_read_feature_bits() & IXP4XX_FEATURE_NPEB_ETH0))
return -ENODEV;
mdio_regs = (struct eth_regs __iomem *)IXP4XX_EthB_BASE_VIRT;
}
__raw_writel(DEFAULT_CORE_CNTRL, &mdio_regs->core_control);
spin_lock_init(&mdio_lock);
mdio_bus->name = "IXP4xx MII Bus";
mdio_bus->read = &ixp4xx_mdio_read;
mdio_bus->write = &ixp4xx_mdio_write;
snprintf(mdio_bus->id, MII_BUS_ID_SIZE, "ixp4xx-eth-0");
if ((err = mdiobus_register(mdio_bus)))
mdiobus_free(mdio_bus);
return err;
}
static void ixp4xx_mdio_remove(void)
{
mdiobus_unregister(mdio_bus);
mdiobus_free(mdio_bus);
}
static void ixp4xx_adjust_link(struct net_device *dev)
{
struct port *port = netdev_priv(dev);
struct phy_device *phydev = dev->phydev;
if (!phydev->link) {
if (port->speed) {
port->speed = 0;
printk(KERN_INFO "%s: link down\n", dev->name);
}
return;
}
if (port->speed == phydev->speed && port->duplex == phydev->duplex)
return;
port->speed = phydev->speed;
port->duplex = phydev->duplex;
if (port->duplex)
__raw_writel(DEFAULT_TX_CNTRL0 & ~TX_CNTRL0_HALFDUPLEX,
&port->regs->tx_control[0]);
else
__raw_writel(DEFAULT_TX_CNTRL0 | TX_CNTRL0_HALFDUPLEX,
&port->regs->tx_control[0]);
printk(KERN_INFO "%s: link up, speed %u Mb/s, %s duplex\n",
dev->name, port->speed, port->duplex ? "full" : "half");
}
static inline void debug_pkt(struct net_device *dev, const char *func,
u8 *data, int len)
{
#if DEBUG_PKT_BYTES
int i;
printk(KERN_DEBUG "%s: %s(%i) ", dev->name, func, len);
for (i = 0; i < len; i++) {
if (i >= DEBUG_PKT_BYTES)
break;
printk("%s%02X",
((i == 6) || (i == 12) || (i >= 14)) ? " " : "",
data[i]);
}
printk("\n");
#endif
}
static inline void debug_desc(u32 phys, struct desc *desc)
{
#if DEBUG_DESC
printk(KERN_DEBUG "%X: %X %3X %3X %08X %2X < %2X %4X %X"
" %X %X %02X%02X%02X%02X%02X%02X < %02X%02X%02X%02X%02X%02X\n",
phys, desc->next, desc->buf_len, desc->pkt_len,
desc->data, desc->dest_id, desc->src_id, desc->flags,
desc->qos, desc->padlen, desc->vlan_tci,
desc->dst_mac_0, desc->dst_mac_1, desc->dst_mac_2,
desc->dst_mac_3, desc->dst_mac_4, desc->dst_mac_5,
desc->src_mac_0, desc->src_mac_1, desc->src_mac_2,
desc->src_mac_3, desc->src_mac_4, desc->src_mac_5);
#endif
}
static inline int queue_get_desc(unsigned int queue, struct port *port,
int is_tx)
{
u32 phys, tab_phys, n_desc;
struct desc *tab;
if (!(phys = qmgr_get_entry(queue)))
return -1;
phys &= ~0x1F; /* mask out non-address bits */
tab_phys = is_tx ? tx_desc_phys(port, 0) : rx_desc_phys(port, 0);
tab = is_tx ? tx_desc_ptr(port, 0) : rx_desc_ptr(port, 0);
n_desc = (phys - tab_phys) / sizeof(struct desc);
BUG_ON(n_desc >= (is_tx ? TX_DESCS : RX_DESCS));
debug_desc(phys, &tab[n_desc]);
BUG_ON(tab[n_desc].next);
return n_desc;
}
static inline void queue_put_desc(unsigned int queue, u32 phys,
struct desc *desc)
{
debug_desc(phys, desc);
BUG_ON(phys & 0x1F);
qmgr_put_entry(queue, phys);
/* Don't check for queue overflow here, we've allocated sufficient
length and queues >= 32 don't support this check anyway. */
}
static inline void dma_unmap_tx(struct port *port, struct desc *desc)
{
#ifdef __ARMEB__
dma_unmap_single(&port->netdev->dev, desc->data,
desc->buf_len, DMA_TO_DEVICE);
#else
dma_unmap_single(&port->netdev->dev, desc->data & ~3,
ALIGN((desc->data & 3) + desc->buf_len, 4),
DMA_TO_DEVICE);
#endif
}
static void eth_rx_irq(void *pdev)
{
struct net_device *dev = pdev;
struct port *port = netdev_priv(dev);
#if DEBUG_RX
printk(KERN_DEBUG "%s: eth_rx_irq\n", dev->name);
#endif
qmgr_disable_irq(port->plat->rxq);
napi_schedule(&port->napi);
}
static int eth_poll(struct napi_struct *napi, int budget)
{
struct port *port = container_of(napi, struct port, napi);
struct net_device *dev = port->netdev;
unsigned int rxq = port->plat->rxq, rxfreeq = RXFREE_QUEUE(port->id);
int received = 0;
#if DEBUG_RX
printk(KERN_DEBUG "%s: eth_poll\n", dev->name);
#endif
while (received < budget) {
struct sk_buff *skb;
struct desc *desc;
int n;
#ifdef __ARMEB__
struct sk_buff *temp;
u32 phys;
#endif
if ((n = queue_get_desc(rxq, port, 0)) < 0) {
#if DEBUG_RX
printk(KERN_DEBUG "%s: eth_poll napi_complete\n",
dev->name);
#endif
napi_complete(napi);
qmgr_enable_irq(rxq);
if (!qmgr_stat_below_low_watermark(rxq) &&
napi_reschedule(napi)) { /* not empty again */
#if DEBUG_RX
printk(KERN_DEBUG "%s: eth_poll napi_reschedule succeeded\n",
dev->name);
#endif
qmgr_disable_irq(rxq);
continue;
}
#if DEBUG_RX
printk(KERN_DEBUG "%s: eth_poll all done\n",
dev->name);
#endif
return received; /* all work done */
}
desc = rx_desc_ptr(port, n);
#ifdef __ARMEB__
if ((skb = netdev_alloc_skb(dev, RX_BUFF_SIZE))) {
phys = dma_map_single(&dev->dev, skb->data,
RX_BUFF_SIZE, DMA_FROM_DEVICE);
2008-08-14 02:08:14 +07:00
if (dma_mapping_error(&dev->dev, phys)) {
dev_kfree_skb(skb);
skb = NULL;
}
}
#else
skb = netdev_alloc_skb(dev,
ALIGN(NET_IP_ALIGN + desc->pkt_len, 4));
#endif
if (!skb) {
dev->stats.rx_dropped++;
/* put the desc back on RX-ready queue */
desc->buf_len = MAX_MRU;
desc->pkt_len = 0;
queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
continue;
}
/* process received frame */
#ifdef __ARMEB__
temp = skb;
skb = port->rx_buff_tab[n];
dma_unmap_single(&dev->dev, desc->data - NET_IP_ALIGN,
RX_BUFF_SIZE, DMA_FROM_DEVICE);
#else
dma_sync_single_for_cpu(&dev->dev, desc->data - NET_IP_ALIGN,
RX_BUFF_SIZE, DMA_FROM_DEVICE);
memcpy_swab32((u32 *)skb->data, (u32 *)port->rx_buff_tab[n],
ALIGN(NET_IP_ALIGN + desc->pkt_len, 4) / 4);
#endif
skb_reserve(skb, NET_IP_ALIGN);
skb_put(skb, desc->pkt_len);
debug_pkt(dev, "eth_poll", skb->data, skb->len);
ixp_rx_timestamp(port, skb);
skb->protocol = eth_type_trans(skb, dev);
dev->stats.rx_packets++;
dev->stats.rx_bytes += skb->len;
netif_receive_skb(skb);
/* put the new buffer on RX-free queue */
#ifdef __ARMEB__
port->rx_buff_tab[n] = temp;
desc->data = phys + NET_IP_ALIGN;
#endif
desc->buf_len = MAX_MRU;
desc->pkt_len = 0;
queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
received++;
}
#if DEBUG_RX
printk(KERN_DEBUG "eth_poll(): end, not all work done\n");
#endif
return received; /* not all work done */
}
static void eth_txdone_irq(void *unused)
{
u32 phys;
#if DEBUG_TX
printk(KERN_DEBUG DRV_NAME ": eth_txdone_irq\n");
#endif
while ((phys = qmgr_get_entry(TXDONE_QUEUE)) != 0) {
u32 npe_id, n_desc;
struct port *port;
struct desc *desc;
int start;
npe_id = phys & 3;
BUG_ON(npe_id >= MAX_NPES);
port = npe_port_tab[npe_id];
BUG_ON(!port);
phys &= ~0x1F; /* mask out non-address bits */
n_desc = (phys - tx_desc_phys(port, 0)) / sizeof(struct desc);
BUG_ON(n_desc >= TX_DESCS);
desc = tx_desc_ptr(port, n_desc);
debug_desc(phys, desc);
if (port->tx_buff_tab[n_desc]) { /* not the draining packet */
port->netdev->stats.tx_packets++;
port->netdev->stats.tx_bytes += desc->pkt_len;
dma_unmap_tx(port, desc);
#if DEBUG_TX
printk(KERN_DEBUG "%s: eth_txdone_irq free %p\n",
port->netdev->name, port->tx_buff_tab[n_desc]);
#endif
free_buffer_irq(port->tx_buff_tab[n_desc]);
port->tx_buff_tab[n_desc] = NULL;
}
start = qmgr_stat_below_low_watermark(port->plat->txreadyq);
queue_put_desc(port->plat->txreadyq, phys, desc);
if (start) { /* TX-ready queue was empty */
#if DEBUG_TX
printk(KERN_DEBUG "%s: eth_txdone_irq xmit ready\n",
port->netdev->name);
#endif
netif_wake_queue(port->netdev);
}
}
}
static int eth_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct port *port = netdev_priv(dev);
unsigned int txreadyq = port->plat->txreadyq;
int len, offset, bytes, n;
void *mem;
u32 phys;
struct desc *desc;
#if DEBUG_TX
printk(KERN_DEBUG "%s: eth_xmit\n", dev->name);
#endif
if (unlikely(skb->len > MAX_MRU)) {
dev_kfree_skb(skb);
dev->stats.tx_errors++;
return NETDEV_TX_OK;
}
debug_pkt(dev, "eth_xmit", skb->data, skb->len);
len = skb->len;
#ifdef __ARMEB__
offset = 0; /* no need to keep alignment */
bytes = len;
mem = skb->data;
#else
offset = (int)skb->data & 3; /* keep 32-bit alignment */
bytes = ALIGN(offset + len, 4);
if (!(mem = kmalloc(bytes, GFP_ATOMIC))) {
dev_kfree_skb(skb);
dev->stats.tx_dropped++;
return NETDEV_TX_OK;
}
memcpy_swab32(mem, (u32 *)((int)skb->data & ~3), bytes / 4);
#endif
phys = dma_map_single(&dev->dev, mem, bytes, DMA_TO_DEVICE);
2008-08-14 02:08:14 +07:00
if (dma_mapping_error(&dev->dev, phys)) {
dev_kfree_skb(skb);
#ifndef __ARMEB__
kfree(mem);
#endif
dev->stats.tx_dropped++;
return NETDEV_TX_OK;
}
n = queue_get_desc(txreadyq, port, 1);
BUG_ON(n < 0);
desc = tx_desc_ptr(port, n);
#ifdef __ARMEB__
port->tx_buff_tab[n] = skb;
#else
port->tx_buff_tab[n] = mem;
#endif
desc->data = phys + offset;
desc->buf_len = desc->pkt_len = len;
/* NPE firmware pads short frames with zeros internally */
wmb();
queue_put_desc(TX_QUEUE(port->id), tx_desc_phys(port, n), desc);
if (qmgr_stat_below_low_watermark(txreadyq)) { /* empty */
#if DEBUG_TX
printk(KERN_DEBUG "%s: eth_xmit queue full\n", dev->name);
#endif
netif_stop_queue(dev);
/* we could miss TX ready interrupt */
/* really empty in fact */
if (!qmgr_stat_below_low_watermark(txreadyq)) {
#if DEBUG_TX
printk(KERN_DEBUG "%s: eth_xmit ready again\n",
dev->name);
#endif
netif_wake_queue(dev);
}
}
#if DEBUG_TX
printk(KERN_DEBUG "%s: eth_xmit end\n", dev->name);
#endif
ixp_tx_timestamp(port, skb);
skb_tx_timestamp(skb);
#ifndef __ARMEB__
dev_kfree_skb(skb);
#endif
return NETDEV_TX_OK;
}
static void eth_set_mcast_list(struct net_device *dev)
{
struct port *port = netdev_priv(dev);
struct netdev_hw_addr *ha;
u8 diffs[ETH_ALEN], *addr;
int i;
static const u8 allmulti[] = { 0x01, 0x00, 0x00, 0x00, 0x00, 0x00 };
if ((dev->flags & IFF_ALLMULTI) && !(dev->flags & IFF_PROMISC)) {
for (i = 0; i < ETH_ALEN; i++) {
__raw_writel(allmulti[i], &port->regs->mcast_addr[i]);
__raw_writel(allmulti[i], &port->regs->mcast_mask[i]);
}
__raw_writel(DEFAULT_RX_CNTRL0 | RX_CNTRL0_ADDR_FLTR_EN,
&port->regs->rx_control[0]);
return;
}
if ((dev->flags & IFF_PROMISC) || netdev_mc_empty(dev)) {
__raw_writel(DEFAULT_RX_CNTRL0 & ~RX_CNTRL0_ADDR_FLTR_EN,
&port->regs->rx_control[0]);
return;
}
eth_zero_addr(diffs);
addr = NULL;
netdev_for_each_mc_addr(ha, dev) {
if (!addr)
addr = ha->addr; /* first MAC address */
for (i = 0; i < ETH_ALEN; i++)
diffs[i] |= addr[i] ^ ha->addr[i];
}
for (i = 0; i < ETH_ALEN; i++) {
__raw_writel(addr[i], &port->regs->mcast_addr[i]);
__raw_writel(~diffs[i], &port->regs->mcast_mask[i]);
}
__raw_writel(DEFAULT_RX_CNTRL0 | RX_CNTRL0_ADDR_FLTR_EN,
&port->regs->rx_control[0]);
}
static int eth_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
{
if (!netif_running(dev))
return -EINVAL;
if (cpu_is_ixp46x()) {
if (cmd == SIOCSHWTSTAMP)
return hwtstamp_set(dev, req);
if (cmd == SIOCGHWTSTAMP)
return hwtstamp_get(dev, req);
}
return phy_mii_ioctl(dev->phydev, req, cmd);
}
/* ethtool support */
static void ixp4xx_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
struct port *port = netdev_priv(dev);
strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
snprintf(info->fw_version, sizeof(info->fw_version), "%u:%u:%u:%u",
port->firmware[0], port->firmware[1],
port->firmware[2], port->firmware[3]);
strlcpy(info->bus_info, "internal", sizeof(info->bus_info));
}
int ixp46x_phc_index = -1;
EXPORT_SYMBOL_GPL(ixp46x_phc_index);
static int ixp4xx_get_ts_info(struct net_device *dev,
struct ethtool_ts_info *info)
{
if (!cpu_is_ixp46x()) {
info->so_timestamping =
SOF_TIMESTAMPING_TX_SOFTWARE |
SOF_TIMESTAMPING_RX_SOFTWARE |
SOF_TIMESTAMPING_SOFTWARE;
info->phc_index = -1;
return 0;
}
info->so_timestamping =
SOF_TIMESTAMPING_TX_HARDWARE |
SOF_TIMESTAMPING_RX_HARDWARE |
SOF_TIMESTAMPING_RAW_HARDWARE;
info->phc_index = ixp46x_phc_index;
info->tx_types =
(1 << HWTSTAMP_TX_OFF) |
(1 << HWTSTAMP_TX_ON);
info->rx_filters =
(1 << HWTSTAMP_FILTER_NONE) |
(1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
(1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ);
return 0;
}
static const struct ethtool_ops ixp4xx_ethtool_ops = {
.get_drvinfo = ixp4xx_get_drvinfo,
.nway_reset = phy_ethtool_nway_reset,
.get_link = ethtool_op_get_link,
.get_ts_info = ixp4xx_get_ts_info,
.get_link_ksettings = phy_ethtool_get_link_ksettings,
.set_link_ksettings = phy_ethtool_set_link_ksettings,
};
static int request_queues(struct port *port)
{
int err;
err = qmgr_request_queue(RXFREE_QUEUE(port->id), RX_DESCS, 0, 0,
"%s:RX-free", port->netdev->name);
if (err)
return err;
err = qmgr_request_queue(port->plat->rxq, RX_DESCS, 0, 0,
"%s:RX", port->netdev->name);
if (err)
goto rel_rxfree;
err = qmgr_request_queue(TX_QUEUE(port->id), TX_DESCS, 0, 0,
"%s:TX", port->netdev->name);
if (err)
goto rel_rx;
err = qmgr_request_queue(port->plat->txreadyq, TX_DESCS, 0, 0,
"%s:TX-ready", port->netdev->name);
if (err)
goto rel_tx;
/* TX-done queue handles skbs sent out by the NPEs */
if (!ports_open) {
err = qmgr_request_queue(TXDONE_QUEUE, TXDONE_QUEUE_LEN, 0, 0,
"%s:TX-done", DRV_NAME);
if (err)
goto rel_txready;
}
return 0;
rel_txready:
qmgr_release_queue(port->plat->txreadyq);
rel_tx:
qmgr_release_queue(TX_QUEUE(port->id));
rel_rx:
qmgr_release_queue(port->plat->rxq);
rel_rxfree:
qmgr_release_queue(RXFREE_QUEUE(port->id));
printk(KERN_DEBUG "%s: unable to request hardware queues\n",
port->netdev->name);
return err;
}
static void release_queues(struct port *port)
{
qmgr_release_queue(RXFREE_QUEUE(port->id));
qmgr_release_queue(port->plat->rxq);
qmgr_release_queue(TX_QUEUE(port->id));
qmgr_release_queue(port->plat->txreadyq);
if (!ports_open)
qmgr_release_queue(TXDONE_QUEUE);
}
static int init_queues(struct port *port)
{
int i;
if (!ports_open) {
dma_pool = dma_pool_create(DRV_NAME, &port->netdev->dev,
POOL_ALLOC_SIZE, 32, 0);
if (!dma_pool)
return -ENOMEM;
}
if (!(port->desc_tab = dma_pool_alloc(dma_pool, GFP_KERNEL,
&port->desc_tab_phys)))
return -ENOMEM;
memset(port->desc_tab, 0, POOL_ALLOC_SIZE);
memset(port->rx_buff_tab, 0, sizeof(port->rx_buff_tab)); /* tables */
memset(port->tx_buff_tab, 0, sizeof(port->tx_buff_tab));
/* Setup RX buffers */
for (i = 0; i < RX_DESCS; i++) {
struct desc *desc = rx_desc_ptr(port, i);
buffer_t *buff; /* skb or kmalloc()ated memory */
void *data;
#ifdef __ARMEB__
if (!(buff = netdev_alloc_skb(port->netdev, RX_BUFF_SIZE)))
return -ENOMEM;
data = buff->data;
#else
if (!(buff = kmalloc(RX_BUFF_SIZE, GFP_KERNEL)))
return -ENOMEM;
data = buff;
#endif
desc->buf_len = MAX_MRU;
desc->data = dma_map_single(&port->netdev->dev, data,
RX_BUFF_SIZE, DMA_FROM_DEVICE);
2008-08-14 02:08:14 +07:00
if (dma_mapping_error(&port->netdev->dev, desc->data)) {
free_buffer(buff);
return -EIO;
}
desc->data += NET_IP_ALIGN;
port->rx_buff_tab[i] = buff;
}
return 0;
}
static void destroy_queues(struct port *port)
{
int i;
if (port->desc_tab) {
for (i = 0; i < RX_DESCS; i++) {
struct desc *desc = rx_desc_ptr(port, i);
buffer_t *buff = port->rx_buff_tab[i];
if (buff) {
dma_unmap_single(&port->netdev->dev,
desc->data - NET_IP_ALIGN,
RX_BUFF_SIZE, DMA_FROM_DEVICE);
free_buffer(buff);
}
}
for (i = 0; i < TX_DESCS; i++) {
struct desc *desc = tx_desc_ptr(port, i);
buffer_t *buff = port->tx_buff_tab[i];
if (buff) {
dma_unmap_tx(port, desc);
free_buffer(buff);
}
}
dma_pool_free(dma_pool, port->desc_tab, port->desc_tab_phys);
port->desc_tab = NULL;
}
if (!ports_open && dma_pool) {
dma_pool_destroy(dma_pool);
dma_pool = NULL;
}
}
static int eth_open(struct net_device *dev)
{
struct port *port = netdev_priv(dev);
struct npe *npe = port->npe;
struct msg msg;
int i, err;
if (!npe_running(npe)) {
err = npe_load_firmware(npe, npe_name(npe), &dev->dev);
if (err)
return err;
if (npe_recv_message(npe, &msg, "ETH_GET_STATUS")) {
printk(KERN_ERR "%s: %s not responding\n", dev->name,
npe_name(npe));
return -EIO;
}
port->firmware[0] = msg.byte4;
port->firmware[1] = msg.byte5;
port->firmware[2] = msg.byte6;
port->firmware[3] = msg.byte7;
}
memset(&msg, 0, sizeof(msg));
msg.cmd = NPE_VLAN_SETRXQOSENTRY;
msg.eth_id = port->id;
msg.byte5 = port->plat->rxq | 0x80;
msg.byte7 = port->plat->rxq << 4;
for (i = 0; i < 8; i++) {
msg.byte3 = i;
if (npe_send_recv_message(port->npe, &msg, "ETH_SET_RXQ"))
return -EIO;
}
msg.cmd = NPE_EDB_SETPORTADDRESS;
msg.eth_id = PHYSICAL_ID(port->id);
msg.byte2 = dev->dev_addr[0];
msg.byte3 = dev->dev_addr[1];
msg.byte4 = dev->dev_addr[2];
msg.byte5 = dev->dev_addr[3];
msg.byte6 = dev->dev_addr[4];
msg.byte7 = dev->dev_addr[5];
if (npe_send_recv_message(port->npe, &msg, "ETH_SET_MAC"))
return -EIO;
memset(&msg, 0, sizeof(msg));
msg.cmd = NPE_FW_SETFIREWALLMODE;
msg.eth_id = port->id;
if (npe_send_recv_message(port->npe, &msg, "ETH_SET_FIREWALL_MODE"))
return -EIO;
if ((err = request_queues(port)) != 0)
return err;
if ((err = init_queues(port)) != 0) {
destroy_queues(port);
release_queues(port);
return err;
}
port->speed = 0; /* force "link up" message */
phy_start(dev->phydev);
for (i = 0; i < ETH_ALEN; i++)
__raw_writel(dev->dev_addr[i], &port->regs->hw_addr[i]);
__raw_writel(0x08, &port->regs->random_seed);
__raw_writel(0x12, &port->regs->partial_empty_threshold);
__raw_writel(0x30, &port->regs->partial_full_threshold);
__raw_writel(0x08, &port->regs->tx_start_bytes);
__raw_writel(0x15, &port->regs->tx_deferral);
__raw_writel(0x08, &port->regs->tx_2part_deferral[0]);
__raw_writel(0x07, &port->regs->tx_2part_deferral[1]);
__raw_writel(0x80, &port->regs->slot_time);
__raw_writel(0x01, &port->regs->int_clock_threshold);
/* Populate queues with buffers, no failure after this point */
for (i = 0; i < TX_DESCS; i++)
queue_put_desc(port->plat->txreadyq,
tx_desc_phys(port, i), tx_desc_ptr(port, i));
for (i = 0; i < RX_DESCS; i++)
queue_put_desc(RXFREE_QUEUE(port->id),
rx_desc_phys(port, i), rx_desc_ptr(port, i));
__raw_writel(TX_CNTRL1_RETRIES, &port->regs->tx_control[1]);
__raw_writel(DEFAULT_TX_CNTRL0, &port->regs->tx_control[0]);
__raw_writel(0, &port->regs->rx_control[1]);
__raw_writel(DEFAULT_RX_CNTRL0, &port->regs->rx_control[0]);
napi_enable(&port->napi);
eth_set_mcast_list(dev);
netif_start_queue(dev);
qmgr_set_irq(port->plat->rxq, QUEUE_IRQ_SRC_NOT_EMPTY,
eth_rx_irq, dev);
if (!ports_open) {
qmgr_set_irq(TXDONE_QUEUE, QUEUE_IRQ_SRC_NOT_EMPTY,
eth_txdone_irq, NULL);
qmgr_enable_irq(TXDONE_QUEUE);
}
ports_open++;
/* we may already have RX data, enables IRQ */
napi_schedule(&port->napi);
return 0;
}
static int eth_close(struct net_device *dev)
{
struct port *port = netdev_priv(dev);
struct msg msg;
int buffs = RX_DESCS; /* allocated RX buffers */
int i;
ports_open--;
qmgr_disable_irq(port->plat->rxq);
napi_disable(&port->napi);
netif_stop_queue(dev);
while (queue_get_desc(RXFREE_QUEUE(port->id), port, 0) >= 0)
buffs--;
memset(&msg, 0, sizeof(msg));
msg.cmd = NPE_SETLOOPBACK_MODE;
msg.eth_id = port->id;
msg.byte3 = 1;
if (npe_send_recv_message(port->npe, &msg, "ETH_ENABLE_LOOPBACK"))
printk(KERN_CRIT "%s: unable to enable loopback\n", dev->name);
i = 0;
do { /* drain RX buffers */
while (queue_get_desc(port->plat->rxq, port, 0) >= 0)
buffs--;
if (!buffs)
break;
if (qmgr_stat_empty(TX_QUEUE(port->id))) {
/* we have to inject some packet */
struct desc *desc;
u32 phys;
int n = queue_get_desc(port->plat->txreadyq, port, 1);
BUG_ON(n < 0);
desc = tx_desc_ptr(port, n);
phys = tx_desc_phys(port, n);
desc->buf_len = desc->pkt_len = 1;
wmb();
queue_put_desc(TX_QUEUE(port->id), phys, desc);
}
udelay(1);
} while (++i < MAX_CLOSE_WAIT);
if (buffs)
printk(KERN_CRIT "%s: unable to drain RX queue, %i buffer(s)"
" left in NPE\n", dev->name, buffs);
#if DEBUG_CLOSE
if (!buffs)
printk(KERN_DEBUG "Draining RX queue took %i cycles\n", i);
#endif
buffs = TX_DESCS;
while (queue_get_desc(TX_QUEUE(port->id), port, 1) >= 0)
buffs--; /* cancel TX */
i = 0;
do {
while (queue_get_desc(port->plat->txreadyq, port, 1) >= 0)
buffs--;
if (!buffs)
break;
} while (++i < MAX_CLOSE_WAIT);
if (buffs)
printk(KERN_CRIT "%s: unable to drain TX queue, %i buffer(s) "
"left in NPE\n", dev->name, buffs);
#if DEBUG_CLOSE
if (!buffs)
printk(KERN_DEBUG "Draining TX queues took %i cycles\n", i);
#endif
msg.byte3 = 0;
if (npe_send_recv_message(port->npe, &msg, "ETH_DISABLE_LOOPBACK"))
printk(KERN_CRIT "%s: unable to disable loopback\n",
dev->name);
phy_stop(dev->phydev);
if (!ports_open)
qmgr_disable_irq(TXDONE_QUEUE);
destroy_queues(port);
release_queues(port);
return 0;
}
static const struct net_device_ops ixp4xx_netdev_ops = {
.ndo_open = eth_open,
.ndo_stop = eth_close,
.ndo_start_xmit = eth_xmit,
.ndo_set_rx_mode = eth_set_mcast_list,
.ndo_do_ioctl = eth_ioctl,
.ndo_set_mac_address = eth_mac_addr,
.ndo_validate_addr = eth_validate_addr,
};
static int eth_init_one(struct platform_device *pdev)
{
struct port *port;
struct net_device *dev;
struct eth_plat_info *plat = dev_get_platdata(&pdev->dev);
struct phy_device *phydev = NULL;
u32 regs_phys;
char phy_id[MII_BUS_ID_SIZE + 3];
int err;
if (!(dev = alloc_etherdev(sizeof(struct port))))
return -ENOMEM;
SET_NETDEV_DEV(dev, &pdev->dev);
port = netdev_priv(dev);
port->netdev = dev;
port->id = pdev->id;
switch (port->id) {
case IXP4XX_ETH_NPEA:
port->regs = (struct eth_regs __iomem *)IXP4XX_EthA_BASE_VIRT;
regs_phys = IXP4XX_EthA_BASE_PHYS;
break;
case IXP4XX_ETH_NPEB:
port->regs = (struct eth_regs __iomem *)IXP4XX_EthB_BASE_VIRT;
regs_phys = IXP4XX_EthB_BASE_PHYS;
break;
case IXP4XX_ETH_NPEC:
port->regs = (struct eth_regs __iomem *)IXP4XX_EthC_BASE_VIRT;
regs_phys = IXP4XX_EthC_BASE_PHYS;
break;
default:
err = -ENODEV;
goto err_free;
}
dev->netdev_ops = &ixp4xx_netdev_ops;
dev->ethtool_ops = &ixp4xx_ethtool_ops;
dev->tx_queue_len = 100;
netif_napi_add(dev, &port->napi, eth_poll, NAPI_WEIGHT);
if (!(port->npe = npe_request(NPE_ID(port->id)))) {
err = -EIO;
goto err_free;
}
port->mem_res = request_mem_region(regs_phys, REGS_SIZE, dev->name);
if (!port->mem_res) {
err = -EBUSY;
goto err_npe_rel;
}
port->plat = plat;
npe_port_tab[NPE_ID(port->id)] = port;
memcpy(dev->dev_addr, plat->hwaddr, ETH_ALEN);
platform_set_drvdata(pdev, dev);
__raw_writel(DEFAULT_CORE_CNTRL | CORE_RESET,
&port->regs->core_control);
udelay(50);
__raw_writel(DEFAULT_CORE_CNTRL, &port->regs->core_control);
udelay(50);
snprintf(phy_id, MII_BUS_ID_SIZE + 3, PHY_ID_FMT,
mdio_bus->id, plat->phy);
phydev = phy_connect(dev, phy_id, &ixp4xx_adjust_link,
PHY_INTERFACE_MODE_MII);
if (IS_ERR(phydev)) {
err = PTR_ERR(phydev);
goto err_free_mem;
}
phydev->irq = PHY_POLL;
if ((err = register_netdev(dev)))
goto err_phy_dis;
printk(KERN_INFO "%s: MII PHY %i on %s\n", dev->name, plat->phy,
npe_name(port->npe));
return 0;
err_phy_dis:
phy_disconnect(phydev);
err_free_mem:
npe_port_tab[NPE_ID(port->id)] = NULL;
release_resource(port->mem_res);
err_npe_rel:
npe_release(port->npe);
err_free:
free_netdev(dev);
return err;
}
static int eth_remove_one(struct platform_device *pdev)
{
struct net_device *dev = platform_get_drvdata(pdev);
struct phy_device *phydev = dev->phydev;
struct port *port = netdev_priv(dev);
unregister_netdev(dev);
phy_disconnect(phydev);
npe_port_tab[NPE_ID(port->id)] = NULL;
npe_release(port->npe);
release_resource(port->mem_res);
free_netdev(dev);
return 0;
}
static struct platform_driver ixp4xx_eth_driver = {
.driver.name = DRV_NAME,
.probe = eth_init_one,
.remove = eth_remove_one,
};
static int __init eth_init_module(void)
{
int err;
/*
* FIXME: we bail out on device tree boot but this really needs
* to be fixed in a nicer way: this registers the MDIO bus before
* even matching the driver infrastructure, we should only probe
* detected hardware.
*/
if (of_have_populated_dt())
return -ENODEV;
if ((err = ixp4xx_mdio_register()))
return err;
return platform_driver_register(&ixp4xx_eth_driver);
}
static void __exit eth_cleanup_module(void)
{
platform_driver_unregister(&ixp4xx_eth_driver);
ixp4xx_mdio_remove();
}
MODULE_AUTHOR("Krzysztof Halasa");
MODULE_DESCRIPTION("Intel IXP4xx Ethernet driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:ixp4xx_eth");
module_init(eth_init_module);
module_exit(eth_cleanup_module);