linux_dsm_epyc7002/drivers/net/chelsio/sge.c

1452 lines
41 KiB
C
Raw Normal View History

[PATCH] A new 10GB Ethernet Driver by Chelsio Communications A Linux driver for the Chelsio 10Gb Ethernet Network Controller by Chelsio (http://www.chelsio.com). This driver supports the Chelsio N210 NIC and is backward compatible with the Chelsio N110 model 10Gb NICs. It supports AMD64, EM64T and x86 systems. Signed-off-by: Tina Yang <tinay@chelsio.com> Signed-off-by: Scott Bardone <sbardone@chelsio.com> Signed-off-by: Christoph Lameter <christoph@lameter.com> Adrian said: - my3126.c is unused (because t1_my3126_ops isn't used anywhere) - what are the EXTRA_CFLAGS in drivers/net/chelsio/Makefile for? - $(cxgb-y) in drivers/net/chelsio/Makefile seems to be unneeded - completely unused global functions: - espi.c: t1_espi_get_intr_counts - sge.c: t1_sge_get_intr_counts - the following functions can be made static: - sge.c: t1_espi_workaround - sge.c: t1_sge_tx - subr.c: __t1_tpi_read - subr.c: __t1_tpi_write - subr.c: t1_wait_op_done shemminger said: The performance recommendations in cxgb.txt are common to all fast devices, and should be in one file rather than just for this device. I would rather see ip-sysctl.txt updated or a new file on tuning recommendations started. Some of them have consequences that aren't documented well. For example, turning off TCP timestamps risks data corruption from sequence wrap. A new driver shouldn't need so may #ifdef's unless you want to putit on older vendor versions of 2.4 Some accessor and wrapper functions like: t1_pci_read_config_4 adapter_name t1_malloc are just annoying noise. Why have useless dead code like: /* Interrupt handler */ +static int pm3393_interrupt_handler(struct cmac *cmac) +{ + u32 master_intr_status; +/* + 1. Read master interrupt register. + 2. Read BLOCK's interrupt status registers. + 3. Handle BLOCK interrupts. +*/ Jeff said: step 1: kill all the OS wrappers. And do you really need hooks for multiple MACs, when only one MAC is really supported? Typically these hooks are at a higher level anyway -- struct net_device. From: Christoph Lameter <christoph@lameter Driver modified as suggested by Pekka Enberg, Stephen Hemminger and Andrian Bunk. Reduces the size of the driver to ~260k. - clean up tabs - removed my3126.c - removed 85% of suni1x10gexp_regs.h - removed 80% of regs.h - removed various calls, renamed variables/functions. - removed system specific and other wrappers (usleep, msleep) - removed dead code - dropped redundant casts in osdep.h - dropped redundant check of kfree - dropped weird code (MODVERSIONS stuff) - reduced number of #ifdefs - use kcalloc now instead of kmalloc - Add information about known issues with the driver - Add information about authors Signed-off-by: Scott Bardone <sbardone@chelsio.com> Signed-off-by: Christoph Lameter <christoph@lameter.com> Signed-off-by: Andrew Morton <akpm@osdl.org> diff -puN /dev/null Documentation/networking/cxgb.txt
2005-03-31 04:34:31 +07:00
/*****************************************************************************
* *
* File: sge.c *
* $Revision: 1.13 $ *
* $Date: 2005/03/23 07:41:27 $ *
* Description: *
* DMA engine. *
* part of the Chelsio 10Gb Ethernet Driver. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License, version 2, as *
* published by the Free Software Foundation. *
* *
* You should have received a copy of the GNU General Public License along *
* with this program; if not, write to the Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
* *
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED *
* WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF *
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. *
* *
* http://www.chelsio.com *
* *
* Copyright (c) 2003 - 2005 Chelsio Communications, Inc. *
* All rights reserved. *
* *
* Maintainers: maintainers@chelsio.com *
* *
* Authors: Dimitrios Michailidis <dm@chelsio.com> *
* Tina Yang <tainay@chelsio.com> *
* Felix Marti <felix@chelsio.com> *
* Scott Bardone <sbardone@chelsio.com> *
* Kurt Ottaway <kottaway@chelsio.com> *
* Frank DiMambro <frank@chelsio.com> *
* *
* History: *
* *
****************************************************************************/
#include "common.h"
#include <linux/config.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/if_vlan.h>
#include <linux/skbuff.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/ip.h>
#include <linux/in.h>
#include <linux/if_arp.h>
#include "cpl5_cmd.h"
#include "sge.h"
#include "regs.h"
#include "espi.h"
#include <linux/tcp.h>
#define SGE_CMDQ_N 2
#define SGE_FREELQ_N 2
#define SGE_CMDQ0_E_N 512
#define SGE_CMDQ1_E_N 128
#define SGE_FREEL_SIZE 4096
#define SGE_JUMBO_FREEL_SIZE 512
#define SGE_FREEL_REFILL_THRESH 16
#define SGE_RESPQ_E_N 1024
#define SGE_INTR_BUCKETSIZE 100
#define SGE_INTR_LATBUCKETS 5
#define SGE_INTR_MAXBUCKETS 11
#define SGE_INTRTIMER0 1
#define SGE_INTRTIMER1 50
#define SGE_INTRTIMER_NRES 10000
#define SGE_RX_COPY_THRESHOLD 256
#define SGE_RX_SM_BUF_SIZE 1536
#define SGE_RESPQ_REPLENISH_THRES ((3 * SGE_RESPQ_E_N) / 4)
#define SGE_RX_OFFSET 2
#ifndef NET_IP_ALIGN
# define NET_IP_ALIGN SGE_RX_OFFSET
#endif
/*
* Memory Mapped HW Command, Freelist and Response Queue Descriptors
*/
#if defined(__BIG_ENDIAN_BITFIELD)
struct cmdQ_e {
u32 AddrLow;
u32 GenerationBit : 1;
u32 BufferLength : 31;
u32 RespQueueSelector : 4;
u32 ResponseTokens : 12;
u32 CmdId : 8;
u32 Reserved : 3;
u32 TokenValid : 1;
u32 Eop : 1;
u32 Sop : 1;
u32 DataValid : 1;
u32 GenerationBit2 : 1;
u32 AddrHigh;
};
struct freelQ_e {
u32 AddrLow;
u32 GenerationBit : 1;
u32 BufferLength : 31;
u32 Reserved : 31;
u32 GenerationBit2 : 1;
u32 AddrHigh;
};
struct respQ_e {
u32 Qsleeping : 4;
u32 Cmdq1CreditReturn : 5;
u32 Cmdq1DmaComplete : 5;
u32 Cmdq0CreditReturn : 5;
u32 Cmdq0DmaComplete : 5;
u32 FreelistQid : 2;
u32 CreditValid : 1;
u32 DataValid : 1;
u32 Offload : 1;
u32 Eop : 1;
u32 Sop : 1;
u32 GenerationBit : 1;
u32 BufferLength;
};
#elif defined(__LITTLE_ENDIAN_BITFIELD)
struct cmdQ_e {
u32 BufferLength : 31;
u32 GenerationBit : 1;
u32 AddrLow;
u32 AddrHigh;
u32 GenerationBit2 : 1;
u32 DataValid : 1;
u32 Sop : 1;
u32 Eop : 1;
u32 TokenValid : 1;
u32 Reserved : 3;
u32 CmdId : 8;
u32 ResponseTokens : 12;
u32 RespQueueSelector : 4;
};
struct freelQ_e {
u32 BufferLength : 31;
u32 GenerationBit : 1;
u32 AddrLow;
u32 AddrHigh;
u32 GenerationBit2 : 1;
u32 Reserved : 31;
};
struct respQ_e {
u32 BufferLength;
u32 GenerationBit : 1;
u32 Sop : 1;
u32 Eop : 1;
u32 Offload : 1;
u32 DataValid : 1;
u32 CreditValid : 1;
u32 FreelistQid : 2;
u32 Cmdq0DmaComplete : 5;
u32 Cmdq0CreditReturn : 5;
u32 Cmdq1DmaComplete : 5;
u32 Cmdq1CreditReturn : 5;
u32 Qsleeping : 4;
} ;
#endif
/*
* SW Context Command and Freelist Queue Descriptors
*/
struct cmdQ_ce {
struct sk_buff *skb;
DECLARE_PCI_UNMAP_ADDR(dma_addr);
DECLARE_PCI_UNMAP_LEN(dma_len);
unsigned int single;
};
struct freelQ_ce {
struct sk_buff *skb;
DECLARE_PCI_UNMAP_ADDR(dma_addr);
DECLARE_PCI_UNMAP_LEN(dma_len);
};
/*
* SW Command, Freelist and Response Queue
*/
struct cmdQ {
atomic_t asleep; /* HW DMA Fetch status */
atomic_t credits; /* # available descriptors for TX */
atomic_t pio_pidx; /* Variable updated on Doorbell */
u16 entries_n; /* # descriptors for TX */
u16 pidx; /* producer index (SW) */
u16 cidx; /* consumer index (HW) */
u8 genbit; /* current generation (=valid) bit */
struct cmdQ_e *entries; /* HW command descriptor Q */
struct cmdQ_ce *centries; /* SW command context descriptor Q */
spinlock_t Qlock; /* Lock to protect cmdQ enqueuing */
dma_addr_t dma_addr; /* DMA addr HW command descriptor Q */
};
struct freelQ {
unsigned int credits; /* # of available RX buffers */
unsigned int entries_n; /* free list capacity */
u16 pidx; /* producer index (SW) */
u16 cidx; /* consumer index (HW) */
u16 rx_buffer_size; /* Buffer size on this free list */
u16 dma_offset; /* DMA offset to align IP headers */
u8 genbit; /* current generation (=valid) bit */
struct freelQ_e *entries; /* HW freelist descriptor Q */
struct freelQ_ce *centries; /* SW freelist conext descriptor Q */
dma_addr_t dma_addr; /* DMA addr HW freelist descriptor Q */
};
struct respQ {
u16 credits; /* # of available respQ descriptors */
u16 credits_pend; /* # of not yet returned descriptors */
u16 entries_n; /* # of response Q descriptors */
u16 pidx; /* producer index (HW) */
u16 cidx; /* consumer index (SW) */
u8 genbit; /* current generation(=valid) bit */
struct respQ_e *entries; /* HW response descriptor Q */
dma_addr_t dma_addr; /* DMA addr HW response descriptor Q */
};
/*
* Main SGE data structure
*
* Interrupts are handled by a single CPU and it is likely that on a MP system
* the application is migrated to another CPU. In that scenario, we try to
* seperate the RX(in irq context) and TX state in order to decrease memory
* contention.
*/
struct sge {
struct adapter *adapter; /* adapter backpointer */
struct freelQ freelQ[SGE_FREELQ_N]; /* freelist Q(s) */
struct respQ respQ; /* response Q instatiation */
unsigned int rx_pkt_pad; /* RX padding for L2 packets */
unsigned int jumbo_fl; /* jumbo freelist Q index */
u32 intrtimer[SGE_INTR_MAXBUCKETS]; /* ! */
u32 currIndex; /* current index into intrtimer[] */
u32 intrtimer_nres; /* no resource interrupt timer value */
u32 sge_control; /* shadow content of sge control reg */
struct sge_intr_counts intr_cnt;
struct timer_list ptimer;
struct sk_buff *pskb;
u32 ptimeout;
struct cmdQ cmdQ[SGE_CMDQ_N] ____cacheline_aligned; /* command Q(s)*/
};
static unsigned int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter,
unsigned int qid);
/*
* PIO to indicate that memory mapped Q contains valid descriptor(s).
*/
static inline void doorbell_pio(struct sge *sge, u32 val)
{
wmb();
t1_write_reg_4(sge->adapter, A_SG_DOORBELL, val);
}
/*
* Disables the DMA engine.
*/
void t1_sge_stop(struct sge *sge)
{
t1_write_reg_4(sge->adapter, A_SG_CONTROL, 0);
t1_read_reg_4(sge->adapter, A_SG_CONTROL); /* flush write */
if (is_T2(sge->adapter))
del_timer_sync(&sge->ptimer);
}
static u8 ch_mac_addr[ETH_ALEN] = {0x0, 0x7, 0x43, 0x0, 0x0, 0x0};
static void t1_espi_workaround(void *data)
{
struct adapter *adapter = (struct adapter *)data;
struct sge *sge = adapter->sge;
if (netif_running(adapter->port[0].dev) &&
atomic_read(&sge->cmdQ[0].asleep)) {
u32 seop = t1_espi_get_mon(adapter, 0x930, 0);
if ((seop & 0xfff0fff) == 0xfff && sge->pskb) {
struct sk_buff *skb = sge->pskb;
if (!skb->cb[0]) {
memcpy(skb->data+sizeof(struct cpl_tx_pkt), ch_mac_addr, ETH_ALEN);
memcpy(skb->data+skb->len-10, ch_mac_addr, ETH_ALEN);
skb->cb[0] = 0xff;
}
t1_sge_tx(skb, adapter,0);
}
}
mod_timer(&adapter->sge->ptimer, jiffies + sge->ptimeout);
}
/*
* Enables the DMA engine.
*/
void t1_sge_start(struct sge *sge)
{
t1_write_reg_4(sge->adapter, A_SG_CONTROL, sge->sge_control);
t1_read_reg_4(sge->adapter, A_SG_CONTROL); /* flush write */
if (is_T2(sge->adapter)) {
init_timer(&sge->ptimer);
sge->ptimer.function = (void *)&t1_espi_workaround;
sge->ptimer.data = (unsigned long)sge->adapter;
sge->ptimer.expires = jiffies + sge->ptimeout;
add_timer(&sge->ptimer);
}
}
/*
* Creates a t1_sge structure and returns suggested resource parameters.
*/
struct sge * __devinit t1_sge_create(struct adapter *adapter,
struct sge_params *p)
{
struct sge *sge = kmalloc(sizeof(*sge), GFP_KERNEL);
if (!sge)
return NULL;
memset(sge, 0, sizeof(*sge));
if (is_T2(adapter))
sge->ptimeout = 1; /* finest allowed */
sge->adapter = adapter;
sge->rx_pkt_pad = t1_is_T1B(adapter) ? 0 : SGE_RX_OFFSET;
sge->jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
p->cmdQ_size[0] = SGE_CMDQ0_E_N;
p->cmdQ_size[1] = SGE_CMDQ1_E_N;
p->freelQ_size[!sge->jumbo_fl] = SGE_FREEL_SIZE;
p->freelQ_size[sge->jumbo_fl] = SGE_JUMBO_FREEL_SIZE;
p->rx_coalesce_usecs = SGE_INTRTIMER1;
p->last_rx_coalesce_raw = SGE_INTRTIMER1 *
(board_info(sge->adapter)->clock_core / 1000000);
p->default_rx_coalesce_usecs = SGE_INTRTIMER1;
p->coalesce_enable = 0; /* Turn off adaptive algorithm by default */
p->sample_interval_usecs = 0;
return sge;
}
/*
* Frees all RX buffers on the freelist Q. The caller must make sure that
* the SGE is turned off before calling this function.
*/
static void free_freelQ_buffers(struct pci_dev *pdev, struct freelQ *Q)
{
unsigned int cidx = Q->cidx, credits = Q->credits;
while (credits--) {
struct freelQ_ce *ce = &Q->centries[cidx];
pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
pci_unmap_len(ce, dma_len),
PCI_DMA_FROMDEVICE);
dev_kfree_skb(ce->skb);
ce->skb = NULL;
if (++cidx == Q->entries_n)
cidx = 0;
}
}
/*
* Free RX free list and response queue resources.
*/
static void free_rx_resources(struct sge *sge)
{
struct pci_dev *pdev = sge->adapter->pdev;
unsigned int size, i;
if (sge->respQ.entries) {
size = sizeof(struct respQ_e) * sge->respQ.entries_n;
pci_free_consistent(pdev, size, sge->respQ.entries,
sge->respQ.dma_addr);
}
for (i = 0; i < SGE_FREELQ_N; i++) {
struct freelQ *Q = &sge->freelQ[i];
if (Q->centries) {
free_freelQ_buffers(pdev, Q);
kfree(Q->centries);
}
if (Q->entries) {
size = sizeof(struct freelQ_e) * Q->entries_n;
pci_free_consistent(pdev, size, Q->entries,
Q->dma_addr);
}
}
}
/*
* Allocates basic RX resources, consisting of memory mapped freelist Qs and a
* response Q.
*/
static int alloc_rx_resources(struct sge *sge, struct sge_params *p)
{
struct pci_dev *pdev = sge->adapter->pdev;
unsigned int size, i;
for (i = 0; i < SGE_FREELQ_N; i++) {
struct freelQ *Q = &sge->freelQ[i];
Q->genbit = 1;
Q->entries_n = p->freelQ_size[i];
Q->dma_offset = SGE_RX_OFFSET - sge->rx_pkt_pad;
size = sizeof(struct freelQ_e) * Q->entries_n;
Q->entries = (struct freelQ_e *)
pci_alloc_consistent(pdev, size, &Q->dma_addr);
if (!Q->entries)
goto err_no_mem;
memset(Q->entries, 0, size);
Q->centries = kcalloc(Q->entries_n, sizeof(struct freelQ_ce),
GFP_KERNEL);
if (!Q->centries)
goto err_no_mem;
}
/*
* Calculate the buffer sizes for the two free lists. FL0 accommodates
* regular sized Ethernet frames, FL1 is sized not to exceed 16K,
* including all the sk_buff overhead.
*
* Note: For T2 FL0 and FL1 are reversed.
*/
sge->freelQ[!sge->jumbo_fl].rx_buffer_size = SGE_RX_SM_BUF_SIZE +
sizeof(struct cpl_rx_data) +
sge->freelQ[!sge->jumbo_fl].dma_offset;
sge->freelQ[sge->jumbo_fl].rx_buffer_size = (16 * 1024) -
SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
sge->respQ.genbit = 1;
sge->respQ.entries_n = SGE_RESPQ_E_N;
sge->respQ.credits = SGE_RESPQ_E_N;
size = sizeof(struct respQ_e) * sge->respQ.entries_n;
sge->respQ.entries = (struct respQ_e *)
pci_alloc_consistent(pdev, size, &sge->respQ.dma_addr);
if (!sge->respQ.entries)
goto err_no_mem;
memset(sge->respQ.entries, 0, size);
return 0;
err_no_mem:
free_rx_resources(sge);
return -ENOMEM;
}
/*
* Frees 'credits_pend' TX buffers and returns the credits to Q->credits.
*
* The adaptive algorithm receives the total size of the buffers freed
* accumulated in @*totpayload. No initialization of this argument here.
*
*/
static void free_cmdQ_buffers(struct sge *sge, struct cmdQ *Q,
unsigned int credits_pend, unsigned int *totpayload)
{
struct pci_dev *pdev = sge->adapter->pdev;
struct sk_buff *skb;
struct cmdQ_ce *ce, *cq = Q->centries;
unsigned int entries_n = Q->entries_n, cidx = Q->cidx,
i = credits_pend;
ce = &cq[cidx];
while (i--) {
if (ce->single)
pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
pci_unmap_len(ce, dma_len),
PCI_DMA_TODEVICE);
else
pci_unmap_page(pdev, pci_unmap_addr(ce, dma_addr),
pci_unmap_len(ce, dma_len),
PCI_DMA_TODEVICE);
if (totpayload)
*totpayload += pci_unmap_len(ce, dma_len);
skb = ce->skb;
if (skb)
dev_kfree_skb_irq(skb);
ce++;
if (++cidx == entries_n) {
cidx = 0;
ce = cq;
}
}
Q->cidx = cidx;
atomic_add(credits_pend, &Q->credits);
}
/*
* Free TX resources.
*
* Assumes that SGE is stopped and all interrupts are disabled.
*/
static void free_tx_resources(struct sge *sge)
{
struct pci_dev *pdev = sge->adapter->pdev;
unsigned int size, i;
for (i = 0; i < SGE_CMDQ_N; i++) {
struct cmdQ *Q = &sge->cmdQ[i];
if (Q->centries) {
unsigned int pending = Q->entries_n -
atomic_read(&Q->credits);
if (pending)
free_cmdQ_buffers(sge, Q, pending, NULL);
kfree(Q->centries);
}
if (Q->entries) {
size = sizeof(struct cmdQ_e) * Q->entries_n;
pci_free_consistent(pdev, size, Q->entries,
Q->dma_addr);
}
}
}
/*
* Allocates basic TX resources, consisting of memory mapped command Qs.
*/
static int alloc_tx_resources(struct sge *sge, struct sge_params *p)
{
struct pci_dev *pdev = sge->adapter->pdev;
unsigned int size, i;
for (i = 0; i < SGE_CMDQ_N; i++) {
struct cmdQ *Q = &sge->cmdQ[i];
Q->genbit = 1;
Q->entries_n = p->cmdQ_size[i];
atomic_set(&Q->credits, Q->entries_n);
atomic_set(&Q->asleep, 1);
spin_lock_init(&Q->Qlock);
size = sizeof(struct cmdQ_e) * Q->entries_n;
Q->entries = (struct cmdQ_e *)
pci_alloc_consistent(pdev, size, &Q->dma_addr);
if (!Q->entries)
goto err_no_mem;
memset(Q->entries, 0, size);
Q->centries = kcalloc(Q->entries_n, sizeof(struct cmdQ_ce),
GFP_KERNEL);
if (!Q->centries)
goto err_no_mem;
}
return 0;
err_no_mem:
free_tx_resources(sge);
return -ENOMEM;
}
static inline void setup_ring_params(struct adapter *adapter, u64 addr,
u32 size, int base_reg_lo,
int base_reg_hi, int size_reg)
{
t1_write_reg_4(adapter, base_reg_lo, (u32)addr);
t1_write_reg_4(adapter, base_reg_hi, addr >> 32);
t1_write_reg_4(adapter, size_reg, size);
}
/*
* Enable/disable VLAN acceleration.
*/
void t1_set_vlan_accel(struct adapter *adapter, int on_off)
{
struct sge *sge = adapter->sge;
sge->sge_control &= ~F_VLAN_XTRACT;
if (on_off)
sge->sge_control |= F_VLAN_XTRACT;
if (adapter->open_device_map) {
t1_write_reg_4(adapter, A_SG_CONTROL, sge->sge_control);
t1_read_reg_4(adapter, A_SG_CONTROL); /* flush */
}
}
/*
* Sets the interrupt latency timer when the adaptive Rx coalescing
* is turned off. Do nothing when it is turned on again.
*
* This routine relies on the fact that the caller has already set
* the adaptive policy in adapter->sge_params before calling it.
*/
int t1_sge_set_coalesce_params(struct sge *sge, struct sge_params *p)
{
if (!p->coalesce_enable) {
u32 newTimer = p->rx_coalesce_usecs *
(board_info(sge->adapter)->clock_core / 1000000);
t1_write_reg_4(sge->adapter, A_SG_INTRTIMER, newTimer);
}
return 0;
}
/*
* Programs the various SGE registers. However, the engine is not yet enabled,
* but sge->sge_control is setup and ready to go.
*/
static void configure_sge(struct sge *sge, struct sge_params *p)
{
struct adapter *ap = sge->adapter;
int i;
t1_write_reg_4(ap, A_SG_CONTROL, 0);
setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].entries_n,
A_SG_CMD0BASELWR, A_SG_CMD0BASEUPR, A_SG_CMD0SIZE);
setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].entries_n,
A_SG_CMD1BASELWR, A_SG_CMD1BASEUPR, A_SG_CMD1SIZE);
setup_ring_params(ap, sge->freelQ[0].dma_addr,
sge->freelQ[0].entries_n, A_SG_FL0BASELWR,
A_SG_FL0BASEUPR, A_SG_FL0SIZE);
setup_ring_params(ap, sge->freelQ[1].dma_addr,
sge->freelQ[1].entries_n, A_SG_FL1BASELWR,
A_SG_FL1BASEUPR, A_SG_FL1SIZE);
/* The threshold comparison uses <. */
t1_write_reg_4(ap, A_SG_FLTHRESHOLD, SGE_RX_SM_BUF_SIZE + 1);
setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.entries_n,
A_SG_RSPBASELWR, A_SG_RSPBASEUPR, A_SG_RSPSIZE);
t1_write_reg_4(ap, A_SG_RSPQUEUECREDIT, (u32)sge->respQ.entries_n);
sge->sge_control = F_CMDQ0_ENABLE | F_CMDQ1_ENABLE | F_FL0_ENABLE |
F_FL1_ENABLE | F_CPL_ENABLE | F_RESPONSE_QUEUE_ENABLE |
V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS | F_ISCSI_COALESCE |
V_RX_PKT_OFFSET(sge->rx_pkt_pad);
#if defined(__BIG_ENDIAN_BITFIELD)
sge->sge_control |= F_ENABLE_BIG_ENDIAN;
#endif
/*
* Initialize the SGE Interrupt Timer arrray:
* intrtimer[0] = (SGE_INTRTIMER0) usec
* intrtimer[0<i<5] = (SGE_INTRTIMER0 + i*2) usec
* intrtimer[4<i<10] = ((i - 3) * 6) usec
* intrtimer[10] = (SGE_INTRTIMER1) usec
*
*/
sge->intrtimer[0] = board_info(sge->adapter)->clock_core / 1000000;
for (i = 1; i < SGE_INTR_LATBUCKETS; ++i) {
sge->intrtimer[i] = SGE_INTRTIMER0 + (2 * i);
sge->intrtimer[i] *= sge->intrtimer[0];
}
for (i = SGE_INTR_LATBUCKETS; i < SGE_INTR_MAXBUCKETS - 1; ++i) {
sge->intrtimer[i] = (i - 3) * 6;
sge->intrtimer[i] *= sge->intrtimer[0];
}
sge->intrtimer[SGE_INTR_MAXBUCKETS - 1] =
sge->intrtimer[0] * SGE_INTRTIMER1;
/* Initialize resource timer */
sge->intrtimer_nres = sge->intrtimer[0] * SGE_INTRTIMER_NRES;
/* Finally finish initialization of intrtimer[0] */
sge->intrtimer[0] *= SGE_INTRTIMER0;
/* Initialize for a throughput oriented workload */
sge->currIndex = SGE_INTR_MAXBUCKETS - 1;
if (p->coalesce_enable)
t1_write_reg_4(ap, A_SG_INTRTIMER,
sge->intrtimer[sge->currIndex]);
else
t1_sge_set_coalesce_params(sge, p);
}
/*
* Return the payload capacity of the jumbo free-list buffers.
*/
static inline unsigned int jumbo_payload_capacity(const struct sge *sge)
{
return sge->freelQ[sge->jumbo_fl].rx_buffer_size -
sizeof(struct cpl_rx_data) - SGE_RX_OFFSET + sge->rx_pkt_pad;
}
/*
* Allocates both RX and TX resources and configures the SGE. However,
* the hardware is not enabled yet.
*/
int t1_sge_configure(struct sge *sge, struct sge_params *p)
{
if (alloc_rx_resources(sge, p))
return -ENOMEM;
if (alloc_tx_resources(sge, p)) {
free_rx_resources(sge);
return -ENOMEM;
}
configure_sge(sge, p);
/*
* Now that we have sized the free lists calculate the payload
* capacity of the large buffers. Other parts of the driver use
* this to set the max offload coalescing size so that RX packets
* do not overflow our large buffers.
*/
p->large_buf_capacity = jumbo_payload_capacity(sge);
return 0;
}
/*
* Frees all SGE related resources and the sge structure itself
*/
void t1_sge_destroy(struct sge *sge)
{
if (sge->pskb)
dev_kfree_skb(sge->pskb);
free_tx_resources(sge);
free_rx_resources(sge);
kfree(sge);
}
/*
* Allocates new RX buffers on the freelist Q (and tracks them on the freelist
* context Q) until the Q is full or alloc_skb fails.
*
* It is possible that the generation bits already match, indicating that the
* buffer is already valid and nothing needs to be done. This happens when we
* copied a received buffer into a new sk_buff during the interrupt processing.
*
* If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad),
* we specify a RX_OFFSET in order to make sure that the IP header is 4B
* aligned.
*/
static void refill_free_list(struct sge *sge, struct freelQ *Q)
{
struct pci_dev *pdev = sge->adapter->pdev;
struct freelQ_ce *ce = &Q->centries[Q->pidx];
struct freelQ_e *e = &Q->entries[Q->pidx];
unsigned int dma_len = Q->rx_buffer_size - Q->dma_offset;
while (Q->credits < Q->entries_n) {
if (e->GenerationBit != Q->genbit) {
struct sk_buff *skb;
dma_addr_t mapping;
skb = alloc_skb(Q->rx_buffer_size, GFP_ATOMIC);
if (!skb)
break;
if (Q->dma_offset)
skb_reserve(skb, Q->dma_offset);
mapping = pci_map_single(pdev, skb->data, dma_len,
PCI_DMA_FROMDEVICE);
ce->skb = skb;
pci_unmap_addr_set(ce, dma_addr, mapping);
pci_unmap_len_set(ce, dma_len, dma_len);
e->AddrLow = (u32)mapping;
e->AddrHigh = (u64)mapping >> 32;
e->BufferLength = dma_len;
e->GenerationBit = e->GenerationBit2 = Q->genbit;
}
e++;
ce++;
if (++Q->pidx == Q->entries_n) {
Q->pidx = 0;
Q->genbit ^= 1;
ce = Q->centries;
e = Q->entries;
}
Q->credits++;
}
}
/*
* Calls refill_free_list for both freelist Qs. If we cannot
* fill at least 1/4 of both Qs, we go into 'few interrupt mode' in order
* to give the system time to free up resources.
*/
static void freelQs_empty(struct sge *sge)
{
u32 irq_reg = t1_read_reg_4(sge->adapter, A_SG_INT_ENABLE);
u32 irqholdoff_reg;
refill_free_list(sge, &sge->freelQ[0]);
refill_free_list(sge, &sge->freelQ[1]);
if (sge->freelQ[0].credits > (sge->freelQ[0].entries_n >> 2) &&
sge->freelQ[1].credits > (sge->freelQ[1].entries_n >> 2)) {
irq_reg |= F_FL_EXHAUSTED;
irqholdoff_reg = sge->intrtimer[sge->currIndex];
} else {
/* Clear the F_FL_EXHAUSTED interrupts for now */
irq_reg &= ~F_FL_EXHAUSTED;
irqholdoff_reg = sge->intrtimer_nres;
}
t1_write_reg_4(sge->adapter, A_SG_INTRTIMER, irqholdoff_reg);
t1_write_reg_4(sge->adapter, A_SG_INT_ENABLE, irq_reg);
/* We reenable the Qs to force a freelist GTS interrupt later */
doorbell_pio(sge, F_FL0_ENABLE | F_FL1_ENABLE);
}
#define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA)
#define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
#define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \
F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
/*
* Disable SGE Interrupts
*/
void t1_sge_intr_disable(struct sge *sge)
{
u32 val = t1_read_reg_4(sge->adapter, A_PL_ENABLE);
t1_write_reg_4(sge->adapter, A_PL_ENABLE, val & ~SGE_PL_INTR_MASK);
t1_write_reg_4(sge->adapter, A_SG_INT_ENABLE, 0);
}
/*
* Enable SGE interrupts.
*/
void t1_sge_intr_enable(struct sge *sge)
{
u32 en = SGE_INT_ENABLE;
u32 val = t1_read_reg_4(sge->adapter, A_PL_ENABLE);
if (sge->adapter->flags & TSO_CAPABLE)
en &= ~F_PACKET_TOO_BIG;
t1_write_reg_4(sge->adapter, A_SG_INT_ENABLE, en);
t1_write_reg_4(sge->adapter, A_PL_ENABLE, val | SGE_PL_INTR_MASK);
}
/*
* Clear SGE interrupts.
*/
void t1_sge_intr_clear(struct sge *sge)
{
t1_write_reg_4(sge->adapter, A_PL_CAUSE, SGE_PL_INTR_MASK);
t1_write_reg_4(sge->adapter, A_SG_INT_CAUSE, 0xffffffff);
}
/*
* SGE 'Error' interrupt handler
*/
int t1_sge_intr_error_handler(struct sge *sge)
{
struct adapter *adapter = sge->adapter;
u32 cause = t1_read_reg_4(adapter, A_SG_INT_CAUSE);
if (adapter->flags & TSO_CAPABLE)
cause &= ~F_PACKET_TOO_BIG;
if (cause & F_RESPQ_EXHAUSTED)
sge->intr_cnt.respQ_empty++;
if (cause & F_RESPQ_OVERFLOW) {
sge->intr_cnt.respQ_overflow++;
CH_ALERT("%s: SGE response queue overflow\n",
adapter->name);
}
if (cause & F_FL_EXHAUSTED) {
sge->intr_cnt.freelistQ_empty++;
freelQs_empty(sge);
}
if (cause & F_PACKET_TOO_BIG) {
sge->intr_cnt.pkt_too_big++;
CH_ALERT("%s: SGE max packet size exceeded\n",
adapter->name);
}
if (cause & F_PACKET_MISMATCH) {
sge->intr_cnt.pkt_mismatch++;
CH_ALERT("%s: SGE packet mismatch\n", adapter->name);
}
if (cause & SGE_INT_FATAL)
t1_fatal_err(adapter);
t1_write_reg_4(adapter, A_SG_INT_CAUSE, cause);
return 0;
}
/*
* The following code is copied from 2.6, where the skb_pull is doing the
* right thing and only pulls ETH_HLEN.
*
* Determine the packet's protocol ID. The rule here is that we
* assume 802.3 if the type field is short enough to be a length.
* This is normal practice and works for any 'now in use' protocol.
*/
static unsigned short sge_eth_type_trans(struct sk_buff *skb,
struct net_device *dev)
{
struct ethhdr *eth;
unsigned char *rawp;
skb->mac.raw = skb->data;
skb_pull(skb, ETH_HLEN);
eth = (struct ethhdr *)skb->mac.raw;
if (*eth->h_dest&1) {
if(memcmp(eth->h_dest, dev->broadcast, ETH_ALEN) == 0)
skb->pkt_type = PACKET_BROADCAST;
else
skb->pkt_type = PACKET_MULTICAST;
}
/*
* This ALLMULTI check should be redundant by 1.4
* so don't forget to remove it.
*
* Seems, you forgot to remove it. All silly devices
* seems to set IFF_PROMISC.
*/
else if (1 /*dev->flags&IFF_PROMISC*/)
{
if(memcmp(eth->h_dest,dev->dev_addr, ETH_ALEN))
skb->pkt_type=PACKET_OTHERHOST;
}
if (ntohs(eth->h_proto) >= 1536)
return eth->h_proto;
rawp = skb->data;
/*
* This is a magic hack to spot IPX packets. Older Novell breaks
* the protocol design and runs IPX over 802.3 without an 802.2 LLC
* layer. We look for FFFF which isn't a used 802.2 SSAP/DSAP. This
* won't work for fault tolerant netware but does for the rest.
*/
if (*(unsigned short *)rawp == 0xFFFF)
return htons(ETH_P_802_3);
/*
* Real 802.2 LLC
*/
return htons(ETH_P_802_2);
}
/*
* Prepare the received buffer and pass it up the stack. If it is small enough
* and allocation doesn't fail, we use a new sk_buff and copy the content.
*/
static unsigned int t1_sge_rx(struct sge *sge, struct freelQ *Q,
unsigned int len, unsigned int offload)
{
struct sk_buff *skb;
struct adapter *adapter = sge->adapter;
struct freelQ_ce *ce = &Q->centries[Q->cidx];
if (len <= SGE_RX_COPY_THRESHOLD &&
(skb = alloc_skb(len + NET_IP_ALIGN, GFP_ATOMIC))) {
struct freelQ_e *e;
char *src = ce->skb->data;
pci_dma_sync_single_for_cpu(adapter->pdev,
pci_unmap_addr(ce, dma_addr),
pci_unmap_len(ce, dma_len),
PCI_DMA_FROMDEVICE);
if (!offload) {
skb_reserve(skb, NET_IP_ALIGN);
src += sge->rx_pkt_pad;
}
memcpy(skb->data, src, len);
/* Reuse the entry. */
e = &Q->entries[Q->cidx];
e->GenerationBit ^= 1;
e->GenerationBit2 ^= 1;
} else {
pci_unmap_single(adapter->pdev, pci_unmap_addr(ce, dma_addr),
pci_unmap_len(ce, dma_len),
PCI_DMA_FROMDEVICE);
skb = ce->skb;
if (!offload && sge->rx_pkt_pad)
__skb_pull(skb, sge->rx_pkt_pad);
}
skb_put(skb, len);
if (unlikely(offload)) {
{
printk(KERN_ERR
"%s: unexpected offloaded packet, cmd %u\n",
adapter->name, *skb->data);
dev_kfree_skb_any(skb);
}
} else {
struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)skb->data;
skb_pull(skb, sizeof(*p));
skb->dev = adapter->port[p->iff].dev;
skb->dev->last_rx = jiffies;
skb->protocol = sge_eth_type_trans(skb, skb->dev);
if ((adapter->flags & RX_CSUM_ENABLED) && p->csum == 0xffff &&
skb->protocol == htons(ETH_P_IP) &&
(skb->data[9] == IPPROTO_TCP ||
skb->data[9] == IPPROTO_UDP))
skb->ip_summed = CHECKSUM_UNNECESSARY;
else
skb->ip_summed = CHECKSUM_NONE;
if (adapter->vlan_grp && p->vlan_valid)
vlan_hwaccel_rx(skb, adapter->vlan_grp,
ntohs(p->vlan));
else
netif_rx(skb);
}
if (++Q->cidx == Q->entries_n)
Q->cidx = 0;
if (unlikely(--Q->credits < Q->entries_n - SGE_FREEL_REFILL_THRESH))
refill_free_list(sge, Q);
return 1;
}
/*
* Adaptive interrupt timer logic to keep the CPU utilization to
* manageable levels. Basically, as the Average Packet Size (APS)
* gets higher, the interrupt latency setting gets longer. Every
* SGE_INTR_BUCKETSIZE (of 100B) causes a bump of 2usec to the
* base value of SGE_INTRTIMER0. At large values of payload the
* latency hits the ceiling value of SGE_INTRTIMER1 stored at
* index SGE_INTR_MAXBUCKETS-1 in sge->intrtimer[].
*
* sge->currIndex caches the last index to save unneeded PIOs.
*/
static inline void update_intr_timer(struct sge *sge, unsigned int avg_payload)
{
unsigned int newIndex;
newIndex = avg_payload / SGE_INTR_BUCKETSIZE;
if (newIndex > SGE_INTR_MAXBUCKETS - 1) {
newIndex = SGE_INTR_MAXBUCKETS - 1;
}
/* Save a PIO with this check....maybe */
if (newIndex != sge->currIndex) {
t1_write_reg_4(sge->adapter, A_SG_INTRTIMER,
sge->intrtimer[newIndex]);
sge->currIndex = newIndex;
sge->adapter->params.sge.last_rx_coalesce_raw =
sge->intrtimer[newIndex];
}
}
/*
* Returns true if command queue q_num has enough available descriptors that
* we can resume Tx operation after temporarily disabling its packet queue.
*/
static inline int enough_free_Tx_descs(struct sge *sge, int q_num)
{
return atomic_read(&sge->cmdQ[q_num].credits) >
(sge->cmdQ[q_num].entries_n >> 2);
}
/*
* Main interrupt handler, optimized assuming that we took a 'DATA'
* interrupt.
*
* 1. Clear the interrupt
* 2. Loop while we find valid descriptors and process them; accumulate
* information that can be processed after the loop
* 3. Tell the SGE at which index we stopped processing descriptors
* 4. Bookkeeping; free TX buffers, ring doorbell if there are any
* outstanding TX buffers waiting, replenish RX buffers, potentially
* reenable upper layers if they were turned off due to lack of TX
* resources which are available again.
* 5. If we took an interrupt, but no valid respQ descriptors was found we
* let the slow_intr_handler run and do error handling.
*/
irqreturn_t t1_interrupt(int irq, void *cookie, struct pt_regs *regs)
{
struct net_device *netdev;
struct adapter *adapter = cookie;
struct sge *sge = adapter->sge;
struct respQ *Q = &sge->respQ;
unsigned int credits = Q->credits, flags = 0, ret = 0;
unsigned int tot_rxpayload = 0, tot_txpayload = 0, n_rx = 0, n_tx = 0;
unsigned int credits_pend[SGE_CMDQ_N] = { 0, 0 };
struct respQ_e *e = &Q->entries[Q->cidx];
prefetch(e);
t1_write_reg_4(adapter, A_PL_CAUSE, F_PL_INTR_SGE_DATA);
while (e->GenerationBit == Q->genbit) {
if (--credits < SGE_RESPQ_REPLENISH_THRES) {
u32 n = Q->entries_n - credits - 1;
t1_write_reg_4(adapter, A_SG_RSPQUEUECREDIT, n);
credits += n;
}
if (likely(e->DataValid)) {
if (!e->Sop || !e->Eop)
BUG();
t1_sge_rx(sge, &sge->freelQ[e->FreelistQid],
e->BufferLength, e->Offload);
tot_rxpayload += e->BufferLength;
++n_rx;
}
flags |= e->Qsleeping;
credits_pend[0] += e->Cmdq0CreditReturn;
credits_pend[1] += e->Cmdq1CreditReturn;
#ifdef CONFIG_SMP
/*
* If enough cmdQ0 buffers have finished DMAing free them so
* anyone that may be waiting for their release can continue.
* We do this only on MP systems to allow other CPUs to proceed
* promptly. UP systems can wait for the free_cmdQ_buffers()
* calls after this loop as the sole CPU is currently busy in
* this loop.
*/
if (unlikely(credits_pend[0] > SGE_FREEL_REFILL_THRESH)) {
free_cmdQ_buffers(sge, &sge->cmdQ[0], credits_pend[0],
&tot_txpayload);
n_tx += credits_pend[0];
credits_pend[0] = 0;
}
#endif
ret++;
e++;
if (unlikely(++Q->cidx == Q->entries_n)) {
Q->cidx = 0;
Q->genbit ^= 1;
e = Q->entries;
}
}
Q->credits = credits;
t1_write_reg_4(adapter, A_SG_SLEEPING, Q->cidx);
if (credits_pend[0])
free_cmdQ_buffers(sge, &sge->cmdQ[0], credits_pend[0], &tot_txpayload);
if (credits_pend[1])
free_cmdQ_buffers(sge, &sge->cmdQ[1], credits_pend[1], &tot_txpayload);
/* Do any coalescing and interrupt latency timer adjustments */
if (adapter->params.sge.coalesce_enable) {
unsigned int avg_txpayload = 0, avg_rxpayload = 0;
n_tx += credits_pend[0] + credits_pend[1];
/*
* Choose larger avg. payload size to increase
* throughput and reduce [CPU util., intr/s.]
*
* Throughput behavior favored in mixed-mode.
*/
if (n_tx)
avg_txpayload = tot_txpayload/n_tx;
if (n_rx)
avg_rxpayload = tot_rxpayload/n_rx;
if (n_tx && avg_txpayload > avg_rxpayload){
update_intr_timer(sge, avg_txpayload);
} else if (n_rx) {
update_intr_timer(sge, avg_rxpayload);
}
}
if (flags & F_CMDQ0_ENABLE) {
struct cmdQ *cmdQ = &sge->cmdQ[0];
atomic_set(&cmdQ->asleep, 1);
if (atomic_read(&cmdQ->pio_pidx) != cmdQ->pidx) {
doorbell_pio(sge, F_CMDQ0_ENABLE);
atomic_set(&cmdQ->pio_pidx, cmdQ->pidx);
}
}
if (unlikely(flags & (F_FL0_ENABLE | F_FL1_ENABLE)))
freelQs_empty(sge);
netdev = adapter->port[0].dev;
if (unlikely(netif_queue_stopped(netdev) && netif_carrier_ok(netdev) &&
enough_free_Tx_descs(sge, 0) &&
enough_free_Tx_descs(sge, 1))) {
netif_wake_queue(netdev);
}
if (unlikely(!ret))
ret = t1_slow_intr_handler(adapter);
return IRQ_RETVAL(ret != 0);
}
/*
* Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it.
*
* The code figures out how many entries the sk_buff will require in the
* cmdQ and updates the cmdQ data structure with the state once the enqueue
* has complete. Then, it doesn't access the global structure anymore, but
* uses the corresponding fields on the stack. In conjuction with a spinlock
* around that code, we can make the function reentrant without holding the
* lock when we actually enqueue (which might be expensive, especially on
* architectures with IO MMUs).
*/
static unsigned int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter,
unsigned int qid)
{
struct sge *sge = adapter->sge;
struct cmdQ *Q = &sge->cmdQ[qid];
struct cmdQ_e *e;
struct cmdQ_ce *ce;
dma_addr_t mapping;
unsigned int credits, pidx, genbit;
unsigned int count = 1 + skb_shinfo(skb)->nr_frags;
/*
* Coming from the timer
*/
if ((skb == sge->pskb)) {
/*
* Quit if any cmdQ activities
*/
if (!spin_trylock(&Q->Qlock))
return 0;
if (atomic_read(&Q->credits) != Q->entries_n) {
spin_unlock(&Q->Qlock);
return 0;
}
}
else
spin_lock(&Q->Qlock);
genbit = Q->genbit;
pidx = Q->pidx;
credits = atomic_read(&Q->credits);
credits -= count;
atomic_sub(count, &Q->credits);
Q->pidx += count;
if (Q->pidx >= Q->entries_n) {
Q->pidx -= Q->entries_n;
Q->genbit ^= 1;
}
if (unlikely(credits < (MAX_SKB_FRAGS + 1))) {
sge->intr_cnt.cmdQ_full[qid]++;
netif_stop_queue(adapter->port[0].dev);
}
spin_unlock(&Q->Qlock);
mapping = pci_map_single(adapter->pdev, skb->data,
skb->len - skb->data_len, PCI_DMA_TODEVICE);
ce = &Q->centries[pidx];
ce->skb = NULL;
pci_unmap_addr_set(ce, dma_addr, mapping);
pci_unmap_len_set(ce, dma_len, skb->len - skb->data_len);
ce->single = 1;
e = &Q->entries[pidx];
e->Sop = 1;
e->DataValid = 1;
e->BufferLength = skb->len - skb->data_len;
e->AddrHigh = (u64)mapping >> 32;
e->AddrLow = (u32)mapping;
if (--count > 0) {
unsigned int i;
e->Eop = 0;
wmb();
e->GenerationBit = e->GenerationBit2 = genbit;
for (i = 0; i < count; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
ce++; e++;
if (++pidx == Q->entries_n) {
pidx = 0;
genbit ^= 1;
ce = Q->centries;
e = Q->entries;
}
mapping = pci_map_page(adapter->pdev, frag->page,
frag->page_offset,
frag->size,
PCI_DMA_TODEVICE);
ce->skb = NULL;
pci_unmap_addr_set(ce, dma_addr, mapping);
pci_unmap_len_set(ce, dma_len, frag->size);
ce->single = 0;
e->Sop = 0;
e->DataValid = 1;
e->BufferLength = frag->size;
e->AddrHigh = (u64)mapping >> 32;
e->AddrLow = (u32)mapping;
if (i < count - 1) {
e->Eop = 0;
wmb();
e->GenerationBit = e->GenerationBit2 = genbit;
}
}
}
if (skb != sge->pskb)
ce->skb = skb;
e->Eop = 1;
wmb();
e->GenerationBit = e->GenerationBit2 = genbit;
/*
* We always ring the doorbell for cmdQ1. For cmdQ0, we only ring
* the doorbell if the Q is asleep. There is a natural race, where
* the hardware is going to sleep just after we checked, however,
* then the interrupt handler will detect the outstanding TX packet
* and ring the doorbell for us.
*/
if (qid) {
doorbell_pio(sge, F_CMDQ1_ENABLE);
} else if (atomic_read(&Q->asleep)) {
atomic_set(&Q->asleep, 0);
doorbell_pio(sge, F_CMDQ0_ENABLE);
atomic_set(&Q->pio_pidx, Q->pidx);
}
return 0;
}
#define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14))
/*
* Adds the CPL header to the sk_buff and passes it to t1_sge_tx.
*/
int t1_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct adapter *adapter = dev->priv;
struct cpl_tx_pkt *cpl;
struct ethhdr *eth;
size_t max_len;
/*
* We are using a non-standard hard_header_len and some kernel
* components, such as pktgen, do not handle it right. Complain
* when this happens but try to fix things up.
*/
if (unlikely(skb_headroom(skb) < dev->hard_header_len - ETH_HLEN)) {
struct sk_buff *orig_skb = skb;
if (net_ratelimit())
printk(KERN_ERR
"%s: Tx packet has inadequate headroom\n",
dev->name);
skb = skb_realloc_headroom(skb, sizeof(struct cpl_tx_pkt_lso));
dev_kfree_skb_any(orig_skb);
if (!skb)
return -ENOMEM;
}
if (skb_shinfo(skb)->tso_size) {
int eth_type;
struct cpl_tx_pkt_lso *hdr;
eth_type = skb->nh.raw - skb->data == ETH_HLEN ?
CPL_ETH_II : CPL_ETH_II_VLAN;
hdr = (struct cpl_tx_pkt_lso *)skb_push(skb, sizeof(*hdr));
hdr->opcode = CPL_TX_PKT_LSO;
hdr->ip_csum_dis = hdr->l4_csum_dis = 0;
hdr->ip_hdr_words = skb->nh.iph->ihl;
hdr->tcp_hdr_words = skb->h.th->doff;
hdr->eth_type_mss = htons(MK_ETH_TYPE_MSS(eth_type,
skb_shinfo(skb)->tso_size));
hdr->len = htonl(skb->len - sizeof(*hdr));
cpl = (struct cpl_tx_pkt *)hdr;
} else
{
/*
* An Ethernet packet must have at least space for
* the DIX Ethernet header and be no greater than
* the device set MTU. Otherwise trash the packet.
*/
if (skb->len < ETH_HLEN)
goto t1_start_xmit_fail2;
eth = (struct ethhdr *)skb->data;
if (eth->h_proto == htons(ETH_P_8021Q))
max_len = dev->mtu + VLAN_ETH_HLEN;
else
max_len = dev->mtu + ETH_HLEN;
if (skb->len > max_len)
goto t1_start_xmit_fail2;
if (!(adapter->flags & UDP_CSUM_CAPABLE) &&
skb->ip_summed == CHECKSUM_HW &&
skb->nh.iph->protocol == IPPROTO_UDP &&
skb_checksum_help(skb, 0))
goto t1_start_xmit_fail3;
if (!adapter->sge->pskb) {
if (skb->protocol == htons(ETH_P_ARP) &&
skb->nh.arph->ar_op == htons(ARPOP_REQUEST))
adapter->sge->pskb = skb;
}
cpl = (struct cpl_tx_pkt *)skb_push(skb, sizeof(*cpl));
cpl->opcode = CPL_TX_PKT;
cpl->ip_csum_dis = 1; /* SW calculates IP csum */
cpl->l4_csum_dis = skb->ip_summed == CHECKSUM_HW ? 0 : 1;
/* the length field isn't used so don't bother setting it */
}
cpl->iff = dev->if_port;
#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
if (adapter->vlan_grp && vlan_tx_tag_present(skb)) {
cpl->vlan_valid = 1;
cpl->vlan = htons(vlan_tx_tag_get(skb));
} else
#endif
cpl->vlan_valid = 0;
dev->trans_start = jiffies;
return t1_sge_tx(skb, adapter, 0);
t1_start_xmit_fail3:
printk(KERN_INFO "%s: Unable to complete checksum\n", dev->name);
goto t1_start_xmit_fail1;
t1_start_xmit_fail2:
printk(KERN_INFO "%s: Invalid packet length %d, dropping\n",
dev->name, skb->len);
t1_start_xmit_fail1:
dev_kfree_skb_any(skb);
return 0;
}
void t1_sge_set_ptimeout(adapter_t *adapter, u32 val)
{
struct sge *sge = adapter->sge;
if (is_T2(adapter))
sge->ptimeout = max((u32)((HZ * val) / 1000), (u32)1);
}
u32 t1_sge_get_ptimeout(adapter_t *adapter)
{
struct sge *sge = adapter->sge;
return (is_T2(adapter) ? ((sge->ptimeout * 1000) / HZ) : 0);
}