linux_dsm_epyc7002/drivers/net/wireless/ath9k/hw.c

8542 lines
222 KiB
C
Raw Normal View History

/*
* Copyright (c) 2008 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/io.h>
#include <asm/unaligned.h>
#include "core.h"
#include "hw.h"
#include "reg.h"
#include "phy.h"
#include "initvals.h"
static void ath9k_hw_iqcal_collect(struct ath_hal *ah);
static void ath9k_hw_iqcalibrate(struct ath_hal *ah, u8 numChains);
static void ath9k_hw_adc_gaincal_collect(struct ath_hal *ah);
static void ath9k_hw_adc_gaincal_calibrate(struct ath_hal *ah,
u8 numChains);
static void ath9k_hw_adc_dccal_collect(struct ath_hal *ah);
static void ath9k_hw_adc_dccal_calibrate(struct ath_hal *ah,
u8 numChains);
static const u8 CLOCK_RATE[] = { 40, 80, 22, 44, 88, 40 };
static const int16_t NOISE_FLOOR[] = { -96, -93, -98, -96, -93, -96 };
static const struct hal_percal_data iq_cal_multi_sample = {
IQ_MISMATCH_CAL,
MAX_CAL_SAMPLES,
PER_MIN_LOG_COUNT,
ath9k_hw_iqcal_collect,
ath9k_hw_iqcalibrate
};
static const struct hal_percal_data iq_cal_single_sample = {
IQ_MISMATCH_CAL,
MIN_CAL_SAMPLES,
PER_MAX_LOG_COUNT,
ath9k_hw_iqcal_collect,
ath9k_hw_iqcalibrate
};
static const struct hal_percal_data adc_gain_cal_multi_sample = {
ADC_GAIN_CAL,
MAX_CAL_SAMPLES,
PER_MIN_LOG_COUNT,
ath9k_hw_adc_gaincal_collect,
ath9k_hw_adc_gaincal_calibrate
};
static const struct hal_percal_data adc_gain_cal_single_sample = {
ADC_GAIN_CAL,
MIN_CAL_SAMPLES,
PER_MAX_LOG_COUNT,
ath9k_hw_adc_gaincal_collect,
ath9k_hw_adc_gaincal_calibrate
};
static const struct hal_percal_data adc_dc_cal_multi_sample = {
ADC_DC_CAL,
MAX_CAL_SAMPLES,
PER_MIN_LOG_COUNT,
ath9k_hw_adc_dccal_collect,
ath9k_hw_adc_dccal_calibrate
};
static const struct hal_percal_data adc_dc_cal_single_sample = {
ADC_DC_CAL,
MIN_CAL_SAMPLES,
PER_MAX_LOG_COUNT,
ath9k_hw_adc_dccal_collect,
ath9k_hw_adc_dccal_calibrate
};
static const struct hal_percal_data adc_init_dc_cal = {
ADC_DC_INIT_CAL,
MIN_CAL_SAMPLES,
INIT_LOG_COUNT,
ath9k_hw_adc_dccal_collect,
ath9k_hw_adc_dccal_calibrate
};
static struct ath9k_rate_table ar5416_11a_table = {
8,
{0},
{
{true, PHY_OFDM, 6000, 0x0b, 0x00, (0x80 | 12), 0},
{true, PHY_OFDM, 9000, 0x0f, 0x00, 18, 0},
{true, PHY_OFDM, 12000, 0x0a, 0x00, (0x80 | 24), 2},
{true, PHY_OFDM, 18000, 0x0e, 0x00, 36, 2},
{true, PHY_OFDM, 24000, 0x09, 0x00, (0x80 | 48), 4},
{true, PHY_OFDM, 36000, 0x0d, 0x00, 72, 4},
{true, PHY_OFDM, 48000, 0x08, 0x00, 96, 4},
{true, PHY_OFDM, 54000, 0x0c, 0x00, 108, 4}
},
};
static struct ath9k_rate_table ar5416_11b_table = {
4,
{0},
{
{true, PHY_CCK, 1000, 0x1b, 0x00, (0x80 | 2), 0},
{true, PHY_CCK, 2000, 0x1a, 0x04, (0x80 | 4), 1},
{true, PHY_CCK, 5500, 0x19, 0x04, (0x80 | 11), 1},
{true, PHY_CCK, 11000, 0x18, 0x04, (0x80 | 22), 1}
},
};
static struct ath9k_rate_table ar5416_11g_table = {
12,
{0},
{
{true, PHY_CCK, 1000, 0x1b, 0x00, (0x80 | 2), 0},
{true, PHY_CCK, 2000, 0x1a, 0x04, (0x80 | 4), 1},
{true, PHY_CCK, 5500, 0x19, 0x04, (0x80 | 11), 2},
{true, PHY_CCK, 11000, 0x18, 0x04, (0x80 | 22), 3},
{false, PHY_OFDM, 6000, 0x0b, 0x00, 12, 4},
{false, PHY_OFDM, 9000, 0x0f, 0x00, 18, 4},
{true, PHY_OFDM, 12000, 0x0a, 0x00, 24, 6},
{true, PHY_OFDM, 18000, 0x0e, 0x00, 36, 6},
{true, PHY_OFDM, 24000, 0x09, 0x00, 48, 8},
{true, PHY_OFDM, 36000, 0x0d, 0x00, 72, 8},
{true, PHY_OFDM, 48000, 0x08, 0x00, 96, 8},
{true, PHY_OFDM, 54000, 0x0c, 0x00, 108, 8}
},
};
static struct ath9k_rate_table ar5416_11ng_table = {
28,
{0},
{
{true, PHY_CCK, 1000, 0x1b, 0x00, (0x80 | 2), 0},
{true, PHY_CCK, 2000, 0x1a, 0x04, (0x80 | 4), 1},
{true, PHY_CCK, 5500, 0x19, 0x04, (0x80 | 11), 2},
{true, PHY_CCK, 11000, 0x18, 0x04, (0x80 | 22), 3},
{false, PHY_OFDM, 6000, 0x0b, 0x00, 12, 4},
{false, PHY_OFDM, 9000, 0x0f, 0x00, 18, 4},
{true, PHY_OFDM, 12000, 0x0a, 0x00, 24, 6},
{true, PHY_OFDM, 18000, 0x0e, 0x00, 36, 6},
{true, PHY_OFDM, 24000, 0x09, 0x00, 48, 8},
{true, PHY_OFDM, 36000, 0x0d, 0x00, 72, 8},
{true, PHY_OFDM, 48000, 0x08, 0x00, 96, 8},
{true, PHY_OFDM, 54000, 0x0c, 0x00, 108, 8},
{true, PHY_HT, 6500, 0x80, 0x00, 0, 4},
{true, PHY_HT, 13000, 0x81, 0x00, 1, 6},
{true, PHY_HT, 19500, 0x82, 0x00, 2, 6},
{true, PHY_HT, 26000, 0x83, 0x00, 3, 8},
{true, PHY_HT, 39000, 0x84, 0x00, 4, 8},
{true, PHY_HT, 52000, 0x85, 0x00, 5, 8},
{true, PHY_HT, 58500, 0x86, 0x00, 6, 8},
{true, PHY_HT, 65000, 0x87, 0x00, 7, 8},
{true, PHY_HT, 13000, 0x88, 0x00, 8, 4},
{true, PHY_HT, 26000, 0x89, 0x00, 9, 6},
{true, PHY_HT, 39000, 0x8a, 0x00, 10, 6},
{true, PHY_HT, 52000, 0x8b, 0x00, 11, 8},
{true, PHY_HT, 78000, 0x8c, 0x00, 12, 8},
{true, PHY_HT, 104000, 0x8d, 0x00, 13, 8},
{true, PHY_HT, 117000, 0x8e, 0x00, 14, 8},
{true, PHY_HT, 130000, 0x8f, 0x00, 15, 8},
},
};
static struct ath9k_rate_table ar5416_11na_table = {
24,
{0},
{
{true, PHY_OFDM, 6000, 0x0b, 0x00, (0x80 | 12), 0},
{true, PHY_OFDM, 9000, 0x0f, 0x00, 18, 0},
{true, PHY_OFDM, 12000, 0x0a, 0x00, (0x80 | 24), 2},
{true, PHY_OFDM, 18000, 0x0e, 0x00, 36, 2},
{true, PHY_OFDM, 24000, 0x09, 0x00, (0x80 | 48), 4},
{true, PHY_OFDM, 36000, 0x0d, 0x00, 72, 4},
{true, PHY_OFDM, 48000, 0x08, 0x00, 96, 4},
{true, PHY_OFDM, 54000, 0x0c, 0x00, 108, 4},
{true, PHY_HT, 6500, 0x80, 0x00, 0, 0},
{true, PHY_HT, 13000, 0x81, 0x00, 1, 2},
{true, PHY_HT, 19500, 0x82, 0x00, 2, 2},
{true, PHY_HT, 26000, 0x83, 0x00, 3, 4},
{true, PHY_HT, 39000, 0x84, 0x00, 4, 4},
{true, PHY_HT, 52000, 0x85, 0x00, 5, 4},
{true, PHY_HT, 58500, 0x86, 0x00, 6, 4},
{true, PHY_HT, 65000, 0x87, 0x00, 7, 4},
{true, PHY_HT, 13000, 0x88, 0x00, 8, 0},
{true, PHY_HT, 26000, 0x89, 0x00, 9, 2},
{true, PHY_HT, 39000, 0x8a, 0x00, 10, 2},
{true, PHY_HT, 52000, 0x8b, 0x00, 11, 4},
{true, PHY_HT, 78000, 0x8c, 0x00, 12, 4},
{true, PHY_HT, 104000, 0x8d, 0x00, 13, 4},
{true, PHY_HT, 117000, 0x8e, 0x00, 14, 4},
{true, PHY_HT, 130000, 0x8f, 0x00, 15, 4},
},
};
static enum wireless_mode ath9k_hw_chan2wmode(struct ath_hal *ah,
const struct ath9k_channel *chan)
{
if (IS_CHAN_CCK(chan))
return ATH9K_MODE_11A;
if (IS_CHAN_G(chan))
return ATH9K_MODE_11G;
return ATH9K_MODE_11A;
}
static bool ath9k_hw_wait(struct ath_hal *ah,
u32 reg,
u32 mask,
u32 val)
{
int i;
for (i = 0; i < (AH_TIMEOUT / AH_TIME_QUANTUM); i++) {
if ((REG_READ(ah, reg) & mask) == val)
return true;
udelay(AH_TIME_QUANTUM);
}
DPRINTF(ah->ah_sc, ATH_DBG_PHY_IO,
"%s: timeout on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
__func__, reg, REG_READ(ah, reg), mask, val);
return false;
}
static bool ath9k_hw_eeprom_read(struct ath_hal *ah, u32 off,
u16 *data)
{
(void) REG_READ(ah, AR5416_EEPROM_OFFSET + (off << AR5416_EEPROM_S));
if (!ath9k_hw_wait(ah,
AR_EEPROM_STATUS_DATA,
AR_EEPROM_STATUS_DATA_BUSY |
AR_EEPROM_STATUS_DATA_PROT_ACCESS, 0)) {
return false;
}
*data = MS(REG_READ(ah, AR_EEPROM_STATUS_DATA),
AR_EEPROM_STATUS_DATA_VAL);
return true;
}
static int ath9k_hw_flash_map(struct ath_hal *ah)
{
struct ath_hal_5416 *ahp = AH5416(ah);
ahp->ah_cal_mem = ioremap(AR5416_EEPROM_START_ADDR, AR5416_EEPROM_MAX);
if (!ahp->ah_cal_mem) {
DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
"%s: cannot remap eeprom region \n", __func__);
return -EIO;
}
return 0;
}
static bool ath9k_hw_flash_read(struct ath_hal *ah, u32 off,
u16 *data)
{
struct ath_hal_5416 *ahp = AH5416(ah);
*data = ioread16(ahp->ah_cal_mem + off);
return true;
}
static void ath9k_hw_read_revisions(struct ath_hal *ah)
{
u32 val;
val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
if (val == 0xFF) {
val = REG_READ(ah, AR_SREV);
ah->ah_macVersion =
(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
ah->ah_macRev = MS(val, AR_SREV_REVISION2);
ah->ah_isPciExpress =
(val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
} else {
if (!AR_SREV_9100(ah))
ah->ah_macVersion = MS(val, AR_SREV_VERSION);
ah->ah_macRev = val & AR_SREV_REVISION;
if (ah->ah_macVersion == AR_SREV_VERSION_5416_PCIE)
ah->ah_isPciExpress = true;
}
}
u32 ath9k_hw_reverse_bits(u32 val, u32 n)
{
u32 retval;
int i;
for (i = 0, retval = 0; i < n; i++) {
retval = (retval << 1) | (val & 1);
val >>= 1;
}
return retval;
}
static void ath9k_hw_set_defaults(struct ath_hal *ah)
{
int i;
ah->ah_config.dma_beacon_response_time = 2;
ah->ah_config.sw_beacon_response_time = 10;
ah->ah_config.additional_swba_backoff = 0;
ah->ah_config.ack_6mb = 0x0;
ah->ah_config.cwm_ignore_extcca = 0;
ah->ah_config.pcie_powersave_enable = 0;
ah->ah_config.pcie_l1skp_enable = 0;
ah->ah_config.pcie_clock_req = 0;
ah->ah_config.pcie_power_reset = 0x100;
ah->ah_config.pcie_restore = 0;
ah->ah_config.pcie_waen = 0;
ah->ah_config.analog_shiftreg = 1;
ah->ah_config.ht_enable = 1;
ah->ah_config.ofdm_trig_low = 200;
ah->ah_config.ofdm_trig_high = 500;
ah->ah_config.cck_trig_high = 200;
ah->ah_config.cck_trig_low = 100;
ah->ah_config.enable_ani = 0;
ah->ah_config.noise_immunity_level = 4;
ah->ah_config.ofdm_weaksignal_det = 1;
ah->ah_config.cck_weaksignal_thr = 0;
ah->ah_config.spur_immunity_level = 2;
ah->ah_config.firstep_level = 0;
ah->ah_config.rssi_thr_high = 40;
ah->ah_config.rssi_thr_low = 7;
ah->ah_config.diversity_control = 0;
ah->ah_config.antenna_switch_swap = 0;
for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
ah->ah_config.spurchans[i][0] = AR_NO_SPUR;
ah->ah_config.spurchans[i][1] = AR_NO_SPUR;
}
ah->ah_config.intr_mitigation = 0;
}
static void ath9k_hw_override_ini(struct ath_hal *ah,
struct ath9k_channel *chan)
{
if (!AR_SREV_5416_V20_OR_LATER(ah)
|| AR_SREV_9280_10_OR_LATER(ah))
return;
REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
}
static void ath9k_hw_init_bb(struct ath_hal *ah,
struct ath9k_channel *chan)
{
u32 synthDelay;
synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
if (IS_CHAN_CCK(chan))
synthDelay = (4 * synthDelay) / 22;
else
synthDelay /= 10;
REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
udelay(synthDelay + BASE_ACTIVATE_DELAY);
}
static void ath9k_hw_init_interrupt_masks(struct ath_hal *ah,
enum ath9k_opmode opmode)
{
struct ath_hal_5416 *ahp = AH5416(ah);
ahp->ah_maskReg = AR_IMR_TXERR |
AR_IMR_TXURN |
AR_IMR_RXERR |
AR_IMR_RXORN |
AR_IMR_BCNMISC;
if (ahp->ah_intrMitigation)
ahp->ah_maskReg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
else
ahp->ah_maskReg |= AR_IMR_RXOK;
ahp->ah_maskReg |= AR_IMR_TXOK;
if (opmode == ATH9K_M_HOSTAP)
ahp->ah_maskReg |= AR_IMR_MIB;
REG_WRITE(ah, AR_IMR, ahp->ah_maskReg);
REG_WRITE(ah, AR_IMR_S2, REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT);
if (!AR_SREV_9100(ah)) {
REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
}
}
static void ath9k_hw_init_qos(struct ath_hal *ah)
{
REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
REG_WRITE(ah, AR_QOS_NO_ACK,
SM(2, AR_QOS_NO_ACK_TWO_BIT) |
SM(5, AR_QOS_NO_ACK_BIT_OFF) |
SM(0, AR_QOS_NO_ACK_BYTE_OFF));
REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
}
static void ath9k_hw_analog_shift_rmw(struct ath_hal *ah,
u32 reg,
u32 mask,
u32 shift,
u32 val)
{
u32 regVal;
regVal = REG_READ(ah, reg) & ~mask;
regVal |= (val << shift) & mask;
REG_WRITE(ah, reg, regVal);
if (ah->ah_config.analog_shiftreg)
udelay(100);
return;
}
static u8 ath9k_hw_get_num_ant_config(struct ath_hal_5416 *ahp,
enum ieee80211_band freq_band)
{
struct ar5416_eeprom *eep = &ahp->ah_eeprom;
struct modal_eep_header *pModal =
&(eep->modalHeader[IEEE80211_BAND_5GHZ == freq_band]);
struct base_eep_header *pBase = &eep->baseEepHeader;
u8 num_ant_config;
num_ant_config = 1;
if (pBase->version >= 0x0E0D)
if (pModal->useAnt1)
num_ant_config += 1;
return num_ant_config;
}
static int
ath9k_hw_get_eeprom_antenna_cfg(struct ath_hal_5416 *ahp,
struct ath9k_channel *chan,
u8 index,
u16 *config)
{
struct ar5416_eeprom *eep = &ahp->ah_eeprom;
struct modal_eep_header *pModal =
&(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
struct base_eep_header *pBase = &eep->baseEepHeader;
switch (index) {
case 0:
*config = pModal->antCtrlCommon & 0xFFFF;
return 0;
case 1:
if (pBase->version >= 0x0E0D) {
if (pModal->useAnt1) {
*config =
((pModal->antCtrlCommon & 0xFFFF0000) >> 16);
return 0;
}
}
break;
default:
break;
}
return -EINVAL;
}
static inline bool ath9k_hw_nvram_read(struct ath_hal *ah,
u32 off,
u16 *data)
{
if (ath9k_hw_use_flash(ah))
return ath9k_hw_flash_read(ah, off, data);
else
return ath9k_hw_eeprom_read(ah, off, data);
}
static bool ath9k_hw_fill_eeprom(struct ath_hal *ah)
{
struct ath_hal_5416 *ahp = AH5416(ah);
struct ar5416_eeprom *eep = &ahp->ah_eeprom;
u16 *eep_data;
int addr, ar5416_eep_start_loc = 0;
if (!ath9k_hw_use_flash(ah)) {
DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
"%s: Reading from EEPROM, not flash\n", __func__);
ar5416_eep_start_loc = 256;
}
if (AR_SREV_9100(ah))
ar5416_eep_start_loc = 256;
eep_data = (u16 *) eep;
for (addr = 0;
addr < sizeof(struct ar5416_eeprom) / sizeof(u16);
addr++) {
if (!ath9k_hw_nvram_read(ah, addr + ar5416_eep_start_loc,
eep_data)) {
DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
"%s: Unable to read eeprom region \n",
__func__);
return false;
}
eep_data++;
}
return true;
}
/* XXX: Clean me up, make me more legible */
static bool
ath9k_hw_eeprom_set_board_values(struct ath_hal *ah,
struct ath9k_channel *chan)
{
struct modal_eep_header *pModal;
int i, regChainOffset;
struct ath_hal_5416 *ahp = AH5416(ah);
struct ar5416_eeprom *eep = &ahp->ah_eeprom;
u8 txRxAttenLocal;
u16 ant_config;
pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44;
ath9k_hw_get_eeprom_antenna_cfg(ahp, chan, 1, &ant_config);
REG_WRITE(ah, AR_PHY_SWITCH_COM, ant_config);
for (i = 0; i < AR5416_MAX_CHAINS; i++) {
if (AR_SREV_9280(ah)) {
if (i >= 2)
break;
}
if (AR_SREV_5416_V20_OR_LATER(ah) &&
(ahp->ah_rxchainmask == 5 || ahp->ah_txchainmask == 5)
&& (i != 0))
regChainOffset = (i == 1) ? 0x2000 : 0x1000;
else
regChainOffset = i * 0x1000;
REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
pModal->antCtrlChain[i]);
REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
(REG_READ(ah,
AR_PHY_TIMING_CTRL4(0) +
regChainOffset) &
~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
SM(pModal->iqCalICh[i],
AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
SM(pModal->iqCalQCh[i],
AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) {
if ((eep->baseEepHeader.version &
AR5416_EEP_VER_MINOR_MASK) >=
AR5416_EEP_MINOR_VER_3) {
txRxAttenLocal = pModal->txRxAttenCh[i];
if (AR_SREV_9280_10_OR_LATER(ah)) {
REG_RMW_FIELD(ah,
AR_PHY_GAIN_2GHZ +
regChainOffset,
AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
pModal->
bswMargin[i]);
REG_RMW_FIELD(ah,
AR_PHY_GAIN_2GHZ +
regChainOffset,
AR_PHY_GAIN_2GHZ_XATTEN1_DB,
pModal->
bswAtten[i]);
REG_RMW_FIELD(ah,
AR_PHY_GAIN_2GHZ +
regChainOffset,
AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
pModal->
xatten2Margin[i]);
REG_RMW_FIELD(ah,
AR_PHY_GAIN_2GHZ +
regChainOffset,
AR_PHY_GAIN_2GHZ_XATTEN2_DB,
pModal->
xatten2Db[i]);
} else {
REG_WRITE(ah,
AR_PHY_GAIN_2GHZ +
regChainOffset,
(REG_READ(ah,
AR_PHY_GAIN_2GHZ +
regChainOffset) &
~AR_PHY_GAIN_2GHZ_BSW_MARGIN)
| SM(pModal->
bswMargin[i],
AR_PHY_GAIN_2GHZ_BSW_MARGIN));
REG_WRITE(ah,
AR_PHY_GAIN_2GHZ +
regChainOffset,
(REG_READ(ah,
AR_PHY_GAIN_2GHZ +
regChainOffset) &
~AR_PHY_GAIN_2GHZ_BSW_ATTEN)
| SM(pModal->bswAtten[i],
AR_PHY_GAIN_2GHZ_BSW_ATTEN));
}
}
if (AR_SREV_9280_10_OR_LATER(ah)) {
REG_RMW_FIELD(ah,
AR_PHY_RXGAIN +
regChainOffset,
AR9280_PHY_RXGAIN_TXRX_ATTEN,
txRxAttenLocal);
REG_RMW_FIELD(ah,
AR_PHY_RXGAIN +
regChainOffset,
AR9280_PHY_RXGAIN_TXRX_MARGIN,
pModal->rxTxMarginCh[i]);
} else {
REG_WRITE(ah,
AR_PHY_RXGAIN + regChainOffset,
(REG_READ(ah,
AR_PHY_RXGAIN +
regChainOffset) &
~AR_PHY_RXGAIN_TXRX_ATTEN) |
SM(txRxAttenLocal,
AR_PHY_RXGAIN_TXRX_ATTEN));
REG_WRITE(ah,
AR_PHY_GAIN_2GHZ +
regChainOffset,
(REG_READ(ah,
AR_PHY_GAIN_2GHZ +
regChainOffset) &
~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) |
SM(pModal->rxTxMarginCh[i],
AR_PHY_GAIN_2GHZ_RXTX_MARGIN));
}
}
}
if (AR_SREV_9280_10_OR_LATER(ah)) {
if (IS_CHAN_2GHZ(chan)) {
ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
AR_AN_RF2G1_CH0_OB,
AR_AN_RF2G1_CH0_OB_S,
pModal->ob);
ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
AR_AN_RF2G1_CH0_DB,
AR_AN_RF2G1_CH0_DB_S,
pModal->db);
ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
AR_AN_RF2G1_CH1_OB,
AR_AN_RF2G1_CH1_OB_S,
pModal->ob_ch1);
ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
AR_AN_RF2G1_CH1_DB,
AR_AN_RF2G1_CH1_DB_S,
pModal->db_ch1);
} else {
ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
AR_AN_RF5G1_CH0_OB5,
AR_AN_RF5G1_CH0_OB5_S,
pModal->ob);
ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
AR_AN_RF5G1_CH0_DB5,
AR_AN_RF5G1_CH0_DB5_S,
pModal->db);
ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
AR_AN_RF5G1_CH1_OB5,
AR_AN_RF5G1_CH1_OB5_S,
pModal->ob_ch1);
ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
AR_AN_RF5G1_CH1_DB5,
AR_AN_RF5G1_CH1_DB5_S,
pModal->db_ch1);
}
ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
AR_AN_TOP2_XPABIAS_LVL,
AR_AN_TOP2_XPABIAS_LVL_S,
pModal->xpaBiasLvl);
ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
AR_AN_TOP2_LOCALBIAS,
AR_AN_TOP2_LOCALBIAS_S,
pModal->local_bias);
DPRINTF(ah->ah_sc, ATH_DBG_ANY, "ForceXPAon: %d\n",
pModal->force_xpaon);
REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
pModal->force_xpaon);
}
REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
pModal->switchSettling);
REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
pModal->adcDesiredSize);
if (!AR_SREV_9280_10_OR_LATER(ah))
REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
AR_PHY_DESIRED_SZ_PGA,
pModal->pgaDesiredSize);
REG_WRITE(ah, AR_PHY_RF_CTL4,
SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
| SM(pModal->txEndToXpaOff,
AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
| SM(pModal->txFrameToXpaOn,
AR_PHY_RF_CTL4_FRAME_XPAA_ON)
| SM(pModal->txFrameToXpaOn,
AR_PHY_RF_CTL4_FRAME_XPAB_ON));
REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
pModal->txEndToRxOn);
if (AR_SREV_9280_10_OR_LATER(ah)) {
REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
pModal->thresh62);
REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
AR_PHY_EXT_CCA0_THRESH62,
pModal->thresh62);
} else {
REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
pModal->thresh62);
REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
AR_PHY_EXT_CCA_THRESH62,
pModal->thresh62);
}
if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
AR5416_EEP_MINOR_VER_2) {
REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
AR_PHY_TX_END_DATA_START,
pModal->txFrameToDataStart);
REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
pModal->txFrameToPaOn);
}
if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
AR5416_EEP_MINOR_VER_3) {
if (IS_CHAN_HT40(chan))
REG_RMW_FIELD(ah, AR_PHY_SETTLING,
AR_PHY_SETTLING_SWITCH,
pModal->swSettleHt40);
}
return true;
}
static int ath9k_hw_check_eeprom(struct ath_hal *ah)
{
u32 sum = 0, el;
u16 *eepdata;
int i;
struct ath_hal_5416 *ahp = AH5416(ah);
bool need_swap = false;
struct ar5416_eeprom *eep =
(struct ar5416_eeprom *) &ahp->ah_eeprom;
if (!ath9k_hw_use_flash(ah)) {
u16 magic, magic2;
int addr;
if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET,
&magic)) {
DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
"%s: Reading Magic # failed\n", __func__);
return false;
}
DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "%s: Read Magic = 0x%04X\n",
__func__, magic);
if (magic != AR5416_EEPROM_MAGIC) {
magic2 = swab16(magic);
if (magic2 == AR5416_EEPROM_MAGIC) {
need_swap = true;
eepdata = (u16 *) (&ahp->ah_eeprom);
for (addr = 0;
addr <
sizeof(struct ar5416_eeprom) /
sizeof(u16); addr++) {
u16 temp;
temp = swab16(*eepdata);
*eepdata = temp;
eepdata++;
DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
"0x%04X ", *eepdata);
if (((addr + 1) % 6) == 0)
DPRINTF(ah->ah_sc,
ATH_DBG_EEPROM,
"\n");
}
} else {
DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
"Invalid EEPROM Magic. "
"endianness missmatch.\n");
return -EINVAL;
}
}
}
DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "need_swap = %s.\n",
need_swap ? "True" : "False");
if (need_swap)
el = swab16(ahp->ah_eeprom.baseEepHeader.length);
else
el = ahp->ah_eeprom.baseEepHeader.length;
if (el > sizeof(struct ar5416_eeprom))
el = sizeof(struct ar5416_eeprom) / sizeof(u16);
else
el = el / sizeof(u16);
eepdata = (u16 *) (&ahp->ah_eeprom);
for (i = 0; i < el; i++)
sum ^= *eepdata++;
if (need_swap) {
u32 integer, j;
u16 word;
DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
"EEPROM Endianness is not native.. Changing \n");
word = swab16(eep->baseEepHeader.length);
eep->baseEepHeader.length = word;
word = swab16(eep->baseEepHeader.checksum);
eep->baseEepHeader.checksum = word;
word = swab16(eep->baseEepHeader.version);
eep->baseEepHeader.version = word;
word = swab16(eep->baseEepHeader.regDmn[0]);
eep->baseEepHeader.regDmn[0] = word;
word = swab16(eep->baseEepHeader.regDmn[1]);
eep->baseEepHeader.regDmn[1] = word;
word = swab16(eep->baseEepHeader.rfSilent);
eep->baseEepHeader.rfSilent = word;
word = swab16(eep->baseEepHeader.blueToothOptions);
eep->baseEepHeader.blueToothOptions = word;
word = swab16(eep->baseEepHeader.deviceCap);
eep->baseEepHeader.deviceCap = word;
for (j = 0; j < ARRAY_SIZE(eep->modalHeader); j++) {
struct modal_eep_header *pModal =
&eep->modalHeader[j];
integer = swab32(pModal->antCtrlCommon);
pModal->antCtrlCommon = integer;
for (i = 0; i < AR5416_MAX_CHAINS; i++) {
integer = swab32(pModal->antCtrlChain[i]);
pModal->antCtrlChain[i] = integer;
}
for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
word = swab16(pModal->spurChans[i].spurChan);
pModal->spurChans[i].spurChan = word;
}
}
}
if (sum != 0xffff || ar5416_get_eep_ver(ahp) != AR5416_EEP_VER ||
ar5416_get_eep_rev(ahp) < AR5416_EEP_NO_BACK_VER) {
DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
"Bad EEPROM checksum 0x%x or revision 0x%04x\n",
sum, ar5416_get_eep_ver(ahp));
return -EINVAL;
}
return 0;
}
static bool ath9k_hw_chip_test(struct ath_hal *ah)
{
u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) };
u32 regHold[2];
u32 patternData[4] = { 0x55555555,
0xaaaaaaaa,
0x66666666,
0x99999999 };
int i, j;
for (i = 0; i < 2; i++) {
u32 addr = regAddr[i];
u32 wrData, rdData;
regHold[i] = REG_READ(ah, addr);
for (j = 0; j < 0x100; j++) {
wrData = (j << 16) | j;
REG_WRITE(ah, addr, wrData);
rdData = REG_READ(ah, addr);
if (rdData != wrData) {
DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
"%s: address test failed "
"addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
__func__, addr, wrData, rdData);
return false;
}
}
for (j = 0; j < 4; j++) {
wrData = patternData[j];
REG_WRITE(ah, addr, wrData);
rdData = REG_READ(ah, addr);
if (wrData != rdData) {
DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
"%s: address test failed "
"addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
__func__, addr, wrData, rdData);
return false;
}
}
REG_WRITE(ah, regAddr[i], regHold[i]);
}
udelay(100);
return true;
}
u32 ath9k_hw_getrxfilter(struct ath_hal *ah)
{
u32 bits = REG_READ(ah, AR_RX_FILTER);
u32 phybits = REG_READ(ah, AR_PHY_ERR);
if (phybits & AR_PHY_ERR_RADAR)
bits |= ATH9K_RX_FILTER_PHYRADAR;
if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
bits |= ATH9K_RX_FILTER_PHYERR;
return bits;
}
void ath9k_hw_setrxfilter(struct ath_hal *ah, u32 bits)
{
u32 phybits;
REG_WRITE(ah, AR_RX_FILTER, (bits & 0xffff) | AR_RX_COMPR_BAR);
phybits = 0;
if (bits & ATH9K_RX_FILTER_PHYRADAR)
phybits |= AR_PHY_ERR_RADAR;
if (bits & ATH9K_RX_FILTER_PHYERR)
phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
REG_WRITE(ah, AR_PHY_ERR, phybits);
if (phybits)
REG_WRITE(ah, AR_RXCFG,
REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
else
REG_WRITE(ah, AR_RXCFG,
REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
}
bool ath9k_hw_setcapability(struct ath_hal *ah,
enum ath9k_capability_type type,
u32 capability,
u32 setting,
int *status)
{
struct ath_hal_5416 *ahp = AH5416(ah);
u32 v;
switch (type) {
case ATH9K_CAP_TKIP_MIC:
if (setting)
ahp->ah_staId1Defaults |=
AR_STA_ID1_CRPT_MIC_ENABLE;
else
ahp->ah_staId1Defaults &=
~AR_STA_ID1_CRPT_MIC_ENABLE;
return true;
case ATH9K_CAP_DIVERSITY:
v = REG_READ(ah, AR_PHY_CCK_DETECT);
if (setting)
v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
else
v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
return true;
case ATH9K_CAP_MCAST_KEYSRCH:
if (setting)
ahp->ah_staId1Defaults |= AR_STA_ID1_MCAST_KSRCH;
else
ahp->ah_staId1Defaults &= ~AR_STA_ID1_MCAST_KSRCH;
return true;
case ATH9K_CAP_TSF_ADJUST:
if (setting)
ahp->ah_miscMode |= AR_PCU_TX_ADD_TSF;
else
ahp->ah_miscMode &= ~AR_PCU_TX_ADD_TSF;
return true;
default:
return false;
}
}
void ath9k_hw_dmaRegDump(struct ath_hal *ah)
{
u32 val[ATH9K_NUM_DMA_DEBUG_REGS];
int qcuOffset = 0, dcuOffset = 0;
u32 *qcuBase = &val[0], *dcuBase = &val[4];
int i;
REG_WRITE(ah, AR_MACMISC,
((AR_MACMISC_DMA_OBS_LINE_8 << AR_MACMISC_DMA_OBS_S) |
(AR_MACMISC_MISC_OBS_BUS_1 <<
AR_MACMISC_MISC_OBS_BUS_MSB_S)));
DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "Raw DMA Debug values:\n");
for (i = 0; i < ATH9K_NUM_DMA_DEBUG_REGS; i++) {
if (i % 4 == 0)
DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "\n");
val[i] = REG_READ(ah, AR_DMADBG_0 + (i * sizeof(u32)));
DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "%d: %08x ", i, val[i]);
}
DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "\n\n");
DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
"Num QCU: chain_st fsp_ok fsp_st DCU: chain_st\n");
for (i = 0; i < ATH9K_NUM_QUEUES;
i++, qcuOffset += 4, dcuOffset += 5) {
if (i == 8) {
qcuOffset = 0;
qcuBase++;
}
if (i == 6) {
dcuOffset = 0;
dcuBase++;
}
DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
"%2d %2x %1x %2x %2x\n",
i, (*qcuBase & (0x7 << qcuOffset)) >> qcuOffset,
(*qcuBase & (0x8 << qcuOffset)) >> (qcuOffset +
3),
val[2] & (0x7 << (i * 3)) >> (i * 3),
(*dcuBase & (0x1f << dcuOffset)) >> dcuOffset);
}
DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "\n");
DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
"qcu_stitch state: %2x qcu_fetch state: %2x\n",
(val[3] & 0x003c0000) >> 18, (val[3] & 0x03c00000) >> 22);
DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
"qcu_complete state: %2x dcu_complete state: %2x\n",
(val[3] & 0x1c000000) >> 26, (val[6] & 0x3));
DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
"dcu_arb state: %2x dcu_fp state: %2x\n",
(val[5] & 0x06000000) >> 25, (val[5] & 0x38000000) >> 27);
DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
"chan_idle_dur: %3d chan_idle_dur_valid: %1d\n",
(val[6] & 0x000003fc) >> 2, (val[6] & 0x00000400) >> 10);
DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
"txfifo_valid_0: %1d txfifo_valid_1: %1d\n",
(val[6] & 0x00000800) >> 11, (val[6] & 0x00001000) >> 12);
DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
"txfifo_dcu_num_0: %2d txfifo_dcu_num_1: %2d\n",
(val[6] & 0x0001e000) >> 13, (val[6] & 0x001e0000) >> 17);
DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "pcu observe 0x%x \n",
REG_READ(ah, AR_OBS_BUS_1));
DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
"AR_CR 0x%x \n", REG_READ(ah, AR_CR));
}
u32 ath9k_hw_GetMibCycleCountsPct(struct ath_hal *ah,
u32 *rxc_pcnt,
u32 *rxf_pcnt,
u32 *txf_pcnt)
{
static u32 cycles, rx_clear, rx_frame, tx_frame;
u32 good = 1;
u32 rc = REG_READ(ah, AR_RCCNT);
u32 rf = REG_READ(ah, AR_RFCNT);
u32 tf = REG_READ(ah, AR_TFCNT);
u32 cc = REG_READ(ah, AR_CCCNT);
if (cycles == 0 || cycles > cc) {
DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
"%s: cycle counter wrap. ExtBusy = 0\n",
__func__);
good = 0;
} else {
u32 cc_d = cc - cycles;
u32 rc_d = rc - rx_clear;
u32 rf_d = rf - rx_frame;
u32 tf_d = tf - tx_frame;
if (cc_d != 0) {
*rxc_pcnt = rc_d * 100 / cc_d;
*rxf_pcnt = rf_d * 100 / cc_d;
*txf_pcnt = tf_d * 100 / cc_d;
} else {
good = 0;
}
}
cycles = cc;
rx_frame = rf;
rx_clear = rc;
tx_frame = tf;
return good;
}
void ath9k_hw_set11nmac2040(struct ath_hal *ah, enum ath9k_ht_macmode mode)
{
u32 macmode;
if (mode == ATH9K_HT_MACMODE_2040 &&
!ah->ah_config.cwm_ignore_extcca)
macmode = AR_2040_JOINED_RX_CLEAR;
else
macmode = 0;
REG_WRITE(ah, AR_2040_MODE, macmode);
}
static void ath9k_hw_mark_phy_inactive(struct ath_hal *ah)
{
REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
}
static struct ath_hal_5416 *ath9k_hw_newstate(u16 devid,
struct ath_softc *sc,
void __iomem *mem,
int *status)
{
static const u8 defbssidmask[ETH_ALEN] =
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
struct ath_hal_5416 *ahp;
struct ath_hal *ah;
ahp = kzalloc(sizeof(struct ath_hal_5416), GFP_KERNEL);
if (ahp == NULL) {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: cannot allocate memory for state block\n",
__func__);
*status = -ENOMEM;
return NULL;
}
ah = &ahp->ah;
ah->ah_sc = sc;
ah->ah_sh = mem;
ah->ah_magic = AR5416_MAGIC;
ah->ah_countryCode = CTRY_DEFAULT;
ah->ah_devid = devid;
ah->ah_subvendorid = 0;
ah->ah_flags = 0;
if ((devid == AR5416_AR9100_DEVID))
ah->ah_macVersion = AR_SREV_VERSION_9100;
if (!AR_SREV_9100(ah))
ah->ah_flags = AH_USE_EEPROM;
ah->ah_powerLimit = MAX_RATE_POWER;
ah->ah_tpScale = ATH9K_TP_SCALE_MAX;
ahp->ah_atimWindow = 0;
ahp->ah_diversityControl = ah->ah_config.diversity_control;
ahp->ah_antennaSwitchSwap =
ah->ah_config.antenna_switch_swap;
ahp->ah_staId1Defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
ahp->ah_beaconInterval = 100;
ahp->ah_enable32kHzClock = DONT_USE_32KHZ;
ahp->ah_slottime = (u32) -1;
ahp->ah_acktimeout = (u32) -1;
ahp->ah_ctstimeout = (u32) -1;
ahp->ah_globaltxtimeout = (u32) -1;
memcpy(&ahp->ah_bssidmask, defbssidmask, ETH_ALEN);
ahp->ah_gBeaconRate = 0;
return ahp;
}
static int ath9k_hw_eeprom_attach(struct ath_hal *ah)
{
int status;
if (ath9k_hw_use_flash(ah))
ath9k_hw_flash_map(ah);
if (!ath9k_hw_fill_eeprom(ah))
return -EIO;
status = ath9k_hw_check_eeprom(ah);
return status;
}
u32 ath9k_hw_get_eeprom(struct ath_hal_5416 *ahp,
enum eeprom_param param)
{
struct ar5416_eeprom *eep = &ahp->ah_eeprom;
struct modal_eep_header *pModal = eep->modalHeader;
struct base_eep_header *pBase = &eep->baseEepHeader;
switch (param) {
case EEP_NFTHRESH_5:
return -pModal[0].noiseFloorThreshCh[0];
case EEP_NFTHRESH_2:
return -pModal[1].noiseFloorThreshCh[0];
case AR_EEPROM_MAC(0):
return pBase->macAddr[0] << 8 | pBase->macAddr[1];
case AR_EEPROM_MAC(1):
return pBase->macAddr[2] << 8 | pBase->macAddr[3];
case AR_EEPROM_MAC(2):
return pBase->macAddr[4] << 8 | pBase->macAddr[5];
case EEP_REG_0:
return pBase->regDmn[0];
case EEP_REG_1:
return pBase->regDmn[1];
case EEP_OP_CAP:
return pBase->deviceCap;
case EEP_OP_MODE:
return pBase->opCapFlags;
case EEP_RF_SILENT:
return pBase->rfSilent;
case EEP_OB_5:
return pModal[0].ob;
case EEP_DB_5:
return pModal[0].db;
case EEP_OB_2:
return pModal[1].ob;
case EEP_DB_2:
return pModal[1].db;
case EEP_MINOR_REV:
return pBase->version & AR5416_EEP_VER_MINOR_MASK;
case EEP_TX_MASK:
return pBase->txMask;
case EEP_RX_MASK:
return pBase->rxMask;
default:
return 0;
}
}
static int ath9k_hw_get_radiorev(struct ath_hal *ah)
{
u32 val;
int i;
REG_WRITE(ah, AR_PHY(0x36), 0x00007058);
for (i = 0; i < 8; i++)
REG_WRITE(ah, AR_PHY(0x20), 0x00010000);
val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff;
val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4);
return ath9k_hw_reverse_bits(val, 8);
}
static int ath9k_hw_init_macaddr(struct ath_hal *ah)
{
u32 sum;
int i;
u16 eeval;
struct ath_hal_5416 *ahp = AH5416(ah);
DECLARE_MAC_BUF(mac);
sum = 0;
for (i = 0; i < 3; i++) {
eeval = ath9k_hw_get_eeprom(ahp, AR_EEPROM_MAC(i));
sum += eeval;
ahp->ah_macaddr[2 * i] = eeval >> 8;
ahp->ah_macaddr[2 * i + 1] = eeval & 0xff;
}
if (sum == 0 || sum == 0xffff * 3) {
DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
"%s: mac address read failed: %s\n", __func__,
print_mac(mac, ahp->ah_macaddr));
return -EADDRNOTAVAIL;
}
return 0;
}
static inline int16_t ath9k_hw_interpolate(u16 target,
u16 srcLeft,
u16 srcRight,
int16_t targetLeft,
int16_t targetRight)
{
int16_t rv;
if (srcRight == srcLeft) {
rv = targetLeft;
} else {
rv = (int16_t) (((target - srcLeft) * targetRight +
(srcRight - target) * targetLeft) /
(srcRight - srcLeft));
}
return rv;
}
static inline u16 ath9k_hw_fbin2freq(u8 fbin,
bool is2GHz)
{
if (fbin == AR5416_BCHAN_UNUSED)
return fbin;
return (u16) ((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
}
static u16 ath9k_hw_eeprom_get_spur_chan(struct ath_hal *ah,
u16 i,
bool is2GHz)
{
struct ath_hal_5416 *ahp = AH5416(ah);
struct ar5416_eeprom *eep =
(struct ar5416_eeprom *) &ahp->ah_eeprom;
u16 spur_val = AR_NO_SPUR;
DPRINTF(ah->ah_sc, ATH_DBG_ANI,
"Getting spur idx %d is2Ghz. %d val %x\n",
i, is2GHz, ah->ah_config.spurchans[i][is2GHz]);
switch (ah->ah_config.spurmode) {
case SPUR_DISABLE:
break;
case SPUR_ENABLE_IOCTL:
spur_val = ah->ah_config.spurchans[i][is2GHz];
DPRINTF(ah->ah_sc, ATH_DBG_ANI,
"Getting spur val from new loc. %d\n", spur_val);
break;
case SPUR_ENABLE_EEPROM:
spur_val = eep->modalHeader[is2GHz].spurChans[i].spurChan;
break;
}
return spur_val;
}
static int ath9k_hw_rfattach(struct ath_hal *ah)
{
bool rfStatus = false;
int ecode = 0;
rfStatus = ath9k_hw_init_rf(ah, &ecode);
if (!rfStatus) {
DPRINTF(ah->ah_sc, ATH_DBG_RESET,
"%s: RF setup failed, status %u\n", __func__,
ecode);
return ecode;
}
return 0;
}
static int ath9k_hw_rf_claim(struct ath_hal *ah)
{
u32 val;
REG_WRITE(ah, AR_PHY(0), 0x00000007);
val = ath9k_hw_get_radiorev(ah);
switch (val & AR_RADIO_SREV_MAJOR) {
case 0:
val = AR_RAD5133_SREV_MAJOR;
break;
case AR_RAD5133_SREV_MAJOR:
case AR_RAD5122_SREV_MAJOR:
case AR_RAD2133_SREV_MAJOR:
case AR_RAD2122_SREV_MAJOR:
break;
default:
DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
"%s: 5G Radio Chip Rev 0x%02X is not "
"supported by this driver\n",
__func__, ah->ah_analog5GhzRev);
return -EOPNOTSUPP;
}
ah->ah_analog5GhzRev = val;
return 0;
}
static void ath9k_hw_init_pll(struct ath_hal *ah,
struct ath9k_channel *chan)
{
u32 pll;
if (AR_SREV_9100(ah)) {
if (chan && IS_CHAN_5GHZ(chan))
pll = 0x1450;
else
pll = 0x1458;
} else {
if (AR_SREV_9280_10_OR_LATER(ah)) {
pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
if (chan && IS_CHAN_HALF_RATE(chan))
pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
else if (chan && IS_CHAN_QUARTER_RATE(chan))
pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
if (chan && IS_CHAN_5GHZ(chan)) {
pll |= SM(0x28, AR_RTC_9160_PLL_DIV);
if (AR_SREV_9280_20(ah)) {
if (((chan->channel % 20) == 0)
|| ((chan->channel % 10) == 0))
pll = 0x2850;
else
pll = 0x142c;
}
} else {
pll |= SM(0x2c, AR_RTC_9160_PLL_DIV);
}
} else if (AR_SREV_9160_10_OR_LATER(ah)) {
pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
if (chan && IS_CHAN_HALF_RATE(chan))
pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
else if (chan && IS_CHAN_QUARTER_RATE(chan))
pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
if (chan && IS_CHAN_5GHZ(chan))
pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
else
pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
} else {
pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
if (chan && IS_CHAN_HALF_RATE(chan))
pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
else if (chan && IS_CHAN_QUARTER_RATE(chan))
pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
if (chan && IS_CHAN_5GHZ(chan))
pll |= SM(0xa, AR_RTC_PLL_DIV);
else
pll |= SM(0xb, AR_RTC_PLL_DIV);
}
}
REG_WRITE(ah, (u16) (AR_RTC_PLL_CONTROL), pll);
udelay(RTC_PLL_SETTLE_DELAY);
REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
}
static void ath9k_hw_set_regs(struct ath_hal *ah, struct ath9k_channel *chan,
enum ath9k_ht_macmode macmode)
{
u32 phymode;
struct ath_hal_5416 *ahp = AH5416(ah);
phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
| AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH;
if (IS_CHAN_HT40(chan)) {
phymode |= AR_PHY_FC_DYN2040_EN;
if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
(chan->chanmode == CHANNEL_G_HT40PLUS))
phymode |= AR_PHY_FC_DYN2040_PRI_CH;
if (ahp->ah_extprotspacing == ATH9K_HT_EXTPROTSPACING_25)
phymode |= AR_PHY_FC_DYN2040_EXT_CH;
}
REG_WRITE(ah, AR_PHY_TURBO, phymode);
ath9k_hw_set11nmac2040(ah, macmode);
REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
}
static void ath9k_hw_set_operating_mode(struct ath_hal *ah, int opmode)
{
u32 val;
val = REG_READ(ah, AR_STA_ID1);
val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
switch (opmode) {
case ATH9K_M_HOSTAP:
REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
| AR_STA_ID1_KSRCH_MODE);
REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
break;
case ATH9K_M_IBSS:
REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
| AR_STA_ID1_KSRCH_MODE);
REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
break;
case ATH9K_M_STA:
case ATH9K_M_MONITOR:
REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
break;
}
}
static void
ath9k_hw_set_rfmode(struct ath_hal *ah, struct ath9k_channel *chan)
{
u32 rfMode = 0;
if (chan == NULL)
return;
rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
if (!AR_SREV_9280_10_OR_LATER(ah))
rfMode |= (IS_CHAN_5GHZ(chan)) ? AR_PHY_MODE_RF5GHZ :
AR_PHY_MODE_RF2GHZ;
if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan))
rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
REG_WRITE(ah, AR_PHY_MODE, rfMode);
}
static bool ath9k_hw_set_reset(struct ath_hal *ah, int type)
{
u32 rst_flags;
u32 tmpReg;
REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
AR_RTC_FORCE_WAKE_ON_INT);
if (AR_SREV_9100(ah)) {
rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
} else {
tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
if (tmpReg &
(AR_INTR_SYNC_LOCAL_TIMEOUT |
AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
} else {
REG_WRITE(ah, AR_RC, AR_RC_AHB);
}
rst_flags = AR_RTC_RC_MAC_WARM;
if (type == ATH9K_RESET_COLD)
rst_flags |= AR_RTC_RC_MAC_COLD;
}
REG_WRITE(ah, (u16) (AR_RTC_RC), rst_flags);
udelay(50);
REG_WRITE(ah, (u16) (AR_RTC_RC), 0);
if (!ath9k_hw_wait(ah, (u16) (AR_RTC_RC), AR_RTC_RC_M, 0)) {
DPRINTF(ah->ah_sc, ATH_DBG_RESET,
"%s: RTC stuck in MAC reset\n",
__func__);
return false;
}
if (!AR_SREV_9100(ah))
REG_WRITE(ah, AR_RC, 0);
ath9k_hw_init_pll(ah, NULL);
if (AR_SREV_9100(ah))
udelay(50);
return true;
}
static bool ath9k_hw_set_reset_power_on(struct ath_hal *ah)
{
REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
AR_RTC_FORCE_WAKE_ON_INT);
REG_WRITE(ah, (u16) (AR_RTC_RESET), 0);
REG_WRITE(ah, (u16) (AR_RTC_RESET), 1);
if (!ath9k_hw_wait(ah,
AR_RTC_STATUS,
AR_RTC_STATUS_M,
AR_RTC_STATUS_ON)) {
DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: RTC not waking up\n",
__func__);
return false;
}
ath9k_hw_read_revisions(ah);
return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
}
static bool ath9k_hw_set_reset_reg(struct ath_hal *ah,
u32 type)
{
REG_WRITE(ah, AR_RTC_FORCE_WAKE,
AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
switch (type) {
case ATH9K_RESET_POWER_ON:
return ath9k_hw_set_reset_power_on(ah);
break;
case ATH9K_RESET_WARM:
case ATH9K_RESET_COLD:
return ath9k_hw_set_reset(ah, type);
break;
default:
return false;
}
}
static
struct ath9k_channel *ath9k_hw_check_chan(struct ath_hal *ah,
struct ath9k_channel *chan)
{
if (!(IS_CHAN_2GHZ(chan) ^ IS_CHAN_5GHZ(chan))) {
DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
"%s: invalid channel %u/0x%x; not marked as "
"2GHz or 5GHz\n", __func__, chan->channel,
chan->channelFlags);
return NULL;
}
if (!IS_CHAN_OFDM(chan) &&
!IS_CHAN_CCK(chan) &&
!IS_CHAN_HT20(chan) &&
!IS_CHAN_HT40(chan)) {
DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
"%s: invalid channel %u/0x%x; not marked as "
"OFDM or CCK or HT20 or HT40PLUS or HT40MINUS\n",
__func__, chan->channel, chan->channelFlags);
return NULL;
}
return ath9k_regd_check_channel(ah, chan);
}
static inline bool
ath9k_hw_get_lower_upper_index(u8 target,
u8 *pList,
u16 listSize,
u16 *indexL,
u16 *indexR)
{
u16 i;
if (target <= pList[0]) {
*indexL = *indexR = 0;
return true;
}
if (target >= pList[listSize - 1]) {
*indexL = *indexR = (u16) (listSize - 1);
return true;
}
for (i = 0; i < listSize - 1; i++) {
if (pList[i] == target) {
*indexL = *indexR = i;
return true;
}
if (target < pList[i + 1]) {
*indexL = i;
*indexR = (u16) (i + 1);
return false;
}
}
return false;
}
static int16_t ath9k_hw_get_nf_hist_mid(int16_t *nfCalBuffer)
{
int16_t nfval;
int16_t sort[ATH9K_NF_CAL_HIST_MAX];
int i, j;
for (i = 0; i < ATH9K_NF_CAL_HIST_MAX; i++)
sort[i] = nfCalBuffer[i];
for (i = 0; i < ATH9K_NF_CAL_HIST_MAX - 1; i++) {
for (j = 1; j < ATH9K_NF_CAL_HIST_MAX - i; j++) {
if (sort[j] > sort[j - 1]) {
nfval = sort[j];
sort[j] = sort[j - 1];
sort[j - 1] = nfval;
}
}
}
nfval = sort[(ATH9K_NF_CAL_HIST_MAX - 1) >> 1];
return nfval;
}
static void ath9k_hw_update_nfcal_hist_buffer(struct ath9k_nfcal_hist *h,
int16_t *nfarray)
{
int i;
for (i = 0; i < NUM_NF_READINGS; i++) {
h[i].nfCalBuffer[h[i].currIndex] = nfarray[i];
if (++h[i].currIndex >= ATH9K_NF_CAL_HIST_MAX)
h[i].currIndex = 0;
if (h[i].invalidNFcount > 0) {
if (nfarray[i] < AR_PHY_CCA_MIN_BAD_VALUE
|| nfarray[i] > AR_PHY_CCA_MAX_HIGH_VALUE) {
h[i].invalidNFcount = ATH9K_NF_CAL_HIST_MAX;
} else {
h[i].invalidNFcount--;
h[i].privNF = nfarray[i];
}
} else {
h[i].privNF =
ath9k_hw_get_nf_hist_mid(h[i].nfCalBuffer);
}
}
return;
}
static void ar5416GetNoiseFloor(struct ath_hal *ah,
int16_t nfarray[NUM_NF_READINGS])
{
int16_t nf;
if (AR_SREV_9280_10_OR_LATER(ah))
nf = MS(REG_READ(ah, AR_PHY_CCA), AR9280_PHY_MINCCA_PWR);
else
nf = MS(REG_READ(ah, AR_PHY_CCA), AR_PHY_MINCCA_PWR);
if (nf & 0x100)
nf = 0 - ((nf ^ 0x1ff) + 1);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"NF calibrated [ctl] [chain 0] is %d\n", nf);
nfarray[0] = nf;
if (AR_SREV_9280_10_OR_LATER(ah))
nf = MS(REG_READ(ah, AR_PHY_CH1_CCA),
AR9280_PHY_CH1_MINCCA_PWR);
else
nf = MS(REG_READ(ah, AR_PHY_CH1_CCA),
AR_PHY_CH1_MINCCA_PWR);
if (nf & 0x100)
nf = 0 - ((nf ^ 0x1ff) + 1);
DPRINTF(ah->ah_sc, ATH_DBG_NF_CAL,
"NF calibrated [ctl] [chain 1] is %d\n", nf);
nfarray[1] = nf;
if (!AR_SREV_9280(ah)) {
nf = MS(REG_READ(ah, AR_PHY_CH2_CCA),
AR_PHY_CH2_MINCCA_PWR);
if (nf & 0x100)
nf = 0 - ((nf ^ 0x1ff) + 1);
DPRINTF(ah->ah_sc, ATH_DBG_NF_CAL,
"NF calibrated [ctl] [chain 2] is %d\n", nf);
nfarray[2] = nf;
}
if (AR_SREV_9280_10_OR_LATER(ah))
nf = MS(REG_READ(ah, AR_PHY_EXT_CCA),
AR9280_PHY_EXT_MINCCA_PWR);
else
nf = MS(REG_READ(ah, AR_PHY_EXT_CCA),
AR_PHY_EXT_MINCCA_PWR);
if (nf & 0x100)
nf = 0 - ((nf ^ 0x1ff) + 1);
DPRINTF(ah->ah_sc, ATH_DBG_NF_CAL,
"NF calibrated [ext] [chain 0] is %d\n", nf);
nfarray[3] = nf;
if (AR_SREV_9280_10_OR_LATER(ah))
nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA),
AR9280_PHY_CH1_EXT_MINCCA_PWR);
else
nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA),
AR_PHY_CH1_EXT_MINCCA_PWR);
if (nf & 0x100)
nf = 0 - ((nf ^ 0x1ff) + 1);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"NF calibrated [ext] [chain 1] is %d\n", nf);
nfarray[4] = nf;
if (!AR_SREV_9280(ah)) {
nf = MS(REG_READ(ah, AR_PHY_CH2_EXT_CCA),
AR_PHY_CH2_EXT_MINCCA_PWR);
if (nf & 0x100)
nf = 0 - ((nf ^ 0x1ff) + 1);
DPRINTF(ah->ah_sc, ATH_DBG_NF_CAL,
"NF calibrated [ext] [chain 2] is %d\n", nf);
nfarray[5] = nf;
}
}
static bool
getNoiseFloorThresh(struct ath_hal *ah,
const struct ath9k_channel *chan,
int16_t *nft)
{
struct ath_hal_5416 *ahp = AH5416(ah);
switch (chan->chanmode) {
case CHANNEL_A:
case CHANNEL_A_HT20:
case CHANNEL_A_HT40PLUS:
case CHANNEL_A_HT40MINUS:
*nft = (int16_t) ath9k_hw_get_eeprom(ahp, EEP_NFTHRESH_5);
break;
case CHANNEL_B:
case CHANNEL_G:
case CHANNEL_G_HT20:
case CHANNEL_G_HT40PLUS:
case CHANNEL_G_HT40MINUS:
*nft = (int16_t) ath9k_hw_get_eeprom(ahp, EEP_NFTHRESH_2);
break;
default:
DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
"%s: invalid channel flags 0x%x\n", __func__,
chan->channelFlags);
return false;
}
return true;
}
static void ath9k_hw_start_nfcal(struct ath_hal *ah)
{
REG_SET_BIT(ah, AR_PHY_AGC_CONTROL,
AR_PHY_AGC_CONTROL_ENABLE_NF);
REG_SET_BIT(ah, AR_PHY_AGC_CONTROL,
AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
}
static void
ath9k_hw_loadnf(struct ath_hal *ah, struct ath9k_channel *chan)
{
struct ath9k_nfcal_hist *h;
int i, j;
int32_t val;
const u32 ar5416_cca_regs[6] = {
AR_PHY_CCA,
AR_PHY_CH1_CCA,
AR_PHY_CH2_CCA,
AR_PHY_EXT_CCA,
AR_PHY_CH1_EXT_CCA,
AR_PHY_CH2_EXT_CCA
};
u8 chainmask;
if (AR_SREV_9280(ah))
chainmask = 0x1B;
else
chainmask = 0x3F;
#ifdef ATH_NF_PER_CHAN
h = chan->nfCalHist;
#else
h = ah->nfCalHist;
#endif
for (i = 0; i < NUM_NF_READINGS; i++) {
if (chainmask & (1 << i)) {
val = REG_READ(ah, ar5416_cca_regs[i]);
val &= 0xFFFFFE00;
val |= (((u32) (h[i].privNF) << 1) & 0x1ff);
REG_WRITE(ah, ar5416_cca_regs[i], val);
}
}
REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL,
AR_PHY_AGC_CONTROL_ENABLE_NF);
REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL,
AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
for (j = 0; j < 1000; j++) {
if ((REG_READ(ah, AR_PHY_AGC_CONTROL) &
AR_PHY_AGC_CONTROL_NF) == 0)
break;
udelay(10);
}
for (i = 0; i < NUM_NF_READINGS; i++) {
if (chainmask & (1 << i)) {
val = REG_READ(ah, ar5416_cca_regs[i]);
val &= 0xFFFFFE00;
val |= (((u32) (-50) << 1) & 0x1ff);
REG_WRITE(ah, ar5416_cca_regs[i], val);
}
}
}
static int16_t ath9k_hw_getnf(struct ath_hal *ah,
struct ath9k_channel *chan)
{
int16_t nf, nfThresh;
int16_t nfarray[NUM_NF_READINGS] = { 0 };
struct ath9k_nfcal_hist *h;
u8 chainmask;
if (AR_SREV_9280(ah))
chainmask = 0x1B;
else
chainmask = 0x3F;
chan->channelFlags &= (~CHANNEL_CW_INT);
if (REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) {
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"%s: NF did not complete in calibration window\n",
__func__);
nf = 0;
chan->rawNoiseFloor = nf;
return chan->rawNoiseFloor;
} else {
ar5416GetNoiseFloor(ah, nfarray);
nf = nfarray[0];
if (getNoiseFloorThresh(ah, chan, &nfThresh)
&& nf > nfThresh) {
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"%s: noise floor failed detected; "
"detected %d, threshold %d\n", __func__,
nf, nfThresh);
chan->channelFlags |= CHANNEL_CW_INT;
}
}
#ifdef ATH_NF_PER_CHAN
h = chan->nfCalHist;
#else
h = ah->nfCalHist;
#endif
ath9k_hw_update_nfcal_hist_buffer(h, nfarray);
chan->rawNoiseFloor = h[0].privNF;
return chan->rawNoiseFloor;
}
static void ath9k_hw_update_mibstats(struct ath_hal *ah,
struct ath9k_mib_stats *stats)
{
stats->ackrcv_bad += REG_READ(ah, AR_ACK_FAIL);
stats->rts_bad += REG_READ(ah, AR_RTS_FAIL);
stats->fcs_bad += REG_READ(ah, AR_FCS_FAIL);
stats->rts_good += REG_READ(ah, AR_RTS_OK);
stats->beacons += REG_READ(ah, AR_BEACON_CNT);
}
static void ath9k_enable_mib_counters(struct ath_hal *ah)
{
struct ath_hal_5416 *ahp = AH5416(ah);
DPRINTF(ah->ah_sc, ATH_DBG_ANI, "Enable mib counters\n");
ath9k_hw_update_mibstats(ah, &ahp->ah_mibStats);
REG_WRITE(ah, AR_FILT_OFDM, 0);
REG_WRITE(ah, AR_FILT_CCK, 0);
REG_WRITE(ah, AR_MIBC,
~(AR_MIBC_COW | AR_MIBC_FMC | AR_MIBC_CMC | AR_MIBC_MCS)
& 0x0f);
REG_WRITE(ah, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING);
REG_WRITE(ah, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING);
}
static void ath9k_hw_disable_mib_counters(struct ath_hal *ah)
{
struct ath_hal_5416 *ahp = AH5416(ah);
DPRINTF(ah->ah_sc, ATH_DBG_ANI, "Disabling MIB counters\n");
REG_WRITE(ah, AR_MIBC, AR_MIBC_FMC | AR_MIBC_CMC);
ath9k_hw_update_mibstats(ah, &ahp->ah_mibStats);
REG_WRITE(ah, AR_FILT_OFDM, 0);
REG_WRITE(ah, AR_FILT_CCK, 0);
}
static int ath9k_hw_get_ani_channel_idx(struct ath_hal *ah,
struct ath9k_channel *chan)
{
struct ath_hal_5416 *ahp = AH5416(ah);
int i;
for (i = 0; i < ARRAY_SIZE(ahp->ah_ani); i++) {
if (ahp->ah_ani[i].c.channel == chan->channel)
return i;
if (ahp->ah_ani[i].c.channel == 0) {
ahp->ah_ani[i].c.channel = chan->channel;
ahp->ah_ani[i].c.channelFlags = chan->channelFlags;
return i;
}
}
DPRINTF(ah->ah_sc, ATH_DBG_ANI,
"No more channel states left. Using channel 0\n");
return 0;
}
static void ath9k_hw_ani_attach(struct ath_hal *ah)
{
struct ath_hal_5416 *ahp = AH5416(ah);
int i;
ahp->ah_hasHwPhyCounters = 1;
memset(ahp->ah_ani, 0, sizeof(ahp->ah_ani));
for (i = 0; i < ARRAY_SIZE(ahp->ah_ani); i++) {
ahp->ah_ani[i].ofdmTrigHigh = ATH9K_ANI_OFDM_TRIG_HIGH;
ahp->ah_ani[i].ofdmTrigLow = ATH9K_ANI_OFDM_TRIG_LOW;
ahp->ah_ani[i].cckTrigHigh = ATH9K_ANI_CCK_TRIG_HIGH;
ahp->ah_ani[i].cckTrigLow = ATH9K_ANI_CCK_TRIG_LOW;
ahp->ah_ani[i].rssiThrHigh = ATH9K_ANI_RSSI_THR_HIGH;
ahp->ah_ani[i].rssiThrLow = ATH9K_ANI_RSSI_THR_LOW;
ahp->ah_ani[i].ofdmWeakSigDetectOff =
!ATH9K_ANI_USE_OFDM_WEAK_SIG;
ahp->ah_ani[i].cckWeakSigThreshold =
ATH9K_ANI_CCK_WEAK_SIG_THR;
ahp->ah_ani[i].spurImmunityLevel = ATH9K_ANI_SPUR_IMMUNE_LVL;
ahp->ah_ani[i].firstepLevel = ATH9K_ANI_FIRSTEP_LVL;
if (ahp->ah_hasHwPhyCounters) {
ahp->ah_ani[i].ofdmPhyErrBase =
AR_PHY_COUNTMAX - ATH9K_ANI_OFDM_TRIG_HIGH;
ahp->ah_ani[i].cckPhyErrBase =
AR_PHY_COUNTMAX - ATH9K_ANI_CCK_TRIG_HIGH;
}
}
if (ahp->ah_hasHwPhyCounters) {
DPRINTF(ah->ah_sc, ATH_DBG_ANI,
"Setting OfdmErrBase = 0x%08x\n",
ahp->ah_ani[0].ofdmPhyErrBase);
DPRINTF(ah->ah_sc, ATH_DBG_ANI, "Setting cckErrBase = 0x%08x\n",
ahp->ah_ani[0].cckPhyErrBase);
REG_WRITE(ah, AR_PHY_ERR_1, ahp->ah_ani[0].ofdmPhyErrBase);
REG_WRITE(ah, AR_PHY_ERR_2, ahp->ah_ani[0].cckPhyErrBase);
ath9k_enable_mib_counters(ah);
}
ahp->ah_aniPeriod = ATH9K_ANI_PERIOD;
if (ah->ah_config.enable_ani)
ahp->ah_procPhyErr |= HAL_PROCESS_ANI;
}
static void ath9k_hw_ani_setup(struct ath_hal *ah)
{
struct ath_hal_5416 *ahp = AH5416(ah);
int i;
const int totalSizeDesired[] = { -55, -55, -55, -55, -62 };
const int coarseHigh[] = { -14, -14, -14, -14, -12 };
const int coarseLow[] = { -64, -64, -64, -64, -70 };
const int firpwr[] = { -78, -78, -78, -78, -80 };
for (i = 0; i < 5; i++) {
ahp->ah_totalSizeDesired[i] = totalSizeDesired[i];
ahp->ah_coarseHigh[i] = coarseHigh[i];
ahp->ah_coarseLow[i] = coarseLow[i];
ahp->ah_firpwr[i] = firpwr[i];
}
}
static void ath9k_hw_ani_detach(struct ath_hal *ah)
{
struct ath_hal_5416 *ahp = AH5416(ah);
DPRINTF(ah->ah_sc, ATH_DBG_ANI, "Detaching Ani\n");
if (ahp->ah_hasHwPhyCounters) {
ath9k_hw_disable_mib_counters(ah);
REG_WRITE(ah, AR_PHY_ERR_1, 0);
REG_WRITE(ah, AR_PHY_ERR_2, 0);
}
}
static bool ath9k_hw_ani_control(struct ath_hal *ah,
enum ath9k_ani_cmd cmd, int param)
{
struct ath_hal_5416 *ahp = AH5416(ah);
struct ar5416AniState *aniState = ahp->ah_curani;
switch (cmd & ahp->ah_ani_function) {
case ATH9K_ANI_NOISE_IMMUNITY_LEVEL:{
u32 level = param;
if (level >= ARRAY_SIZE(ahp->ah_totalSizeDesired)) {
DPRINTF(ah->ah_sc, ATH_DBG_ANI,
"%s: level out of range (%u > %u)\n",
__func__, level,
(unsigned) ARRAY_SIZE(ahp->
ah_totalSizeDesired));
return false;
}
REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
AR_PHY_DESIRED_SZ_TOT_DES,
ahp->ah_totalSizeDesired[level]);
REG_RMW_FIELD(ah, AR_PHY_AGC_CTL1,
AR_PHY_AGC_CTL1_COARSE_LOW,
ahp->ah_coarseLow[level]);
REG_RMW_FIELD(ah, AR_PHY_AGC_CTL1,
AR_PHY_AGC_CTL1_COARSE_HIGH,
ahp->ah_coarseHigh[level]);
REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
AR_PHY_FIND_SIG_FIRPWR,
ahp->ah_firpwr[level]);
if (level > aniState->noiseImmunityLevel)
ahp->ah_stats.ast_ani_niup++;
else if (level < aniState->noiseImmunityLevel)
ahp->ah_stats.ast_ani_nidown++;
aniState->noiseImmunityLevel = level;
break;
}
case ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION:{
const int m1ThreshLow[] = { 127, 50 };
const int m2ThreshLow[] = { 127, 40 };
const int m1Thresh[] = { 127, 0x4d };
const int m2Thresh[] = { 127, 0x40 };
const int m2CountThr[] = { 31, 16 };
const int m2CountThrLow[] = { 63, 48 };
u32 on = param ? 1 : 0;
REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
AR_PHY_SFCORR_LOW_M1_THRESH_LOW,
m1ThreshLow[on]);
REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
AR_PHY_SFCORR_LOW_M2_THRESH_LOW,
m2ThreshLow[on]);
REG_RMW_FIELD(ah, AR_PHY_SFCORR,
AR_PHY_SFCORR_M1_THRESH,
m1Thresh[on]);
REG_RMW_FIELD(ah, AR_PHY_SFCORR,
AR_PHY_SFCORR_M2_THRESH,
m2Thresh[on]);
REG_RMW_FIELD(ah, AR_PHY_SFCORR,
AR_PHY_SFCORR_M2COUNT_THR,
m2CountThr[on]);
REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW,
m2CountThrLow[on]);
REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
AR_PHY_SFCORR_EXT_M1_THRESH_LOW,
m1ThreshLow[on]);
REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
AR_PHY_SFCORR_EXT_M2_THRESH_LOW,
m2ThreshLow[on]);
REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
AR_PHY_SFCORR_EXT_M1_THRESH,
m1Thresh[on]);
REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
AR_PHY_SFCORR_EXT_M2_THRESH,
m2Thresh[on]);
if (on)
REG_SET_BIT(ah, AR_PHY_SFCORR_LOW,
AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
else
REG_CLR_BIT(ah, AR_PHY_SFCORR_LOW,
AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
if (!on != aniState->ofdmWeakSigDetectOff) {
if (on)
ahp->ah_stats.ast_ani_ofdmon++;
else
ahp->ah_stats.ast_ani_ofdmoff++;
aniState->ofdmWeakSigDetectOff = !on;
}
break;
}
case ATH9K_ANI_CCK_WEAK_SIGNAL_THR:{
const int weakSigThrCck[] = { 8, 6 };
u32 high = param ? 1 : 0;
REG_RMW_FIELD(ah, AR_PHY_CCK_DETECT,
AR_PHY_CCK_DETECT_WEAK_SIG_THR_CCK,
weakSigThrCck[high]);
if (high != aniState->cckWeakSigThreshold) {
if (high)
ahp->ah_stats.ast_ani_cckhigh++;
else
ahp->ah_stats.ast_ani_ccklow++;
aniState->cckWeakSigThreshold = high;
}
break;
}
case ATH9K_ANI_FIRSTEP_LEVEL:{
const int firstep[] = { 0, 4, 8 };
u32 level = param;
if (level >= ARRAY_SIZE(firstep)) {
DPRINTF(ah->ah_sc, ATH_DBG_ANI,
"%s: level out of range (%u > %u)\n",
__func__, level,
(unsigned) ARRAY_SIZE(firstep));
return false;
}
REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
AR_PHY_FIND_SIG_FIRSTEP,
firstep[level]);
if (level > aniState->firstepLevel)
ahp->ah_stats.ast_ani_stepup++;
else if (level < aniState->firstepLevel)
ahp->ah_stats.ast_ani_stepdown++;
aniState->firstepLevel = level;
break;
}
case ATH9K_ANI_SPUR_IMMUNITY_LEVEL:{
const int cycpwrThr1[] =
{ 2, 4, 6, 8, 10, 12, 14, 16 };
u32 level = param;
if (level >= ARRAY_SIZE(cycpwrThr1)) {
DPRINTF(ah->ah_sc, ATH_DBG_ANI,
"%s: level out of range (%u > %u)\n",
__func__, level,
(unsigned)
ARRAY_SIZE(cycpwrThr1));
return false;
}
REG_RMW_FIELD(ah, AR_PHY_TIMING5,
AR_PHY_TIMING5_CYCPWR_THR1,
cycpwrThr1[level]);
if (level > aniState->spurImmunityLevel)
ahp->ah_stats.ast_ani_spurup++;
else if (level < aniState->spurImmunityLevel)
ahp->ah_stats.ast_ani_spurdown++;
aniState->spurImmunityLevel = level;
break;
}
case ATH9K_ANI_PRESENT:
break;
default:
DPRINTF(ah->ah_sc, ATH_DBG_ANI,
"%s: invalid cmd %u\n", __func__, cmd);
return false;
}
DPRINTF(ah->ah_sc, ATH_DBG_ANI, "%s: ANI parameters:\n", __func__);
DPRINTF(ah->ah_sc, ATH_DBG_ANI,
"noiseImmunityLevel=%d, spurImmunityLevel=%d, "
"ofdmWeakSigDetectOff=%d\n",
aniState->noiseImmunityLevel, aniState->spurImmunityLevel,
!aniState->ofdmWeakSigDetectOff);
DPRINTF(ah->ah_sc, ATH_DBG_ANI,
"cckWeakSigThreshold=%d, "
"firstepLevel=%d, listenTime=%d\n",
aniState->cckWeakSigThreshold, aniState->firstepLevel,
aniState->listenTime);
DPRINTF(ah->ah_sc, ATH_DBG_ANI,
"cycleCount=%d, ofdmPhyErrCount=%d, cckPhyErrCount=%d\n\n",
aniState->cycleCount, aniState->ofdmPhyErrCount,
aniState->cckPhyErrCount);
return true;
}
static void ath9k_ani_restart(struct ath_hal *ah)
{
struct ath_hal_5416 *ahp = AH5416(ah);
struct ar5416AniState *aniState;
if (!DO_ANI(ah))
return;
aniState = ahp->ah_curani;
aniState->listenTime = 0;
if (ahp->ah_hasHwPhyCounters) {
if (aniState->ofdmTrigHigh > AR_PHY_COUNTMAX) {
aniState->ofdmPhyErrBase = 0;
DPRINTF(ah->ah_sc, ATH_DBG_ANI,
"OFDM Trigger is too high for hw counters\n");
} else {
aniState->ofdmPhyErrBase =
AR_PHY_COUNTMAX - aniState->ofdmTrigHigh;
}
if (aniState->cckTrigHigh > AR_PHY_COUNTMAX) {
aniState->cckPhyErrBase = 0;
DPRINTF(ah->ah_sc, ATH_DBG_ANI,
"CCK Trigger is too high for hw counters\n");
} else {
aniState->cckPhyErrBase =
AR_PHY_COUNTMAX - aniState->cckTrigHigh;
}
DPRINTF(ah->ah_sc, ATH_DBG_ANI,
"%s: Writing ofdmbase=%u cckbase=%u\n",
__func__, aniState->ofdmPhyErrBase,
aniState->cckPhyErrBase);
REG_WRITE(ah, AR_PHY_ERR_1, aniState->ofdmPhyErrBase);
REG_WRITE(ah, AR_PHY_ERR_2, aniState->cckPhyErrBase);
REG_WRITE(ah, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING);
REG_WRITE(ah, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING);
ath9k_hw_update_mibstats(ah, &ahp->ah_mibStats);
}
aniState->ofdmPhyErrCount = 0;
aniState->cckPhyErrCount = 0;
}
static void ath9k_hw_ani_ofdm_err_trigger(struct ath_hal *ah)
{
struct ath_hal_5416 *ahp = AH5416(ah);
struct ath9k_channel *chan = ah->ah_curchan;
struct ar5416AniState *aniState;
enum wireless_mode mode;
int32_t rssi;
if (!DO_ANI(ah))
return;
aniState = ahp->ah_curani;
if (aniState->noiseImmunityLevel < HAL_NOISE_IMMUNE_MAX) {
if (ath9k_hw_ani_control(ah, ATH9K_ANI_NOISE_IMMUNITY_LEVEL,
aniState->noiseImmunityLevel + 1)) {
return;
}
}
if (aniState->spurImmunityLevel < HAL_SPUR_IMMUNE_MAX) {
if (ath9k_hw_ani_control(ah, ATH9K_ANI_SPUR_IMMUNITY_LEVEL,
aniState->spurImmunityLevel + 1)) {
return;
}
}
if (ah->ah_opmode == ATH9K_M_HOSTAP) {
if (aniState->firstepLevel < HAL_FIRST_STEP_MAX) {
ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL,
aniState->firstepLevel + 1);
}
return;
}
rssi = BEACON_RSSI(ahp);
if (rssi > aniState->rssiThrHigh) {
if (!aniState->ofdmWeakSigDetectOff) {
if (ath9k_hw_ani_control(ah,
ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION,
false)) {
ath9k_hw_ani_control(ah,
ATH9K_ANI_SPUR_IMMUNITY_LEVEL,
0);
return;
}
}
if (aniState->firstepLevel < HAL_FIRST_STEP_MAX) {
ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL,
aniState->firstepLevel + 1);
return;
}
} else if (rssi > aniState->rssiThrLow) {
if (aniState->ofdmWeakSigDetectOff)
ath9k_hw_ani_control(ah,
ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION,
true);
if (aniState->firstepLevel < HAL_FIRST_STEP_MAX)
ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL,
aniState->firstepLevel + 1);
return;
} else {
mode = ath9k_hw_chan2wmode(ah, chan);
if (mode == ATH9K_MODE_11G || mode == ATH9K_MODE_11B) {
if (!aniState->ofdmWeakSigDetectOff)
ath9k_hw_ani_control(ah,
ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION,
false);
if (aniState->firstepLevel > 0)
ath9k_hw_ani_control(ah,
ATH9K_ANI_FIRSTEP_LEVEL,
0);
return;
}
}
}
static void ath9k_hw_ani_cck_err_trigger(struct ath_hal *ah)
{
struct ath_hal_5416 *ahp = AH5416(ah);
struct ath9k_channel *chan = ah->ah_curchan;
struct ar5416AniState *aniState;
enum wireless_mode mode;
int32_t rssi;
if (!DO_ANI(ah))
return;
aniState = ahp->ah_curani;
if (aniState->noiseImmunityLevel < HAL_NOISE_IMMUNE_MAX) {
if (ath9k_hw_ani_control(ah, ATH9K_ANI_NOISE_IMMUNITY_LEVEL,
aniState->noiseImmunityLevel + 1)) {
return;
}
}
if (ah->ah_opmode == ATH9K_M_HOSTAP) {
if (aniState->firstepLevel < HAL_FIRST_STEP_MAX) {
ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL,
aniState->firstepLevel + 1);
}
return;
}
rssi = BEACON_RSSI(ahp);
if (rssi > aniState->rssiThrLow) {
if (aniState->firstepLevel < HAL_FIRST_STEP_MAX)
ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL,
aniState->firstepLevel + 1);
} else {
mode = ath9k_hw_chan2wmode(ah, chan);
if (mode == ATH9K_MODE_11G || mode == ATH9K_MODE_11B) {
if (aniState->firstepLevel > 0)
ath9k_hw_ani_control(ah,
ATH9K_ANI_FIRSTEP_LEVEL,
0);
}
}
}
static void ath9k_ani_reset(struct ath_hal *ah)
{
struct ath_hal_5416 *ahp = AH5416(ah);
struct ar5416AniState *aniState;
struct ath9k_channel *chan = ah->ah_curchan;
int index;
if (!DO_ANI(ah))
return;
index = ath9k_hw_get_ani_channel_idx(ah, chan);
aniState = &ahp->ah_ani[index];
ahp->ah_curani = aniState;
if (DO_ANI(ah) && ah->ah_opmode != ATH9K_M_STA
&& ah->ah_opmode != ATH9K_M_IBSS) {
DPRINTF(ah->ah_sc, ATH_DBG_ANI,
"%s: Reset ANI state opmode %u\n", __func__,
ah->ah_opmode);
ahp->ah_stats.ast_ani_reset++;
ath9k_hw_ani_control(ah, ATH9K_ANI_NOISE_IMMUNITY_LEVEL, 0);
ath9k_hw_ani_control(ah, ATH9K_ANI_SPUR_IMMUNITY_LEVEL, 0);
ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL, 0);
ath9k_hw_ani_control(ah,
ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION,
!ATH9K_ANI_USE_OFDM_WEAK_SIG);
ath9k_hw_ani_control(ah, ATH9K_ANI_CCK_WEAK_SIGNAL_THR,
ATH9K_ANI_CCK_WEAK_SIG_THR);
ath9k_hw_setrxfilter(ah,
ath9k_hw_getrxfilter(ah) |
ATH9K_RX_FILTER_PHYERR);
if (ah->ah_opmode == ATH9K_M_HOSTAP) {
ahp->ah_curani->ofdmTrigHigh =
ah->ah_config.ofdm_trig_high;
ahp->ah_curani->ofdmTrigLow =
ah->ah_config.ofdm_trig_low;
ahp->ah_curani->cckTrigHigh =
ah->ah_config.cck_trig_high;
ahp->ah_curani->cckTrigLow =
ah->ah_config.cck_trig_low;
}
ath9k_ani_restart(ah);
return;
}
if (aniState->noiseImmunityLevel != 0)
ath9k_hw_ani_control(ah, ATH9K_ANI_NOISE_IMMUNITY_LEVEL,
aniState->noiseImmunityLevel);
if (aniState->spurImmunityLevel != 0)
ath9k_hw_ani_control(ah, ATH9K_ANI_SPUR_IMMUNITY_LEVEL,
aniState->spurImmunityLevel);
if (aniState->ofdmWeakSigDetectOff)
ath9k_hw_ani_control(ah,
ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION,
!aniState->ofdmWeakSigDetectOff);
if (aniState->cckWeakSigThreshold)
ath9k_hw_ani_control(ah, ATH9K_ANI_CCK_WEAK_SIGNAL_THR,
aniState->cckWeakSigThreshold);
if (aniState->firstepLevel != 0)
ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL,
aniState->firstepLevel);
if (ahp->ah_hasHwPhyCounters) {
ath9k_hw_setrxfilter(ah,
ath9k_hw_getrxfilter(ah) &
~ATH9K_RX_FILTER_PHYERR);
ath9k_ani_restart(ah);
REG_WRITE(ah, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING);
REG_WRITE(ah, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING);
} else {
ath9k_ani_restart(ah);
ath9k_hw_setrxfilter(ah,
ath9k_hw_getrxfilter(ah) |
ATH9K_RX_FILTER_PHYERR);
}
}
/*
* Process a MIB interrupt. We may potentially be invoked because
* any of the MIB counters overflow/trigger so don't assume we're
* here because a PHY error counter triggered.
*/
void ath9k_hw_procmibevent(struct ath_hal *ah,
const struct ath9k_node_stats *stats)
{
struct ath_hal_5416 *ahp = AH5416(ah);
u32 phyCnt1, phyCnt2;
DPRINTF(ah->ah_sc, ATH_DBG_ANI, "Processing Mib Intr\n");
/* Reset these counters regardless */
REG_WRITE(ah, AR_FILT_OFDM, 0);
REG_WRITE(ah, AR_FILT_CCK, 0);
if (!(REG_READ(ah, AR_SLP_MIB_CTRL) & AR_SLP_MIB_PENDING))
REG_WRITE(ah, AR_SLP_MIB_CTRL, AR_SLP_MIB_CLEAR);
/* Clear the mib counters and save them in the stats */
ath9k_hw_update_mibstats(ah, &ahp->ah_mibStats);
ahp->ah_stats.ast_nodestats = *stats;
if (!DO_ANI(ah))
return;
/* NB: these are not reset-on-read */
phyCnt1 = REG_READ(ah, AR_PHY_ERR_1);
phyCnt2 = REG_READ(ah, AR_PHY_ERR_2);
if (((phyCnt1 & AR_MIBCNT_INTRMASK) == AR_MIBCNT_INTRMASK) ||
((phyCnt2 & AR_MIBCNT_INTRMASK) == AR_MIBCNT_INTRMASK)) {
struct ar5416AniState *aniState = ahp->ah_curani;
u32 ofdmPhyErrCnt, cckPhyErrCnt;
/* NB: only use ast_ani_*errs with AH_PRIVATE_DIAG */
ofdmPhyErrCnt = phyCnt1 - aniState->ofdmPhyErrBase;
ahp->ah_stats.ast_ani_ofdmerrs +=
ofdmPhyErrCnt - aniState->ofdmPhyErrCount;
aniState->ofdmPhyErrCount = ofdmPhyErrCnt;
cckPhyErrCnt = phyCnt2 - aniState->cckPhyErrBase;
ahp->ah_stats.ast_ani_cckerrs +=
cckPhyErrCnt - aniState->cckPhyErrCount;
aniState->cckPhyErrCount = cckPhyErrCnt;
/*
* NB: figure out which counter triggered. If both
* trigger we'll only deal with one as the processing
* clobbers the error counter so the trigger threshold
* check will never be true.
*/
if (aniState->ofdmPhyErrCount > aniState->ofdmTrigHigh)
ath9k_hw_ani_ofdm_err_trigger(ah);
if (aniState->cckPhyErrCount > aniState->cckTrigHigh)
ath9k_hw_ani_cck_err_trigger(ah);
/* NB: always restart to insure the h/w counters are reset */
ath9k_ani_restart(ah);
}
}
static void ath9k_hw_ani_lower_immunity(struct ath_hal *ah)
{
struct ath_hal_5416 *ahp = AH5416(ah);
struct ar5416AniState *aniState;
int32_t rssi;
aniState = ahp->ah_curani;
if (ah->ah_opmode == ATH9K_M_HOSTAP) {
if (aniState->firstepLevel > 0) {
if (ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL,
aniState->firstepLevel - 1)) {
return;
}
}
} else {
rssi = BEACON_RSSI(ahp);
if (rssi > aniState->rssiThrHigh) {
/* XXX: Handle me */
} else if (rssi > aniState->rssiThrLow) {
if (aniState->ofdmWeakSigDetectOff) {
if (ath9k_hw_ani_control(ah,
ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION,
true) ==
true) {
return;
}
}
if (aniState->firstepLevel > 0) {
if (ath9k_hw_ani_control
(ah, ATH9K_ANI_FIRSTEP_LEVEL,
aniState->firstepLevel - 1) ==
true) {
return;
}
}
} else {
if (aniState->firstepLevel > 0) {
if (ath9k_hw_ani_control
(ah, ATH9K_ANI_FIRSTEP_LEVEL,
aniState->firstepLevel - 1) ==
true) {
return;
}
}
}
}
if (aniState->spurImmunityLevel > 0) {
if (ath9k_hw_ani_control(ah, ATH9K_ANI_SPUR_IMMUNITY_LEVEL,
aniState->spurImmunityLevel - 1)) {
return;
}
}
if (aniState->noiseImmunityLevel > 0) {
ath9k_hw_ani_control(ah, ATH9K_ANI_NOISE_IMMUNITY_LEVEL,
aniState->noiseImmunityLevel - 1);
return;
}
}
static int32_t ath9k_hw_ani_get_listen_time(struct ath_hal *ah)
{
struct ath_hal_5416 *ahp = AH5416(ah);
struct ar5416AniState *aniState;
u32 txFrameCount, rxFrameCount, cycleCount;
int32_t listenTime;
txFrameCount = REG_READ(ah, AR_TFCNT);
rxFrameCount = REG_READ(ah, AR_RFCNT);
cycleCount = REG_READ(ah, AR_CCCNT);
aniState = ahp->ah_curani;
if (aniState->cycleCount == 0 || aniState->cycleCount > cycleCount) {
listenTime = 0;
ahp->ah_stats.ast_ani_lzero++;
} else {
int32_t ccdelta = cycleCount - aniState->cycleCount;
int32_t rfdelta = rxFrameCount - aniState->rxFrameCount;
int32_t tfdelta = txFrameCount - aniState->txFrameCount;
listenTime = (ccdelta - rfdelta - tfdelta) / 44000;
}
aniState->cycleCount = cycleCount;
aniState->txFrameCount = txFrameCount;
aniState->rxFrameCount = rxFrameCount;
return listenTime;
}
void ath9k_hw_ani_monitor(struct ath_hal *ah,
const struct ath9k_node_stats *stats,
struct ath9k_channel *chan)
{
struct ath_hal_5416 *ahp = AH5416(ah);
struct ar5416AniState *aniState;
int32_t listenTime;
aniState = ahp->ah_curani;
ahp->ah_stats.ast_nodestats = *stats;
listenTime = ath9k_hw_ani_get_listen_time(ah);
if (listenTime < 0) {
ahp->ah_stats.ast_ani_lneg++;
ath9k_ani_restart(ah);
return;
}
aniState->listenTime += listenTime;
if (ahp->ah_hasHwPhyCounters) {
u32 phyCnt1, phyCnt2;
u32 ofdmPhyErrCnt, cckPhyErrCnt;
ath9k_hw_update_mibstats(ah, &ahp->ah_mibStats);
phyCnt1 = REG_READ(ah, AR_PHY_ERR_1);
phyCnt2 = REG_READ(ah, AR_PHY_ERR_2);
if (phyCnt1 < aniState->ofdmPhyErrBase ||
phyCnt2 < aniState->cckPhyErrBase) {
if (phyCnt1 < aniState->ofdmPhyErrBase) {
DPRINTF(ah->ah_sc, ATH_DBG_ANI,
"%s: phyCnt1 0x%x, resetting "
"counter value to 0x%x\n",
__func__, phyCnt1,
aniState->ofdmPhyErrBase);
REG_WRITE(ah, AR_PHY_ERR_1,
aniState->ofdmPhyErrBase);
REG_WRITE(ah, AR_PHY_ERR_MASK_1,
AR_PHY_ERR_OFDM_TIMING);
}
if (phyCnt2 < aniState->cckPhyErrBase) {
DPRINTF(ah->ah_sc, ATH_DBG_ANI,
"%s: phyCnt2 0x%x, resetting "
"counter value to 0x%x\n",
__func__, phyCnt2,
aniState->cckPhyErrBase);
REG_WRITE(ah, AR_PHY_ERR_2,
aniState->cckPhyErrBase);
REG_WRITE(ah, AR_PHY_ERR_MASK_2,
AR_PHY_ERR_CCK_TIMING);
}
return;
}
ofdmPhyErrCnt = phyCnt1 - aniState->ofdmPhyErrBase;
ahp->ah_stats.ast_ani_ofdmerrs +=
ofdmPhyErrCnt - aniState->ofdmPhyErrCount;
aniState->ofdmPhyErrCount = ofdmPhyErrCnt;
cckPhyErrCnt = phyCnt2 - aniState->cckPhyErrBase;
ahp->ah_stats.ast_ani_cckerrs +=
cckPhyErrCnt - aniState->cckPhyErrCount;
aniState->cckPhyErrCount = cckPhyErrCnt;
}
if (!DO_ANI(ah))
return;
if (aniState->listenTime > 5 * ahp->ah_aniPeriod) {
if (aniState->ofdmPhyErrCount <= aniState->listenTime *
aniState->ofdmTrigLow / 1000 &&
aniState->cckPhyErrCount <= aniState->listenTime *
aniState->cckTrigLow / 1000)
ath9k_hw_ani_lower_immunity(ah);
ath9k_ani_restart(ah);
} else if (aniState->listenTime > ahp->ah_aniPeriod) {
if (aniState->ofdmPhyErrCount > aniState->listenTime *
aniState->ofdmTrigHigh / 1000) {
ath9k_hw_ani_ofdm_err_trigger(ah);
ath9k_ani_restart(ah);
} else if (aniState->cckPhyErrCount >
aniState->listenTime * aniState->cckTrigHigh /
1000) {
ath9k_hw_ani_cck_err_trigger(ah);
ath9k_ani_restart(ah);
}
}
}
#ifndef ATH_NF_PER_CHAN
static void ath9k_init_nfcal_hist_buffer(struct ath_hal *ah)
{
int i, j;
for (i = 0; i < NUM_NF_READINGS; i++) {
ah->nfCalHist[i].currIndex = 0;
ah->nfCalHist[i].privNF = AR_PHY_CCA_MAX_GOOD_VALUE;
ah->nfCalHist[i].invalidNFcount =
AR_PHY_CCA_FILTERWINDOW_LENGTH;
for (j = 0; j < ATH9K_NF_CAL_HIST_MAX; j++) {
ah->nfCalHist[i].nfCalBuffer[j] =
AR_PHY_CCA_MAX_GOOD_VALUE;
}
}
return;
}
#endif
static void ath9k_hw_gpio_cfg_output_mux(struct ath_hal *ah,
u32 gpio, u32 type)
{
int addr;
u32 gpio_shift, tmp;
if (gpio > 11)
addr = AR_GPIO_OUTPUT_MUX3;
else if (gpio > 5)
addr = AR_GPIO_OUTPUT_MUX2;
else
addr = AR_GPIO_OUTPUT_MUX1;
gpio_shift = (gpio % 6) * 5;
if (AR_SREV_9280_20_OR_LATER(ah)
|| (addr != AR_GPIO_OUTPUT_MUX1)) {
REG_RMW(ah, addr, (type << gpio_shift),
(0x1f << gpio_shift));
} else {
tmp = REG_READ(ah, addr);
tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
tmp &= ~(0x1f << gpio_shift);
tmp |= (type << gpio_shift);
REG_WRITE(ah, addr, tmp);
}
}
void ath9k_hw_cfg_output(struct ath_hal *ah, u32 gpio,
u32 ah_signal_type)
{
u32 gpio_shift;
ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
gpio_shift = 2 * gpio;
REG_RMW(ah,
AR_GPIO_OE_OUT,
(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
(AR_GPIO_OE_OUT_DRV << gpio_shift));
}
void ath9k_hw_set_gpio(struct ath_hal *ah, u32 gpio, u32 val)
{
REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
AR_GPIO_BIT(gpio));
}
/*
* Configure GPIO Input lines
*/
void ath9k_hw_cfg_gpio_input(struct ath_hal *ah, u32 gpio)
{
u32 gpio_shift;
ASSERT(gpio < ah->ah_caps.num_gpio_pins);
gpio_shift = gpio << 1;
REG_RMW(ah,
AR_GPIO_OE_OUT,
(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
(AR_GPIO_OE_OUT_DRV << gpio_shift));
}
#ifdef CONFIG_RFKILL
static void ath9k_enable_rfkill(struct ath_hal *ah)
{
REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
AR_GPIO_INPUT_MUX2_RFSILENT);
ath9k_hw_cfg_gpio_input(ah, ah->ah_rfkill_gpio);
REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
}
#endif
u32 ath9k_hw_gpio_get(struct ath_hal *ah, u32 gpio)
{
if (gpio >= ah->ah_caps.num_gpio_pins)
return 0xffffffff;
if (AR_SREV_9280_10_OR_LATER(ah)) {
return (MS
(REG_READ(ah, AR_GPIO_IN_OUT),
AR928X_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) != 0;
} else {
return (MS(REG_READ(ah, AR_GPIO_IN_OUT), AR_GPIO_IN_VAL) &
AR_GPIO_BIT(gpio)) != 0;
}
}
static int ath9k_hw_post_attach(struct ath_hal *ah)
{
int ecode;
if (!ath9k_hw_chip_test(ah)) {
DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
"%s: hardware self-test failed\n", __func__);
return -ENODEV;
}
ecode = ath9k_hw_rf_claim(ah);
if (ecode != 0)
return ecode;
ecode = ath9k_hw_eeprom_attach(ah);
if (ecode != 0)
return ecode;
ecode = ath9k_hw_rfattach(ah);
if (ecode != 0)
return ecode;
if (!AR_SREV_9100(ah)) {
ath9k_hw_ani_setup(ah);
ath9k_hw_ani_attach(ah);
}
return 0;
}
static u32 ath9k_hw_ini_fixup(struct ath_hal *ah,
struct ar5416_eeprom *pEepData,
u32 reg, u32 value)
{
struct base_eep_header *pBase = &(pEepData->baseEepHeader);
switch (ah->ah_devid) {
case AR9280_DEVID_PCI:
if (reg == 0x7894) {
DPRINTF(ah->ah_sc, ATH_DBG_ANY,
"ini VAL: %x EEPROM: %x\n", value,
(pBase->version & 0xff));
if ((pBase->version & 0xff) > 0x0a) {
DPRINTF(ah->ah_sc, ATH_DBG_ANY,
"PWDCLKIND: %d\n",
pBase->pwdclkind);
value &= ~AR_AN_TOP2_PWDCLKIND;
value |= AR_AN_TOP2_PWDCLKIND & (pBase->
pwdclkind << AR_AN_TOP2_PWDCLKIND_S);
} else {
DPRINTF(ah->ah_sc, ATH_DBG_ANY,
"PWDCLKIND Earlier Rev\n");
}
DPRINTF(ah->ah_sc, ATH_DBG_ANY,
"final ini VAL: %x\n", value);
}
break;
}
return value;
}
static bool ath9k_hw_fill_cap_info(struct ath_hal *ah)
{
struct ath_hal_5416 *ahp = AH5416(ah);
struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
u16 capField = 0, eeval;
eeval = ath9k_hw_get_eeprom(ahp, EEP_REG_0);
ah->ah_currentRD = eeval;
eeval = ath9k_hw_get_eeprom(ahp, EEP_REG_1);
ah->ah_currentRDExt = eeval;
capField = ath9k_hw_get_eeprom(ahp, EEP_OP_CAP);
if (ah->ah_opmode != ATH9K_M_HOSTAP &&
ah->ah_subvendorid == AR_SUBVENDOR_ID_NEW_A) {
if (ah->ah_currentRD == 0x64 || ah->ah_currentRD == 0x65)
ah->ah_currentRD += 5;
else if (ah->ah_currentRD == 0x41)
ah->ah_currentRD = 0x43;
DPRINTF(ah->ah_sc, ATH_DBG_REGULATORY,
"%s: regdomain mapped to 0x%x\n", __func__,
ah->ah_currentRD);
}
eeval = ath9k_hw_get_eeprom(ahp, EEP_OP_MODE);
bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
if (eeval & AR5416_OPFLAGS_11A) {
set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
if (ah->ah_config.ht_enable) {
if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
set_bit(ATH9K_MODE_11NA_HT20,
pCap->wireless_modes);
if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
set_bit(ATH9K_MODE_11NA_HT40PLUS,
pCap->wireless_modes);
set_bit(ATH9K_MODE_11NA_HT40MINUS,
pCap->wireless_modes);
}
}
}
if (eeval & AR5416_OPFLAGS_11G) {
set_bit(ATH9K_MODE_11B, pCap->wireless_modes);
set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
if (ah->ah_config.ht_enable) {
if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
set_bit(ATH9K_MODE_11NG_HT20,
pCap->wireless_modes);
if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
set_bit(ATH9K_MODE_11NG_HT40PLUS,
pCap->wireless_modes);
set_bit(ATH9K_MODE_11NG_HT40MINUS,
pCap->wireless_modes);
}
}
}
pCap->tx_chainmask = ath9k_hw_get_eeprom(ahp, EEP_TX_MASK);
if ((ah->ah_isPciExpress)
|| (eeval & AR5416_OPFLAGS_11A)) {
pCap->rx_chainmask =
ath9k_hw_get_eeprom(ahp, EEP_RX_MASK);
} else {
pCap->rx_chainmask =
(ath9k_hw_gpio_get(ah, 0)) ? 0x5 : 0x7;
}
if (!(AR_SREV_9280(ah) && (ah->ah_macRev == 0)))
ahp->ah_miscMode |= AR_PCU_MIC_NEW_LOC_ENA;
pCap->low_2ghz_chan = 2312;
pCap->high_2ghz_chan = 2732;
pCap->low_5ghz_chan = 4920;
pCap->high_5ghz_chan = 6100;
pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
pCap->hw_caps |= ATH9K_HW_CAP_CHAN_SPREAD;
if (ah->ah_config.ht_enable)
pCap->hw_caps |= ATH9K_HW_CAP_HT;
else
pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
pCap->hw_caps |= ATH9K_HW_CAP_GTT;
pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
if (capField & AR_EEPROM_EEPCAP_MAXQCU)
pCap->total_queues =
MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
else
pCap->total_queues = ATH9K_NUM_TX_QUEUES;
if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
pCap->keycache_size =
1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
else
pCap->keycache_size = AR_KEYTABLE_SIZE;
pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
pCap->num_mr_retries = 4;
pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
if (AR_SREV_9280_10_OR_LATER(ah))
pCap->num_gpio_pins = AR928X_NUM_GPIO;
else
pCap->num_gpio_pins = AR_NUM_GPIO;
if (AR_SREV_9280_10_OR_LATER(ah)) {
pCap->hw_caps |= ATH9K_HW_CAP_WOW;
pCap->hw_caps |= ATH9K_HW_CAP_WOW_MATCHPATTERN_EXACT;
} else {
pCap->hw_caps &= ~ATH9K_HW_CAP_WOW;
pCap->hw_caps &= ~ATH9K_HW_CAP_WOW_MATCHPATTERN_EXACT;
}
if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
pCap->hw_caps |= ATH9K_HW_CAP_CST;
pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
} else {
pCap->rts_aggr_limit = (8 * 1024);
}
pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
#ifdef CONFIG_RFKILL
ah->ah_rfsilent = ath9k_hw_get_eeprom(ahp, EEP_RF_SILENT);
if (ah->ah_rfsilent & EEP_RFSILENT_ENABLED) {
ah->ah_rfkill_gpio =
MS(ah->ah_rfsilent, EEP_RFSILENT_GPIO_SEL);
ah->ah_rfkill_polarity =
MS(ah->ah_rfsilent, EEP_RFSILENT_POLARITY);
pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
}
#endif
if ((ah->ah_macVersion == AR_SREV_VERSION_5416_PCI) ||
(ah->ah_macVersion == AR_SREV_VERSION_5416_PCIE) ||
(ah->ah_macVersion == AR_SREV_VERSION_9160) ||
(ah->ah_macVersion == AR_SREV_VERSION_9100) ||
(ah->ah_macVersion == AR_SREV_VERSION_9280))
pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
else
pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
if (AR_SREV_9280(ah))
pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
else
pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
if (ah->ah_currentRDExt & (1 << REG_EXT_JAPAN_MIDBAND)) {
pCap->reg_cap =
AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
AR_EEPROM_EEREGCAP_EN_KK_U2 |
AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
} else {
pCap->reg_cap =
AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
}
pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
pCap->num_antcfg_5ghz =
ath9k_hw_get_num_ant_config(ahp, IEEE80211_BAND_5GHZ);
pCap->num_antcfg_2ghz =
ath9k_hw_get_num_ant_config(ahp, IEEE80211_BAND_2GHZ);
return true;
}
static void ar5416DisablePciePhy(struct ath_hal *ah)
{
if (!AR_SREV_9100(ah))
return;
REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
}
static void ath9k_set_power_sleep(struct ath_hal *ah, int setChip)
{
REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
if (setChip) {
REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
AR_RTC_FORCE_WAKE_EN);
if (!AR_SREV_9100(ah))
REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
REG_CLR_BIT(ah, (u16) (AR_RTC_RESET),
AR_RTC_RESET_EN);
}
}
static void ath9k_set_power_network_sleep(struct ath_hal *ah, int setChip)
{
REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
if (setChip) {
struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
REG_WRITE(ah, AR_RTC_FORCE_WAKE,
AR_RTC_FORCE_WAKE_ON_INT);
} else {
REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
AR_RTC_FORCE_WAKE_EN);
}
}
}
static bool ath9k_hw_set_power_awake(struct ath_hal *ah,
int setChip)
{
u32 val;
int i;
if (setChip) {
if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M) ==
AR_RTC_STATUS_SHUTDOWN) {
if (ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)
!= true) {
return false;
}
}
if (AR_SREV_9100(ah))
REG_SET_BIT(ah, AR_RTC_RESET,
AR_RTC_RESET_EN);
REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
AR_RTC_FORCE_WAKE_EN);
udelay(50);
for (i = POWER_UP_TIME / 50; i > 0; i--) {
val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
if (val == AR_RTC_STATUS_ON)
break;
udelay(50);
REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
AR_RTC_FORCE_WAKE_EN);
}
if (i == 0) {
DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
"%s: Failed to wakeup in %uus\n",
__func__, POWER_UP_TIME / 20);
return false;
}
}
REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
return true;
}
bool ath9k_hw_setpower(struct ath_hal *ah,
enum ath9k_power_mode mode)
{
struct ath_hal_5416 *ahp = AH5416(ah);
static const char *modes[] = {
"AWAKE",
"FULL-SLEEP",
"NETWORK SLEEP",
"UNDEFINED"
};
int status = true, setChip = true;
DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT, "%s: %s -> %s (%s)\n", __func__,
modes[ahp->ah_powerMode], modes[mode],
setChip ? "set chip " : "");
switch (mode) {
case ATH9K_PM_AWAKE:
status = ath9k_hw_set_power_awake(ah, setChip);
break;
case ATH9K_PM_FULL_SLEEP:
ath9k_set_power_sleep(ah, setChip);
ahp->ah_chipFullSleep = true;
break;
case ATH9K_PM_NETWORK_SLEEP:
ath9k_set_power_network_sleep(ah, setChip);
break;
default:
DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
"%s: unknown power mode %u\n", __func__, mode);
return false;
}
ahp->ah_powerMode = mode;
return status;
}
static struct ath_hal *ath9k_hw_do_attach(u16 devid,
struct ath_softc *sc,
void __iomem *mem,
int *status)
{
struct ath_hal_5416 *ahp;
struct ath_hal *ah;
int ecode;
#ifndef CONFIG_SLOW_ANT_DIV
u32 i;
u32 j;
#endif
ahp = ath9k_hw_newstate(devid, sc, mem, status);
if (ahp == NULL)
return NULL;
ah = &ahp->ah;
ath9k_hw_set_defaults(ah);
if (ah->ah_config.intr_mitigation != 0)
ahp->ah_intrMitigation = true;
if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: couldn't reset chip\n",
__func__);
ecode = -EIO;
goto bad;
}
if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: couldn't wakeup chip\n",
__func__);
ecode = -EIO;
goto bad;
}
if (ah->ah_config.serialize_regmode == SER_REG_MODE_AUTO) {
if (ah->ah_macVersion == AR_SREV_VERSION_5416_PCI) {
ah->ah_config.serialize_regmode =
SER_REG_MODE_ON;
} else {
ah->ah_config.serialize_regmode =
SER_REG_MODE_OFF;
}
}
DPRINTF(ah->ah_sc, ATH_DBG_RESET,
"%s: serialize_regmode is %d\n",
__func__, ah->ah_config.serialize_regmode);
if ((ah->ah_macVersion != AR_SREV_VERSION_5416_PCI) &&
(ah->ah_macVersion != AR_SREV_VERSION_5416_PCIE) &&
(ah->ah_macVersion != AR_SREV_VERSION_9160) &&
(!AR_SREV_9100(ah)) && (!AR_SREV_9280(ah))) {
DPRINTF(ah->ah_sc, ATH_DBG_RESET,
"%s: Mac Chip Rev 0x%02x.%x is not supported by "
"this driver\n", __func__,
ah->ah_macVersion, ah->ah_macRev);
ecode = -EOPNOTSUPP;
goto bad;
}
if (AR_SREV_9100(ah)) {
ahp->ah_iqCalData.calData = &iq_cal_multi_sample;
ahp->ah_suppCals = IQ_MISMATCH_CAL;
ah->ah_isPciExpress = false;
}
ah->ah_phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
if (AR_SREV_9160_10_OR_LATER(ah)) {
if (AR_SREV_9280_10_OR_LATER(ah)) {
ahp->ah_iqCalData.calData = &iq_cal_single_sample;
ahp->ah_adcGainCalData.calData =
&adc_gain_cal_single_sample;
ahp->ah_adcDcCalData.calData =
&adc_dc_cal_single_sample;
ahp->ah_adcDcCalInitData.calData =
&adc_init_dc_cal;
} else {
ahp->ah_iqCalData.calData = &iq_cal_multi_sample;
ahp->ah_adcGainCalData.calData =
&adc_gain_cal_multi_sample;
ahp->ah_adcDcCalData.calData =
&adc_dc_cal_multi_sample;
ahp->ah_adcDcCalInitData.calData =
&adc_init_dc_cal;
}
ahp->ah_suppCals =
ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
}
if (AR_SREV_9160(ah)) {
ah->ah_config.enable_ani = 1;
ahp->ah_ani_function = (ATH9K_ANI_SPUR_IMMUNITY_LEVEL |
ATH9K_ANI_FIRSTEP_LEVEL);
} else {
ahp->ah_ani_function = ATH9K_ANI_ALL;
if (AR_SREV_9280_10_OR_LATER(ah)) {
ahp->ah_ani_function &=
~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
}
}
DPRINTF(ah->ah_sc, ATH_DBG_RESET,
"%s: This Mac Chip Rev 0x%02x.%x is \n", __func__,
ah->ah_macVersion, ah->ah_macRev);
if (AR_SREV_9280_20_OR_LATER(ah)) {
INIT_INI_ARRAY(&ahp->ah_iniModes, ar9280Modes_9280_2,
ARRAY_SIZE(ar9280Modes_9280_2), 6);
INIT_INI_ARRAY(&ahp->ah_iniCommon, ar9280Common_9280_2,
ARRAY_SIZE(ar9280Common_9280_2), 2);
if (ah->ah_config.pcie_clock_req) {
INIT_INI_ARRAY(&ahp->ah_iniPcieSerdes,
ar9280PciePhy_clkreq_off_L1_9280,
ARRAY_SIZE
(ar9280PciePhy_clkreq_off_L1_9280),
2);
} else {
INIT_INI_ARRAY(&ahp->ah_iniPcieSerdes,
ar9280PciePhy_clkreq_always_on_L1_9280,
ARRAY_SIZE
(ar9280PciePhy_clkreq_always_on_L1_9280),
2);
}
INIT_INI_ARRAY(&ahp->ah_iniModesAdditional,
ar9280Modes_fast_clock_9280_2,
ARRAY_SIZE(ar9280Modes_fast_clock_9280_2),
3);
} else if (AR_SREV_9280_10_OR_LATER(ah)) {
INIT_INI_ARRAY(&ahp->ah_iniModes, ar9280Modes_9280,
ARRAY_SIZE(ar9280Modes_9280), 6);
INIT_INI_ARRAY(&ahp->ah_iniCommon, ar9280Common_9280,
ARRAY_SIZE(ar9280Common_9280), 2);
} else if (AR_SREV_9160_10_OR_LATER(ah)) {
INIT_INI_ARRAY(&ahp->ah_iniModes, ar5416Modes_9160,
ARRAY_SIZE(ar5416Modes_9160), 6);
INIT_INI_ARRAY(&ahp->ah_iniCommon, ar5416Common_9160,
ARRAY_SIZE(ar5416Common_9160), 2);
INIT_INI_ARRAY(&ahp->ah_iniBank0, ar5416Bank0_9160,
ARRAY_SIZE(ar5416Bank0_9160), 2);
INIT_INI_ARRAY(&ahp->ah_iniBB_RfGain, ar5416BB_RfGain_9160,
ARRAY_SIZE(ar5416BB_RfGain_9160), 3);
INIT_INI_ARRAY(&ahp->ah_iniBank1, ar5416Bank1_9160,
ARRAY_SIZE(ar5416Bank1_9160), 2);
INIT_INI_ARRAY(&ahp->ah_iniBank2, ar5416Bank2_9160,
ARRAY_SIZE(ar5416Bank2_9160), 2);
INIT_INI_ARRAY(&ahp->ah_iniBank3, ar5416Bank3_9160,
ARRAY_SIZE(ar5416Bank3_9160), 3);
INIT_INI_ARRAY(&ahp->ah_iniBank6, ar5416Bank6_9160,
ARRAY_SIZE(ar5416Bank6_9160), 3);
INIT_INI_ARRAY(&ahp->ah_iniBank6TPC, ar5416Bank6TPC_9160,
ARRAY_SIZE(ar5416Bank6TPC_9160), 3);
INIT_INI_ARRAY(&ahp->ah_iniBank7, ar5416Bank7_9160,
ARRAY_SIZE(ar5416Bank7_9160), 2);
if (AR_SREV_9160_11(ah)) {
INIT_INI_ARRAY(&ahp->ah_iniAddac,
ar5416Addac_91601_1,
ARRAY_SIZE(ar5416Addac_91601_1), 2);
} else {
INIT_INI_ARRAY(&ahp->ah_iniAddac, ar5416Addac_9160,
ARRAY_SIZE(ar5416Addac_9160), 2);
}
} else if (AR_SREV_9100_OR_LATER(ah)) {
INIT_INI_ARRAY(&ahp->ah_iniModes, ar5416Modes_9100,
ARRAY_SIZE(ar5416Modes_9100), 6);
INIT_INI_ARRAY(&ahp->ah_iniCommon, ar5416Common_9100,
ARRAY_SIZE(ar5416Common_9100), 2);
INIT_INI_ARRAY(&ahp->ah_iniBank0, ar5416Bank0_9100,
ARRAY_SIZE(ar5416Bank0_9100), 2);
INIT_INI_ARRAY(&ahp->ah_iniBB_RfGain, ar5416BB_RfGain_9100,
ARRAY_SIZE(ar5416BB_RfGain_9100), 3);
INIT_INI_ARRAY(&ahp->ah_iniBank1, ar5416Bank1_9100,
ARRAY_SIZE(ar5416Bank1_9100), 2);
INIT_INI_ARRAY(&ahp->ah_iniBank2, ar5416Bank2_9100,
ARRAY_SIZE(ar5416Bank2_9100), 2);
INIT_INI_ARRAY(&ahp->ah_iniBank3, ar5416Bank3_9100,
ARRAY_SIZE(ar5416Bank3_9100), 3);
INIT_INI_ARRAY(&ahp->ah_iniBank6, ar5416Bank6_9100,
ARRAY_SIZE(ar5416Bank6_9100), 3);
INIT_INI_ARRAY(&ahp->ah_iniBank6TPC, ar5416Bank6TPC_9100,
ARRAY_SIZE(ar5416Bank6TPC_9100), 3);
INIT_INI_ARRAY(&ahp->ah_iniBank7, ar5416Bank7_9100,
ARRAY_SIZE(ar5416Bank7_9100), 2);
INIT_INI_ARRAY(&ahp->ah_iniAddac, ar5416Addac_9100,
ARRAY_SIZE(ar5416Addac_9100), 2);
} else {
INIT_INI_ARRAY(&ahp->ah_iniModes, ar5416Modes,
ARRAY_SIZE(ar5416Modes), 6);
INIT_INI_ARRAY(&ahp->ah_iniCommon, ar5416Common,
ARRAY_SIZE(ar5416Common), 2);
INIT_INI_ARRAY(&ahp->ah_iniBank0, ar5416Bank0,
ARRAY_SIZE(ar5416Bank0), 2);
INIT_INI_ARRAY(&ahp->ah_iniBB_RfGain, ar5416BB_RfGain,
ARRAY_SIZE(ar5416BB_RfGain), 3);
INIT_INI_ARRAY(&ahp->ah_iniBank1, ar5416Bank1,
ARRAY_SIZE(ar5416Bank1), 2);
INIT_INI_ARRAY(&ahp->ah_iniBank2, ar5416Bank2,
ARRAY_SIZE(ar5416Bank2), 2);
INIT_INI_ARRAY(&ahp->ah_iniBank3, ar5416Bank3,
ARRAY_SIZE(ar5416Bank3), 3);
INIT_INI_ARRAY(&ahp->ah_iniBank6, ar5416Bank6,
ARRAY_SIZE(ar5416Bank6), 3);
INIT_INI_ARRAY(&ahp->ah_iniBank6TPC, ar5416Bank6TPC,
ARRAY_SIZE(ar5416Bank6TPC), 3);
INIT_INI_ARRAY(&ahp->ah_iniBank7, ar5416Bank7,
ARRAY_SIZE(ar5416Bank7), 2);
INIT_INI_ARRAY(&ahp->ah_iniAddac, ar5416Addac,
ARRAY_SIZE(ar5416Addac), 2);
}
if (ah->ah_isPciExpress)
ath9k_hw_configpcipowersave(ah, 0);
else
ar5416DisablePciePhy(ah);
ecode = ath9k_hw_post_attach(ah);
if (ecode != 0)
goto bad;
#ifndef CONFIG_SLOW_ANT_DIV
if (ah->ah_devid == AR9280_DEVID_PCI) {
for (i = 0; i < ahp->ah_iniModes.ia_rows; i++) {
u32 reg = INI_RA(&ahp->ah_iniModes, i, 0);
for (j = 1; j < ahp->ah_iniModes.ia_columns; j++) {
u32 val = INI_RA(&ahp->ah_iniModes, i, j);
INI_RA(&ahp->ah_iniModes, i, j) =
ath9k_hw_ini_fixup(ah, &ahp->ah_eeprom,
reg, val);
}
}
}
#endif
if (!ath9k_hw_fill_cap_info(ah)) {
DPRINTF(ah->ah_sc, ATH_DBG_RESET,
"%s:failed ath9k_hw_fill_cap_info\n", __func__);
ecode = -EINVAL;
goto bad;
}
ecode = ath9k_hw_init_macaddr(ah);
if (ecode != 0) {
DPRINTF(ah->ah_sc, ATH_DBG_RESET,
"%s: failed initializing mac address\n",
__func__);
goto bad;
}
if (AR_SREV_9285(ah))
ah->ah_txTrigLevel = (AR_FTRIG_256B >> AR_FTRIG_S);
else
ah->ah_txTrigLevel = (AR_FTRIG_512B >> AR_FTRIG_S);
#ifndef ATH_NF_PER_CHAN
ath9k_init_nfcal_hist_buffer(ah);
#endif
return ah;
bad:
if (ahp)
ath9k_hw_detach((struct ath_hal *) ahp);
if (status)
*status = ecode;
return NULL;
}
void ath9k_hw_detach(struct ath_hal *ah)
{
if (!AR_SREV_9100(ah))
ath9k_hw_ani_detach(ah);
ath9k_hw_rfdetach(ah);
ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
kfree(ah);
}
bool ath9k_get_channel_edges(struct ath_hal *ah,
u16 flags, u16 *low,
u16 *high)
{
struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
if (flags & CHANNEL_5GHZ) {
*low = pCap->low_5ghz_chan;
*high = pCap->high_5ghz_chan;
return true;
}
if ((flags & CHANNEL_2GHZ)) {
*low = pCap->low_2ghz_chan;
*high = pCap->high_2ghz_chan;
return true;
}
return false;
}
static inline bool ath9k_hw_fill_vpd_table(u8 pwrMin,
u8 pwrMax,
u8 *pPwrList,
u8 *pVpdList,
u16
numIntercepts,
u8 *pRetVpdList)
{
u16 i, k;
u8 currPwr = pwrMin;
u16 idxL = 0, idxR = 0;
for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
numIntercepts, &(idxL),
&(idxR));
if (idxR < 1)
idxR = 1;
if (idxL == numIntercepts - 1)
idxL = (u16) (numIntercepts - 2);
if (pPwrList[idxL] == pPwrList[idxR])
k = pVpdList[idxL];
else
k = (u16) (((currPwr -
pPwrList[idxL]) *
pVpdList[idxR] +
(pPwrList[idxR] -
currPwr) * pVpdList[idxL]) /
(pPwrList[idxR] -
pPwrList[idxL]));
pRetVpdList[i] = (u8) k;
currPwr += 2;
}
return true;
}
static void
ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hal *ah,
struct ath9k_channel *chan,
struct cal_data_per_freq *pRawDataSet,
u8 *bChans,
u16 availPiers,
u16 tPdGainOverlap,
int16_t *pMinCalPower,
u16 *pPdGainBoundaries,
u8 *pPDADCValues,
u16 numXpdGains)
{
int i, j, k;
int16_t ss;
u16 idxL = 0, idxR = 0, numPiers;
static u8 vpdTableL[AR5416_NUM_PD_GAINS]
[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
static u8 vpdTableR[AR5416_NUM_PD_GAINS]
[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
static u8 vpdTableI[AR5416_NUM_PD_GAINS]
[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
u8 minPwrT4[AR5416_NUM_PD_GAINS];
u8 maxPwrT4[AR5416_NUM_PD_GAINS];
int16_t vpdStep;
int16_t tmpVal;
u16 sizeCurrVpdTable, maxIndex, tgtIndex;
bool match;
int16_t minDelta = 0;
struct chan_centers centers;
ath9k_hw_get_channel_centers(ah, chan, &centers);
for (numPiers = 0; numPiers < availPiers; numPiers++) {
if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
break;
}
match = ath9k_hw_get_lower_upper_index((u8)
FREQ2FBIN(centers.
synth_center,
IS_CHAN_2GHZ
(chan)), bChans,
numPiers, &idxL, &idxR);
if (match) {
for (i = 0; i < numXpdGains; i++) {
minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
pRawDataSet[idxL].
pwrPdg[i],
pRawDataSet[idxL].
vpdPdg[i],
AR5416_PD_GAIN_ICEPTS,
vpdTableI[i]);
}
} else {
for (i = 0; i < numXpdGains; i++) {
pVpdL = pRawDataSet[idxL].vpdPdg[i];
pPwrL = pRawDataSet[idxL].pwrPdg[i];
pVpdR = pRawDataSet[idxR].vpdPdg[i];
pPwrR = pRawDataSet[idxR].pwrPdg[i];
minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
maxPwrT4[i] =
min(pPwrL[AR5416_PD_GAIN_ICEPTS - 1],
pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
pPwrL, pVpdL,
AR5416_PD_GAIN_ICEPTS,
vpdTableL[i]);
ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
pPwrR, pVpdR,
AR5416_PD_GAIN_ICEPTS,
vpdTableR[i]);
for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
vpdTableI[i][j] =
(u8) (ath9k_hw_interpolate
((u16)
FREQ2FBIN(centers.
synth_center,
IS_CHAN_2GHZ
(chan)),
bChans[idxL],
bChans[idxR], vpdTableL[i]
[j], vpdTableR[i]
[j]));
}
}
}
*pMinCalPower = (int16_t) (minPwrT4[0] / 2);
k = 0;
for (i = 0; i < numXpdGains; i++) {
if (i == (numXpdGains - 1))
pPdGainBoundaries[i] =
(u16) (maxPwrT4[i] / 2);
else
pPdGainBoundaries[i] =
(u16) ((maxPwrT4[i] +
minPwrT4[i + 1]) / 4);
pPdGainBoundaries[i] =
min((u16) AR5416_MAX_RATE_POWER,
pPdGainBoundaries[i]);
if ((i == 0) && !AR_SREV_5416_V20_OR_LATER(ah)) {
minDelta = pPdGainBoundaries[0] - 23;
pPdGainBoundaries[0] = 23;
} else {
minDelta = 0;
}
if (i == 0) {
if (AR_SREV_9280_10_OR_LATER(ah))
ss = (int16_t) (0 - (minPwrT4[i] / 2));
else
ss = 0;
} else {
ss = (int16_t) ((pPdGainBoundaries[i - 1] -
(minPwrT4[i] / 2)) -
tPdGainOverlap + 1 + minDelta);
}
vpdStep = (int16_t) (vpdTableI[i][1] - vpdTableI[i][0]);
vpdStep = (int16_t) ((vpdStep < 1) ? 1 : vpdStep);
while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
tmpVal = (int16_t) (vpdTableI[i][0] + ss * vpdStep);
pPDADCValues[k++] =
(u8) ((tmpVal < 0) ? 0 : tmpVal);
ss++;
}
sizeCurrVpdTable =
(u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
tgtIndex = (u8) (pPdGainBoundaries[i] + tPdGainOverlap -
(minPwrT4[i] / 2));
maxIndex = (tgtIndex <
sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
while ((ss < maxIndex)
&& (k < (AR5416_NUM_PDADC_VALUES - 1))) {
pPDADCValues[k++] = vpdTableI[i][ss++];
}
vpdStep = (int16_t) (vpdTableI[i][sizeCurrVpdTable - 1] -
vpdTableI[i][sizeCurrVpdTable - 2]);
vpdStep = (int16_t) ((vpdStep < 1) ? 1 : vpdStep);
if (tgtIndex > maxIndex) {
while ((ss <= tgtIndex)
&& (k < (AR5416_NUM_PDADC_VALUES - 1))) {
tmpVal = (int16_t) ((vpdTableI[i]
[sizeCurrVpdTable -
1] + (ss - maxIndex +
1) * vpdStep));
pPDADCValues[k++] = (u8) ((tmpVal >
255) ? 255 : tmpVal);
ss++;
}
}
}
while (i < AR5416_PD_GAINS_IN_MASK) {
pPdGainBoundaries[i] = pPdGainBoundaries[i - 1];
i++;
}
while (k < AR5416_NUM_PDADC_VALUES) {
pPDADCValues[k] = pPDADCValues[k - 1];
k++;
}
return;
}
static bool
ath9k_hw_set_power_cal_table(struct ath_hal *ah,
struct ar5416_eeprom *pEepData,
struct ath9k_channel *chan,
int16_t *pTxPowerIndexOffset)
{
struct cal_data_per_freq *pRawDataset;
u8 *pCalBChans = NULL;
u16 pdGainOverlap_t2;
static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
u16 numPiers, i, j;
int16_t tMinCalPower;
u16 numXpdGain, xpdMask;
u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 };
u32 reg32, regOffset, regChainOffset;
int16_t modalIdx;
struct ath_hal_5416 *ahp = AH5416(ah);
modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
xpdMask = pEepData->modalHeader[modalIdx].xpdGain;
if ((pEepData->baseEepHeader.
version & AR5416_EEP_VER_MINOR_MASK) >=
AR5416_EEP_MINOR_VER_2) {
pdGainOverlap_t2 =
pEepData->modalHeader[modalIdx].pdGainOverlap;
} else {
pdGainOverlap_t2 =
(u16) (MS
(REG_READ(ah, AR_PHY_TPCRG5),
AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
}
if (IS_CHAN_2GHZ(chan)) {
pCalBChans = pEepData->calFreqPier2G;
numPiers = AR5416_NUM_2G_CAL_PIERS;
} else {
pCalBChans = pEepData->calFreqPier5G;
numPiers = AR5416_NUM_5G_CAL_PIERS;
}
numXpdGain = 0;
for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
if (numXpdGain >= AR5416_NUM_PD_GAINS)
break;
xpdGainValues[numXpdGain] =
(u16) (AR5416_PD_GAINS_IN_MASK - i);
numXpdGain++;
}
}
REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
(numXpdGain - 1) & 0x3);
REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
xpdGainValues[0]);
REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
xpdGainValues[1]);
REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
xpdGainValues[2]);
for (i = 0; i < AR5416_MAX_CHAINS; i++) {
if (AR_SREV_5416_V20_OR_LATER(ah) &&
(ahp->ah_rxchainmask == 5 || ahp->ah_txchainmask == 5)
&& (i != 0)) {
regChainOffset = (i == 1) ? 0x2000 : 0x1000;
} else
regChainOffset = i * 0x1000;
if (pEepData->baseEepHeader.txMask & (1 << i)) {
if (IS_CHAN_2GHZ(chan))
pRawDataset = pEepData->calPierData2G[i];
else
pRawDataset = pEepData->calPierData5G[i];
ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
pRawDataset,
pCalBChans,
numPiers,
pdGainOverlap_t2,
&tMinCalPower,
gainBoundaries,
pdadcValues,
numXpdGain);
if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) {
REG_WRITE(ah,
AR_PHY_TPCRG5 + regChainOffset,
SM(pdGainOverlap_t2,
AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
| SM(gainBoundaries[0],
AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
| SM(gainBoundaries[1],
AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
| SM(gainBoundaries[2],
AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
| SM(gainBoundaries[3],
AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
}
regOffset =
AR_PHY_BASE + (672 << 2) + regChainOffset;
for (j = 0; j < 32; j++) {
reg32 =
((pdadcValues[4 * j + 0] & 0xFF) << 0)
| ((pdadcValues[4 * j + 1] & 0xFF) <<
8) | ((pdadcValues[4 * j + 2] &
0xFF) << 16) |
((pdadcValues[4 * j + 3] & 0xFF) <<
24);
REG_WRITE(ah, regOffset, reg32);
DPRINTF(ah->ah_sc, ATH_DBG_PHY_IO,
"PDADC (%d,%4x): %4.4x %8.8x\n",
i, regChainOffset, regOffset,
reg32);
DPRINTF(ah->ah_sc, ATH_DBG_PHY_IO,
"PDADC: Chain %d | PDADC %3d Value %3d | "
"PDADC %3d Value %3d | PDADC %3d Value %3d | "
"PDADC %3d Value %3d |\n",
i, 4 * j, pdadcValues[4 * j],
4 * j + 1, pdadcValues[4 * j + 1],
4 * j + 2, pdadcValues[4 * j + 2],
4 * j + 3,
pdadcValues[4 * j + 3]);
regOffset += 4;
}
}
}
*pTxPowerIndexOffset = 0;
return true;
}
void ath9k_hw_configpcipowersave(struct ath_hal *ah, int restore)
{
struct ath_hal_5416 *ahp = AH5416(ah);
u8 i;
if (ah->ah_isPciExpress != true)
return;
if (ah->ah_config.pcie_powersave_enable == 2)
return;
if (restore)
return;
if (AR_SREV_9280_20_OR_LATER(ah)) {
for (i = 0; i < ahp->ah_iniPcieSerdes.ia_rows; i++) {
REG_WRITE(ah, INI_RA(&ahp->ah_iniPcieSerdes, i, 0),
INI_RA(&ahp->ah_iniPcieSerdes, i, 1));
}
udelay(1000);
} else if (AR_SREV_9280(ah)
&& (ah->ah_macRev == AR_SREV_REVISION_9280_10)) {
REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00);
REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019);
REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820);
REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560);
if (ah->ah_config.pcie_clock_req)
REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc);
else
REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd);
REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007);
REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
udelay(1000);
} else {
REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039);
REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824);
REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579);
REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff);
REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007);
REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
}
REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
if (ah->ah_config.pcie_waen) {
REG_WRITE(ah, AR_WA, ah->ah_config.pcie_waen);
} else {
if (AR_SREV_9280(ah))
REG_WRITE(ah, AR_WA, 0x0040073f);
else
REG_WRITE(ah, AR_WA, 0x0000073f);
}
}
static void
ath9k_hw_get_legacy_target_powers(struct ath_hal *ah,
struct ath9k_channel *chan,
struct cal_target_power_leg *powInfo,
u16 numChannels,
struct cal_target_power_leg *pNewPower,
u16 numRates,
bool isExtTarget)
{
u16 clo, chi;
int i;
int matchIndex = -1, lowIndex = -1;
u16 freq;
struct chan_centers centers;
ath9k_hw_get_channel_centers(ah, chan, &centers);
freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
IS_CHAN_2GHZ(chan))) {
matchIndex = 0;
} else {
for (i = 0; (i < numChannels)
&& (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
if (freq ==
ath9k_hw_fbin2freq(powInfo[i].bChannel,
IS_CHAN_2GHZ(chan))) {
matchIndex = i;
break;
} else if ((freq <
ath9k_hw_fbin2freq(powInfo[i].bChannel,
IS_CHAN_2GHZ(chan)))
&& (freq >
ath9k_hw_fbin2freq(powInfo[i - 1].
bChannel,
IS_CHAN_2GHZ
(chan)))) {
lowIndex = i - 1;
break;
}
}
if ((matchIndex == -1) && (lowIndex == -1))
matchIndex = i - 1;
}
if (matchIndex != -1) {
*pNewPower = powInfo[matchIndex];
} else {
clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
IS_CHAN_2GHZ(chan));
chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
IS_CHAN_2GHZ(chan));
for (i = 0; i < numRates; i++) {
pNewPower->tPow2x[i] =
(u8) ath9k_hw_interpolate(freq, clo, chi,
powInfo
[lowIndex].
tPow2x[i],
powInfo
[lowIndex +
1].tPow2x[i]);
}
}
}
static void
ath9k_hw_get_target_powers(struct ath_hal *ah,
struct ath9k_channel *chan,
struct cal_target_power_ht *powInfo,
u16 numChannels,
struct cal_target_power_ht *pNewPower,
u16 numRates,
bool isHt40Target)
{
u16 clo, chi;
int i;
int matchIndex = -1, lowIndex = -1;
u16 freq;
struct chan_centers centers;
ath9k_hw_get_channel_centers(ah, chan, &centers);
freq = isHt40Target ? centers.synth_center : centers.ctl_center;
if (freq <=
ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
matchIndex = 0;
} else {
for (i = 0; (i < numChannels)
&& (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
if (freq ==
ath9k_hw_fbin2freq(powInfo[i].bChannel,
IS_CHAN_2GHZ(chan))) {
matchIndex = i;
break;
} else
if ((freq <
ath9k_hw_fbin2freq(powInfo[i].bChannel,
IS_CHAN_2GHZ(chan)))
&& (freq >
ath9k_hw_fbin2freq(powInfo[i - 1].
bChannel,
IS_CHAN_2GHZ
(chan)))) {
lowIndex = i - 1;
break;
}
}
if ((matchIndex == -1) && (lowIndex == -1))
matchIndex = i - 1;
}
if (matchIndex != -1) {
*pNewPower = powInfo[matchIndex];
} else {
clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
IS_CHAN_2GHZ(chan));
chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
IS_CHAN_2GHZ(chan));
for (i = 0; i < numRates; i++) {
pNewPower->tPow2x[i] =
(u8) ath9k_hw_interpolate(freq, clo, chi,
powInfo
[lowIndex].
tPow2x[i],
powInfo
[lowIndex +
1].tPow2x[i]);
}
}
}
static u16
ath9k_hw_get_max_edge_power(u16 freq,
struct cal_ctl_edges *pRdEdgesPower,
bool is2GHz)
{
u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
int i;
for (i = 0; (i < AR5416_NUM_BAND_EDGES)
&& (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
is2GHz)) {
twiceMaxEdgePower = pRdEdgesPower[i].tPower;
break;
} else if ((i > 0)
&& (freq <
ath9k_hw_fbin2freq(pRdEdgesPower[i].
bChannel, is2GHz))) {
if (ath9k_hw_fbin2freq
(pRdEdgesPower[i - 1].bChannel, is2GHz) < freq
&& pRdEdgesPower[i - 1].flag) {
twiceMaxEdgePower =
pRdEdgesPower[i - 1].tPower;
}
break;
}
}
return twiceMaxEdgePower;
}
static bool
ath9k_hw_set_power_per_rate_table(struct ath_hal *ah,
struct ar5416_eeprom *pEepData,
struct ath9k_channel *chan,
int16_t *ratesArray,
u16 cfgCtl,
u8 AntennaReduction,
u8 twiceMaxRegulatoryPower,
u8 powerLimit)
{
u8 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
static const u16 tpScaleReductionTable[5] =
{ 0, 3, 6, 9, AR5416_MAX_RATE_POWER };
int i;
int8_t twiceLargestAntenna;
struct cal_ctl_data *rep;
struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
0, { 0, 0, 0, 0}
};
struct cal_target_power_leg targetPowerOfdmExt = {
0, { 0, 0, 0, 0} }, targetPowerCckExt = {
0, { 0, 0, 0, 0 }
};
struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
0, {0, 0, 0, 0}
};
u8 scaledPower = 0, minCtlPower, maxRegAllowedPower;
u16 ctlModesFor11a[] =
{ CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40 };
u16 ctlModesFor11g[] =
{ CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT,
CTL_2GHT40
};
u16 numCtlModes, *pCtlMode, ctlMode, freq;
struct chan_centers centers;
int tx_chainmask;
u8 twiceMinEdgePower;
struct ath_hal_5416 *ahp = AH5416(ah);
tx_chainmask = ahp->ah_txchainmask;
ath9k_hw_get_channel_centers(ah, chan, &centers);
twiceLargestAntenna = max(
pEepData->modalHeader
[IS_CHAN_2GHZ(chan)].antennaGainCh[0],
pEepData->modalHeader
[IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
twiceLargestAntenna = max((u8) twiceLargestAntenna,
pEepData->modalHeader
[IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
twiceLargestAntenna =
(int8_t) min(AntennaReduction - twiceLargestAntenna, 0);
maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
if (ah->ah_tpScale != ATH9K_TP_SCALE_MAX) {
maxRegAllowedPower -=
(tpScaleReductionTable[(ah->ah_tpScale)] * 2);
}
scaledPower = min(powerLimit, maxRegAllowedPower);
switch (ar5416_get_ntxchains(tx_chainmask)) {
case 1:
break;
case 2:
scaledPower -=
pEepData->modalHeader[IS_CHAN_2GHZ(chan)].
pwrDecreaseFor2Chain;
break;
case 3:
scaledPower -=
pEepData->modalHeader[IS_CHAN_2GHZ(chan)].
pwrDecreaseFor3Chain;
break;
}
scaledPower = max(0, (int32_t) scaledPower);
if (IS_CHAN_2GHZ(chan)) {
numCtlModes =
ARRAY_SIZE(ctlModesFor11g) -
SUB_NUM_CTL_MODES_AT_2G_40;
pCtlMode = ctlModesFor11g;
ath9k_hw_get_legacy_target_powers(ah, chan,
pEepData->
calTargetPowerCck,
AR5416_NUM_2G_CCK_TARGET_POWERS,
&targetPowerCck, 4,
false);
ath9k_hw_get_legacy_target_powers(ah, chan,
pEepData->
calTargetPower2G,
AR5416_NUM_2G_20_TARGET_POWERS,
&targetPowerOfdm, 4,
false);
ath9k_hw_get_target_powers(ah, chan,
pEepData->calTargetPower2GHT20,
AR5416_NUM_2G_20_TARGET_POWERS,
&targetPowerHt20, 8, false);
if (IS_CHAN_HT40(chan)) {
numCtlModes = ARRAY_SIZE(ctlModesFor11g);
ath9k_hw_get_target_powers(ah, chan,
pEepData->
calTargetPower2GHT40,
AR5416_NUM_2G_40_TARGET_POWERS,
&targetPowerHt40, 8,
true);
ath9k_hw_get_legacy_target_powers(ah, chan,
pEepData->
calTargetPowerCck,
AR5416_NUM_2G_CCK_TARGET_POWERS,
&targetPowerCckExt,
4, true);
ath9k_hw_get_legacy_target_powers(ah, chan,
pEepData->
calTargetPower2G,
AR5416_NUM_2G_20_TARGET_POWERS,
&targetPowerOfdmExt,
4, true);
}
} else {
numCtlModes =
ARRAY_SIZE(ctlModesFor11a) -
SUB_NUM_CTL_MODES_AT_5G_40;
pCtlMode = ctlModesFor11a;
ath9k_hw_get_legacy_target_powers(ah, chan,
pEepData->
calTargetPower5G,
AR5416_NUM_5G_20_TARGET_POWERS,
&targetPowerOfdm, 4,
false);
ath9k_hw_get_target_powers(ah, chan,
pEepData->calTargetPower5GHT20,
AR5416_NUM_5G_20_TARGET_POWERS,
&targetPowerHt20, 8, false);
if (IS_CHAN_HT40(chan)) {
numCtlModes = ARRAY_SIZE(ctlModesFor11a);
ath9k_hw_get_target_powers(ah, chan,
pEepData->
calTargetPower5GHT40,
AR5416_NUM_5G_40_TARGET_POWERS,
&targetPowerHt40, 8,
true);
ath9k_hw_get_legacy_target_powers(ah, chan,
pEepData->
calTargetPower5G,
AR5416_NUM_5G_20_TARGET_POWERS,
&targetPowerOfdmExt,
4, true);
}
}
for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
bool isHt40CtlMode =
(pCtlMode[ctlMode] == CTL_5GHT40)
|| (pCtlMode[ctlMode] == CTL_2GHT40);
if (isHt40CtlMode)
freq = centers.synth_center;
else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
freq = centers.ext_center;
else
freq = centers.ctl_center;
if (ar5416_get_eep_ver(ahp) == 14
&& ar5416_get_eep_rev(ahp) <= 2)
twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
"LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, "
"EXT_ADDITIVE %d\n",
ctlMode, numCtlModes, isHt40CtlMode,
(pCtlMode[ctlMode] & EXT_ADDITIVE));
for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i];
i++) {
DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
" LOOP-Ctlidx %d: cfgCtl 0x%2.2x "
"pCtlMode 0x%2.2x ctlIndex 0x%2.2x "
"chan %d\n",
i, cfgCtl, pCtlMode[ctlMode],
pEepData->ctlIndex[i], chan->channel);
if ((((cfgCtl & ~CTL_MODE_M) |
(pCtlMode[ctlMode] & CTL_MODE_M)) ==
pEepData->ctlIndex[i])
||
(((cfgCtl & ~CTL_MODE_M) |
(pCtlMode[ctlMode] & CTL_MODE_M)) ==
((pEepData->
ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
rep = &(pEepData->ctlData[i]);
twiceMinEdgePower =
ath9k_hw_get_max_edge_power(freq,
rep->
ctlEdges
[ar5416_get_ntxchains
(tx_chainmask)
- 1],
IS_CHAN_2GHZ
(chan));
DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
" MATCH-EE_IDX %d: ch %d is2 %d "
"2xMinEdge %d chainmask %d chains %d\n",
i, freq, IS_CHAN_2GHZ(chan),
twiceMinEdgePower, tx_chainmask,
ar5416_get_ntxchains
(tx_chainmask));
if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
twiceMaxEdgePower =
min(twiceMaxEdgePower,
twiceMinEdgePower);
} else {
twiceMaxEdgePower =
twiceMinEdgePower;
break;
}
}
}
minCtlPower = min(twiceMaxEdgePower, scaledPower);
DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
" SEL-Min ctlMode %d pCtlMode %d "
"2xMaxEdge %d sP %d minCtlPwr %d\n",
ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower,
scaledPower, minCtlPower);
switch (pCtlMode[ctlMode]) {
case CTL_11B:
for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x);
i++) {
targetPowerCck.tPow2x[i] =
min(targetPowerCck.tPow2x[i],
minCtlPower);
}
break;
case CTL_11A:
case CTL_11G:
for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x);
i++) {
targetPowerOfdm.tPow2x[i] =
min(targetPowerOfdm.tPow2x[i],
minCtlPower);
}
break;
case CTL_5GHT20:
case CTL_2GHT20:
for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x);
i++) {
targetPowerHt20.tPow2x[i] =
min(targetPowerHt20.tPow2x[i],
minCtlPower);
}
break;
case CTL_11B_EXT:
targetPowerCckExt.tPow2x[0] =
min(targetPowerCckExt.tPow2x[0], minCtlPower);
break;
case CTL_11A_EXT:
case CTL_11G_EXT:
targetPowerOfdmExt.tPow2x[0] =
min(targetPowerOfdmExt.tPow2x[0], minCtlPower);
break;
case CTL_5GHT40:
case CTL_2GHT40:
for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x);
i++) {
targetPowerHt40.tPow2x[i] =
min(targetPowerHt40.tPow2x[i],
minCtlPower);
}
break;
default:
break;
}
}
ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
ratesArray[rate18mb] = ratesArray[rate24mb] =
targetPowerOfdm.tPow2x[0];
ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
if (IS_CHAN_2GHZ(chan)) {
ratesArray[rate1l] = targetPowerCck.tPow2x[0];
ratesArray[rate2s] = ratesArray[rate2l] =
targetPowerCck.tPow2x[1];
ratesArray[rate5_5s] = ratesArray[rate5_5l] =
targetPowerCck.tPow2x[2];
;
ratesArray[rate11s] = ratesArray[rate11l] =
targetPowerCck.tPow2x[3];
;
}
if (IS_CHAN_HT40(chan)) {
for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
ratesArray[rateHt40_0 + i] =
targetPowerHt40.tPow2x[i];
}
ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
if (IS_CHAN_2GHZ(chan)) {
ratesArray[rateExtCck] =
targetPowerCckExt.tPow2x[0];
}
}
return true;
}
static int
ath9k_hw_set_txpower(struct ath_hal *ah,
struct ar5416_eeprom *pEepData,
struct ath9k_channel *chan,
u16 cfgCtl,
u8 twiceAntennaReduction,
u8 twiceMaxRegulatoryPower,
u8 powerLimit)
{
struct modal_eep_header *pModal =
&(pEepData->modalHeader[IS_CHAN_2GHZ(chan)]);
int16_t ratesArray[Ar5416RateSize];
int16_t txPowerIndexOffset = 0;
u8 ht40PowerIncForPdadc = 2;
int i;
memset(ratesArray, 0, sizeof(ratesArray));
if ((pEepData->baseEepHeader.
version & AR5416_EEP_VER_MINOR_MASK) >=
AR5416_EEP_MINOR_VER_2) {
ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
}
if (!ath9k_hw_set_power_per_rate_table(ah, pEepData, chan,
&ratesArray[0], cfgCtl,
twiceAntennaReduction,
twiceMaxRegulatoryPower,
powerLimit)) {
DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
"ath9k_hw_set_txpower: unable to set "
"tx power per rate table\n");
return -EIO;
}
if (!ath9k_hw_set_power_cal_table
(ah, pEepData, chan, &txPowerIndexOffset)) {
DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
"ath9k_hw_set_txpower: unable to set power table\n");
return -EIO;
}
for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
ratesArray[i] =
(int16_t) (txPowerIndexOffset + ratesArray[i]);
if (ratesArray[i] > AR5416_MAX_RATE_POWER)
ratesArray[i] = AR5416_MAX_RATE_POWER;
}
if (AR_SREV_9280_10_OR_LATER(ah)) {
for (i = 0; i < Ar5416RateSize; i++)
ratesArray[i] -= AR5416_PWR_TABLE_OFFSET * 2;
}
REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
ATH9K_POW_SM(ratesArray[rate18mb], 24)
| ATH9K_POW_SM(ratesArray[rate12mb], 16)
| ATH9K_POW_SM(ratesArray[rate9mb], 8)
| ATH9K_POW_SM(ratesArray[rate6mb], 0)
);
REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
ATH9K_POW_SM(ratesArray[rate54mb], 24)
| ATH9K_POW_SM(ratesArray[rate48mb], 16)
| ATH9K_POW_SM(ratesArray[rate36mb], 8)
| ATH9K_POW_SM(ratesArray[rate24mb], 0)
);
if (IS_CHAN_2GHZ(chan)) {
REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
ATH9K_POW_SM(ratesArray[rate2s], 24)
| ATH9K_POW_SM(ratesArray[rate2l], 16)
| ATH9K_POW_SM(ratesArray[rateXr], 8)
| ATH9K_POW_SM(ratesArray[rate1l], 0)
);
REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
ATH9K_POW_SM(ratesArray[rate11s], 24)
| ATH9K_POW_SM(ratesArray[rate11l], 16)
| ATH9K_POW_SM(ratesArray[rate5_5s], 8)
| ATH9K_POW_SM(ratesArray[rate5_5l], 0)
);
}
REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
| ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
| ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
| ATH9K_POW_SM(ratesArray[rateHt20_0], 0)
);
REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
| ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
| ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
| ATH9K_POW_SM(ratesArray[rateHt20_4], 0)
);
if (IS_CHAN_HT40(chan)) {
REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
ATH9K_POW_SM(ratesArray[rateHt40_3] +
ht40PowerIncForPdadc, 24)
| ATH9K_POW_SM(ratesArray[rateHt40_2] +
ht40PowerIncForPdadc, 16)
| ATH9K_POW_SM(ratesArray[rateHt40_1] +
ht40PowerIncForPdadc, 8)
| ATH9K_POW_SM(ratesArray[rateHt40_0] +
ht40PowerIncForPdadc, 0)
);
REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
ATH9K_POW_SM(ratesArray[rateHt40_7] +
ht40PowerIncForPdadc, 24)
| ATH9K_POW_SM(ratesArray[rateHt40_6] +
ht40PowerIncForPdadc, 16)
| ATH9K_POW_SM(ratesArray[rateHt40_5] +
ht40PowerIncForPdadc, 8)
| ATH9K_POW_SM(ratesArray[rateHt40_4] +
ht40PowerIncForPdadc, 0)
);
REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
| ATH9K_POW_SM(ratesArray[rateExtCck], 16)
| ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
| ATH9K_POW_SM(ratesArray[rateDupCck], 0)
);
}
REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
ATH9K_POW_SM(pModal->pwrDecreaseFor3Chain, 6)
| ATH9K_POW_SM(pModal->pwrDecreaseFor2Chain, 0)
);
i = rate6mb;
if (IS_CHAN_HT40(chan))
i = rateHt40_0;
else if (IS_CHAN_HT20(chan))
i = rateHt20_0;
if (AR_SREV_9280_10_OR_LATER(ah))
ah->ah_maxPowerLevel =
ratesArray[i] + AR5416_PWR_TABLE_OFFSET * 2;
else
ah->ah_maxPowerLevel = ratesArray[i];
return 0;
}
static inline void ath9k_hw_get_delta_slope_vals(struct ath_hal *ah,
u32 coef_scaled,
u32 *coef_mantissa,
u32 *coef_exponent)
{
u32 coef_exp, coef_man;
for (coef_exp = 31; coef_exp > 0; coef_exp--)
if ((coef_scaled >> coef_exp) & 0x1)
break;
coef_exp = 14 - (coef_exp - COEF_SCALE_S);
coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
*coef_exponent = coef_exp - 16;
}
static void
ath9k_hw_set_delta_slope(struct ath_hal *ah,
struct ath9k_channel *chan)
{
u32 coef_scaled, ds_coef_exp, ds_coef_man;
u32 clockMhzScaled = 0x64000000;
struct chan_centers centers;
if (IS_CHAN_HALF_RATE(chan))
clockMhzScaled = clockMhzScaled >> 1;
else if (IS_CHAN_QUARTER_RATE(chan))
clockMhzScaled = clockMhzScaled >> 2;
ath9k_hw_get_channel_centers(ah, chan, &centers);
coef_scaled = clockMhzScaled / centers.synth_center;
ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
&ds_coef_exp);
REG_RMW_FIELD(ah, AR_PHY_TIMING3,
AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
REG_RMW_FIELD(ah, AR_PHY_TIMING3,
AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
coef_scaled = (9 * coef_scaled) / 10;
ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
&ds_coef_exp);
REG_RMW_FIELD(ah, AR_PHY_HALFGI,
AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
REG_RMW_FIELD(ah, AR_PHY_HALFGI,
AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
}
static void ath9k_hw_9280_spur_mitigate(struct ath_hal *ah,
struct ath9k_channel *chan)
{
int bb_spur = AR_NO_SPUR;
int freq;
int bin, cur_bin;
int bb_spur_off, spur_subchannel_sd;
int spur_freq_sd;
int spur_delta_phase;
int denominator;
int upper, lower, cur_vit_mask;
int tmp, newVal;
int i;
int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
};
int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
};
int inc[4] = { 0, 100, 0, 0 };
struct chan_centers centers;
int8_t mask_m[123];
int8_t mask_p[123];
int8_t mask_amt;
int tmp_mask;
int cur_bb_spur;
bool is2GHz = IS_CHAN_2GHZ(chan);
memset(&mask_m, 0, sizeof(int8_t) * 123);
memset(&mask_p, 0, sizeof(int8_t) * 123);
ath9k_hw_get_channel_centers(ah, chan, &centers);
freq = centers.synth_center;
ah->ah_config.spurmode = SPUR_ENABLE_EEPROM;
for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
cur_bb_spur = ath9k_hw_eeprom_get_spur_chan(ah, i, is2GHz);
if (is2GHz)
cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
else
cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
if (AR_NO_SPUR == cur_bb_spur)
break;
cur_bb_spur = cur_bb_spur - freq;
if (IS_CHAN_HT40(chan)) {
if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
(cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
bb_spur = cur_bb_spur;
break;
}
} else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
(cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
bb_spur = cur_bb_spur;
break;
}
}
if (AR_NO_SPUR == bb_spur) {
REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
return;
} else {
REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
}
bin = bb_spur * 320;
tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
AR_PHY_SPUR_REG_MASK_RATE_SELECT |
AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
if (IS_CHAN_HT40(chan)) {
if (bb_spur < 0) {
spur_subchannel_sd = 1;
bb_spur_off = bb_spur + 10;
} else {
spur_subchannel_sd = 0;
bb_spur_off = bb_spur - 10;
}
} else {
spur_subchannel_sd = 0;
bb_spur_off = bb_spur;
}
if (IS_CHAN_HT40(chan))
spur_delta_phase =
((bb_spur * 262144) /
10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
else
spur_delta_phase =
((bb_spur * 524288) /
10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
REG_WRITE(ah, AR_PHY_TIMING11, newVal);
newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
cur_bin = -6000;
upper = bin + 100;
lower = bin - 100;
for (i = 0; i < 4; i++) {
int pilot_mask = 0;
int chan_mask = 0;
int bp = 0;
for (bp = 0; bp < 30; bp++) {
if ((cur_bin > lower) && (cur_bin < upper)) {
pilot_mask = pilot_mask | 0x1 << bp;
chan_mask = chan_mask | 0x1 << bp;
}
cur_bin += 100;
}
cur_bin += inc[i];
REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
REG_WRITE(ah, chan_mask_reg[i], chan_mask);
}
cur_vit_mask = 6100;
upper = bin + 120;
lower = bin - 120;
for (i = 0; i < 123; i++) {
if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
/* workaround for gcc bug #37014 */
volatile int tmp = abs(cur_vit_mask - bin);
if (tmp < 75)
mask_amt = 1;
else
mask_amt = 0;
if (cur_vit_mask < 0)
mask_m[abs(cur_vit_mask / 100)] = mask_amt;
else
mask_p[cur_vit_mask / 100] = mask_amt;
}
cur_vit_mask -= 100;
}
tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
| (mask_m[48] << 26) | (mask_m[49] << 24)
| (mask_m[50] << 22) | (mask_m[51] << 20)
| (mask_m[52] << 18) | (mask_m[53] << 16)
| (mask_m[54] << 14) | (mask_m[55] << 12)
| (mask_m[56] << 10) | (mask_m[57] << 8)
| (mask_m[58] << 6) | (mask_m[59] << 4)
| (mask_m[60] << 2) | (mask_m[61] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
tmp_mask = (mask_m[31] << 28)
| (mask_m[32] << 26) | (mask_m[33] << 24)
| (mask_m[34] << 22) | (mask_m[35] << 20)
| (mask_m[36] << 18) | (mask_m[37] << 16)
| (mask_m[48] << 14) | (mask_m[39] << 12)
| (mask_m[40] << 10) | (mask_m[41] << 8)
| (mask_m[42] << 6) | (mask_m[43] << 4)
| (mask_m[44] << 2) | (mask_m[45] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
| (mask_m[18] << 26) | (mask_m[18] << 24)
| (mask_m[20] << 22) | (mask_m[20] << 20)
| (mask_m[22] << 18) | (mask_m[22] << 16)
| (mask_m[24] << 14) | (mask_m[24] << 12)
| (mask_m[25] << 10) | (mask_m[26] << 8)
| (mask_m[27] << 6) | (mask_m[28] << 4)
| (mask_m[29] << 2) | (mask_m[30] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
| (mask_m[2] << 26) | (mask_m[3] << 24)
| (mask_m[4] << 22) | (mask_m[5] << 20)
| (mask_m[6] << 18) | (mask_m[7] << 16)
| (mask_m[8] << 14) | (mask_m[9] << 12)
| (mask_m[10] << 10) | (mask_m[11] << 8)
| (mask_m[12] << 6) | (mask_m[13] << 4)
| (mask_m[14] << 2) | (mask_m[15] << 0);
REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
tmp_mask = (mask_p[15] << 28)
| (mask_p[14] << 26) | (mask_p[13] << 24)
| (mask_p[12] << 22) | (mask_p[11] << 20)
| (mask_p[10] << 18) | (mask_p[9] << 16)
| (mask_p[8] << 14) | (mask_p[7] << 12)
| (mask_p[6] << 10) | (mask_p[5] << 8)
| (mask_p[4] << 6) | (mask_p[3] << 4)
| (mask_p[2] << 2) | (mask_p[1] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
tmp_mask = (mask_p[30] << 28)
| (mask_p[29] << 26) | (mask_p[28] << 24)
| (mask_p[27] << 22) | (mask_p[26] << 20)
| (mask_p[25] << 18) | (mask_p[24] << 16)
| (mask_p[23] << 14) | (mask_p[22] << 12)
| (mask_p[21] << 10) | (mask_p[20] << 8)
| (mask_p[19] << 6) | (mask_p[18] << 4)
| (mask_p[17] << 2) | (mask_p[16] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
tmp_mask = (mask_p[45] << 28)
| (mask_p[44] << 26) | (mask_p[43] << 24)
| (mask_p[42] << 22) | (mask_p[41] << 20)
| (mask_p[40] << 18) | (mask_p[39] << 16)
| (mask_p[38] << 14) | (mask_p[37] << 12)
| (mask_p[36] << 10) | (mask_p[35] << 8)
| (mask_p[34] << 6) | (mask_p[33] << 4)
| (mask_p[32] << 2) | (mask_p[31] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
| (mask_p[59] << 26) | (mask_p[58] << 24)
| (mask_p[57] << 22) | (mask_p[56] << 20)
| (mask_p[55] << 18) | (mask_p[54] << 16)
| (mask_p[53] << 14) | (mask_p[52] << 12)
| (mask_p[51] << 10) | (mask_p[50] << 8)
| (mask_p[49] << 6) | (mask_p[48] << 4)
| (mask_p[47] << 2) | (mask_p[46] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
}
static void ath9k_hw_spur_mitigate(struct ath_hal *ah,
struct ath9k_channel *chan)
{
int bb_spur = AR_NO_SPUR;
int bin, cur_bin;
int spur_freq_sd;
int spur_delta_phase;
int denominator;
int upper, lower, cur_vit_mask;
int tmp, new;
int i;
int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
};
int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
};
int inc[4] = { 0, 100, 0, 0 };
int8_t mask_m[123];
int8_t mask_p[123];
int8_t mask_amt;
int tmp_mask;
int cur_bb_spur;
bool is2GHz = IS_CHAN_2GHZ(chan);
memset(&mask_m, 0, sizeof(int8_t) * 123);
memset(&mask_p, 0, sizeof(int8_t) * 123);
for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
cur_bb_spur = ath9k_hw_eeprom_get_spur_chan(ah, i, is2GHz);
if (AR_NO_SPUR == cur_bb_spur)
break;
cur_bb_spur = cur_bb_spur - (chan->channel * 10);
if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
bb_spur = cur_bb_spur;
break;
}
}
if (AR_NO_SPUR == bb_spur)
return;
bin = bb_spur * 32;
tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new);
new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
AR_PHY_SPUR_REG_MASK_RATE_SELECT |
AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
REG_WRITE(ah, AR_PHY_SPUR_REG, new);
spur_delta_phase = ((bb_spur * 524288) / 100) &
AR_PHY_TIMING11_SPUR_DELTA_PHASE;
denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
REG_WRITE(ah, AR_PHY_TIMING11, new);
cur_bin = -6000;
upper = bin + 100;
lower = bin - 100;
for (i = 0; i < 4; i++) {
int pilot_mask = 0;
int chan_mask = 0;
int bp = 0;
for (bp = 0; bp < 30; bp++) {
if ((cur_bin > lower) && (cur_bin < upper)) {
pilot_mask = pilot_mask | 0x1 << bp;
chan_mask = chan_mask | 0x1 << bp;
}
cur_bin += 100;
}
cur_bin += inc[i];
REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
REG_WRITE(ah, chan_mask_reg[i], chan_mask);
}
cur_vit_mask = 6100;
upper = bin + 120;
lower = bin - 120;
for (i = 0; i < 123; i++) {
if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
/* workaround for gcc bug #37014 */
volatile int tmp = abs(cur_vit_mask - bin);
if (tmp < 75)
mask_amt = 1;
else
mask_amt = 0;
if (cur_vit_mask < 0)
mask_m[abs(cur_vit_mask / 100)] = mask_amt;
else
mask_p[cur_vit_mask / 100] = mask_amt;
}
cur_vit_mask -= 100;
}
tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
| (mask_m[48] << 26) | (mask_m[49] << 24)
| (mask_m[50] << 22) | (mask_m[51] << 20)
| (mask_m[52] << 18) | (mask_m[53] << 16)
| (mask_m[54] << 14) | (mask_m[55] << 12)
| (mask_m[56] << 10) | (mask_m[57] << 8)
| (mask_m[58] << 6) | (mask_m[59] << 4)
| (mask_m[60] << 2) | (mask_m[61] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
tmp_mask = (mask_m[31] << 28)
| (mask_m[32] << 26) | (mask_m[33] << 24)
| (mask_m[34] << 22) | (mask_m[35] << 20)
| (mask_m[36] << 18) | (mask_m[37] << 16)
| (mask_m[48] << 14) | (mask_m[39] << 12)
| (mask_m[40] << 10) | (mask_m[41] << 8)
| (mask_m[42] << 6) | (mask_m[43] << 4)
| (mask_m[44] << 2) | (mask_m[45] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
| (mask_m[18] << 26) | (mask_m[18] << 24)
| (mask_m[20] << 22) | (mask_m[20] << 20)
| (mask_m[22] << 18) | (mask_m[22] << 16)
| (mask_m[24] << 14) | (mask_m[24] << 12)
| (mask_m[25] << 10) | (mask_m[26] << 8)
| (mask_m[27] << 6) | (mask_m[28] << 4)
| (mask_m[29] << 2) | (mask_m[30] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
| (mask_m[2] << 26) | (mask_m[3] << 24)
| (mask_m[4] << 22) | (mask_m[5] << 20)
| (mask_m[6] << 18) | (mask_m[7] << 16)
| (mask_m[8] << 14) | (mask_m[9] << 12)
| (mask_m[10] << 10) | (mask_m[11] << 8)
| (mask_m[12] << 6) | (mask_m[13] << 4)
| (mask_m[14] << 2) | (mask_m[15] << 0);
REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
tmp_mask = (mask_p[15] << 28)
| (mask_p[14] << 26) | (mask_p[13] << 24)
| (mask_p[12] << 22) | (mask_p[11] << 20)
| (mask_p[10] << 18) | (mask_p[9] << 16)
| (mask_p[8] << 14) | (mask_p[7] << 12)
| (mask_p[6] << 10) | (mask_p[5] << 8)
| (mask_p[4] << 6) | (mask_p[3] << 4)
| (mask_p[2] << 2) | (mask_p[1] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
tmp_mask = (mask_p[30] << 28)
| (mask_p[29] << 26) | (mask_p[28] << 24)
| (mask_p[27] << 22) | (mask_p[26] << 20)
| (mask_p[25] << 18) | (mask_p[24] << 16)
| (mask_p[23] << 14) | (mask_p[22] << 12)
| (mask_p[21] << 10) | (mask_p[20] << 8)
| (mask_p[19] << 6) | (mask_p[18] << 4)
| (mask_p[17] << 2) | (mask_p[16] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
tmp_mask = (mask_p[45] << 28)
| (mask_p[44] << 26) | (mask_p[43] << 24)
| (mask_p[42] << 22) | (mask_p[41] << 20)
| (mask_p[40] << 18) | (mask_p[39] << 16)
| (mask_p[38] << 14) | (mask_p[37] << 12)
| (mask_p[36] << 10) | (mask_p[35] << 8)
| (mask_p[34] << 6) | (mask_p[33] << 4)
| (mask_p[32] << 2) | (mask_p[31] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
| (mask_p[59] << 26) | (mask_p[58] << 24)
| (mask_p[57] << 22) | (mask_p[56] << 20)
| (mask_p[55] << 18) | (mask_p[54] << 16)
| (mask_p[53] << 14) | (mask_p[52] << 12)
| (mask_p[51] << 10) | (mask_p[50] << 8)
| (mask_p[49] << 6) | (mask_p[48] << 4)
| (mask_p[47] << 2) | (mask_p[46] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
}
static void ath9k_hw_init_chain_masks(struct ath_hal *ah)
{
struct ath_hal_5416 *ahp = AH5416(ah);
int rx_chainmask, tx_chainmask;
rx_chainmask = ahp->ah_rxchainmask;
tx_chainmask = ahp->ah_txchainmask;
switch (rx_chainmask) {
case 0x5:
REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
AR_PHY_SWAP_ALT_CHAIN);
case 0x3:
if (((ah)->ah_macVersion <= AR_SREV_VERSION_9160)) {
REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
break;
}
case 0x1:
case 0x2:
if (!AR_SREV_9280(ah))
break;
case 0x7:
REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
break;
default:
break;
}
REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
if (tx_chainmask == 0x5) {
REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
AR_PHY_SWAP_ALT_CHAIN);
}
if (AR_SREV_9100(ah))
REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
}
static void ath9k_hw_set_addac(struct ath_hal *ah,
struct ath9k_channel *chan)
{
struct modal_eep_header *pModal;
struct ath_hal_5416 *ahp = AH5416(ah);
struct ar5416_eeprom *eep = &ahp->ah_eeprom;
u8 biaslevel;
if (ah->ah_macVersion != AR_SREV_VERSION_9160)
return;
if (ar5416_get_eep_rev(ahp) < AR5416_EEP_MINOR_VER_7)
return;
pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
if (pModal->xpaBiasLvl != 0xff) {
biaslevel = pModal->xpaBiasLvl;
} else {
u16 resetFreqBin, freqBin, freqCount = 0;
struct chan_centers centers;
ath9k_hw_get_channel_centers(ah, chan, &centers);
resetFreqBin =
FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan));
freqBin = pModal->xpaBiasLvlFreq[0] & 0xff;
biaslevel = (u8) (pModal->xpaBiasLvlFreq[0] >> 14);
freqCount++;
while (freqCount < 3) {
if (pModal->xpaBiasLvlFreq[freqCount] == 0x0)
break;
freqBin = pModal->xpaBiasLvlFreq[freqCount] & 0xff;
if (resetFreqBin >= freqBin) {
biaslevel =
(u8) (pModal->
xpaBiasLvlFreq[freqCount]
>> 14);
} else {
break;
}
freqCount++;
}
}
if (IS_CHAN_2GHZ(chan)) {
INI_RA(&ahp->ah_iniAddac, 7, 1) =
(INI_RA(&ahp->ah_iniAddac, 7, 1) & (~0x18)) | biaslevel
<< 3;
} else {
INI_RA(&ahp->ah_iniAddac, 6, 1) =
(INI_RA(&ahp->ah_iniAddac, 6, 1) & (~0xc0)) | biaslevel
<< 6;
}
}
static u32 ath9k_hw_mac_usec(struct ath_hal *ah, u32 clks)
{
if (ah->ah_curchan != NULL)
return clks /
CLOCK_RATE[ath9k_hw_chan2wmode(ah, ah->ah_curchan)];
else
return clks / CLOCK_RATE[ATH9K_MODE_11B];
}
static u32 ath9k_hw_mac_to_usec(struct ath_hal *ah, u32 clks)
{
struct ath9k_channel *chan = ah->ah_curchan;
if (chan && IS_CHAN_HT40(chan))
return ath9k_hw_mac_usec(ah, clks) / 2;
else
return ath9k_hw_mac_usec(ah, clks);
}
static u32 ath9k_hw_mac_clks(struct ath_hal *ah, u32 usecs)
{
if (ah->ah_curchan != NULL)
return usecs * CLOCK_RATE[ath9k_hw_chan2wmode(ah,
ah->ah_curchan)];
else
return usecs * CLOCK_RATE[ATH9K_MODE_11B];
}
static u32 ath9k_hw_mac_to_clks(struct ath_hal *ah, u32 usecs)
{
struct ath9k_channel *chan = ah->ah_curchan;
if (chan && IS_CHAN_HT40(chan))
return ath9k_hw_mac_clks(ah, usecs) * 2;
else
return ath9k_hw_mac_clks(ah, usecs);
}
static bool ath9k_hw_set_ack_timeout(struct ath_hal *ah, u32 us)
{
struct ath_hal_5416 *ahp = AH5416(ah);
if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: bad ack timeout %u\n",
__func__, us);
ahp->ah_acktimeout = (u32) -1;
return false;
} else {
REG_RMW_FIELD(ah, AR_TIME_OUT,
AR_TIME_OUT_ACK, ath9k_hw_mac_to_clks(ah, us));
ahp->ah_acktimeout = us;
return true;
}
}
static bool ath9k_hw_set_cts_timeout(struct ath_hal *ah, u32 us)
{
struct ath_hal_5416 *ahp = AH5416(ah);
if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: bad cts timeout %u\n",
__func__, us);
ahp->ah_ctstimeout = (u32) -1;
return false;
} else {
REG_RMW_FIELD(ah, AR_TIME_OUT,
AR_TIME_OUT_CTS, ath9k_hw_mac_to_clks(ah, us));
ahp->ah_ctstimeout = us;
return true;
}
}
static bool ath9k_hw_set_global_txtimeout(struct ath_hal *ah,
u32 tu)
{
struct ath_hal_5416 *ahp = AH5416(ah);
if (tu > 0xFFFF) {
DPRINTF(ah->ah_sc, ATH_DBG_XMIT,
"%s: bad global tx timeout %u\n", __func__, tu);
ahp->ah_globaltxtimeout = (u32) -1;
return false;
} else {
REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
ahp->ah_globaltxtimeout = tu;
return true;
}
}
bool ath9k_hw_setslottime(struct ath_hal *ah, u32 us)
{
struct ath_hal_5416 *ahp = AH5416(ah);
if (us < ATH9K_SLOT_TIME_9 || us > ath9k_hw_mac_to_usec(ah, 0xffff)) {
DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: bad slot time %u\n",
__func__, us);
ahp->ah_slottime = (u32) -1;
return false;
} else {
REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath9k_hw_mac_to_clks(ah, us));
ahp->ah_slottime = us;
return true;
}
}
static void ath9k_hw_init_user_settings(struct ath_hal *ah)
{
struct ath_hal_5416 *ahp = AH5416(ah);
DPRINTF(ah->ah_sc, ATH_DBG_RESET, "--AP %s ahp->ah_miscMode 0x%x\n",
__func__, ahp->ah_miscMode);
if (ahp->ah_miscMode != 0)
REG_WRITE(ah, AR_PCU_MISC,
REG_READ(ah, AR_PCU_MISC) | ahp->ah_miscMode);
if (ahp->ah_slottime != (u32) -1)
ath9k_hw_setslottime(ah, ahp->ah_slottime);
if (ahp->ah_acktimeout != (u32) -1)
ath9k_hw_set_ack_timeout(ah, ahp->ah_acktimeout);
if (ahp->ah_ctstimeout != (u32) -1)
ath9k_hw_set_cts_timeout(ah, ahp->ah_ctstimeout);
if (ahp->ah_globaltxtimeout != (u32) -1)
ath9k_hw_set_global_txtimeout(ah, ahp->ah_globaltxtimeout);
}
static int
ath9k_hw_process_ini(struct ath_hal *ah,
struct ath9k_channel *chan,
enum ath9k_ht_macmode macmode)
{
int i, regWrites = 0;
struct ath_hal_5416 *ahp = AH5416(ah);
u32 modesIndex, freqIndex;
int status;
switch (chan->chanmode) {
case CHANNEL_A:
case CHANNEL_A_HT20:
modesIndex = 1;
freqIndex = 1;
break;
case CHANNEL_A_HT40PLUS:
case CHANNEL_A_HT40MINUS:
modesIndex = 2;
freqIndex = 1;
break;
case CHANNEL_G:
case CHANNEL_G_HT20:
case CHANNEL_B:
modesIndex = 4;
freqIndex = 2;
break;
case CHANNEL_G_HT40PLUS:
case CHANNEL_G_HT40MINUS:
modesIndex = 3;
freqIndex = 2;
break;
default:
return -EINVAL;
}
REG_WRITE(ah, AR_PHY(0), 0x00000007);
REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
ath9k_hw_set_addac(ah, chan);
if (AR_SREV_5416_V22_OR_LATER(ah)) {
REG_WRITE_ARRAY(&ahp->ah_iniAddac, 1, regWrites);
} else {
struct ar5416IniArray temp;
u32 addacSize =
sizeof(u32) * ahp->ah_iniAddac.ia_rows *
ahp->ah_iniAddac.ia_columns;
memcpy(ahp->ah_addac5416_21,
ahp->ah_iniAddac.ia_array, addacSize);
(ahp->ah_addac5416_21)[31 *
ahp->ah_iniAddac.ia_columns + 1] = 0;
temp.ia_array = ahp->ah_addac5416_21;
temp.ia_columns = ahp->ah_iniAddac.ia_columns;
temp.ia_rows = ahp->ah_iniAddac.ia_rows;
REG_WRITE_ARRAY(&temp, 1, regWrites);
}
REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
for (i = 0; i < ahp->ah_iniModes.ia_rows; i++) {
u32 reg = INI_RA(&ahp->ah_iniModes, i, 0);
u32 val = INI_RA(&ahp->ah_iniModes, i, modesIndex);
#ifdef CONFIG_SLOW_ANT_DIV
if (ah->ah_devid == AR9280_DEVID_PCI)
val = ath9k_hw_ini_fixup(ah, &ahp->ah_eeprom, reg,
val);
#endif
REG_WRITE(ah, reg, val);
if (reg >= 0x7800 && reg < 0x78a0
&& ah->ah_config.analog_shiftreg) {
udelay(100);
}
DO_DELAY(regWrites);
}
for (i = 0; i < ahp->ah_iniCommon.ia_rows; i++) {
u32 reg = INI_RA(&ahp->ah_iniCommon, i, 0);
u32 val = INI_RA(&ahp->ah_iniCommon, i, 1);
REG_WRITE(ah, reg, val);
if (reg >= 0x7800 && reg < 0x78a0
&& ah->ah_config.analog_shiftreg) {
udelay(100);
}
DO_DELAY(regWrites);
}
ath9k_hw_write_regs(ah, modesIndex, freqIndex, regWrites);
if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) {
REG_WRITE_ARRAY(&ahp->ah_iniModesAdditional, modesIndex,
regWrites);
}
ath9k_hw_override_ini(ah, chan);
ath9k_hw_set_regs(ah, chan, macmode);
ath9k_hw_init_chain_masks(ah);
status = ath9k_hw_set_txpower(ah, &ahp->ah_eeprom, chan,
ath9k_regd_get_ctl(ah, chan),
ath9k_regd_get_antenna_allowed(ah,
chan),
chan->maxRegTxPower * 2,
min((u32) MAX_RATE_POWER,
(u32) ah->ah_powerLimit));
if (status != 0) {
DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
"%s: error init'ing transmit power\n", __func__);
return -EIO;
}
if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
"%s: ar5416SetRfRegs failed\n", __func__);
return -EIO;
}
return 0;
}
static void ath9k_hw_setup_calibration(struct ath_hal *ah,
struct hal_cal_list *currCal)
{
REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4(0),
AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX,
currCal->calData->calCountMax);
switch (currCal->calData->calType) {
case IQ_MISMATCH_CAL:
REG_WRITE(ah, AR_PHY_CALMODE, AR_PHY_CALMODE_IQ);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"%s: starting IQ Mismatch Calibration\n",
__func__);
break;
case ADC_GAIN_CAL:
REG_WRITE(ah, AR_PHY_CALMODE, AR_PHY_CALMODE_ADC_GAIN);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"%s: starting ADC Gain Calibration\n", __func__);
break;
case ADC_DC_CAL:
REG_WRITE(ah, AR_PHY_CALMODE, AR_PHY_CALMODE_ADC_DC_PER);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"%s: starting ADC DC Calibration\n", __func__);
break;
case ADC_DC_INIT_CAL:
REG_WRITE(ah, AR_PHY_CALMODE, AR_PHY_CALMODE_ADC_DC_INIT);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"%s: starting Init ADC DC Calibration\n",
__func__);
break;
}
REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4(0),
AR_PHY_TIMING_CTRL4_DO_CAL);
}
static void ath9k_hw_reset_calibration(struct ath_hal *ah,
struct hal_cal_list *currCal)
{
struct ath_hal_5416 *ahp = AH5416(ah);
int i;
ath9k_hw_setup_calibration(ah, currCal);
currCal->calState = CAL_RUNNING;
for (i = 0; i < AR5416_MAX_CHAINS; i++) {
ahp->ah_Meas0.sign[i] = 0;
ahp->ah_Meas1.sign[i] = 0;
ahp->ah_Meas2.sign[i] = 0;
ahp->ah_Meas3.sign[i] = 0;
}
ahp->ah_CalSamples = 0;
}
static void
ath9k_hw_per_calibration(struct ath_hal *ah,
struct ath9k_channel *ichan,
u8 rxchainmask,
struct hal_cal_list *currCal,
bool *isCalDone)
{
struct ath_hal_5416 *ahp = AH5416(ah);
*isCalDone = false;
if (currCal->calState == CAL_RUNNING) {
if (!(REG_READ(ah,
AR_PHY_TIMING_CTRL4(0)) &
AR_PHY_TIMING_CTRL4_DO_CAL)) {
currCal->calData->calCollect(ah);
ahp->ah_CalSamples++;
if (ahp->ah_CalSamples >=
currCal->calData->calNumSamples) {
int i, numChains = 0;
for (i = 0; i < AR5416_MAX_CHAINS; i++) {
if (rxchainmask & (1 << i))
numChains++;
}
currCal->calData->calPostProc(ah,
numChains);
ichan->CalValid |=
currCal->calData->calType;
currCal->calState = CAL_DONE;
*isCalDone = true;
} else {
ath9k_hw_setup_calibration(ah, currCal);
}
}
} else if (!(ichan->CalValid & currCal->calData->calType)) {
ath9k_hw_reset_calibration(ah, currCal);
}
}
static inline bool ath9k_hw_run_init_cals(struct ath_hal *ah,
int init_cal_count)
{
struct ath_hal_5416 *ahp = AH5416(ah);
struct ath9k_channel ichan;
bool isCalDone;
struct hal_cal_list *currCal = ahp->ah_cal_list_curr;
const struct hal_percal_data *calData = currCal->calData;
int i;
if (currCal == NULL)
return false;
ichan.CalValid = 0;
for (i = 0; i < init_cal_count; i++) {
ath9k_hw_reset_calibration(ah, currCal);
if (!ath9k_hw_wait(ah, AR_PHY_TIMING_CTRL4(0),
AR_PHY_TIMING_CTRL4_DO_CAL, 0)) {
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"%s: Cal %d failed to complete in 100ms.\n",
__func__, calData->calType);
ahp->ah_cal_list = ahp->ah_cal_list_last =
ahp->ah_cal_list_curr = NULL;
return false;
}
ath9k_hw_per_calibration(ah, &ichan, ahp->ah_rxchainmask,
currCal, &isCalDone);
if (!isCalDone) {
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"%s: Not able to run Init Cal %d.\n",
__func__, calData->calType);
}
if (currCal->calNext) {
currCal = currCal->calNext;
calData = currCal->calData;
}
}
ahp->ah_cal_list = ahp->ah_cal_list_last = ahp->ah_cal_list_curr = NULL;
return true;
}
static bool
ath9k_hw_channel_change(struct ath_hal *ah,
struct ath9k_channel *chan,
enum ath9k_ht_macmode macmode)
{
u32 synthDelay, qnum;
struct ath_hal_5416 *ahp = AH5416(ah);
for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
if (ath9k_hw_numtxpending(ah, qnum)) {
DPRINTF(ah->ah_sc, ATH_DBG_QUEUE,
"%s: Transmit frames pending on queue %d\n",
__func__, qnum);
return false;
}
}
REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
AR_PHY_RFBUS_GRANT_EN)) {
DPRINTF(ah->ah_sc, ATH_DBG_PHY_IO,
"%s: Could not kill baseband RX\n", __func__);
return false;
}
ath9k_hw_set_regs(ah, chan, macmode);
if (AR_SREV_9280_10_OR_LATER(ah)) {
if (!(ath9k_hw_ar9280_set_channel(ah, chan))) {
DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
"%s: failed to set channel\n", __func__);
return false;
}
} else {
if (!(ath9k_hw_set_channel(ah, chan))) {
DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
"%s: failed to set channel\n", __func__);
return false;
}
}
if (ath9k_hw_set_txpower(ah, &ahp->ah_eeprom, chan,
ath9k_regd_get_ctl(ah, chan),
ath9k_regd_get_antenna_allowed(ah, chan),
chan->maxRegTxPower * 2,
min((u32) MAX_RATE_POWER,
(u32) ah->ah_powerLimit)) != 0) {
DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
"%s: error init'ing transmit power\n", __func__);
return false;
}
synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
if (IS_CHAN_CCK(chan))
synthDelay = (4 * synthDelay) / 22;
else
synthDelay /= 10;
udelay(synthDelay + BASE_ACTIVATE_DELAY);
REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
ath9k_hw_set_delta_slope(ah, chan);
if (AR_SREV_9280_10_OR_LATER(ah))
ath9k_hw_9280_spur_mitigate(ah, chan);
else
ath9k_hw_spur_mitigate(ah, chan);
if (!chan->oneTimeCalsDone)
chan->oneTimeCalsDone = true;
return true;
}
static bool ath9k_hw_chip_reset(struct ath_hal *ah,
struct ath9k_channel *chan)
{
struct ath_hal_5416 *ahp = AH5416(ah);
if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
return false;
if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
return false;
ahp->ah_chipFullSleep = false;
ath9k_hw_init_pll(ah, chan);
ath9k_hw_set_rfmode(ah, chan);
return true;
}
static inline void ath9k_hw_set_dma(struct ath_hal *ah)
{
u32 regval;
regval = REG_READ(ah, AR_AHB_MODE);
REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->ah_txTrigLevel);
regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
if (AR_SREV_9285(ah)) {
REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
} else {
REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
AR_PCU_TXBUF_CTRL_USABLE_SIZE);
}
}
bool ath9k_hw_stopdmarecv(struct ath_hal *ah)
{
REG_WRITE(ah, AR_CR, AR_CR_RXD);
if (!ath9k_hw_wait(ah, AR_CR, AR_CR_RXE, 0)) {
DPRINTF(ah->ah_sc, ATH_DBG_QUEUE,
"%s: dma failed to stop in 10ms\n"
"AR_CR=0x%08x\nAR_DIAG_SW=0x%08x\n",
__func__,
REG_READ(ah, AR_CR), REG_READ(ah, AR_DIAG_SW));
return false;
} else {
return true;
}
}
void ath9k_hw_startpcureceive(struct ath_hal *ah)
{
REG_CLR_BIT(ah, AR_DIAG_SW,
(AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
ath9k_enable_mib_counters(ah);
ath9k_ani_reset(ah);
}
void ath9k_hw_stoppcurecv(struct ath_hal *ah)
{
REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_DIS);
ath9k_hw_disable_mib_counters(ah);
}
static bool ath9k_hw_iscal_supported(struct ath_hal *ah,
struct ath9k_channel *chan,
enum hal_cal_types calType)
{
struct ath_hal_5416 *ahp = AH5416(ah);
bool retval = false;
switch (calType & ahp->ah_suppCals) {
case IQ_MISMATCH_CAL:
if (!IS_CHAN_B(chan))
retval = true;
break;
case ADC_GAIN_CAL:
case ADC_DC_CAL:
if (!IS_CHAN_B(chan)
&& !(IS_CHAN_2GHZ(chan) && IS_CHAN_HT20(chan)))
retval = true;
break;
}
return retval;
}
static bool ath9k_hw_init_cal(struct ath_hal *ah,
struct ath9k_channel *chan)
{
struct ath_hal_5416 *ahp = AH5416(ah);
struct ath9k_channel *ichan =
ath9k_regd_check_channel(ah, chan);
REG_WRITE(ah, AR_PHY_AGC_CONTROL,
REG_READ(ah, AR_PHY_AGC_CONTROL) |
AR_PHY_AGC_CONTROL_CAL);
if (!ath9k_hw_wait
(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 0)) {
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"%s: offset calibration failed to complete in 1ms; "
"noisy environment?\n", __func__);
return false;
}
REG_WRITE(ah, AR_PHY_AGC_CONTROL,
REG_READ(ah, AR_PHY_AGC_CONTROL) |
AR_PHY_AGC_CONTROL_NF);
ahp->ah_cal_list = ahp->ah_cal_list_last = ahp->ah_cal_list_curr =
NULL;
if (AR_SREV_9100(ah) || AR_SREV_9160_10_OR_LATER(ah)) {
if (ath9k_hw_iscal_supported(ah, chan, ADC_GAIN_CAL)) {
INIT_CAL(&ahp->ah_adcGainCalData);
INSERT_CAL(ahp, &ahp->ah_adcGainCalData);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"%s: enabling ADC Gain Calibration.\n",
__func__);
}
if (ath9k_hw_iscal_supported(ah, chan, ADC_DC_CAL)) {
INIT_CAL(&ahp->ah_adcDcCalData);
INSERT_CAL(ahp, &ahp->ah_adcDcCalData);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"%s: enabling ADC DC Calibration.\n",
__func__);
}
if (ath9k_hw_iscal_supported(ah, chan, IQ_MISMATCH_CAL)) {
INIT_CAL(&ahp->ah_iqCalData);
INSERT_CAL(ahp, &ahp->ah_iqCalData);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"%s: enabling IQ Calibration.\n",
__func__);
}
ahp->ah_cal_list_curr = ahp->ah_cal_list;
if (ahp->ah_cal_list_curr)
ath9k_hw_reset_calibration(ah,
ahp->ah_cal_list_curr);
}
ichan->CalValid = 0;
return true;
}
bool ath9k_hw_reset(struct ath_hal *ah,
struct ath9k_channel *chan,
enum ath9k_ht_macmode macmode,
u8 txchainmask, u8 rxchainmask,
enum ath9k_ht_extprotspacing extprotspacing,
bool bChannelChange,
int *status)
{
#define FAIL(_code) do { ecode = _code; goto bad; } while (0)
u32 saveLedState;
struct ath_hal_5416 *ahp = AH5416(ah);
struct ath9k_channel *curchan = ah->ah_curchan;
u32 saveDefAntenna;
u32 macStaId1;
int ecode;
int i, rx_chainmask;
ahp->ah_extprotspacing = extprotspacing;
ahp->ah_txchainmask = txchainmask;
ahp->ah_rxchainmask = rxchainmask;
if (AR_SREV_9280(ah)) {
ahp->ah_txchainmask &= 0x3;
ahp->ah_rxchainmask &= 0x3;
}
if (ath9k_hw_check_chan(ah, chan) == NULL) {
DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
"%s: invalid channel %u/0x%x; no mapping\n",
__func__, chan->channel, chan->channelFlags);
FAIL(-EINVAL);
}
if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
return false;
if (curchan)
ath9k_hw_getnf(ah, curchan);
if (bChannelChange &&
(ahp->ah_chipFullSleep != true) &&
(ah->ah_curchan != NULL) &&
(chan->channel != ah->ah_curchan->channel) &&
((chan->channelFlags & CHANNEL_ALL) ==
(ah->ah_curchan->channelFlags & CHANNEL_ALL)) &&
(!AR_SREV_9280(ah) || (!IS_CHAN_A_5MHZ_SPACED(chan) &&
!IS_CHAN_A_5MHZ_SPACED(ah->
ah_curchan)))) {
if (ath9k_hw_channel_change(ah, chan, macmode)) {
ath9k_hw_loadnf(ah, ah->ah_curchan);
ath9k_hw_start_nfcal(ah);
return true;
}
}
saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
if (saveDefAntenna == 0)
saveDefAntenna = 1;
macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
saveLedState = REG_READ(ah, AR_CFG_LED) &
(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
ath9k_hw_mark_phy_inactive(ah);
if (!ath9k_hw_chip_reset(ah, chan)) {
DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: chip reset failed\n",
__func__);
FAIL(-EIO);
}
if (AR_SREV_9280(ah)) {
REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
AR_GPIO_JTAG_DISABLE);
if (test_bit(ATH9K_MODE_11A, ah->ah_caps.wireless_modes)) {
if (IS_CHAN_5GHZ(chan))
ath9k_hw_set_gpio(ah, 9, 0);
else
ath9k_hw_set_gpio(ah, 9, 1);
}
ath9k_hw_cfg_output(ah, 9, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
}
ecode = ath9k_hw_process_ini(ah, chan, macmode);
if (ecode != 0)
goto bad;
if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
ath9k_hw_set_delta_slope(ah, chan);
if (AR_SREV_9280_10_OR_LATER(ah))
ath9k_hw_9280_spur_mitigate(ah, chan);
else
ath9k_hw_spur_mitigate(ah, chan);
if (!ath9k_hw_eeprom_set_board_values(ah, chan)) {
DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
"%s: error setting board options\n", __func__);
FAIL(-EIO);
}
ath9k_hw_decrease_chain_power(ah, chan);
REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(ahp->ah_macaddr));
REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(ahp->ah_macaddr + 4)
| macStaId1
| AR_STA_ID1_RTS_USE_DEF
| (ah->ah_config.
ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
| ahp->ah_staId1Defaults);
ath9k_hw_set_operating_mode(ah, ah->ah_opmode);
REG_WRITE(ah, AR_BSSMSKL, get_unaligned_le32(ahp->ah_bssidmask));
REG_WRITE(ah, AR_BSSMSKU, get_unaligned_le16(ahp->ah_bssidmask + 4));
REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(ahp->ah_bssid));
REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(ahp->ah_bssid + 4) |
((ahp->ah_assocId & 0x3fff) << AR_BSS_ID1_AID_S));
REG_WRITE(ah, AR_ISR, ~0);
REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
if (AR_SREV_9280_10_OR_LATER(ah)) {
if (!(ath9k_hw_ar9280_set_channel(ah, chan)))
FAIL(-EIO);
} else {
if (!(ath9k_hw_set_channel(ah, chan)))
FAIL(-EIO);
}
for (i = 0; i < AR_NUM_DCU; i++)
REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
ahp->ah_intrTxqs = 0;
for (i = 0; i < ah->ah_caps.total_queues; i++)
ath9k_hw_resettxqueue(ah, i);
ath9k_hw_init_interrupt_masks(ah, ah->ah_opmode);
ath9k_hw_init_qos(ah);
#ifdef CONFIG_RFKILL
if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
ath9k_enable_rfkill(ah);
#endif
ath9k_hw_init_user_settings(ah);
REG_WRITE(ah, AR_STA_ID1,
REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
ath9k_hw_set_dma(ah);
REG_WRITE(ah, AR_OBS, 8);
if (ahp->ah_intrMitigation) {
REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
}
ath9k_hw_init_bb(ah, chan);
if (!ath9k_hw_init_cal(ah, chan))
FAIL(-ENODEV);
rx_chainmask = ahp->ah_rxchainmask;
if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
}
REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
if (AR_SREV_9100(ah)) {
u32 mask;
mask = REG_READ(ah, AR_CFG);
if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
DPRINTF(ah->ah_sc, ATH_DBG_RESET,
"%s CFG Byte Swap Set 0x%x\n", __func__,
mask);
} else {
mask =
INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
REG_WRITE(ah, AR_CFG, mask);
DPRINTF(ah->ah_sc, ATH_DBG_RESET,
"%s Setting CFG 0x%x\n", __func__,
REG_READ(ah, AR_CFG));
}
} else {
#ifdef __BIG_ENDIAN
REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
#endif
}
return true;
bad:
if (status)
*status = ecode;
return false;
#undef FAIL
}
bool ath9k_hw_phy_disable(struct ath_hal *ah)
{
return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM);
}
bool ath9k_hw_disable(struct ath_hal *ah)
{
if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
return false;
return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD);
}
bool
ath9k_hw_calibrate(struct ath_hal *ah, struct ath9k_channel *chan,
u8 rxchainmask, bool longcal,
bool *isCalDone)
{
struct ath_hal_5416 *ahp = AH5416(ah);
struct hal_cal_list *currCal = ahp->ah_cal_list_curr;
struct ath9k_channel *ichan =
ath9k_regd_check_channel(ah, chan);
*isCalDone = true;
if (ichan == NULL) {
DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
"%s: invalid channel %u/0x%x; no mapping\n",
__func__, chan->channel, chan->channelFlags);
return false;
}
if (currCal &&
(currCal->calState == CAL_RUNNING ||
currCal->calState == CAL_WAITING)) {
ath9k_hw_per_calibration(ah, ichan, rxchainmask, currCal,
isCalDone);
if (*isCalDone) {
ahp->ah_cal_list_curr = currCal = currCal->calNext;
if (currCal->calState == CAL_WAITING) {
*isCalDone = false;
ath9k_hw_reset_calibration(ah, currCal);
}
}
}
if (longcal) {
ath9k_hw_getnf(ah, ichan);
ath9k_hw_loadnf(ah, ah->ah_curchan);
ath9k_hw_start_nfcal(ah);
if ((ichan->channelFlags & CHANNEL_CW_INT) != 0) {
chan->channelFlags |= CHANNEL_CW_INT;
ichan->channelFlags &= ~CHANNEL_CW_INT;
}
}
return true;
}
static void ath9k_hw_iqcal_collect(struct ath_hal *ah)
{
struct ath_hal_5416 *ahp = AH5416(ah);
int i;
for (i = 0; i < AR5416_MAX_CHAINS; i++) {
ahp->ah_totalPowerMeasI[i] +=
REG_READ(ah, AR_PHY_CAL_MEAS_0(i));
ahp->ah_totalPowerMeasQ[i] +=
REG_READ(ah, AR_PHY_CAL_MEAS_1(i));
ahp->ah_totalIqCorrMeas[i] +=
(int32_t) REG_READ(ah, AR_PHY_CAL_MEAS_2(i));
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"%d: Chn %d pmi=0x%08x;pmq=0x%08x;iqcm=0x%08x;\n",
ahp->ah_CalSamples, i, ahp->ah_totalPowerMeasI[i],
ahp->ah_totalPowerMeasQ[i],
ahp->ah_totalIqCorrMeas[i]);
}
}
static void ath9k_hw_adc_gaincal_collect(struct ath_hal *ah)
{
struct ath_hal_5416 *ahp = AH5416(ah);
int i;
for (i = 0; i < AR5416_MAX_CHAINS; i++) {
ahp->ah_totalAdcIOddPhase[i] +=
REG_READ(ah, AR_PHY_CAL_MEAS_0(i));
ahp->ah_totalAdcIEvenPhase[i] +=
REG_READ(ah, AR_PHY_CAL_MEAS_1(i));
ahp->ah_totalAdcQOddPhase[i] +=
REG_READ(ah, AR_PHY_CAL_MEAS_2(i));
ahp->ah_totalAdcQEvenPhase[i] +=
REG_READ(ah, AR_PHY_CAL_MEAS_3(i));
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"%d: Chn %d oddi=0x%08x; eveni=0x%08x; "
"oddq=0x%08x; evenq=0x%08x;\n",
ahp->ah_CalSamples, i,
ahp->ah_totalAdcIOddPhase[i],
ahp->ah_totalAdcIEvenPhase[i],
ahp->ah_totalAdcQOddPhase[i],
ahp->ah_totalAdcQEvenPhase[i]);
}
}
static void ath9k_hw_adc_dccal_collect(struct ath_hal *ah)
{
struct ath_hal_5416 *ahp = AH5416(ah);
int i;
for (i = 0; i < AR5416_MAX_CHAINS; i++) {
ahp->ah_totalAdcDcOffsetIOddPhase[i] +=
(int32_t) REG_READ(ah, AR_PHY_CAL_MEAS_0(i));
ahp->ah_totalAdcDcOffsetIEvenPhase[i] +=
(int32_t) REG_READ(ah, AR_PHY_CAL_MEAS_1(i));
ahp->ah_totalAdcDcOffsetQOddPhase[i] +=
(int32_t) REG_READ(ah, AR_PHY_CAL_MEAS_2(i));
ahp->ah_totalAdcDcOffsetQEvenPhase[i] +=
(int32_t) REG_READ(ah, AR_PHY_CAL_MEAS_3(i));
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"%d: Chn %d oddi=0x%08x; eveni=0x%08x; "
"oddq=0x%08x; evenq=0x%08x;\n",
ahp->ah_CalSamples, i,
ahp->ah_totalAdcDcOffsetIOddPhase[i],
ahp->ah_totalAdcDcOffsetIEvenPhase[i],
ahp->ah_totalAdcDcOffsetQOddPhase[i],
ahp->ah_totalAdcDcOffsetQEvenPhase[i]);
}
}
static void ath9k_hw_iqcalibrate(struct ath_hal *ah, u8 numChains)
{
struct ath_hal_5416 *ahp = AH5416(ah);
u32 powerMeasQ, powerMeasI, iqCorrMeas;
u32 qCoffDenom, iCoffDenom;
int32_t qCoff, iCoff;
int iqCorrNeg, i;
for (i = 0; i < numChains; i++) {
powerMeasI = ahp->ah_totalPowerMeasI[i];
powerMeasQ = ahp->ah_totalPowerMeasQ[i];
iqCorrMeas = ahp->ah_totalIqCorrMeas[i];
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"Starting IQ Cal and Correction for Chain %d\n",
i);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"Orignal: Chn %diq_corr_meas = 0x%08x\n",
i, ahp->ah_totalIqCorrMeas[i]);
iqCorrNeg = 0;
if (iqCorrMeas > 0x80000000) {
iqCorrMeas = (0xffffffff - iqCorrMeas) + 1;
iqCorrNeg = 1;
}
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"Chn %d pwr_meas_i = 0x%08x\n", i, powerMeasI);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"Chn %d pwr_meas_q = 0x%08x\n", i, powerMeasQ);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "iqCorrNeg is 0x%08x\n",
iqCorrNeg);
iCoffDenom = (powerMeasI / 2 + powerMeasQ / 2) / 128;
qCoffDenom = powerMeasQ / 64;
if (powerMeasQ != 0) {
iCoff = iqCorrMeas / iCoffDenom;
qCoff = powerMeasI / qCoffDenom - 64;
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"Chn %d iCoff = 0x%08x\n", i, iCoff);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"Chn %d qCoff = 0x%08x\n", i, qCoff);
iCoff = iCoff & 0x3f;
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"New: Chn %d iCoff = 0x%08x\n", i, iCoff);
if (iqCorrNeg == 0x0)
iCoff = 0x40 - iCoff;
if (qCoff > 15)
qCoff = 15;
else if (qCoff <= -16)
qCoff = 16;
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"Chn %d : iCoff = 0x%x qCoff = 0x%x\n",
i, iCoff, qCoff);
REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4(i),
AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF,
iCoff);
REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4(i),
AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF,
qCoff);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"IQ Cal and Correction done for Chain %d\n",
i);
}
}
REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4(0),
AR_PHY_TIMING_CTRL4_IQCORR_ENABLE);
}
static void
ath9k_hw_adc_gaincal_calibrate(struct ath_hal *ah, u8 numChains)
{
struct ath_hal_5416 *ahp = AH5416(ah);
u32 iOddMeasOffset, iEvenMeasOffset, qOddMeasOffset,
qEvenMeasOffset;
u32 qGainMismatch, iGainMismatch, val, i;
for (i = 0; i < numChains; i++) {
iOddMeasOffset = ahp->ah_totalAdcIOddPhase[i];
iEvenMeasOffset = ahp->ah_totalAdcIEvenPhase[i];
qOddMeasOffset = ahp->ah_totalAdcQOddPhase[i];
qEvenMeasOffset = ahp->ah_totalAdcQEvenPhase[i];
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"Starting ADC Gain Cal for Chain %d\n", i);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"Chn %d pwr_meas_odd_i = 0x%08x\n", i,
iOddMeasOffset);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"Chn %d pwr_meas_even_i = 0x%08x\n", i,
iEvenMeasOffset);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"Chn %d pwr_meas_odd_q = 0x%08x\n", i,
qOddMeasOffset);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"Chn %d pwr_meas_even_q = 0x%08x\n", i,
qEvenMeasOffset);
if (iOddMeasOffset != 0 && qEvenMeasOffset != 0) {
iGainMismatch =
((iEvenMeasOffset * 32) /
iOddMeasOffset) & 0x3f;
qGainMismatch =
((qOddMeasOffset * 32) /
qEvenMeasOffset) & 0x3f;
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"Chn %d gain_mismatch_i = 0x%08x\n", i,
iGainMismatch);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"Chn %d gain_mismatch_q = 0x%08x\n", i,
qGainMismatch);
val = REG_READ(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(i));
val &= 0xfffff000;
val |= (qGainMismatch) | (iGainMismatch << 6);
REG_WRITE(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(i), val);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"ADC Gain Cal done for Chain %d\n", i);
}
}
REG_WRITE(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(0),
REG_READ(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(0)) |
AR_PHY_NEW_ADC_GAIN_CORR_ENABLE);
}
static void
ath9k_hw_adc_dccal_calibrate(struct ath_hal *ah, u8 numChains)
{
struct ath_hal_5416 *ahp = AH5416(ah);
u32 iOddMeasOffset, iEvenMeasOffset, val, i;
int32_t qOddMeasOffset, qEvenMeasOffset, qDcMismatch, iDcMismatch;
const struct hal_percal_data *calData =
ahp->ah_cal_list_curr->calData;
u32 numSamples =
(1 << (calData->calCountMax + 5)) * calData->calNumSamples;
for (i = 0; i < numChains; i++) {
iOddMeasOffset = ahp->ah_totalAdcDcOffsetIOddPhase[i];
iEvenMeasOffset = ahp->ah_totalAdcDcOffsetIEvenPhase[i];
qOddMeasOffset = ahp->ah_totalAdcDcOffsetQOddPhase[i];
qEvenMeasOffset = ahp->ah_totalAdcDcOffsetQEvenPhase[i];
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"Starting ADC DC Offset Cal for Chain %d\n", i);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"Chn %d pwr_meas_odd_i = %d\n", i,
iOddMeasOffset);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"Chn %d pwr_meas_even_i = %d\n", i,
iEvenMeasOffset);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"Chn %d pwr_meas_odd_q = %d\n", i,
qOddMeasOffset);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"Chn %d pwr_meas_even_q = %d\n", i,
qEvenMeasOffset);
iDcMismatch = (((iEvenMeasOffset - iOddMeasOffset) * 2) /
numSamples) & 0x1ff;
qDcMismatch = (((qOddMeasOffset - qEvenMeasOffset) * 2) /
numSamples) & 0x1ff;
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"Chn %d dc_offset_mismatch_i = 0x%08x\n", i,
iDcMismatch);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"Chn %d dc_offset_mismatch_q = 0x%08x\n", i,
qDcMismatch);
val = REG_READ(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(i));
val &= 0xc0000fff;
val |= (qDcMismatch << 12) | (iDcMismatch << 21);
REG_WRITE(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(i), val);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"ADC DC Offset Cal done for Chain %d\n", i);
}
REG_WRITE(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(0),
REG_READ(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(0)) |
AR_PHY_NEW_ADC_DC_OFFSET_CORR_ENABLE);
}
bool ath9k_hw_set_txpowerlimit(struct ath_hal *ah, u32 limit)
{
struct ath_hal_5416 *ahp = AH5416(ah);
struct ath9k_channel *chan = ah->ah_curchan;
ah->ah_powerLimit = min(limit, (u32) MAX_RATE_POWER);
if (ath9k_hw_set_txpower(ah, &ahp->ah_eeprom, chan,
ath9k_regd_get_ctl(ah, chan),
ath9k_regd_get_antenna_allowed(ah,
chan),
chan->maxRegTxPower * 2,
min((u32) MAX_RATE_POWER,
(u32) ah->ah_powerLimit)) != 0)
return false;
return true;
}
void
ath9k_hw_get_channel_centers(struct ath_hal *ah,
struct ath9k_channel *chan,
struct chan_centers *centers)
{
int8_t extoff;
struct ath_hal_5416 *ahp = AH5416(ah);
if (!IS_CHAN_HT40(chan)) {
centers->ctl_center = centers->ext_center =
centers->synth_center = chan->channel;
return;
}
if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
(chan->chanmode == CHANNEL_G_HT40PLUS)) {
centers->synth_center =
chan->channel + HT40_CHANNEL_CENTER_SHIFT;
extoff = 1;
} else {
centers->synth_center =
chan->channel - HT40_CHANNEL_CENTER_SHIFT;
extoff = -1;
}
centers->ctl_center = centers->synth_center - (extoff *
HT40_CHANNEL_CENTER_SHIFT);
centers->ext_center = centers->synth_center + (extoff *
((ahp->
ah_extprotspacing
==
ATH9K_HT_EXTPROTSPACING_20)
?
HT40_CHANNEL_CENTER_SHIFT
: 15));
}
void
ath9k_hw_reset_calvalid(struct ath_hal *ah, struct ath9k_channel *chan,
bool *isCalDone)
{
struct ath_hal_5416 *ahp = AH5416(ah);
struct ath9k_channel *ichan =
ath9k_regd_check_channel(ah, chan);
struct hal_cal_list *currCal = ahp->ah_cal_list_curr;
*isCalDone = true;
if (!AR_SREV_9100(ah) && !AR_SREV_9160_10_OR_LATER(ah))
return;
if (currCal == NULL)
return;
if (ichan == NULL) {
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"%s: invalid channel %u/0x%x; no mapping\n",
__func__, chan->channel, chan->channelFlags);
return;
}
if (currCal->calState != CAL_DONE) {
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"%s: Calibration state incorrect, %d\n",
__func__, currCal->calState);
return;
}
if (!ath9k_hw_iscal_supported(ah, chan, currCal->calData->calType))
return;
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"%s: Resetting Cal %d state for channel %u/0x%x\n",
__func__, currCal->calData->calType, chan->channel,
chan->channelFlags);
ichan->CalValid &= ~currCal->calData->calType;
currCal->calState = CAL_WAITING;
*isCalDone = false;
}
void ath9k_hw_getmac(struct ath_hal *ah, u8 *mac)
{
struct ath_hal_5416 *ahp = AH5416(ah);
memcpy(mac, ahp->ah_macaddr, ETH_ALEN);
}
bool ath9k_hw_setmac(struct ath_hal *ah, const u8 *mac)
{
struct ath_hal_5416 *ahp = AH5416(ah);
memcpy(ahp->ah_macaddr, mac, ETH_ALEN);
return true;
}
void ath9k_hw_getbssidmask(struct ath_hal *ah, u8 *mask)
{
struct ath_hal_5416 *ahp = AH5416(ah);
memcpy(mask, ahp->ah_bssidmask, ETH_ALEN);
}
bool
ath9k_hw_setbssidmask(struct ath_hal *ah, const u8 *mask)
{
struct ath_hal_5416 *ahp = AH5416(ah);
memcpy(ahp->ah_bssidmask, mask, ETH_ALEN);
REG_WRITE(ah, AR_BSSMSKL, get_unaligned_le32(ahp->ah_bssidmask));
REG_WRITE(ah, AR_BSSMSKU, get_unaligned_le16(ahp->ah_bssidmask + 4));
return true;
}
void
ath9k_hw_write_associd(struct ath_hal *ah, const u8 *bssid,
u16 assocId)
{
struct ath_hal_5416 *ahp = AH5416(ah);
memcpy(ahp->ah_bssid, bssid, ETH_ALEN);
ahp->ah_assocId = assocId;
REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(ahp->ah_bssid));
REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(ahp->ah_bssid + 4) |
((assocId & 0x3fff) << AR_BSS_ID1_AID_S));
}
u64 ath9k_hw_gettsf64(struct ath_hal *ah)
{
u64 tsf;
tsf = REG_READ(ah, AR_TSF_U32);
tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32);
return tsf;
}
void ath9k_hw_reset_tsf(struct ath_hal *ah)
{
int count;
count = 0;
while (REG_READ(ah, AR_SLP32_MODE) & AR_SLP32_TSF_WRITE_STATUS) {
count++;
if (count > 10) {
DPRINTF(ah->ah_sc, ATH_DBG_RESET,
"%s: AR_SLP32_TSF_WRITE_STATUS limit exceeded\n",
__func__);
break;
}
udelay(10);
}
REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
}
u32 ath9k_hw_getdefantenna(struct ath_hal *ah)
{
return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
}
void ath9k_hw_setantenna(struct ath_hal *ah, u32 antenna)
{
REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
}
bool
ath9k_hw_setantennaswitch(struct ath_hal *ah,
enum ath9k_ant_setting settings,
struct ath9k_channel *chan,
u8 *tx_chainmask,
u8 *rx_chainmask,
u8 *antenna_cfgd)
{
struct ath_hal_5416 *ahp = AH5416(ah);
static u8 tx_chainmask_cfg, rx_chainmask_cfg;
if (AR_SREV_9280(ah)) {
if (!tx_chainmask_cfg) {
tx_chainmask_cfg = *tx_chainmask;
rx_chainmask_cfg = *rx_chainmask;
}
switch (settings) {
case ATH9K_ANT_FIXED_A:
*tx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
*rx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
*antenna_cfgd = true;
break;
case ATH9K_ANT_FIXED_B:
if (ah->ah_caps.tx_chainmask >
ATH9K_ANTENNA1_CHAINMASK) {
*tx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
}
*rx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
*antenna_cfgd = true;
break;
case ATH9K_ANT_VARIABLE:
*tx_chainmask = tx_chainmask_cfg;
*rx_chainmask = rx_chainmask_cfg;
*antenna_cfgd = true;
break;
default:
break;
}
} else {
ahp->ah_diversityControl = settings;
}
return true;
}
void ath9k_hw_setopmode(struct ath_hal *ah)
{
ath9k_hw_set_operating_mode(ah, ah->ah_opmode);
}
bool
ath9k_hw_getcapability(struct ath_hal *ah, enum ath9k_capability_type type,
u32 capability, u32 *result)
{
struct ath_hal_5416 *ahp = AH5416(ah);
const struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
switch (type) {
case ATH9K_CAP_CIPHER:
switch (capability) {
case ATH9K_CIPHER_AES_CCM:
case ATH9K_CIPHER_AES_OCB:
case ATH9K_CIPHER_TKIP:
case ATH9K_CIPHER_WEP:
case ATH9K_CIPHER_MIC:
case ATH9K_CIPHER_CLR:
return true;
default:
return false;
}
case ATH9K_CAP_TKIP_MIC:
switch (capability) {
case 0:
return true;
case 1:
return (ahp->ah_staId1Defaults &
AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
false;
}
case ATH9K_CAP_TKIP_SPLIT:
return (ahp->ah_miscMode & AR_PCU_MIC_NEW_LOC_ENA) ?
false : true;
case ATH9K_CAP_WME_TKIPMIC:
return 0;
case ATH9K_CAP_PHYCOUNTERS:
return ahp->ah_hasHwPhyCounters ? 0 : -ENXIO;
case ATH9K_CAP_DIVERSITY:
return (REG_READ(ah, AR_PHY_CCK_DETECT) &
AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
true : false;
case ATH9K_CAP_PHYDIAG:
return true;
case ATH9K_CAP_MCAST_KEYSRCH:
switch (capability) {
case 0:
return true;
case 1:
if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
return false;
} else {
return (ahp->ah_staId1Defaults &
AR_STA_ID1_MCAST_KSRCH) ? true :
false;
}
}
return false;
case ATH9K_CAP_TSF_ADJUST:
return (ahp->ah_miscMode & AR_PCU_TX_ADD_TSF) ?
true : false;
case ATH9K_CAP_RFSILENT:
if (capability == 3)
return false;
case ATH9K_CAP_ANT_CFG_2GHZ:
*result = pCap->num_antcfg_2ghz;
return true;
case ATH9K_CAP_ANT_CFG_5GHZ:
*result = pCap->num_antcfg_5ghz;
return true;
case ATH9K_CAP_TXPOW:
switch (capability) {
case 0:
return 0;
case 1:
*result = ah->ah_powerLimit;
return 0;
case 2:
*result = ah->ah_maxPowerLevel;
return 0;
case 3:
*result = ah->ah_tpScale;
return 0;
}
return false;
default:
return false;
}
}
int
ath9k_hw_select_antconfig(struct ath_hal *ah, u32 cfg)
{
struct ath_hal_5416 *ahp = AH5416(ah);
struct ath9k_channel *chan = ah->ah_curchan;
const struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
u16 ant_config;
u32 halNumAntConfig;
halNumAntConfig =
IS_CHAN_2GHZ(chan) ? pCap->num_antcfg_2ghz : pCap->
num_antcfg_5ghz;
if (cfg < halNumAntConfig) {
if (!ath9k_hw_get_eeprom_antenna_cfg(ahp, chan,
cfg, &ant_config)) {
REG_WRITE(ah, AR_PHY_SWITCH_COM, ant_config);
return 0;
}
}
return -EINVAL;
}
bool ath9k_hw_intrpend(struct ath_hal *ah)
{
u32 host_isr;
if (AR_SREV_9100(ah))
return true;
host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
return true;
host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
if ((host_isr & AR_INTR_SYNC_DEFAULT)
&& (host_isr != AR_INTR_SPURIOUS))
return true;
return false;
}
bool ath9k_hw_getisr(struct ath_hal *ah, enum ath9k_int *masked)
{
u32 isr = 0;
u32 mask2 = 0;
struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
u32 sync_cause = 0;
bool fatal_int = false;
if (!AR_SREV_9100(ah)) {
if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) {
if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M)
== AR_RTC_STATUS_ON) {
isr = REG_READ(ah, AR_ISR);
}
}
sync_cause =
REG_READ(ah,
AR_INTR_SYNC_CAUSE) & AR_INTR_SYNC_DEFAULT;
*masked = 0;
if (!isr && !sync_cause)
return false;
} else {
*masked = 0;
isr = REG_READ(ah, AR_ISR);
}
if (isr) {
struct ath_hal_5416 *ahp = AH5416(ah);
if (isr & AR_ISR_BCNMISC) {
u32 isr2;
isr2 = REG_READ(ah, AR_ISR_S2);
if (isr2 & AR_ISR_S2_TIM)
mask2 |= ATH9K_INT_TIM;
if (isr2 & AR_ISR_S2_DTIM)
mask2 |= ATH9K_INT_DTIM;
if (isr2 & AR_ISR_S2_DTIMSYNC)
mask2 |= ATH9K_INT_DTIMSYNC;
if (isr2 & (AR_ISR_S2_CABEND))
mask2 |= ATH9K_INT_CABEND;
if (isr2 & AR_ISR_S2_GTT)
mask2 |= ATH9K_INT_GTT;
if (isr2 & AR_ISR_S2_CST)
mask2 |= ATH9K_INT_CST;
}
isr = REG_READ(ah, AR_ISR_RAC);
if (isr == 0xffffffff) {
*masked = 0;
return false;
}
*masked = isr & ATH9K_INT_COMMON;
if (ahp->ah_intrMitigation) {
if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
*masked |= ATH9K_INT_RX;
}
if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
*masked |= ATH9K_INT_RX;
if (isr &
(AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
AR_ISR_TXEOL)) {
u32 s0_s, s1_s;
*masked |= ATH9K_INT_TX;
s0_s = REG_READ(ah, AR_ISR_S0_S);
ahp->ah_intrTxqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK);
ahp->ah_intrTxqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC);
s1_s = REG_READ(ah, AR_ISR_S1_S);
ahp->ah_intrTxqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR);
ahp->ah_intrTxqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL);
}
if (isr & AR_ISR_RXORN) {
DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
"%s: receive FIFO overrun interrupt\n",
__func__);
}
if (!AR_SREV_9100(ah)) {
if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
u32 isr5 = REG_READ(ah, AR_ISR_S5_S);
if (isr5 & AR_ISR_S5_TIM_TIMER)
*masked |= ATH9K_INT_TIM_TIMER;
}
}
*masked |= mask2;
}
if (AR_SREV_9100(ah))
return true;
if (sync_cause) {
fatal_int =
(sync_cause &
(AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR))
? true : false;
if (fatal_int) {
if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) {
DPRINTF(ah->ah_sc, ATH_DBG_ANY,
"%s: received PCI FATAL interrupt\n",
__func__);
}
if (sync_cause & AR_INTR_SYNC_HOST1_PERR) {
DPRINTF(ah->ah_sc, ATH_DBG_ANY,
"%s: received PCI PERR interrupt\n",
__func__);
}
}
if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
"%s: AR_INTR_SYNC_RADM_CPL_TIMEOUT\n",
__func__);
REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
REG_WRITE(ah, AR_RC, 0);
*masked |= ATH9K_INT_FATAL;
}
if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) {
DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
"%s: AR_INTR_SYNC_LOCAL_TIMEOUT\n",
__func__);
}
REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
(void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
}
return true;
}
enum ath9k_int ath9k_hw_intrget(struct ath_hal *ah)
{
return AH5416(ah)->ah_maskReg;
}
enum ath9k_int ath9k_hw_set_interrupts(struct ath_hal *ah, enum ath9k_int ints)
{
struct ath_hal_5416 *ahp = AH5416(ah);
u32 omask = ahp->ah_maskReg;
u32 mask, mask2;
struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "%s: 0x%x => 0x%x\n", __func__,
omask, ints);
if (omask & ATH9K_INT_GLOBAL) {
DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "%s: disable IER\n",
__func__);
REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
(void) REG_READ(ah, AR_IER);
if (!AR_SREV_9100(ah)) {
REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
(void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
(void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
}
}
mask = ints & ATH9K_INT_COMMON;
mask2 = 0;
if (ints & ATH9K_INT_TX) {
if (ahp->ah_txOkInterruptMask)
mask |= AR_IMR_TXOK;
if (ahp->ah_txDescInterruptMask)
mask |= AR_IMR_TXDESC;
if (ahp->ah_txErrInterruptMask)
mask |= AR_IMR_TXERR;
if (ahp->ah_txEolInterruptMask)
mask |= AR_IMR_TXEOL;
}
if (ints & ATH9K_INT_RX) {
mask |= AR_IMR_RXERR;
if (ahp->ah_intrMitigation)
mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
else
mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
mask |= AR_IMR_GENTMR;
}
if (ints & (ATH9K_INT_BMISC)) {
mask |= AR_IMR_BCNMISC;
if (ints & ATH9K_INT_TIM)
mask2 |= AR_IMR_S2_TIM;
if (ints & ATH9K_INT_DTIM)
mask2 |= AR_IMR_S2_DTIM;
if (ints & ATH9K_INT_DTIMSYNC)
mask2 |= AR_IMR_S2_DTIMSYNC;
if (ints & ATH9K_INT_CABEND)
mask2 |= (AR_IMR_S2_CABEND);
}
if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
mask |= AR_IMR_BCNMISC;
if (ints & ATH9K_INT_GTT)
mask2 |= AR_IMR_S2_GTT;
if (ints & ATH9K_INT_CST)
mask2 |= AR_IMR_S2_CST;
}
DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "%s: new IMR 0x%x\n", __func__,
mask);
REG_WRITE(ah, AR_IMR, mask);
mask = REG_READ(ah, AR_IMR_S2) & ~(AR_IMR_S2_TIM |
AR_IMR_S2_DTIM |
AR_IMR_S2_DTIMSYNC |
AR_IMR_S2_CABEND |
AR_IMR_S2_CABTO |
AR_IMR_S2_TSFOOR |
AR_IMR_S2_GTT | AR_IMR_S2_CST);
REG_WRITE(ah, AR_IMR_S2, mask | mask2);
ahp->ah_maskReg = ints;
if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
if (ints & ATH9K_INT_TIM_TIMER)
REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
else
REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
}
if (ints & ATH9K_INT_GLOBAL) {
DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "%s: enable IER\n",
__func__);
REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
if (!AR_SREV_9100(ah)) {
REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
AR_INTR_MAC_IRQ);
REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
REG_WRITE(ah, AR_INTR_SYNC_ENABLE,
AR_INTR_SYNC_DEFAULT);
REG_WRITE(ah, AR_INTR_SYNC_MASK,
AR_INTR_SYNC_DEFAULT);
}
DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
}
return omask;
}
void
ath9k_hw_beaconinit(struct ath_hal *ah,
u32 next_beacon, u32 beacon_period)
{
struct ath_hal_5416 *ahp = AH5416(ah);
int flags = 0;
ahp->ah_beaconInterval = beacon_period;
switch (ah->ah_opmode) {
case ATH9K_M_STA:
case ATH9K_M_MONITOR:
REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
flags |= AR_TBTT_TIMER_EN;
break;
case ATH9K_M_IBSS:
REG_SET_BIT(ah, AR_TXCFG,
AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
REG_WRITE(ah, AR_NEXT_NDP_TIMER,
TU_TO_USEC(next_beacon +
(ahp->ah_atimWindow ? ahp->
ah_atimWindow : 1)));
flags |= AR_NDP_TIMER_EN;
case ATH9K_M_HOSTAP:
REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
TU_TO_USEC(next_beacon -
ah->ah_config.
dma_beacon_response_time));
REG_WRITE(ah, AR_NEXT_SWBA,
TU_TO_USEC(next_beacon -
ah->ah_config.
sw_beacon_response_time));
flags |=
AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
break;
}
REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
beacon_period &= ~ATH9K_BEACON_ENA;
if (beacon_period & ATH9K_BEACON_RESET_TSF) {
beacon_period &= ~ATH9K_BEACON_RESET_TSF;
ath9k_hw_reset_tsf(ah);
}
REG_SET_BIT(ah, AR_TIMER_MODE, flags);
}
void
ath9k_hw_set_sta_beacon_timers(struct ath_hal *ah,
const struct ath9k_beacon_state *bs)
{
u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
REG_WRITE(ah, AR_BEACON_PERIOD,
TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
REG_RMW_FIELD(ah, AR_RSSI_THR,
AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
if (bs->bs_sleepduration > beaconintval)
beaconintval = bs->bs_sleepduration;
dtimperiod = bs->bs_dtimperiod;
if (bs->bs_sleepduration > dtimperiod)
dtimperiod = bs->bs_sleepduration;
if (beaconintval == dtimperiod)
nextTbtt = bs->bs_nextdtim;
else
nextTbtt = bs->bs_nexttbtt;
DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "%s: next DTIM %d\n", __func__,
bs->bs_nextdtim);
DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "%s: next beacon %d\n", __func__,
nextTbtt);
DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "%s: beacon period %d\n", __func__,
beaconintval);
DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "%s: DTIM period %d\n", __func__,
dtimperiod);
REG_WRITE(ah, AR_NEXT_DTIM,
TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
REG_WRITE(ah, AR_SLEEP1,
SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
| AR_SLEEP1_ASSUME_DTIM);
if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
beacontimeout = (BEACON_TIMEOUT_VAL << 3);
else
beacontimeout = MIN_BEACON_TIMEOUT_VAL;
REG_WRITE(ah, AR_SLEEP2,
SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
REG_SET_BIT(ah, AR_TIMER_MODE,
AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
AR_DTIM_TIMER_EN);
}
bool ath9k_hw_keyisvalid(struct ath_hal *ah, u16 entry)
{
if (entry < ah->ah_caps.keycache_size) {
u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
if (val & AR_KEYTABLE_VALID)
return true;
}
return false;
}
bool ath9k_hw_keyreset(struct ath_hal *ah, u16 entry)
{
u32 keyType;
if (entry >= ah->ah_caps.keycache_size) {
DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
"%s: entry %u out of range\n", __func__, entry);
return false;
}
keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
u16 micentry = entry + 64;
REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
}
if (ah->ah_curchan == NULL)
return true;
return true;
}
bool
ath9k_hw_keysetmac(struct ath_hal *ah, u16 entry,
const u8 *mac)
{
u32 macHi, macLo;
if (entry >= ah->ah_caps.keycache_size) {
DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
"%s: entry %u out of range\n", __func__, entry);
return false;
}
if (mac != NULL) {
macHi = (mac[5] << 8) | mac[4];
macLo = (mac[3] << 24) | (mac[2] << 16)
| (mac[1] << 8) | mac[0];
macLo >>= 1;
macLo |= (macHi & 1) << 31;
macHi >>= 1;
} else {
macLo = macHi = 0;
}
REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
return true;
}
bool
ath9k_hw_set_keycache_entry(struct ath_hal *ah, u16 entry,
const struct ath9k_keyval *k,
const u8 *mac, int xorKey)
{
const struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
u32 key0, key1, key2, key3, key4;
u32 keyType;
u32 xorMask = xorKey ?
(ATH9K_KEY_XOR << 24 | ATH9K_KEY_XOR << 16 | ATH9K_KEY_XOR << 8
| ATH9K_KEY_XOR) : 0;
struct ath_hal_5416 *ahp = AH5416(ah);
if (entry >= pCap->keycache_size) {
DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
"%s: entry %u out of range\n", __func__, entry);
return false;
}
switch (k->kv_type) {
case ATH9K_CIPHER_AES_OCB:
keyType = AR_KEYTABLE_TYPE_AES;
break;
case ATH9K_CIPHER_AES_CCM:
if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
"%s: AES-CCM not supported by "
"mac rev 0x%x\n", __func__,
ah->ah_macRev);
return false;
}
keyType = AR_KEYTABLE_TYPE_CCM;
break;
case ATH9K_CIPHER_TKIP:
keyType = AR_KEYTABLE_TYPE_TKIP;
if (ATH9K_IS_MIC_ENABLED(ah)
&& entry + 64 >= pCap->keycache_size) {
DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
"%s: entry %u inappropriate for TKIP\n",
__func__, entry);
return false;
}
break;
case ATH9K_CIPHER_WEP:
if (k->kv_len < LEN_WEP40) {
DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
"%s: WEP key length %u too small\n",
__func__, k->kv_len);
return false;
}
if (k->kv_len <= LEN_WEP40)
keyType = AR_KEYTABLE_TYPE_40;
else if (k->kv_len <= LEN_WEP104)
keyType = AR_KEYTABLE_TYPE_104;
else
keyType = AR_KEYTABLE_TYPE_128;
break;
case ATH9K_CIPHER_CLR:
keyType = AR_KEYTABLE_TYPE_CLR;
break;
default:
DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
"%s: cipher %u not supported\n", __func__,
k->kv_type);
return false;
}
key0 = get_unaligned_le32(k->kv_val + 0) ^ xorMask;
key1 = (get_unaligned_le16(k->kv_val + 4) ^ xorMask) & 0xffff;
key2 = get_unaligned_le32(k->kv_val + 6) ^ xorMask;
key3 = (get_unaligned_le16(k->kv_val + 10) ^ xorMask) & 0xffff;
key4 = get_unaligned_le32(k->kv_val + 12) ^ xorMask;
if (k->kv_len <= LEN_WEP104)
key4 &= 0xff;
if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
u16 micentry = entry + 64;
REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
(void) ath9k_hw_keysetmac(ah, entry, mac);
if (ahp->ah_miscMode & AR_PCU_MIC_NEW_LOC_ENA) {
u32 mic0, mic1, mic2, mic3, mic4;
mic0 = get_unaligned_le32(k->kv_mic + 0);
mic2 = get_unaligned_le32(k->kv_mic + 4);
mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
mic4 = get_unaligned_le32(k->kv_txmic + 4);
REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
AR_KEYTABLE_TYPE_CLR);
} else {
u32 mic0, mic2;
mic0 = get_unaligned_le32(k->kv_mic + 0);
mic2 = get_unaligned_le32(k->kv_mic + 4);
REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
AR_KEYTABLE_TYPE_CLR);
}
REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
} else {
REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
(void) ath9k_hw_keysetmac(ah, entry, mac);
}
if (ah->ah_curchan == NULL)
return true;
return true;
}
bool
ath9k_hw_updatetxtriglevel(struct ath_hal *ah, bool bIncTrigLevel)
{
struct ath_hal_5416 *ahp = AH5416(ah);
u32 txcfg, curLevel, newLevel;
enum ath9k_int omask;
if (ah->ah_txTrigLevel >= MAX_TX_FIFO_THRESHOLD)
return false;
omask = ath9k_hw_set_interrupts(ah,
ahp->ah_maskReg & ~ATH9K_INT_GLOBAL);
txcfg = REG_READ(ah, AR_TXCFG);
curLevel = MS(txcfg, AR_FTRIG);
newLevel = curLevel;
if (bIncTrigLevel) {
if (curLevel < MAX_TX_FIFO_THRESHOLD)
newLevel++;
} else if (curLevel > MIN_TX_FIFO_THRESHOLD)
newLevel--;
if (newLevel != curLevel)
REG_WRITE(ah, AR_TXCFG,
(txcfg & ~AR_FTRIG) | SM(newLevel, AR_FTRIG));
ath9k_hw_set_interrupts(ah, omask);
ah->ah_txTrigLevel = newLevel;
return newLevel != curLevel;
}
bool ath9k_hw_set_txq_props(struct ath_hal *ah, int q,
const struct ath9k_tx_queue_info *qinfo)
{
u32 cw;
struct ath_hal_5416 *ahp = AH5416(ah);
struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
struct ath9k_tx_queue_info *qi;
if (q >= pCap->total_queues) {
DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: invalid queue num %u\n",
__func__, q);
return false;
}
qi = &ahp->ah_txq[q];
if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: inactive queue\n",
__func__);
return false;
}
DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: queue %p\n", __func__, qi);
qi->tqi_ver = qinfo->tqi_ver;
qi->tqi_subtype = qinfo->tqi_subtype;
qi->tqi_qflags = qinfo->tqi_qflags;
qi->tqi_priority = qinfo->tqi_priority;
if (qinfo->tqi_aifs != ATH9K_TXQ_USEDEFAULT)
qi->tqi_aifs = min(qinfo->tqi_aifs, 255U);
else
qi->tqi_aifs = INIT_AIFS;
if (qinfo->tqi_cwmin != ATH9K_TXQ_USEDEFAULT) {
cw = min(qinfo->tqi_cwmin, 1024U);
qi->tqi_cwmin = 1;
while (qi->tqi_cwmin < cw)
qi->tqi_cwmin = (qi->tqi_cwmin << 1) | 1;
} else
qi->tqi_cwmin = qinfo->tqi_cwmin;
if (qinfo->tqi_cwmax != ATH9K_TXQ_USEDEFAULT) {
cw = min(qinfo->tqi_cwmax, 1024U);
qi->tqi_cwmax = 1;
while (qi->tqi_cwmax < cw)
qi->tqi_cwmax = (qi->tqi_cwmax << 1) | 1;
} else
qi->tqi_cwmax = INIT_CWMAX;
if (qinfo->tqi_shretry != 0)
qi->tqi_shretry = min((u32) qinfo->tqi_shretry, 15U);
else
qi->tqi_shretry = INIT_SH_RETRY;
if (qinfo->tqi_lgretry != 0)
qi->tqi_lgretry = min((u32) qinfo->tqi_lgretry, 15U);
else
qi->tqi_lgretry = INIT_LG_RETRY;
qi->tqi_cbrPeriod = qinfo->tqi_cbrPeriod;
qi->tqi_cbrOverflowLimit = qinfo->tqi_cbrOverflowLimit;
qi->tqi_burstTime = qinfo->tqi_burstTime;
qi->tqi_readyTime = qinfo->tqi_readyTime;
switch (qinfo->tqi_subtype) {
case ATH9K_WME_UPSD:
if (qi->tqi_type == ATH9K_TX_QUEUE_DATA)
qi->tqi_intFlags = ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS;
break;
default:
break;
}
return true;
}
bool ath9k_hw_get_txq_props(struct ath_hal *ah, int q,
struct ath9k_tx_queue_info *qinfo)
{
struct ath_hal_5416 *ahp = AH5416(ah);
struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
struct ath9k_tx_queue_info *qi;
if (q >= pCap->total_queues) {
DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: invalid queue num %u\n",
__func__, q);
return false;
}
qi = &ahp->ah_txq[q];
if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: inactive queue\n",
__func__);
return false;
}
qinfo->tqi_qflags = qi->tqi_qflags;
qinfo->tqi_ver = qi->tqi_ver;
qinfo->tqi_subtype = qi->tqi_subtype;
qinfo->tqi_qflags = qi->tqi_qflags;
qinfo->tqi_priority = qi->tqi_priority;
qinfo->tqi_aifs = qi->tqi_aifs;
qinfo->tqi_cwmin = qi->tqi_cwmin;
qinfo->tqi_cwmax = qi->tqi_cwmax;
qinfo->tqi_shretry = qi->tqi_shretry;
qinfo->tqi_lgretry = qi->tqi_lgretry;
qinfo->tqi_cbrPeriod = qi->tqi_cbrPeriod;
qinfo->tqi_cbrOverflowLimit = qi->tqi_cbrOverflowLimit;
qinfo->tqi_burstTime = qi->tqi_burstTime;
qinfo->tqi_readyTime = qi->tqi_readyTime;
return true;
}
int
ath9k_hw_setuptxqueue(struct ath_hal *ah, enum ath9k_tx_queue type,
const struct ath9k_tx_queue_info *qinfo)
{
struct ath_hal_5416 *ahp = AH5416(ah);
struct ath9k_tx_queue_info *qi;
struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
int q;
switch (type) {
case ATH9K_TX_QUEUE_BEACON:
q = pCap->total_queues - 1;
break;
case ATH9K_TX_QUEUE_CAB:
q = pCap->total_queues - 2;
break;
case ATH9K_TX_QUEUE_PSPOLL:
q = 1;
break;
case ATH9K_TX_QUEUE_UAPSD:
q = pCap->total_queues - 3;
break;
case ATH9K_TX_QUEUE_DATA:
for (q = 0; q < pCap->total_queues; q++)
if (ahp->ah_txq[q].tqi_type ==
ATH9K_TX_QUEUE_INACTIVE)
break;
if (q == pCap->total_queues) {
DPRINTF(ah->ah_sc, ATH_DBG_QUEUE,
"%s: no available tx queue\n", __func__);
return -1;
}
break;
default:
DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: bad tx queue type %u\n",
__func__, type);
return -1;
}
DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: queue %u\n", __func__, q);
qi = &ahp->ah_txq[q];
if (qi->tqi_type != ATH9K_TX_QUEUE_INACTIVE) {
DPRINTF(ah->ah_sc, ATH_DBG_QUEUE,
"%s: tx queue %u already active\n", __func__, q);
return -1;
}
memset(qi, 0, sizeof(struct ath9k_tx_queue_info));
qi->tqi_type = type;
if (qinfo == NULL) {
qi->tqi_qflags =
TXQ_FLAG_TXOKINT_ENABLE
| TXQ_FLAG_TXERRINT_ENABLE
| TXQ_FLAG_TXDESCINT_ENABLE | TXQ_FLAG_TXURNINT_ENABLE;
qi->tqi_aifs = INIT_AIFS;
qi->tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
qi->tqi_cwmax = INIT_CWMAX;
qi->tqi_shretry = INIT_SH_RETRY;
qi->tqi_lgretry = INIT_LG_RETRY;
qi->tqi_physCompBuf = 0;
} else {
qi->tqi_physCompBuf = qinfo->tqi_physCompBuf;
(void) ath9k_hw_set_txq_props(ah, q, qinfo);
}
return q;
}
static void
ath9k_hw_set_txq_interrupts(struct ath_hal *ah,
struct ath9k_tx_queue_info *qi)
{
struct ath_hal_5416 *ahp = AH5416(ah);
DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
"%s: tx ok 0x%x err 0x%x desc 0x%x eol 0x%x urn 0x%x\n",
__func__, ahp->ah_txOkInterruptMask,
ahp->ah_txErrInterruptMask, ahp->ah_txDescInterruptMask,
ahp->ah_txEolInterruptMask, ahp->ah_txUrnInterruptMask);
REG_WRITE(ah, AR_IMR_S0,
SM(ahp->ah_txOkInterruptMask, AR_IMR_S0_QCU_TXOK)
| SM(ahp->ah_txDescInterruptMask, AR_IMR_S0_QCU_TXDESC));
REG_WRITE(ah, AR_IMR_S1,
SM(ahp->ah_txErrInterruptMask, AR_IMR_S1_QCU_TXERR)
| SM(ahp->ah_txEolInterruptMask, AR_IMR_S1_QCU_TXEOL));
REG_RMW_FIELD(ah, AR_IMR_S2,
AR_IMR_S2_QCU_TXURN, ahp->ah_txUrnInterruptMask);
}
bool ath9k_hw_releasetxqueue(struct ath_hal *ah, u32 q)
{
struct ath_hal_5416 *ahp = AH5416(ah);
struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
struct ath9k_tx_queue_info *qi;
if (q >= pCap->total_queues) {
DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: invalid queue num %u\n",
__func__, q);
return false;
}
qi = &ahp->ah_txq[q];
if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: inactive queue %u\n",
__func__, q);
return false;
}
DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: release queue %u\n",
__func__, q);
qi->tqi_type = ATH9K_TX_QUEUE_INACTIVE;
ahp->ah_txOkInterruptMask &= ~(1 << q);
ahp->ah_txErrInterruptMask &= ~(1 << q);
ahp->ah_txDescInterruptMask &= ~(1 << q);
ahp->ah_txEolInterruptMask &= ~(1 << q);
ahp->ah_txUrnInterruptMask &= ~(1 << q);
ath9k_hw_set_txq_interrupts(ah, qi);
return true;
}
bool ath9k_hw_resettxqueue(struct ath_hal *ah, u32 q)
{
struct ath_hal_5416 *ahp = AH5416(ah);
struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
struct ath9k_channel *chan = ah->ah_curchan;
struct ath9k_tx_queue_info *qi;
u32 cwMin, chanCwMin, value;
if (q >= pCap->total_queues) {
DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: invalid queue num %u\n",
__func__, q);
return false;
}
qi = &ahp->ah_txq[q];
if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: inactive queue %u\n",
__func__, q);
return true;
}
DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: reset queue %u\n", __func__, q);
if (qi->tqi_cwmin == ATH9K_TXQ_USEDEFAULT) {
if (chan && IS_CHAN_B(chan))
chanCwMin = INIT_CWMIN_11B;
else
chanCwMin = INIT_CWMIN;
for (cwMin = 1; cwMin < chanCwMin; cwMin = (cwMin << 1) | 1);
} else
cwMin = qi->tqi_cwmin;
REG_WRITE(ah, AR_DLCL_IFS(q), SM(cwMin, AR_D_LCL_IFS_CWMIN)
| SM(qi->tqi_cwmax, AR_D_LCL_IFS_CWMAX)
| SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
REG_WRITE(ah, AR_DRETRY_LIMIT(q),
SM(INIT_SSH_RETRY, AR_D_RETRY_LIMIT_STA_SH)
| SM(INIT_SLG_RETRY, AR_D_RETRY_LIMIT_STA_LG)
| SM(qi->tqi_shretry, AR_D_RETRY_LIMIT_FR_SH));
REG_WRITE(ah, AR_QMISC(q), AR_Q_MISC_DCU_EARLY_TERM_REQ);
REG_WRITE(ah, AR_DMISC(q),
AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x2);
if (qi->tqi_cbrPeriod) {
REG_WRITE(ah, AR_QCBRCFG(q),
SM(qi->tqi_cbrPeriod, AR_Q_CBRCFG_INTERVAL)
| SM(qi->tqi_cbrOverflowLimit,
AR_Q_CBRCFG_OVF_THRESH));
REG_WRITE(ah, AR_QMISC(q),
REG_READ(ah,
AR_QMISC(q)) | AR_Q_MISC_FSP_CBR | (qi->
tqi_cbrOverflowLimit
?
AR_Q_MISC_CBR_EXP_CNTR_LIMIT_EN
:
0));
}
if (qi->tqi_readyTime && (qi->tqi_type != ATH9K_TX_QUEUE_CAB)) {
REG_WRITE(ah, AR_QRDYTIMECFG(q),
SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_DURATION) |
AR_Q_RDYTIMECFG_EN);
}
REG_WRITE(ah, AR_DCHNTIME(q),
SM(qi->tqi_burstTime, AR_D_CHNTIME_DUR) |
(qi->tqi_burstTime ? AR_D_CHNTIME_EN : 0));
if (qi->tqi_burstTime
&& (qi->tqi_qflags & TXQ_FLAG_RDYTIME_EXP_POLICY_ENABLE)) {
REG_WRITE(ah, AR_QMISC(q),
REG_READ(ah,
AR_QMISC(q)) |
AR_Q_MISC_RDYTIME_EXP_POLICY);
}
if (qi->tqi_qflags & TXQ_FLAG_BACKOFF_DISABLE) {
REG_WRITE(ah, AR_DMISC(q),
REG_READ(ah, AR_DMISC(q)) |
AR_D_MISC_POST_FR_BKOFF_DIS);
}
if (qi->tqi_qflags & TXQ_FLAG_FRAG_BURST_BACKOFF_ENABLE) {
REG_WRITE(ah, AR_DMISC(q),
REG_READ(ah, AR_DMISC(q)) |
AR_D_MISC_FRAG_BKOFF_EN);
}
switch (qi->tqi_type) {
case ATH9K_TX_QUEUE_BEACON:
REG_WRITE(ah, AR_QMISC(q), REG_READ(ah, AR_QMISC(q))
| AR_Q_MISC_FSP_DBA_GATED
| AR_Q_MISC_BEACON_USE
| AR_Q_MISC_CBR_INCR_DIS1);
REG_WRITE(ah, AR_DMISC(q), REG_READ(ah, AR_DMISC(q))
| (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
AR_D_MISC_ARB_LOCKOUT_CNTRL_S)
| AR_D_MISC_BEACON_USE
| AR_D_MISC_POST_FR_BKOFF_DIS);
break;
case ATH9K_TX_QUEUE_CAB:
REG_WRITE(ah, AR_QMISC(q), REG_READ(ah, AR_QMISC(q))
| AR_Q_MISC_FSP_DBA_GATED
| AR_Q_MISC_CBR_INCR_DIS1
| AR_Q_MISC_CBR_INCR_DIS0);
value = (qi->tqi_readyTime
- (ah->ah_config.sw_beacon_response_time -
ah->ah_config.dma_beacon_response_time)
-
ah->ah_config.additional_swba_backoff) *
1024;
REG_WRITE(ah, AR_QRDYTIMECFG(q),
value | AR_Q_RDYTIMECFG_EN);
REG_WRITE(ah, AR_DMISC(q), REG_READ(ah, AR_DMISC(q))
| (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
AR_D_MISC_ARB_LOCKOUT_CNTRL_S));
break;
case ATH9K_TX_QUEUE_PSPOLL:
REG_WRITE(ah, AR_QMISC(q),
REG_READ(ah,
AR_QMISC(q)) | AR_Q_MISC_CBR_INCR_DIS1);
break;
case ATH9K_TX_QUEUE_UAPSD:
REG_WRITE(ah, AR_DMISC(q), REG_READ(ah, AR_DMISC(q))
| AR_D_MISC_POST_FR_BKOFF_DIS);
break;
default:
break;
}
if (qi->tqi_intFlags & ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS) {
REG_WRITE(ah, AR_DMISC(q),
REG_READ(ah, AR_DMISC(q)) |
SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
AR_D_MISC_ARB_LOCKOUT_CNTRL) |
AR_D_MISC_POST_FR_BKOFF_DIS);
}
if (qi->tqi_qflags & TXQ_FLAG_TXOKINT_ENABLE)
ahp->ah_txOkInterruptMask |= 1 << q;
else
ahp->ah_txOkInterruptMask &= ~(1 << q);
if (qi->tqi_qflags & TXQ_FLAG_TXERRINT_ENABLE)
ahp->ah_txErrInterruptMask |= 1 << q;
else
ahp->ah_txErrInterruptMask &= ~(1 << q);
if (qi->tqi_qflags & TXQ_FLAG_TXDESCINT_ENABLE)
ahp->ah_txDescInterruptMask |= 1 << q;
else
ahp->ah_txDescInterruptMask &= ~(1 << q);
if (qi->tqi_qflags & TXQ_FLAG_TXEOLINT_ENABLE)
ahp->ah_txEolInterruptMask |= 1 << q;
else
ahp->ah_txEolInterruptMask &= ~(1 << q);
if (qi->tqi_qflags & TXQ_FLAG_TXURNINT_ENABLE)
ahp->ah_txUrnInterruptMask |= 1 << q;
else
ahp->ah_txUrnInterruptMask &= ~(1 << q);
ath9k_hw_set_txq_interrupts(ah, qi);
return true;
}
void ath9k_hw_gettxintrtxqs(struct ath_hal *ah, u32 *txqs)
{
struct ath_hal_5416 *ahp = AH5416(ah);
*txqs &= ahp->ah_intrTxqs;
ahp->ah_intrTxqs &= ~(*txqs);
}
bool
ath9k_hw_filltxdesc(struct ath_hal *ah, struct ath_desc *ds,
u32 segLen, bool firstSeg,
bool lastSeg, const struct ath_desc *ds0)
{
struct ar5416_desc *ads = AR5416DESC(ds);
if (firstSeg) {
ads->ds_ctl1 |= segLen | (lastSeg ? 0 : AR_TxMore);
} else if (lastSeg) {
ads->ds_ctl0 = 0;
ads->ds_ctl1 = segLen;
ads->ds_ctl2 = AR5416DESC_CONST(ds0)->ds_ctl2;
ads->ds_ctl3 = AR5416DESC_CONST(ds0)->ds_ctl3;
} else {
ads->ds_ctl0 = 0;
ads->ds_ctl1 = segLen | AR_TxMore;
ads->ds_ctl2 = 0;
ads->ds_ctl3 = 0;
}
ads->ds_txstatus0 = ads->ds_txstatus1 = 0;
ads->ds_txstatus2 = ads->ds_txstatus3 = 0;
ads->ds_txstatus4 = ads->ds_txstatus5 = 0;
ads->ds_txstatus6 = ads->ds_txstatus7 = 0;
ads->ds_txstatus8 = ads->ds_txstatus9 = 0;
return true;
}
void ath9k_hw_cleartxdesc(struct ath_hal *ah, struct ath_desc *ds)
{
struct ar5416_desc *ads = AR5416DESC(ds);
ads->ds_txstatus0 = ads->ds_txstatus1 = 0;
ads->ds_txstatus2 = ads->ds_txstatus3 = 0;
ads->ds_txstatus4 = ads->ds_txstatus5 = 0;
ads->ds_txstatus6 = ads->ds_txstatus7 = 0;
ads->ds_txstatus8 = ads->ds_txstatus9 = 0;
}
int
ath9k_hw_txprocdesc(struct ath_hal *ah, struct ath_desc *ds)
{
struct ar5416_desc *ads = AR5416DESC(ds);
if ((ads->ds_txstatus9 & AR_TxDone) == 0)
return -EINPROGRESS;
ds->ds_txstat.ts_seqnum = MS(ads->ds_txstatus9, AR_SeqNum);
ds->ds_txstat.ts_tstamp = ads->AR_SendTimestamp;
ds->ds_txstat.ts_status = 0;
ds->ds_txstat.ts_flags = 0;
if (ads->ds_txstatus1 & AR_ExcessiveRetries)
ds->ds_txstat.ts_status |= ATH9K_TXERR_XRETRY;
if (ads->ds_txstatus1 & AR_Filtered)
ds->ds_txstat.ts_status |= ATH9K_TXERR_FILT;
if (ads->ds_txstatus1 & AR_FIFOUnderrun)
ds->ds_txstat.ts_status |= ATH9K_TXERR_FIFO;
if (ads->ds_txstatus9 & AR_TxOpExceeded)
ds->ds_txstat.ts_status |= ATH9K_TXERR_XTXOP;
if (ads->ds_txstatus1 & AR_TxTimerExpired)
ds->ds_txstat.ts_status |= ATH9K_TXERR_TIMER_EXPIRED;
if (ads->ds_txstatus1 & AR_DescCfgErr)
ds->ds_txstat.ts_flags |= ATH9K_TX_DESC_CFG_ERR;
if (ads->ds_txstatus1 & AR_TxDataUnderrun) {
ds->ds_txstat.ts_flags |= ATH9K_TX_DATA_UNDERRUN;
ath9k_hw_updatetxtriglevel(ah, true);
}
if (ads->ds_txstatus1 & AR_TxDelimUnderrun) {
ds->ds_txstat.ts_flags |= ATH9K_TX_DELIM_UNDERRUN;
ath9k_hw_updatetxtriglevel(ah, true);
}
if (ads->ds_txstatus0 & AR_TxBaStatus) {
ds->ds_txstat.ts_flags |= ATH9K_TX_BA;
ds->ds_txstat.ba_low = ads->AR_BaBitmapLow;
ds->ds_txstat.ba_high = ads->AR_BaBitmapHigh;
}
ds->ds_txstat.ts_rateindex = MS(ads->ds_txstatus9, AR_FinalTxIdx);
switch (ds->ds_txstat.ts_rateindex) {
case 0:
ds->ds_txstat.ts_ratecode = MS(ads->ds_ctl3, AR_XmitRate0);
break;
case 1:
ds->ds_txstat.ts_ratecode = MS(ads->ds_ctl3, AR_XmitRate1);
break;
case 2:
ds->ds_txstat.ts_ratecode = MS(ads->ds_ctl3, AR_XmitRate2);
break;
case 3:
ds->ds_txstat.ts_ratecode = MS(ads->ds_ctl3, AR_XmitRate3);
break;
}
ds->ds_txstat.ts_rssi = MS(ads->ds_txstatus5, AR_TxRSSICombined);
ds->ds_txstat.ts_rssi_ctl0 = MS(ads->ds_txstatus0, AR_TxRSSIAnt00);
ds->ds_txstat.ts_rssi_ctl1 = MS(ads->ds_txstatus0, AR_TxRSSIAnt01);
ds->ds_txstat.ts_rssi_ctl2 = MS(ads->ds_txstatus0, AR_TxRSSIAnt02);
ds->ds_txstat.ts_rssi_ext0 = MS(ads->ds_txstatus5, AR_TxRSSIAnt10);
ds->ds_txstat.ts_rssi_ext1 = MS(ads->ds_txstatus5, AR_TxRSSIAnt11);
ds->ds_txstat.ts_rssi_ext2 = MS(ads->ds_txstatus5, AR_TxRSSIAnt12);
ds->ds_txstat.evm0 = ads->AR_TxEVM0;
ds->ds_txstat.evm1 = ads->AR_TxEVM1;
ds->ds_txstat.evm2 = ads->AR_TxEVM2;
ds->ds_txstat.ts_shortretry = MS(ads->ds_txstatus1, AR_RTSFailCnt);
ds->ds_txstat.ts_longretry = MS(ads->ds_txstatus1, AR_DataFailCnt);
ds->ds_txstat.ts_virtcol = MS(ads->ds_txstatus1, AR_VirtRetryCnt);
ds->ds_txstat.ts_antenna = 1;
return 0;
}
void
ath9k_hw_set11n_txdesc(struct ath_hal *ah, struct ath_desc *ds,
u32 pktLen, enum ath9k_pkt_type type, u32 txPower,
u32 keyIx, enum ath9k_key_type keyType, u32 flags)
{
struct ar5416_desc *ads = AR5416DESC(ds);
struct ath_hal_5416 *ahp = AH5416(ah);
txPower += ahp->ah_txPowerIndexOffset;
if (txPower > 63)
txPower = 63;
ads->ds_ctl0 = (pktLen & AR_FrameLen)
| (flags & ATH9K_TXDESC_VMF ? AR_VirtMoreFrag : 0)
| SM(txPower, AR_XmitPower)
| (flags & ATH9K_TXDESC_VEOL ? AR_VEOL : 0)
| (flags & ATH9K_TXDESC_CLRDMASK ? AR_ClrDestMask : 0)
| (flags & ATH9K_TXDESC_INTREQ ? AR_TxIntrReq : 0)
| (keyIx != ATH9K_TXKEYIX_INVALID ? AR_DestIdxValid : 0);
ads->ds_ctl1 =
(keyIx != ATH9K_TXKEYIX_INVALID ? SM(keyIx, AR_DestIdx) : 0)
| SM(type, AR_FrameType)
| (flags & ATH9K_TXDESC_NOACK ? AR_NoAck : 0)
| (flags & ATH9K_TXDESC_EXT_ONLY ? AR_ExtOnly : 0)
| (flags & ATH9K_TXDESC_EXT_AND_CTL ? AR_ExtAndCtl : 0);
ads->ds_ctl6 = SM(keyType, AR_EncrType);
if (AR_SREV_9285(ah)) {
ads->ds_ctl8 = 0;
ads->ds_ctl9 = 0;
ads->ds_ctl10 = 0;
ads->ds_ctl11 = 0;
}
}
void
ath9k_hw_set11n_ratescenario(struct ath_hal *ah, struct ath_desc *ds,
struct ath_desc *lastds,
u32 durUpdateEn, u32 rtsctsRate,
u32 rtsctsDuration,
struct ath9k_11n_rate_series series[],
u32 nseries, u32 flags)
{
struct ar5416_desc *ads = AR5416DESC(ds);
struct ar5416_desc *last_ads = AR5416DESC(lastds);
u32 ds_ctl0;
(void) nseries;
(void) rtsctsDuration;
if (flags & (ATH9K_TXDESC_RTSENA | ATH9K_TXDESC_CTSENA)) {
ds_ctl0 = ads->ds_ctl0;
if (flags & ATH9K_TXDESC_RTSENA) {
ds_ctl0 &= ~AR_CTSEnable;
ds_ctl0 |= AR_RTSEnable;
} else {
ds_ctl0 &= ~AR_RTSEnable;
ds_ctl0 |= AR_CTSEnable;
}
ads->ds_ctl0 = ds_ctl0;
} else {
ads->ds_ctl0 =
(ads->ds_ctl0 & ~(AR_RTSEnable | AR_CTSEnable));
}
ads->ds_ctl2 = set11nTries(series, 0)
| set11nTries(series, 1)
| set11nTries(series, 2)
| set11nTries(series, 3)
| (durUpdateEn ? AR_DurUpdateEna : 0)
| SM(0, AR_BurstDur);
ads->ds_ctl3 = set11nRate(series, 0)
| set11nRate(series, 1)
| set11nRate(series, 2)
| set11nRate(series, 3);
ads->ds_ctl4 = set11nPktDurRTSCTS(series, 0)
| set11nPktDurRTSCTS(series, 1);
ads->ds_ctl5 = set11nPktDurRTSCTS(series, 2)
| set11nPktDurRTSCTS(series, 3);
ads->ds_ctl7 = set11nRateFlags(series, 0)
| set11nRateFlags(series, 1)
| set11nRateFlags(series, 2)
| set11nRateFlags(series, 3)
| SM(rtsctsRate, AR_RTSCTSRate);
last_ads->ds_ctl2 = ads->ds_ctl2;
last_ads->ds_ctl3 = ads->ds_ctl3;
}
void
ath9k_hw_set11n_aggr_first(struct ath_hal *ah, struct ath_desc *ds,
u32 aggrLen)
{
struct ar5416_desc *ads = AR5416DESC(ds);
ads->ds_ctl1 |= (AR_IsAggr | AR_MoreAggr);
ads->ds_ctl6 &= ~AR_AggrLen;
ads->ds_ctl6 |= SM(aggrLen, AR_AggrLen);
}
void
ath9k_hw_set11n_aggr_middle(struct ath_hal *ah, struct ath_desc *ds,
u32 numDelims)
{
struct ar5416_desc *ads = AR5416DESC(ds);
unsigned int ctl6;
ads->ds_ctl1 |= (AR_IsAggr | AR_MoreAggr);
ctl6 = ads->ds_ctl6;
ctl6 &= ~AR_PadDelim;
ctl6 |= SM(numDelims, AR_PadDelim);
ads->ds_ctl6 = ctl6;
}
void ath9k_hw_set11n_aggr_last(struct ath_hal *ah, struct ath_desc *ds)
{
struct ar5416_desc *ads = AR5416DESC(ds);
ads->ds_ctl1 |= AR_IsAggr;
ads->ds_ctl1 &= ~AR_MoreAggr;
ads->ds_ctl6 &= ~AR_PadDelim;
}
void ath9k_hw_clr11n_aggr(struct ath_hal *ah, struct ath_desc *ds)
{
struct ar5416_desc *ads = AR5416DESC(ds);
ads->ds_ctl1 &= (~AR_IsAggr & ~AR_MoreAggr);
}
void
ath9k_hw_set11n_burstduration(struct ath_hal *ah, struct ath_desc *ds,
u32 burstDuration)
{
struct ar5416_desc *ads = AR5416DESC(ds);
ads->ds_ctl2 &= ~AR_BurstDur;
ads->ds_ctl2 |= SM(burstDuration, AR_BurstDur);
}
void
ath9k_hw_set11n_virtualmorefrag(struct ath_hal *ah, struct ath_desc *ds,
u32 vmf)
{
struct ar5416_desc *ads = AR5416DESC(ds);
if (vmf)
ads->ds_ctl0 |= AR_VirtMoreFrag;
else
ads->ds_ctl0 &= ~AR_VirtMoreFrag;
}
void ath9k_hw_putrxbuf(struct ath_hal *ah, u32 rxdp)
{
REG_WRITE(ah, AR_RXDP, rxdp);
}
void ath9k_hw_rxena(struct ath_hal *ah)
{
REG_WRITE(ah, AR_CR, AR_CR_RXE);
}
bool ath9k_hw_setrxabort(struct ath_hal *ah, bool set)
{
if (set) {
REG_SET_BIT(ah, AR_DIAG_SW,
(AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
if (!ath9k_hw_wait
(ah, AR_OBS_BUS_1, AR_OBS_BUS_1_RX_STATE, 0)) {
u32 reg;
REG_CLR_BIT(ah, AR_DIAG_SW,
(AR_DIAG_RX_DIS |
AR_DIAG_RX_ABORT));
reg = REG_READ(ah, AR_OBS_BUS_1);
DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
"%s: rx failed to go idle in 10 ms RXSM=0x%x\n",
__func__, reg);
return false;
}
} else {
REG_CLR_BIT(ah, AR_DIAG_SW,
(AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
}
return true;
}
void
ath9k_hw_setmcastfilter(struct ath_hal *ah, u32 filter0,
u32 filter1)
{
REG_WRITE(ah, AR_MCAST_FIL0, filter0);
REG_WRITE(ah, AR_MCAST_FIL1, filter1);
}
bool
ath9k_hw_setuprxdesc(struct ath_hal *ah, struct ath_desc *ds,
u32 size, u32 flags)
{
struct ar5416_desc *ads = AR5416DESC(ds);
struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
ads->ds_ctl1 = size & AR_BufLen;
if (flags & ATH9K_RXDESC_INTREQ)
ads->ds_ctl1 |= AR_RxIntrReq;
ads->ds_rxstatus8 &= ~AR_RxDone;
if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
memset(&(ads->u), 0, sizeof(ads->u));
return true;
}
int
ath9k_hw_rxprocdesc(struct ath_hal *ah, struct ath_desc *ds,
u32 pa, struct ath_desc *nds, u64 tsf)
{
struct ar5416_desc ads;
struct ar5416_desc *adsp = AR5416DESC(ds);
if ((adsp->ds_rxstatus8 & AR_RxDone) == 0)
return -EINPROGRESS;
ads.u.rx = adsp->u.rx;
ds->ds_rxstat.rs_status = 0;
ds->ds_rxstat.rs_flags = 0;
ds->ds_rxstat.rs_datalen = ads.ds_rxstatus1 & AR_DataLen;
ds->ds_rxstat.rs_tstamp = ads.AR_RcvTimestamp;
ds->ds_rxstat.rs_rssi = MS(ads.ds_rxstatus4, AR_RxRSSICombined);
ds->ds_rxstat.rs_rssi_ctl0 = MS(ads.ds_rxstatus0, AR_RxRSSIAnt00);
ds->ds_rxstat.rs_rssi_ctl1 = MS(ads.ds_rxstatus0, AR_RxRSSIAnt01);
ds->ds_rxstat.rs_rssi_ctl2 = MS(ads.ds_rxstatus0, AR_RxRSSIAnt02);
ds->ds_rxstat.rs_rssi_ext0 = MS(ads.ds_rxstatus4, AR_RxRSSIAnt10);
ds->ds_rxstat.rs_rssi_ext1 = MS(ads.ds_rxstatus4, AR_RxRSSIAnt11);
ds->ds_rxstat.rs_rssi_ext2 = MS(ads.ds_rxstatus4, AR_RxRSSIAnt12);
if (ads.ds_rxstatus8 & AR_RxKeyIdxValid)
ds->ds_rxstat.rs_keyix = MS(ads.ds_rxstatus8, AR_KeyIdx);
else
ds->ds_rxstat.rs_keyix = ATH9K_RXKEYIX_INVALID;
ds->ds_rxstat.rs_rate = RXSTATUS_RATE(ah, (&ads));
ds->ds_rxstat.rs_more = (ads.ds_rxstatus1 & AR_RxMore) ? 1 : 0;
ds->ds_rxstat.rs_isaggr = (ads.ds_rxstatus8 & AR_RxAggr) ? 1 : 0;
ds->ds_rxstat.rs_moreaggr =
(ads.ds_rxstatus8 & AR_RxMoreAggr) ? 1 : 0;
ds->ds_rxstat.rs_antenna = MS(ads.ds_rxstatus3, AR_RxAntenna);
ds->ds_rxstat.rs_flags =
(ads.ds_rxstatus3 & AR_GI) ? ATH9K_RX_GI : 0;
ds->ds_rxstat.rs_flags |=
(ads.ds_rxstatus3 & AR_2040) ? ATH9K_RX_2040 : 0;
if (ads.ds_rxstatus8 & AR_PreDelimCRCErr)
ds->ds_rxstat.rs_flags |= ATH9K_RX_DELIM_CRC_PRE;
if (ads.ds_rxstatus8 & AR_PostDelimCRCErr)
ds->ds_rxstat.rs_flags |= ATH9K_RX_DELIM_CRC_POST;
if (ads.ds_rxstatus8 & AR_DecryptBusyErr)
ds->ds_rxstat.rs_flags |= ATH9K_RX_DECRYPT_BUSY;
if ((ads.ds_rxstatus8 & AR_RxFrameOK) == 0) {
if (ads.ds_rxstatus8 & AR_CRCErr)
ds->ds_rxstat.rs_status |= ATH9K_RXERR_CRC;
else if (ads.ds_rxstatus8 & AR_PHYErr) {
u32 phyerr;
ds->ds_rxstat.rs_status |= ATH9K_RXERR_PHY;
phyerr = MS(ads.ds_rxstatus8, AR_PHYErrCode);
ds->ds_rxstat.rs_phyerr = phyerr;
} else if (ads.ds_rxstatus8 & AR_DecryptCRCErr)
ds->ds_rxstat.rs_status |= ATH9K_RXERR_DECRYPT;
else if (ads.ds_rxstatus8 & AR_MichaelErr)
ds->ds_rxstat.rs_status |= ATH9K_RXERR_MIC;
}
return 0;
}
static void ath9k_hw_setup_rate_table(struct ath_hal *ah,
struct ath9k_rate_table *rt)
{
int i;
if (rt->rateCodeToIndex[0] != 0)
return;
for (i = 0; i < 256; i++)
rt->rateCodeToIndex[i] = (u8) -1;
for (i = 0; i < rt->rateCount; i++) {
u8 code = rt->info[i].rateCode;
u8 cix = rt->info[i].controlRate;
rt->rateCodeToIndex[code] = i;
rt->rateCodeToIndex[code | rt->info[i].shortPreamble] = i;
rt->info[i].lpAckDuration =
ath9k_hw_computetxtime(ah, rt,
WLAN_CTRL_FRAME_SIZE,
cix,
false);
rt->info[i].spAckDuration =
ath9k_hw_computetxtime(ah, rt,
WLAN_CTRL_FRAME_SIZE,
cix,
true);
}
}
const struct ath9k_rate_table *ath9k_hw_getratetable(struct ath_hal *ah,
u32 mode)
{
struct ath9k_rate_table *rt;
switch (mode) {
case ATH9K_MODE_11A:
rt = &ar5416_11a_table;
break;
case ATH9K_MODE_11B:
rt = &ar5416_11b_table;
break;
case ATH9K_MODE_11G:
rt = &ar5416_11g_table;
break;
case ATH9K_MODE_11NG_HT20:
case ATH9K_MODE_11NG_HT40PLUS:
case ATH9K_MODE_11NG_HT40MINUS:
rt = &ar5416_11ng_table;
break;
case ATH9K_MODE_11NA_HT20:
case ATH9K_MODE_11NA_HT40PLUS:
case ATH9K_MODE_11NA_HT40MINUS:
rt = &ar5416_11na_table;
break;
default:
DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL, "%s: invalid mode 0x%x\n",
__func__, mode);
return NULL;
}
ath9k_hw_setup_rate_table(ah, rt);
return rt;
}
static const char *ath9k_hw_devname(u16 devid)
{
switch (devid) {
case AR5416_DEVID_PCI:
case AR5416_DEVID_PCIE:
return "Atheros 5416";
case AR9160_DEVID_PCI:
return "Atheros 9160";
case AR9280_DEVID_PCI:
case AR9280_DEVID_PCIE:
return "Atheros 9280";
}
return NULL;
}
const char *ath9k_hw_probe(u16 vendorid, u16 devid)
{
return vendorid == ATHEROS_VENDOR_ID ?
ath9k_hw_devname(devid) : NULL;
}
struct ath_hal *ath9k_hw_attach(u16 devid,
struct ath_softc *sc,
void __iomem *mem,
int *error)
{
struct ath_hal *ah = NULL;
switch (devid) {
case AR5416_DEVID_PCI:
case AR5416_DEVID_PCIE:
case AR9160_DEVID_PCI:
case AR9280_DEVID_PCI:
case AR9280_DEVID_PCIE:
ah = ath9k_hw_do_attach(devid, sc, mem, error);
break;
default:
DPRINTF(ah->ah_sc, ATH_DBG_ANY,
"devid=0x%x not supported.\n", devid);
ah = NULL;
*error = -ENXIO;
break;
}
return ah;
}
u16
ath9k_hw_computetxtime(struct ath_hal *ah,
const struct ath9k_rate_table *rates,
u32 frameLen, u16 rateix,
bool shortPreamble)
{
u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
u32 kbps;
kbps = rates->info[rateix].rateKbps;
if (kbps == 0)
return 0;
switch (rates->info[rateix].phy) {
case PHY_CCK:
phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
if (shortPreamble && rates->info[rateix].shortPreamble)
phyTime >>= 1;
numBits = frameLen << 3;
txTime = CCK_SIFS_TIME + phyTime
+ ((numBits * 1000) / kbps);
break;
case PHY_OFDM:
if (ah->ah_curchan && IS_CHAN_QUARTER_RATE(ah->ah_curchan)) {
bitsPerSymbol =
(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
numBits = OFDM_PLCP_BITS + (frameLen << 3);
numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
txTime = OFDM_SIFS_TIME_QUARTER
+ OFDM_PREAMBLE_TIME_QUARTER
+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
} else if (ah->ah_curchan &&
IS_CHAN_HALF_RATE(ah->ah_curchan)) {
bitsPerSymbol =
(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
numBits = OFDM_PLCP_BITS + (frameLen << 3);
numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
txTime = OFDM_SIFS_TIME_HALF +
OFDM_PREAMBLE_TIME_HALF
+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
} else {
bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
numBits = OFDM_PLCP_BITS + (frameLen << 3);
numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
+ (numSymbols * OFDM_SYMBOL_TIME);
}
break;
default:
DPRINTF(ah->ah_sc, ATH_DBG_PHY_IO,
"%s: unknown phy %u (rate ix %u)\n", __func__,
rates->info[rateix].phy, rateix);
txTime = 0;
break;
}
return txTime;
}
u32 ath9k_hw_mhz2ieee(struct ath_hal *ah, u32 freq, u32 flags)
{
if (flags & CHANNEL_2GHZ) {
if (freq == 2484)
return 14;
if (freq < 2484)
return (freq - 2407) / 5;
else
return 15 + ((freq - 2512) / 20);
} else if (flags & CHANNEL_5GHZ) {
if (ath9k_regd_is_public_safety_sku(ah) &&
IS_CHAN_IN_PUBLIC_SAFETY_BAND(freq)) {
return ((freq * 10) +
(((freq % 5) == 2) ? 5 : 0) - 49400) / 5;
} else if ((flags & CHANNEL_A) && (freq <= 5000)) {
return (freq - 4000) / 5;
} else {
return (freq - 5000) / 5;
}
} else {
if (freq == 2484)
return 14;
if (freq < 2484)
return (freq - 2407) / 5;
if (freq < 5000) {
if (ath9k_regd_is_public_safety_sku(ah)
&& IS_CHAN_IN_PUBLIC_SAFETY_BAND(freq)) {
return ((freq * 10) +
(((freq % 5) ==
2) ? 5 : 0) - 49400) / 5;
} else if (freq > 4900) {
return (freq - 4000) / 5;
} else {
return 15 + ((freq - 2512) / 20);
}
}
return (freq - 5000) / 5;
}
}
int16_t
ath9k_hw_getchan_noise(struct ath_hal *ah, struct ath9k_channel *chan)
{
struct ath9k_channel *ichan;
ichan = ath9k_regd_check_channel(ah, chan);
if (ichan == NULL) {
DPRINTF(ah->ah_sc, ATH_DBG_NF_CAL,
"%s: invalid channel %u/0x%x; no mapping\n",
__func__, chan->channel, chan->channelFlags);
return 0;
}
if (ichan->rawNoiseFloor == 0) {
enum wireless_mode mode = ath9k_hw_chan2wmode(ah, chan);
return NOISE_FLOOR[mode];
} else
return ichan->rawNoiseFloor;
}
bool ath9k_hw_set_tsfadjust(struct ath_hal *ah, u32 setting)
{
struct ath_hal_5416 *ahp = AH5416(ah);
if (setting)
ahp->ah_miscMode |= AR_PCU_TX_ADD_TSF;
else
ahp->ah_miscMode &= ~AR_PCU_TX_ADD_TSF;
return true;
}
bool ath9k_hw_phycounters(struct ath_hal *ah)
{
struct ath_hal_5416 *ahp = AH5416(ah);
return ahp->ah_hasHwPhyCounters ? true : false;
}
u32 ath9k_hw_gettxbuf(struct ath_hal *ah, u32 q)
{
return REG_READ(ah, AR_QTXDP(q));
}
bool ath9k_hw_puttxbuf(struct ath_hal *ah, u32 q,
u32 txdp)
{
REG_WRITE(ah, AR_QTXDP(q), txdp);
return true;
}
bool ath9k_hw_txstart(struct ath_hal *ah, u32 q)
{
DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: queue %u\n", __func__, q);
REG_WRITE(ah, AR_Q_TXE, 1 << q);
return true;
}
u32 ath9k_hw_numtxpending(struct ath_hal *ah, u32 q)
{
u32 npend;
npend = REG_READ(ah, AR_QSTS(q)) & AR_Q_STS_PEND_FR_CNT;
if (npend == 0) {
if (REG_READ(ah, AR_Q_TXE) & (1 << q))
npend = 1;
}
return npend;
}
bool ath9k_hw_stoptxdma(struct ath_hal *ah, u32 q)
{
u32 wait;
REG_WRITE(ah, AR_Q_TXD, 1 << q);
for (wait = 1000; wait != 0; wait--) {
if (ath9k_hw_numtxpending(ah, q) == 0)
break;
udelay(100);
}
if (ath9k_hw_numtxpending(ah, q)) {
u32 tsfLow, j;
DPRINTF(ah->ah_sc, ATH_DBG_QUEUE,
"%s: Num of pending TX Frames %d on Q %d\n",
__func__, ath9k_hw_numtxpending(ah, q), q);
for (j = 0; j < 2; j++) {
tsfLow = REG_READ(ah, AR_TSF_L32);
REG_WRITE(ah, AR_QUIET2,
SM(10, AR_QUIET2_QUIET_DUR));
REG_WRITE(ah, AR_QUIET_PERIOD, 100);
REG_WRITE(ah, AR_NEXT_QUIET_TIMER, tsfLow >> 10);
REG_SET_BIT(ah, AR_TIMER_MODE,
AR_QUIET_TIMER_EN);
if ((REG_READ(ah, AR_TSF_L32) >> 10) ==
(tsfLow >> 10)) {
break;
}
DPRINTF(ah->ah_sc, ATH_DBG_QUEUE,
"%s: TSF have moved while trying to set "
"quiet time TSF: 0x%08x\n",
__func__, tsfLow);
}
REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
udelay(200);
REG_CLR_BIT(ah, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
wait = 1000;
while (ath9k_hw_numtxpending(ah, q)) {
if ((--wait) == 0) {
DPRINTF(ah->ah_sc, ATH_DBG_XMIT,
"%s: Failed to stop Tx DMA in 100 "
"msec after killing last frame\n",
__func__);
break;
}
udelay(100);
}
REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
}
REG_WRITE(ah, AR_Q_TXD, 0);
return wait != 0;
}