linux_dsm_epyc7002/drivers/edac/Kconfig

508 lines
15 KiB
Plaintext
Raw Normal View History

#
# EDAC Kconfig
# Copyright (c) 2008 Doug Thompson www.softwarebitmaker.com
# Licensed and distributed under the GPL
EDAC: Cleanup atomic_scrub mess So first of all, this atomic_scrub() function's naming is bad. It looks like an atomic_t helper. Change it to edac_atomic_scrub(). The bigger problem is that this function is arch-specific and every new arch which doesn't necessarily need that functionality still needs to define it, otherwise EDAC doesn't compile. So instead of doing that and including arch-specific headers, have each arch define an EDAC_ATOMIC_SCRUB symbol which can be used in edac_mc.c for ifdeffery. Much cleaner. And we already are doing this with another symbol - EDAC_SUPPORT. This is also much cleaner than having CONFIG_EDAC enumerate all the arches which need/have EDAC support and drivers. This way I can kill the useless edac.h header in tile too. Acked-by: Ralf Baechle <ralf@linux-mips.org> Acked-by: Michael Ellerman <mpe@ellerman.id.au> Acked-by: Chris Metcalf <cmetcalf@ezchip.com> Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Russell King <rmk+kernel@arm.linux.org.uk> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Doug Thompson <dougthompson@xmission.com> Cc: linux-arm-kernel@lists.infradead.org Cc: linux-edac@vger.kernel.org Cc: linux-kernel@vger.kernel.org Cc: linux-mips@linux-mips.org Cc: linuxppc-dev@lists.ozlabs.org Cc: "Maciej W. Rozycki" <macro@codesourcery.com> Cc: Markos Chandras <markos.chandras@imgtec.com> Cc: Mauro Carvalho Chehab <mchehab@osg.samsung.com> Cc: Paul Mackerras <paulus@samba.org> Cc: "Steven J. Hill" <Steven.Hill@imgtec.com> Cc: x86@kernel.org Signed-off-by: Borislav Petkov <bp@suse.de>
2015-05-22 00:59:31 +07:00
config EDAC_ATOMIC_SCRUB
bool
config EDAC_SUPPORT
bool
menuconfig EDAC
tristate "EDAC (Error Detection And Correction) reporting"
depends on HAS_IOMEM && EDAC_SUPPORT && RAS
help
EDAC is a subsystem along with hardware-specific drivers designed to
report hardware errors. These are low-level errors that are reported
in the CPU or supporting chipset or other subsystems:
memory errors, cache errors, PCI errors, thermal throttling, etc..
If unsure, select 'Y'.
The mailing list for the EDAC project is linux-edac@vger.kernel.org.
if EDAC
config EDAC_LEGACY_SYSFS
bool "EDAC legacy sysfs"
default y
help
Enable the compatibility sysfs nodes.
Use 'Y' if your edac utilities aren't ported to work with the newer
structures.
config EDAC_DEBUG
bool "Debugging"
select DEBUG_FS
help
This turns on debugging information for the entire EDAC subsystem.
You do so by inserting edac_module with "edac_debug_level=x." Valid
levels are 0-4 (from low to high) and by default it is set to 2.
Usually you should select 'N' here.
config EDAC_DECODE_MCE
tristate "Decode MCEs in human-readable form (only on AMD for now)"
depends on CPU_SUP_AMD && X86_MCE_AMD
default y
---help---
Enable this option if you want to decode Machine Check Exceptions
occurring on your machine in human-readable form.
You should definitely say Y here in case you want to decode MCEs
which occur really early upon boot, before the module infrastructure
has been initialized.
config EDAC_GHES
bool "Output ACPI APEI/GHES BIOS detected errors via EDAC"
depends on ACPI_APEI_GHES && (EDAC=y)
help
Not all machines support hardware-driven error report. Some of those
provide a BIOS-driven error report mechanism via ACPI, using the
APEI/GHES driver. By enabling this option, the error reports provided
by GHES are sent to userspace via the EDAC API.
When this option is enabled, it will disable the hardware-driven
mechanisms, if a GHES BIOS is detected, entering into the
"Firmware First" mode.
It should be noticed that keeping both GHES and a hardware-driven
error mechanism won't work well, as BIOS will race with OS, while
reading the error registers. So, if you want to not use "Firmware
first" GHES error mechanism, you should disable GHES either at
compilation time or by passing "ghes.disable=1" Kernel parameter
at boot time.
In doubt, say 'Y'.
config EDAC_AMD64
tristate "AMD64 (Opteron, Athlon64)"
depends on AMD_NB && EDAC_DECODE_MCE
help
Support for error detection and correction of DRAM ECC errors on
the AMD64 families (>= K8) of memory controllers.
config EDAC_AMD64_ERROR_INJECTION
bool "Sysfs HW Error injection facilities"
depends on EDAC_AMD64
help
Recent Opterons (Family 10h and later) provide for Memory Error
Injection into the ECC detection circuits. The amd64_edac module
allows the operator/user to inject Uncorrectable and Correctable
errors into DRAM.
When enabled, in each of the respective memory controller directories
(/sys/devices/system/edac/mc/mcX), there are 3 input files:
- inject_section (0..3, 16-byte section of 64-byte cacheline),
- inject_word (0..8, 16-bit word of 16-byte section),
- inject_ecc_vector (hex ecc vector: select bits of inject word)
In addition, there are two control files, inject_read and inject_write,
which trigger the DRAM ECC Read and Write respectively.
config EDAC_AMD76X
tristate "AMD 76x (760, 762, 768)"
depends on PCI && X86_32
help
Support for error detection and correction on the AMD 76x
series of chipsets used with the Athlon processor.
config EDAC_E7XXX
tristate "Intel e7xxx (e7205, e7500, e7501, e7505)"
depends on PCI && X86_32
help
Support for error detection and correction on the Intel
E7205, E7500, E7501 and E7505 server chipsets.
config EDAC_E752X
tristate "Intel e752x (e7520, e7525, e7320) and 3100"
depends on PCI && X86
help
Support for error detection and correction on the Intel
E7520, E7525, E7320 server chipsets.
config EDAC_I82443BXGX
tristate "Intel 82443BX/GX (440BX/GX)"
depends on PCI && X86_32
depends on BROKEN
help
Support for error detection and correction on the Intel
82443BX/GX memory controllers (440BX/GX chipsets).
config EDAC_I82875P
tristate "Intel 82875p (D82875P, E7210)"
depends on PCI && X86_32
help
Support for error detection and correction on the Intel
DP82785P and E7210 server chipsets.
config EDAC_I82975X
tristate "Intel 82975x (D82975x)"
depends on PCI && X86
help
Support for error detection and correction on the Intel
DP82975x server chipsets.
config EDAC_I3000
tristate "Intel 3000/3010"
depends on PCI && X86
help
Support for error detection and correction on the Intel
3000 and 3010 server chipsets.
config EDAC_I3200
tristate "Intel 3200"
depends on PCI && X86
help
Support for error detection and correction on the Intel
3200 and 3210 server chipsets.
config EDAC_IE31200
tristate "Intel e312xx"
depends on PCI && X86
help
Support for error detection and correction on the Intel
E3-1200 based DRAM controllers.
config EDAC_X38
tristate "Intel X38"
depends on PCI && X86
help
Support for error detection and correction on the Intel
X38 server chipsets.
config EDAC_I5400
tristate "Intel 5400 (Seaburg) chipsets"
depends on PCI && X86
help
Support for error detection and correction the Intel
i5400 MCH chipset (Seaburg).
config EDAC_I7CORE
tristate "Intel i7 Core (Nehalem) processors"
depends on PCI && X86 && X86_MCE_INTEL
help
Support for error detection and correction the Intel
i7 Core (Nehalem) Integrated Memory Controller that exists on
newer processors like i7 Core, i7 Core Extreme, Xeon 35xx
and Xeon 55xx processors.
config EDAC_I82860
tristate "Intel 82860"
depends on PCI && X86_32
help
Support for error detection and correction on the Intel
82860 chipset.
config EDAC_R82600
tristate "Radisys 82600 embedded chipset"
depends on PCI && X86_32
help
Support for error detection and correction on the Radisys
82600 embedded chipset.
config EDAC_I5000
tristate "Intel Greencreek/Blackford chipset"
depends on X86 && PCI
help
Support for error detection and correction the Intel
Greekcreek/Blackford chipsets.
edac: i5100 new intel chipset driver Preliminary support for the Intel 5100 MCH. CE and UE errors are reported along with the current DIMM label information and other memory parameters. Reasons why this is preliminary: 1) This chip has 2 independent memory controllers which, for best perforance, use interleaved accesses to the DDR2 memory. This architecture does not map very well to the current edac data structures which depend on symmetric channel access to the interleaved data. Without core changes, the best I could do for now is to map both memory controllers to different csrows (first all ranks of controller 0, then all ranks of controller 1). Someone much more familiar with the edac core than I will probably need to come up with a more general data structure to handle the interleaving and de-interleaving of the two memory controllers. 2) I have not yet tackled the de-interleaving of the rank/controller address space into the physical address space of the CPU. There is nothing fundamentally missing, it is just ending up to be a lot of code, and I'd rather keep it separate for now, esp since it doesn't work yet... 3) The code depends on a particular i5100 chip select to DIMM mainboard chip select mapping. This mapping seems obvious to me in order to support dual and single ranked memory, but it is not unique and DIMM labels could be wrong on other mainboards. There is no way to query this mapping that I know of. 4) The code requires that the i5100 is in 32GB mode. Only 4 ranks per controller, 2 ranks per DIMM are supported. I do not have hardware (nor do I expect to have hardware anytime soon) for the 48GB (6 ranks per controller) mode. 5) The serial presence detect code should be broken out into a "real" i2c driver so that decode-dimms.pl can work. Signed-off-by: Arthur Jones <ajones@riverbed.com> Signed-off-by: Doug Thompson <dougthompson@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-25 15:49:04 +07:00
config EDAC_I5100
tristate "Intel San Clemente MCH"
depends on X86 && PCI
edac: i5100 new intel chipset driver Preliminary support for the Intel 5100 MCH. CE and UE errors are reported along with the current DIMM label information and other memory parameters. Reasons why this is preliminary: 1) This chip has 2 independent memory controllers which, for best perforance, use interleaved accesses to the DDR2 memory. This architecture does not map very well to the current edac data structures which depend on symmetric channel access to the interleaved data. Without core changes, the best I could do for now is to map both memory controllers to different csrows (first all ranks of controller 0, then all ranks of controller 1). Someone much more familiar with the edac core than I will probably need to come up with a more general data structure to handle the interleaving and de-interleaving of the two memory controllers. 2) I have not yet tackled the de-interleaving of the rank/controller address space into the physical address space of the CPU. There is nothing fundamentally missing, it is just ending up to be a lot of code, and I'd rather keep it separate for now, esp since it doesn't work yet... 3) The code depends on a particular i5100 chip select to DIMM mainboard chip select mapping. This mapping seems obvious to me in order to support dual and single ranked memory, but it is not unique and DIMM labels could be wrong on other mainboards. There is no way to query this mapping that I know of. 4) The code requires that the i5100 is in 32GB mode. Only 4 ranks per controller, 2 ranks per DIMM are supported. I do not have hardware (nor do I expect to have hardware anytime soon) for the 48GB (6 ranks per controller) mode. 5) The serial presence detect code should be broken out into a "real" i2c driver so that decode-dimms.pl can work. Signed-off-by: Arthur Jones <ajones@riverbed.com> Signed-off-by: Doug Thompson <dougthompson@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-25 15:49:04 +07:00
help
Support for error detection and correction the Intel
San Clemente MCH.
config EDAC_I7300
tristate "Intel Clarksboro MCH"
depends on X86 && PCI
help
Support for error detection and correction the Intel
Clarksboro MCH (Intel 7300 chipset).
config EDAC_SBRIDGE
tristate "Intel Sandy-Bridge/Ivy-Bridge/Haswell Integrated MC"
depends on PCI && X86_64 && X86_MCE_INTEL && PCI_MMCONFIG
help
Support for error detection and correction the Intel
Sandy Bridge, Ivy Bridge and Haswell Integrated Memory Controllers.
config EDAC_SKX
tristate "Intel Skylake server Integrated MC"
depends on PCI && X86_64 && X86_MCE_INTEL && PCI_MMCONFIG && ACPI
depends on ACPI_NFIT || !ACPI_NFIT # if ACPI_NFIT=m, EDAC_SKX can't be y
select DMI
select ACPI_ADXL
help
Support for error detection and correction the Intel
Skylake server Integrated Memory Controllers. If your
system has non-volatile DIMMs you should also manually
select CONFIG_ACPI_NFIT.
config EDAC_I10NM
tristate "Intel 10nm server Integrated MC"
depends on PCI && X86_64 && X86_MCE_INTEL && PCI_MMCONFIG && ACPI
depends on ACPI_NFIT || !ACPI_NFIT # if ACPI_NFIT=m, EDAC_I10NM can't be y
select DMI
select ACPI_ADXL
help
Support for error detection and correction the Intel
10nm server Integrated Memory Controllers. If your
system has non-volatile DIMMs you should also manually
select CONFIG_ACPI_NFIT.
config EDAC_PND2
tristate "Intel Pondicherry2"
depends on PCI && X86_64 && X86_MCE_INTEL
help
Support for error detection and correction on the Intel
Pondicherry2 Integrated Memory Controller. This SoC IP is
first used on the Apollo Lake platform and Denverton
micro-server but may appear on others in the future.
config EDAC_MPC85XX
bool "Freescale MPC83xx / MPC85xx"
depends on FSL_SOC && EDAC=y
help
Support for error detection and correction on the Freescale
MPC8349, MPC8560, MPC8540, MPC8548, T4240
config EDAC_LAYERSCAPE
tristate "Freescale Layerscape DDR"
depends on ARCH_LAYERSCAPE || SOC_LS1021A
help
Support for error detection and correction on Freescale memory
controllers on Layerscape SoCs.
config EDAC_MV64X60
tristate "Marvell MV64x60"
depends on MV64X60
help
Support for error detection and correction on the Marvell
MV64360 and MV64460 chipsets.
config EDAC_PASEMI
tristate "PA Semi PWRficient"
depends on PPC_PASEMI && PCI
help
Support for error detection and correction on PA Semi
PWRficient.
config EDAC_CELL
tristate "Cell Broadband Engine memory controller"
depends on PPC_CELL_COMMON
help
Support for error detection and correction on the
Cell Broadband Engine internal memory controller
on platform without a hypervisor
config EDAC_PPC4XX
tristate "PPC4xx IBM DDR2 Memory Controller"
depends on 4xx
help
This enables support for EDAC on the ECC memory used
with the IBM DDR2 memory controller found in various
PowerPC 4xx embedded processors such as the 405EX[r],
440SP, 440SPe, 460EX, 460GT and 460SX.
config EDAC_AMD8131
tristate "AMD8131 HyperTransport PCI-X Tunnel"
depends on PCI && PPC_MAPLE
help
Support for error detection and correction on the
AMD8131 HyperTransport PCI-X Tunnel chip.
Note, add more Kconfig dependency if it's adopted
on some machine other than Maple.
config EDAC_AMD8111
tristate "AMD8111 HyperTransport I/O Hub"
depends on PCI && PPC_MAPLE
help
Support for error detection and correction on the
AMD8111 HyperTransport I/O Hub chip.
Note, add more Kconfig dependency if it's adopted
on some machine other than Maple.
config EDAC_CPC925
tristate "IBM CPC925 Memory Controller (PPC970FX)"
depends on PPC64
help
Support for error detection and correction on the
IBM CPC925 Bridge and Memory Controller, which is
a companion chip to the PowerPC 970 family of
processors.
config EDAC_HIGHBANK_MC
tristate "Highbank Memory Controller"
depends on ARCH_HIGHBANK
help
Support for error detection and correction on the
Calxeda Highbank memory controller.
config EDAC_HIGHBANK_L2
tristate "Highbank L2 Cache"
depends on ARCH_HIGHBANK
help
Support for error detection and correction on the
Calxeda Highbank memory controller.
config EDAC_OCTEON_PC
tristate "Cavium Octeon Primary Caches"
depends on CPU_CAVIUM_OCTEON
help
Support for error detection and correction on the primary caches of
the cnMIPS cores of Cavium Octeon family SOCs.
config EDAC_OCTEON_L2C
tristate "Cavium Octeon Secondary Caches (L2C)"
depends on CAVIUM_OCTEON_SOC
help
Support for error detection and correction on the
Cavium Octeon family of SOCs.
config EDAC_OCTEON_LMC
tristate "Cavium Octeon DRAM Memory Controller (LMC)"
depends on CAVIUM_OCTEON_SOC
help
Support for error detection and correction on the
Cavium Octeon family of SOCs.
config EDAC_OCTEON_PCI
tristate "Cavium Octeon PCI Controller"
depends on PCI && CAVIUM_OCTEON_SOC
help
Support for error detection and correction on the
Cavium Octeon family of SOCs.
config EDAC_THUNDERX
tristate "Cavium ThunderX EDAC"
depends on ARM64
depends on PCI
help
Support for error detection and correction on the
Cavium ThunderX memory controllers (LMC), Cache
Coherent Processor Interconnect (CCPI) and L2 cache
blocks (TAD, CBC, MCI).
config EDAC_ALTERA
bool "Altera SOCFPGA ECC"
depends on EDAC=y && (ARCH_SOCFPGA || ARCH_STRATIX10)
help
Support for error detection and correction on the
Altera SOCs. This is the global enable for the
various Altera peripherals.
config EDAC_ALTERA_SDRAM
bool "Altera SDRAM ECC"
depends on EDAC_ALTERA=y
help
Support for error detection and correction on the
Altera SDRAM Memory for Altera SoCs. Note that the
preloader must initialize the SDRAM before loading
the kernel.
config EDAC_ALTERA_L2C
bool "Altera L2 Cache ECC"
depends on EDAC_ALTERA=y && CACHE_L2X0
help
Support for error detection and correction on the
Altera L2 cache Memory for Altera SoCs. This option
requires L2 cache.
config EDAC_ALTERA_OCRAM
bool "Altera On-Chip RAM ECC"
depends on EDAC_ALTERA=y && SRAM && GENERIC_ALLOCATOR
help
Support for error detection and correction on the
Altera On-Chip RAM Memory for Altera SoCs.
config EDAC_ALTERA_ETHERNET
bool "Altera Ethernet FIFO ECC"
depends on EDAC_ALTERA=y
help
Support for error detection and correction on the
Altera Ethernet FIFO Memory for Altera SoCs.
config EDAC_ALTERA_NAND
bool "Altera NAND FIFO ECC"
depends on EDAC_ALTERA=y && MTD_NAND_DENALI
help
Support for error detection and correction on the
Altera NAND FIFO Memory for Altera SoCs.
config EDAC_ALTERA_DMA
bool "Altera DMA FIFO ECC"
depends on EDAC_ALTERA=y && PL330_DMA=y
help
Support for error detection and correction on the
Altera DMA FIFO Memory for Altera SoCs.
config EDAC_ALTERA_USB
bool "Altera USB FIFO ECC"
depends on EDAC_ALTERA=y && USB_DWC2
help
Support for error detection and correction on the
Altera USB FIFO Memory for Altera SoCs.
config EDAC_ALTERA_QSPI
bool "Altera QSPI FIFO ECC"
depends on EDAC_ALTERA=y && SPI_CADENCE_QUADSPI
help
Support for error detection and correction on the
Altera QSPI FIFO Memory for Altera SoCs.
config EDAC_ALTERA_SDMMC
bool "Altera SDMMC FIFO ECC"
depends on EDAC_ALTERA=y && MMC_DW
help
Support for error detection and correction on the
Altera SDMMC FIFO Memory for Altera SoCs.
config EDAC_SYNOPSYS
tristate "Synopsys DDR Memory Controller"
depends on ARCH_ZYNQ || ARCH_ZYNQMP
help
Support for error detection and correction on the Synopsys DDR
memory controller.
config EDAC_XGENE
tristate "APM X-Gene SoC"
depends on (ARM64 || COMPILE_TEST)
help
Support for error detection and correction on the
APM X-Gene family of SOCs.
config EDAC_TI
tristate "Texas Instruments DDR3 ECC Controller"
depends on ARCH_KEYSTONE || SOC_DRA7XX
help
Support for error detection and correction on the
TI SoCs.
config EDAC_QCOM
tristate "QCOM EDAC Controller"
depends on ARCH_QCOM && QCOM_LLCC
help
Support for error detection and correction on the
Qualcomm Technologies, Inc. SoCs.
This driver reports Single Bit Errors (SBEs) and Double Bit Errors (DBEs).
As of now, it supports error reporting for Last Level Cache Controller (LLCC)
of Tag RAM and Data RAM.
For debugging issues having to do with stability and overall system
health, you should probably say 'Y' here.
config EDAC_ASPEED
tristate "Aspeed AST 2500 SoC"
depends on MACH_ASPEED_G5
help
Support for error detection and correction on the Aspeed AST 2500 SoC.
First, ECC must be configured in the bootloader. Then, this driver
will expose error counters via the EDAC kernel framework.
endif # EDAC