linux_dsm_epyc7002/drivers/infiniband/hw/hfi1/mad.c

4847 lines
137 KiB
C
Raw Normal View History

/*
* Copyright(c) 2015-2017 Intel Corporation.
*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <linux/net.h>
#include <rdma/opa_addr.h>
#define OPA_NUM_PKEY_BLOCKS_PER_SMP (OPA_SMP_DR_DATA_SIZE \
/ (OPA_PARTITION_TABLE_BLK_SIZE * sizeof(u16)))
#include "hfi.h"
#include "mad.h"
#include "trace.h"
#include "qp.h"
#include "vnic.h"
/* the reset value from the FM is supposed to be 0xffff, handle both */
#define OPA_LINK_WIDTH_RESET_OLD 0x0fff
#define OPA_LINK_WIDTH_RESET 0xffff
struct trap_node {
struct list_head list;
struct opa_mad_notice_attr data;
__be64 tid;
int len;
u32 retry;
u8 in_use;
u8 repress;
};
static int smp_length_check(u32 data_size, u32 request_len)
{
if (unlikely(request_len < data_size))
return -EINVAL;
return 0;
}
static int reply(struct ib_mad_hdr *smp)
{
/*
* The verbs framework will handle the directed/LID route
* packet changes.
*/
smp->method = IB_MGMT_METHOD_GET_RESP;
if (smp->mgmt_class == IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE)
smp->status |= IB_SMP_DIRECTION;
return IB_MAD_RESULT_SUCCESS | IB_MAD_RESULT_REPLY;
}
static inline void clear_opa_smp_data(struct opa_smp *smp)
{
void *data = opa_get_smp_data(smp);
size_t size = opa_get_smp_data_size(smp);
memset(data, 0, size);
}
IB/hfi1: Validate PKEY for incoming GSI MAD packets These are the use-cases where the pkey needs to be tested to see if a packet needs to be dropped. a) Check if pkey is not FULL_MGMT_P_KEY or LIM_MGMT_P_KEY, drop the packet as it's not part of the management partition. Self-originated packets are an exception. b) If pkey index points to FULL_MGMT_P_KEY and LIM_MGMT_P_KEY is in the table, the packet is coming from a management node, and the receiving node is also a management node, so it is safe for the packet to go through. c) If pkey index points to FULL_MGMT_P_KEY and LIM_MGMT_P_KEY is NOT in the table, drop the packet as LIM_MGMT_P_KEY should always be in the pkey table. It could be a misconfiguration. d) If pkey index points to LIM_MGMT_P_KEY and FULL_MGMT_P_KEY is NOT in the table, it is safe for the packet to go through since a non-management node is talking to another non-managment node. e) If pkey index points to LIM_MGMT_P_KEY and FULL_MGMT_P_KEY is in the table, drop the packet because a non-management node is talking to a management node, and it could be an attack. For the implementation, these rules can be simplied to only checking for (a) and (e). There's no need to check for rule (b) as the packet doesn't need to be dropped. Rule (c) is not possible in the driver as LIM_MGMT_P_KEY is always in the pkey table. Reviewed-by: Michael J. Ruhl <michael.j.ruhl@intel.com> Signed-off-by: Sebastian Sanchez <sebastian.sanchez@intel.com> Signed-off-by: Dennis Dalessandro <dennis.dalessandro@intel.com> Signed-off-by: Doug Ledford <dledford@redhat.com>
2017-10-25 22:15:18 +07:00
static u16 hfi1_lookup_pkey_value(struct hfi1_ibport *ibp, int pkey_idx)
{
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
if (pkey_idx < ARRAY_SIZE(ppd->pkeys))
return ppd->pkeys[pkey_idx];
return 0;
}
void hfi1_event_pkey_change(struct hfi1_devdata *dd, u8 port)
{
struct ib_event event;
event.event = IB_EVENT_PKEY_CHANGE;
event.device = &dd->verbs_dev.rdi.ibdev;
event.element.port_num = port;
ib_dispatch_event(&event);
}
/*
* If the port is down, clean up all pending traps. We need to be careful
* with the given trap, because it may be queued.
*/
static void cleanup_traps(struct hfi1_ibport *ibp, struct trap_node *trap)
{
struct trap_node *node, *q;
unsigned long flags;
struct list_head trap_list;
int i;
for (i = 0; i < RVT_MAX_TRAP_LISTS; i++) {
spin_lock_irqsave(&ibp->rvp.lock, flags);
list_replace_init(&ibp->rvp.trap_lists[i].list, &trap_list);
ibp->rvp.trap_lists[i].list_len = 0;
spin_unlock_irqrestore(&ibp->rvp.lock, flags);
/*
* Remove all items from the list, freeing all the non-given
* traps.
*/
list_for_each_entry_safe(node, q, &trap_list, list) {
list_del(&node->list);
if (node != trap)
kfree(node);
}
}
/*
* If this wasn't on one of the lists it would not be freed. If it
* was on the list, it is now safe to free.
*/
kfree(trap);
}
static struct trap_node *check_and_add_trap(struct hfi1_ibport *ibp,
struct trap_node *trap)
{
struct trap_node *node;
struct trap_list *trap_list;
unsigned long flags;
unsigned long timeout;
int found = 0;
unsigned int queue_id;
static int trap_count;
queue_id = trap->data.generic_type & 0x0F;
if (queue_id >= RVT_MAX_TRAP_LISTS) {
trap_count++;
pr_err_ratelimited("hfi1: Invalid trap 0x%0x dropped. Total dropped: %d\n",
trap->data.generic_type, trap_count);
kfree(trap);
return NULL;
}
/*
* Since the retry (handle timeout) does not remove a trap request
* from the list, all we have to do is compare the node.
*/
spin_lock_irqsave(&ibp->rvp.lock, flags);
trap_list = &ibp->rvp.trap_lists[queue_id];
list_for_each_entry(node, &trap_list->list, list) {
if (node == trap) {
node->retry++;
found = 1;
break;
}
}
/* If it is not on the list, add it, limited to RVT-MAX_TRAP_LEN. */
if (!found) {
if (trap_list->list_len < RVT_MAX_TRAP_LEN) {
trap_list->list_len++;
list_add_tail(&trap->list, &trap_list->list);
} else {
pr_warn_ratelimited("hfi1: Maximum trap limit reached for 0x%0x traps\n",
trap->data.generic_type);
kfree(trap);
}
}
/*
* Next check to see if there is a timer pending. If not, set it up
* and get the first trap from the list.
*/
node = NULL;
if (!timer_pending(&ibp->rvp.trap_timer)) {
/*
* o14-2
* If the time out is set we have to wait until it expires
* before the trap can be sent.
* This should be > RVT_TRAP_TIMEOUT
*/
timeout = (RVT_TRAP_TIMEOUT *
(1UL << ibp->rvp.subnet_timeout)) / 1000;
mod_timer(&ibp->rvp.trap_timer,
jiffies + usecs_to_jiffies(timeout));
node = list_first_entry(&trap_list->list, struct trap_node,
list);
node->in_use = 1;
}
spin_unlock_irqrestore(&ibp->rvp.lock, flags);
return node;
}
static void subn_handle_opa_trap_repress(struct hfi1_ibport *ibp,
struct opa_smp *smp)
{
struct trap_list *trap_list;
struct trap_node *trap;
unsigned long flags;
int i;
if (smp->attr_id != IB_SMP_ATTR_NOTICE)
return;
spin_lock_irqsave(&ibp->rvp.lock, flags);
for (i = 0; i < RVT_MAX_TRAP_LISTS; i++) {
trap_list = &ibp->rvp.trap_lists[i];
trap = list_first_entry_or_null(&trap_list->list,
struct trap_node, list);
if (trap && trap->tid == smp->tid) {
if (trap->in_use) {
trap->repress = 1;
} else {
trap_list->list_len--;
list_del(&trap->list);
kfree(trap);
}
break;
}
}
spin_unlock_irqrestore(&ibp->rvp.lock, flags);
}
static void hfi1_update_sm_ah_attr(struct hfi1_ibport *ibp,
struct rdma_ah_attr *attr, u32 dlid)
{
rdma_ah_set_dlid(attr, dlid);
rdma_ah_set_port_num(attr, ppd_from_ibp(ibp)->port);
if (dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) {
struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
rdma_ah_set_ah_flags(attr, IB_AH_GRH);
grh->sgid_index = 0;
grh->hop_limit = 1;
grh->dgid.global.subnet_prefix =
ibp->rvp.gid_prefix;
grh->dgid.global.interface_id = OPA_MAKE_ID(dlid);
}
}
static int hfi1_modify_qp0_ah(struct hfi1_ibport *ibp,
struct rvt_ah *ah, u32 dlid)
{
struct rdma_ah_attr attr;
struct rvt_qp *qp0;
int ret = -EINVAL;
memset(&attr, 0, sizeof(attr));
attr.type = ah->ibah.type;
hfi1_update_sm_ah_attr(ibp, &attr, dlid);
rcu_read_lock();
qp0 = rcu_dereference(ibp->rvp.qp[0]);
if (qp0)
ret = rdma_modify_ah(&ah->ibah, &attr);
rcu_read_unlock();
return ret;
}
static struct ib_ah *hfi1_create_qp0_ah(struct hfi1_ibport *ibp, u32 dlid)
{
struct rdma_ah_attr attr;
struct ib_ah *ah = ERR_PTR(-EINVAL);
struct rvt_qp *qp0;
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
struct hfi1_devdata *dd = dd_from_ppd(ppd);
u8 port_num = ppd->port;
memset(&attr, 0, sizeof(attr));
attr.type = rdma_ah_find_type(&dd->verbs_dev.rdi.ibdev, port_num);
hfi1_update_sm_ah_attr(ibp, &attr, dlid);
rcu_read_lock();
qp0 = rcu_dereference(ibp->rvp.qp[0]);
if (qp0)
ah = rdma_create_ah(qp0->ibqp.pd, &attr);
rcu_read_unlock();
return ah;
}
static void send_trap(struct hfi1_ibport *ibp, struct trap_node *trap)
{
struct ib_mad_send_buf *send_buf;
struct ib_mad_agent *agent;
struct opa_smp *smp;
unsigned long flags;
int pkey_idx;
u32 qpn = ppd_from_ibp(ibp)->sm_trap_qp;
agent = ibp->rvp.send_agent;
if (!agent) {
cleanup_traps(ibp, trap);
return;
}
/* o14-3.2.1 */
if (driver_lstate(ppd_from_ibp(ibp)) != IB_PORT_ACTIVE) {
cleanup_traps(ibp, trap);
return;
}
/* Add the trap to the list if necessary and see if we can send it */
trap = check_and_add_trap(ibp, trap);
if (!trap)
return;
pkey_idx = hfi1_lookup_pkey_idx(ibp, LIM_MGMT_P_KEY);
if (pkey_idx < 0) {
pr_warn("%s: failed to find limited mgmt pkey, defaulting 0x%x\n",
__func__, hfi1_get_pkey(ibp, 1));
pkey_idx = 1;
}
send_buf = ib_create_send_mad(agent, qpn, pkey_idx, 0,
IB_MGMT_MAD_HDR, IB_MGMT_MAD_DATA,
GFP_ATOMIC, IB_MGMT_BASE_VERSION);
if (IS_ERR(send_buf))
return;
smp = send_buf->mad;
smp->base_version = OPA_MGMT_BASE_VERSION;
smp->mgmt_class = IB_MGMT_CLASS_SUBN_LID_ROUTED;
smp->class_version = OPA_SM_CLASS_VERSION;
smp->method = IB_MGMT_METHOD_TRAP;
/* Only update the transaction ID for new traps (o13-5). */
if (trap->tid == 0) {
ibp->rvp.tid++;
/* make sure that tid != 0 */
if (ibp->rvp.tid == 0)
ibp->rvp.tid++;
trap->tid = cpu_to_be64(ibp->rvp.tid);
}
smp->tid = trap->tid;
smp->attr_id = IB_SMP_ATTR_NOTICE;
/* o14-1: smp->mkey = 0; */
memcpy(smp->route.lid.data, &trap->data, trap->len);
spin_lock_irqsave(&ibp->rvp.lock, flags);
if (!ibp->rvp.sm_ah) {
if (ibp->rvp.sm_lid != be16_to_cpu(IB_LID_PERMISSIVE)) {
struct ib_ah *ah;
ah = hfi1_create_qp0_ah(ibp, ibp->rvp.sm_lid);
if (IS_ERR(ah)) {
spin_unlock_irqrestore(&ibp->rvp.lock, flags);
return;
}
send_buf->ah = ah;
ibp->rvp.sm_ah = ibah_to_rvtah(ah);
} else {
spin_unlock_irqrestore(&ibp->rvp.lock, flags);
return;
}
} else {
send_buf->ah = &ibp->rvp.sm_ah->ibah;
}
/*
* If the trap was repressed while things were getting set up, don't
* bother sending it. This could happen for a retry.
*/
if (trap->repress) {
list_del(&trap->list);
spin_unlock_irqrestore(&ibp->rvp.lock, flags);
kfree(trap);
ib_free_send_mad(send_buf);
return;
}
trap->in_use = 0;
spin_unlock_irqrestore(&ibp->rvp.lock, flags);
if (ib_post_send_mad(send_buf, NULL))
ib_free_send_mad(send_buf);
}
void hfi1_handle_trap_timer(struct timer_list *t)
{
struct hfi1_ibport *ibp = from_timer(ibp, t, rvp.trap_timer);
struct trap_node *trap = NULL;
unsigned long flags;
int i;
/* Find the trap with the highest priority */
spin_lock_irqsave(&ibp->rvp.lock, flags);
for (i = 0; !trap && i < RVT_MAX_TRAP_LISTS; i++) {
trap = list_first_entry_or_null(&ibp->rvp.trap_lists[i].list,
struct trap_node, list);
}
spin_unlock_irqrestore(&ibp->rvp.lock, flags);
if (trap)
send_trap(ibp, trap);
}
static struct trap_node *create_trap_node(u8 type, __be16 trap_num, u32 lid)
{
struct trap_node *trap;
trap = kzalloc(sizeof(*trap), GFP_ATOMIC);
if (!trap)
return NULL;
INIT_LIST_HEAD(&trap->list);
trap->data.generic_type = type;
trap->data.prod_type_lsb = IB_NOTICE_PROD_CA;
trap->data.trap_num = trap_num;
trap->data.issuer_lid = cpu_to_be32(lid);
return trap;
}
/*
* Send a bad P_Key trap (ch. 14.3.8).
*/
void hfi1_bad_pkey(struct hfi1_ibport *ibp, u32 key, u32 sl,
u32 qp1, u32 qp2, u32 lid1, u32 lid2)
{
struct trap_node *trap;
u32 lid = ppd_from_ibp(ibp)->lid;
ibp->rvp.n_pkt_drops++;
ibp->rvp.pkey_violations++;
trap = create_trap_node(IB_NOTICE_TYPE_SECURITY, OPA_TRAP_BAD_P_KEY,
lid);
if (!trap)
return;
/* Send violation trap */
trap->data.ntc_257_258.lid1 = cpu_to_be32(lid1);
trap->data.ntc_257_258.lid2 = cpu_to_be32(lid2);
trap->data.ntc_257_258.key = cpu_to_be32(key);
trap->data.ntc_257_258.sl = sl << 3;
trap->data.ntc_257_258.qp1 = cpu_to_be32(qp1);
trap->data.ntc_257_258.qp2 = cpu_to_be32(qp2);
trap->len = sizeof(trap->data);
send_trap(ibp, trap);
}
/*
* Send a bad M_Key trap (ch. 14.3.9).
*/
static void bad_mkey(struct hfi1_ibport *ibp, struct ib_mad_hdr *mad,
__be64 mkey, __be32 dr_slid, u8 return_path[], u8 hop_cnt)
{
struct trap_node *trap;
u32 lid = ppd_from_ibp(ibp)->lid;
trap = create_trap_node(IB_NOTICE_TYPE_SECURITY, OPA_TRAP_BAD_M_KEY,
lid);
if (!trap)
return;
/* Send violation trap */
trap->data.ntc_256.lid = trap->data.issuer_lid;
trap->data.ntc_256.method = mad->method;
trap->data.ntc_256.attr_id = mad->attr_id;
trap->data.ntc_256.attr_mod = mad->attr_mod;
trap->data.ntc_256.mkey = mkey;
if (mad->mgmt_class == IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE) {
trap->data.ntc_256.dr_slid = dr_slid;
trap->data.ntc_256.dr_trunc_hop = IB_NOTICE_TRAP_DR_NOTICE;
if (hop_cnt > ARRAY_SIZE(trap->data.ntc_256.dr_rtn_path)) {
trap->data.ntc_256.dr_trunc_hop |=
IB_NOTICE_TRAP_DR_TRUNC;
hop_cnt = ARRAY_SIZE(trap->data.ntc_256.dr_rtn_path);
}
trap->data.ntc_256.dr_trunc_hop |= hop_cnt;
memcpy(trap->data.ntc_256.dr_rtn_path, return_path,
hop_cnt);
}
trap->len = sizeof(trap->data);
send_trap(ibp, trap);
}
/*
* Send a Port Capability Mask Changed trap (ch. 14.3.11).
*/
void hfi1_cap_mask_chg(struct rvt_dev_info *rdi, u8 port_num)
{
struct trap_node *trap;
struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
struct hfi1_ibport *ibp = &dd->pport[port_num - 1].ibport_data;
u32 lid = ppd_from_ibp(ibp)->lid;
trap = create_trap_node(IB_NOTICE_TYPE_INFO,
OPA_TRAP_CHANGE_CAPABILITY,
lid);
if (!trap)
return;
trap->data.ntc_144.lid = trap->data.issuer_lid;
trap->data.ntc_144.new_cap_mask = cpu_to_be32(ibp->rvp.port_cap_flags);
trap->data.ntc_144.cap_mask3 = cpu_to_be16(ibp->rvp.port_cap3_flags);
trap->len = sizeof(trap->data);
send_trap(ibp, trap);
}
/*
* Send a System Image GUID Changed trap (ch. 14.3.12).
*/
void hfi1_sys_guid_chg(struct hfi1_ibport *ibp)
{
struct trap_node *trap;
u32 lid = ppd_from_ibp(ibp)->lid;
trap = create_trap_node(IB_NOTICE_TYPE_INFO, OPA_TRAP_CHANGE_SYSGUID,
lid);
if (!trap)
return;
trap->data.ntc_145.new_sys_guid = ib_hfi1_sys_image_guid;
trap->data.ntc_145.lid = trap->data.issuer_lid;
trap->len = sizeof(trap->data);
send_trap(ibp, trap);
}
/*
* Send a Node Description Changed trap (ch. 14.3.13).
*/
void hfi1_node_desc_chg(struct hfi1_ibport *ibp)
{
struct trap_node *trap;
u32 lid = ppd_from_ibp(ibp)->lid;
trap = create_trap_node(IB_NOTICE_TYPE_INFO,
OPA_TRAP_CHANGE_CAPABILITY,
lid);
if (!trap)
return;
trap->data.ntc_144.lid = trap->data.issuer_lid;
trap->data.ntc_144.change_flags =
cpu_to_be16(OPA_NOTICE_TRAP_NODE_DESC_CHG);
trap->len = sizeof(trap->data);
send_trap(ibp, trap);
}
static int __subn_get_opa_nodedesc(struct opa_smp *smp, u32 am,
u8 *data, struct ib_device *ibdev,
u8 port, u32 *resp_len, u32 max_len)
{
struct opa_node_description *nd;
if (am || smp_length_check(sizeof(*nd), max_len)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
nd = (struct opa_node_description *)data;
memcpy(nd->data, ibdev->node_desc, sizeof(nd->data));
if (resp_len)
*resp_len += sizeof(*nd);
return reply((struct ib_mad_hdr *)smp);
}
static int __subn_get_opa_nodeinfo(struct opa_smp *smp, u32 am, u8 *data,
struct ib_device *ibdev, u8 port,
u32 *resp_len, u32 max_len)
{
struct opa_node_info *ni;
struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
unsigned pidx = port - 1; /* IB number port from 1, hw from 0 */
ni = (struct opa_node_info *)data;
/* GUID 0 is illegal */
if (am || pidx >= dd->num_pports || ibdev->node_guid == 0 ||
smp_length_check(sizeof(*ni), max_len) ||
get_sguid(to_iport(ibdev, port), HFI1_PORT_GUID_INDEX) == 0) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
ni->port_guid = get_sguid(to_iport(ibdev, port), HFI1_PORT_GUID_INDEX);
ni->base_version = OPA_MGMT_BASE_VERSION;
ni->class_version = OPA_SM_CLASS_VERSION;
ni->node_type = 1; /* channel adapter */
ni->num_ports = ibdev->phys_port_cnt;
/* This is already in network order */
ni->system_image_guid = ib_hfi1_sys_image_guid;
ni->node_guid = ibdev->node_guid;
ni->partition_cap = cpu_to_be16(hfi1_get_npkeys(dd));
ni->device_id = cpu_to_be16(dd->pcidev->device);
ni->revision = cpu_to_be32(dd->minrev);
ni->local_port_num = port;
ni->vendor_id[0] = dd->oui1;
ni->vendor_id[1] = dd->oui2;
ni->vendor_id[2] = dd->oui3;
if (resp_len)
*resp_len += sizeof(*ni);
return reply((struct ib_mad_hdr *)smp);
}
static int subn_get_nodeinfo(struct ib_smp *smp, struct ib_device *ibdev,
u8 port)
{
struct ib_node_info *nip = (struct ib_node_info *)&smp->data;
struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
unsigned pidx = port - 1; /* IB number port from 1, hw from 0 */
/* GUID 0 is illegal */
if (smp->attr_mod || pidx >= dd->num_pports ||
ibdev->node_guid == 0 ||
get_sguid(to_iport(ibdev, port), HFI1_PORT_GUID_INDEX) == 0) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
nip->port_guid = get_sguid(to_iport(ibdev, port), HFI1_PORT_GUID_INDEX);
nip->base_version = OPA_MGMT_BASE_VERSION;
nip->class_version = OPA_SM_CLASS_VERSION;
nip->node_type = 1; /* channel adapter */
nip->num_ports = ibdev->phys_port_cnt;
/* This is already in network order */
nip->sys_guid = ib_hfi1_sys_image_guid;
nip->node_guid = ibdev->node_guid;
nip->partition_cap = cpu_to_be16(hfi1_get_npkeys(dd));
nip->device_id = cpu_to_be16(dd->pcidev->device);
nip->revision = cpu_to_be32(dd->minrev);
nip->local_port_num = port;
nip->vendor_id[0] = dd->oui1;
nip->vendor_id[1] = dd->oui2;
nip->vendor_id[2] = dd->oui3;
return reply((struct ib_mad_hdr *)smp);
}
static void set_link_width_enabled(struct hfi1_pportdata *ppd, u32 w)
{
(void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LWID_ENB, w);
}
static void set_link_width_downgrade_enabled(struct hfi1_pportdata *ppd, u32 w)
{
(void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LWID_DG_ENB, w);
}
static void set_link_speed_enabled(struct hfi1_pportdata *ppd, u32 s)
{
(void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_SPD_ENB, s);
}
static int check_mkey(struct hfi1_ibport *ibp, struct ib_mad_hdr *mad,
int mad_flags, __be64 mkey, __be32 dr_slid,
u8 return_path[], u8 hop_cnt)
{
int valid_mkey = 0;
int ret = 0;
/* Is the mkey in the process of expiring? */
if (ibp->rvp.mkey_lease_timeout &&
time_after_eq(jiffies, ibp->rvp.mkey_lease_timeout)) {
/* Clear timeout and mkey protection field. */
ibp->rvp.mkey_lease_timeout = 0;
ibp->rvp.mkeyprot = 0;
}
if ((mad_flags & IB_MAD_IGNORE_MKEY) || ibp->rvp.mkey == 0 ||
ibp->rvp.mkey == mkey)
valid_mkey = 1;
/* Unset lease timeout on any valid Get/Set/TrapRepress */
if (valid_mkey && ibp->rvp.mkey_lease_timeout &&
(mad->method == IB_MGMT_METHOD_GET ||
mad->method == IB_MGMT_METHOD_SET ||
mad->method == IB_MGMT_METHOD_TRAP_REPRESS))
ibp->rvp.mkey_lease_timeout = 0;
if (!valid_mkey) {
switch (mad->method) {
case IB_MGMT_METHOD_GET:
/* Bad mkey not a violation below level 2 */
if (ibp->rvp.mkeyprot < 2)
break;
/* fall through */
case IB_MGMT_METHOD_SET:
case IB_MGMT_METHOD_TRAP_REPRESS:
if (ibp->rvp.mkey_violations != 0xFFFF)
++ibp->rvp.mkey_violations;
if (!ibp->rvp.mkey_lease_timeout &&
ibp->rvp.mkey_lease_period)
ibp->rvp.mkey_lease_timeout = jiffies +
ibp->rvp.mkey_lease_period * HZ;
/* Generate a trap notice. */
bad_mkey(ibp, mad, mkey, dr_slid, return_path,
hop_cnt);
ret = 1;
}
}
return ret;
}
/*
* The SMA caches reads from LCB registers in case the LCB is unavailable.
* (The LCB is unavailable in certain link states, for example.)
*/
struct lcb_datum {
u32 off;
u64 val;
};
static struct lcb_datum lcb_cache[] = {
{ DC_LCB_STS_ROUND_TRIP_LTP_CNT, 0 },
};
static int write_lcb_cache(u32 off, u64 val)
{
int i;
for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
if (lcb_cache[i].off == off) {
lcb_cache[i].val = val;
return 0;
}
}
pr_warn("%s bad offset 0x%x\n", __func__, off);
return -1;
}
static int read_lcb_cache(u32 off, u64 *val)
{
int i;
for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
if (lcb_cache[i].off == off) {
*val = lcb_cache[i].val;
return 0;
}
}
pr_warn("%s bad offset 0x%x\n", __func__, off);
return -1;
}
void read_ltp_rtt(struct hfi1_devdata *dd)
{
u64 reg;
if (read_lcb_csr(dd, DC_LCB_STS_ROUND_TRIP_LTP_CNT, &reg))
dd_dev_err(dd, "%s: unable to read LTP RTT\n", __func__);
else
write_lcb_cache(DC_LCB_STS_ROUND_TRIP_LTP_CNT, reg);
}
static int __subn_get_opa_portinfo(struct opa_smp *smp, u32 am, u8 *data,
struct ib_device *ibdev, u8 port,
u32 *resp_len, u32 max_len)
{
int i;
struct hfi1_devdata *dd;
struct hfi1_pportdata *ppd;
struct hfi1_ibport *ibp;
struct opa_port_info *pi = (struct opa_port_info *)data;
u8 mtu;
u8 credit_rate;
u8 is_beaconing_active;
u32 state;
u32 num_ports = OPA_AM_NPORT(am);
u32 start_of_sm_config = OPA_AM_START_SM_CFG(am);
u32 buffer_units;
u64 tmp = 0;
if (num_ports != 1 || smp_length_check(sizeof(*pi), max_len)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
dd = dd_from_ibdev(ibdev);
/* IB numbers ports from 1, hw from 0 */
ppd = dd->pport + (port - 1);
ibp = &ppd->ibport_data;
if (ppd->vls_supported / 2 > ARRAY_SIZE(pi->neigh_mtu.pvlx_to_mtu) ||
ppd->vls_supported > ARRAY_SIZE(dd->vld)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
pi->lid = cpu_to_be32(ppd->lid);
/* Only return the mkey if the protection field allows it. */
if (!(smp->method == IB_MGMT_METHOD_GET &&
ibp->rvp.mkey != smp->mkey &&
ibp->rvp.mkeyprot == 1))
pi->mkey = ibp->rvp.mkey;
pi->subnet_prefix = ibp->rvp.gid_prefix;
pi->sm_lid = cpu_to_be32(ibp->rvp.sm_lid);
pi->ib_cap_mask = cpu_to_be32(ibp->rvp.port_cap_flags);
pi->mkey_lease_period = cpu_to_be16(ibp->rvp.mkey_lease_period);
pi->sm_trap_qp = cpu_to_be32(ppd->sm_trap_qp);
pi->sa_qp = cpu_to_be32(ppd->sa_qp);
pi->link_width.enabled = cpu_to_be16(ppd->link_width_enabled);
pi->link_width.supported = cpu_to_be16(ppd->link_width_supported);
pi->link_width.active = cpu_to_be16(ppd->link_width_active);
pi->link_width_downgrade.supported =
cpu_to_be16(ppd->link_width_downgrade_supported);
pi->link_width_downgrade.enabled =
cpu_to_be16(ppd->link_width_downgrade_enabled);
pi->link_width_downgrade.tx_active =
cpu_to_be16(ppd->link_width_downgrade_tx_active);
pi->link_width_downgrade.rx_active =
cpu_to_be16(ppd->link_width_downgrade_rx_active);
pi->link_speed.supported = cpu_to_be16(ppd->link_speed_supported);
pi->link_speed.active = cpu_to_be16(ppd->link_speed_active);
pi->link_speed.enabled = cpu_to_be16(ppd->link_speed_enabled);
state = driver_lstate(ppd);
if (start_of_sm_config && (state == IB_PORT_INIT))
ppd->is_sm_config_started = 1;
pi->port_phys_conf = (ppd->port_type & 0xf);
pi->port_states.ledenable_offlinereason = ppd->neighbor_normal << 4;
pi->port_states.ledenable_offlinereason |=
ppd->is_sm_config_started << 5;
/*
* This pairs with the memory barrier in hfi1_start_led_override to
* ensure that we read the correct state of LED beaconing represented
* by led_override_timer_active
*/
smp_rmb();
is_beaconing_active = !!atomic_read(&ppd->led_override_timer_active);
pi->port_states.ledenable_offlinereason |= is_beaconing_active << 6;
pi->port_states.ledenable_offlinereason |=
ppd->offline_disabled_reason;
pi->port_states.portphysstate_portstate =
(driver_pstate(ppd) << 4) | state;
pi->mkeyprotect_lmc = (ibp->rvp.mkeyprot << 6) | ppd->lmc;
memset(pi->neigh_mtu.pvlx_to_mtu, 0, sizeof(pi->neigh_mtu.pvlx_to_mtu));
for (i = 0; i < ppd->vls_supported; i++) {
mtu = mtu_to_enum(dd->vld[i].mtu, HFI1_DEFAULT_ACTIVE_MTU);
if ((i % 2) == 0)
pi->neigh_mtu.pvlx_to_mtu[i / 2] |= (mtu << 4);
else
pi->neigh_mtu.pvlx_to_mtu[i / 2] |= mtu;
}
/* don't forget VL 15 */
mtu = mtu_to_enum(dd->vld[15].mtu, 2048);
pi->neigh_mtu.pvlx_to_mtu[15 / 2] |= mtu;
pi->smsl = ibp->rvp.sm_sl & OPA_PI_MASK_SMSL;
pi->operational_vls = hfi1_get_ib_cfg(ppd, HFI1_IB_CFG_OP_VLS);
pi->partenforce_filterraw |=
(ppd->linkinit_reason & OPA_PI_MASK_LINKINIT_REASON);
if (ppd->part_enforce & HFI1_PART_ENFORCE_IN)
pi->partenforce_filterraw |= OPA_PI_MASK_PARTITION_ENFORCE_IN;
if (ppd->part_enforce & HFI1_PART_ENFORCE_OUT)
pi->partenforce_filterraw |= OPA_PI_MASK_PARTITION_ENFORCE_OUT;
pi->mkey_violations = cpu_to_be16(ibp->rvp.mkey_violations);
/* P_KeyViolations are counted by hardware. */
pi->pkey_violations = cpu_to_be16(ibp->rvp.pkey_violations);
pi->qkey_violations = cpu_to_be16(ibp->rvp.qkey_violations);
pi->vl.cap = ppd->vls_supported;
pi->vl.high_limit = cpu_to_be16(ibp->rvp.vl_high_limit);
pi->vl.arb_high_cap = (u8)hfi1_get_ib_cfg(ppd, HFI1_IB_CFG_VL_HIGH_CAP);
pi->vl.arb_low_cap = (u8)hfi1_get_ib_cfg(ppd, HFI1_IB_CFG_VL_LOW_CAP);
pi->clientrereg_subnettimeout = ibp->rvp.subnet_timeout;
pi->port_link_mode = cpu_to_be16(OPA_PORT_LINK_MODE_OPA << 10 |
OPA_PORT_LINK_MODE_OPA << 5 |
OPA_PORT_LINK_MODE_OPA);
pi->port_ltp_crc_mode = cpu_to_be16(ppd->port_ltp_crc_mode);
pi->port_mode = cpu_to_be16(
ppd->is_active_optimize_enabled ?
OPA_PI_MASK_PORT_ACTIVE_OPTOMIZE : 0);
pi->port_packet_format.supported =
cpu_to_be16(OPA_PORT_PACKET_FORMAT_9B |
OPA_PORT_PACKET_FORMAT_16B);
pi->port_packet_format.enabled =
cpu_to_be16(OPA_PORT_PACKET_FORMAT_9B |
OPA_PORT_PACKET_FORMAT_16B);
/* flit_control.interleave is (OPA V1, version .76):
* bits use
* ---- ---
* 2 res
* 2 DistanceSupported
* 2 DistanceEnabled
* 5 MaxNextLevelTxEnabled
* 5 MaxNestLevelRxSupported
*
* HFI supports only "distance mode 1" (see OPA V1, version .76,
* section 9.6.2), so set DistanceSupported, DistanceEnabled
* to 0x1.
*/
pi->flit_control.interleave = cpu_to_be16(0x1400);
pi->link_down_reason = ppd->local_link_down_reason.sma;
pi->neigh_link_down_reason = ppd->neigh_link_down_reason.sma;
pi->port_error_action = cpu_to_be32(ppd->port_error_action);
pi->mtucap = mtu_to_enum(hfi1_max_mtu, IB_MTU_4096);
/* 32.768 usec. response time (guessing) */
pi->resptimevalue = 3;
pi->local_port_num = port;
/* buffer info for FM */
pi->overall_buffer_space = cpu_to_be16(dd->link_credits);
pi->neigh_node_guid = cpu_to_be64(ppd->neighbor_guid);
pi->neigh_port_num = ppd->neighbor_port_number;
pi->port_neigh_mode =
(ppd->neighbor_type & OPA_PI_MASK_NEIGH_NODE_TYPE) |
(ppd->mgmt_allowed ? OPA_PI_MASK_NEIGH_MGMT_ALLOWED : 0) |
(ppd->neighbor_fm_security ?
OPA_PI_MASK_NEIGH_FW_AUTH_BYPASS : 0);
/* HFIs shall always return VL15 credits to their
* neighbor in a timely manner, without any credit return pacing.
*/
credit_rate = 0;
buffer_units = (dd->vau) & OPA_PI_MASK_BUF_UNIT_BUF_ALLOC;
buffer_units |= (dd->vcu << 3) & OPA_PI_MASK_BUF_UNIT_CREDIT_ACK;
buffer_units |= (credit_rate << 6) &
OPA_PI_MASK_BUF_UNIT_VL15_CREDIT_RATE;
buffer_units |= (dd->vl15_init << 11) & OPA_PI_MASK_BUF_UNIT_VL15_INIT;
pi->buffer_units = cpu_to_be32(buffer_units);
pi->opa_cap_mask = cpu_to_be16(ibp->rvp.port_cap3_flags);
pi->collectivemask_multicastmask = ((OPA_COLLECTIVE_NR & 0x7)
<< 3 | (OPA_MCAST_NR & 0x7));
/* HFI supports a replay buffer 128 LTPs in size */
pi->replay_depth.buffer = 0x80;
/* read the cached value of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
read_lcb_cache(DC_LCB_STS_ROUND_TRIP_LTP_CNT, &tmp);
/*
* this counter is 16 bits wide, but the replay_depth.wire
* variable is only 8 bits
*/
if (tmp > 0xff)
tmp = 0xff;
pi->replay_depth.wire = tmp;
if (resp_len)
*resp_len += sizeof(struct opa_port_info);
return reply((struct ib_mad_hdr *)smp);
}
/**
* get_pkeys - return the PKEY table
* @dd: the hfi1_ib device
* @port: the IB port number
* @pkeys: the pkey table is placed here
*/
static int get_pkeys(struct hfi1_devdata *dd, u8 port, u16 *pkeys)
{
struct hfi1_pportdata *ppd = dd->pport + port - 1;
memcpy(pkeys, ppd->pkeys, sizeof(ppd->pkeys));
return 0;
}
static int __subn_get_opa_pkeytable(struct opa_smp *smp, u32 am, u8 *data,
struct ib_device *ibdev, u8 port,
u32 *resp_len, u32 max_len)
{
struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
u32 n_blocks_req = OPA_AM_NBLK(am);
u32 start_block = am & 0x7ff;
__be16 *p;
u16 *q;
int i;
u16 n_blocks_avail;
unsigned npkeys = hfi1_get_npkeys(dd);
size_t size;
if (n_blocks_req == 0) {
pr_warn("OPA Get PKey AM Invalid : P = %d; B = 0x%x; N = 0x%x\n",
port, start_block, n_blocks_req);
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
n_blocks_avail = (u16)(npkeys / OPA_PARTITION_TABLE_BLK_SIZE) + 1;
size = (n_blocks_req * OPA_PARTITION_TABLE_BLK_SIZE) * sizeof(u16);
if (smp_length_check(size, max_len)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
if (start_block + n_blocks_req > n_blocks_avail ||
n_blocks_req > OPA_NUM_PKEY_BLOCKS_PER_SMP) {
pr_warn("OPA Get PKey AM Invalid : s 0x%x; req 0x%x; "
"avail 0x%x; blk/smp 0x%lx\n",
start_block, n_blocks_req, n_blocks_avail,
OPA_NUM_PKEY_BLOCKS_PER_SMP);
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
p = (__be16 *)data;
q = (u16 *)data;
/* get the real pkeys if we are requesting the first block */
if (start_block == 0) {
get_pkeys(dd, port, q);
for (i = 0; i < npkeys; i++)
p[i] = cpu_to_be16(q[i]);
if (resp_len)
*resp_len += size;
} else {
smp->status |= IB_SMP_INVALID_FIELD;
}
return reply((struct ib_mad_hdr *)smp);
}
enum {
HFI_TRANSITION_DISALLOWED,
HFI_TRANSITION_IGNORED,
HFI_TRANSITION_ALLOWED,
HFI_TRANSITION_UNDEFINED,
};
/*
* Use shortened names to improve readability of
* {logical,physical}_state_transitions
*/
enum {
__D = HFI_TRANSITION_DISALLOWED,
__I = HFI_TRANSITION_IGNORED,
__A = HFI_TRANSITION_ALLOWED,
__U = HFI_TRANSITION_UNDEFINED,
};
/*
* IB_PORTPHYSSTATE_POLLING (2) through OPA_PORTPHYSSTATE_MAX (11) are
* represented in physical_state_transitions.
*/
#define __N_PHYSTATES (OPA_PORTPHYSSTATE_MAX - IB_PORTPHYSSTATE_POLLING + 1)
/*
* Within physical_state_transitions, rows represent "old" states,
* columns "new" states, and physical_state_transitions.allowed[old][new]
* indicates if the transition from old state to new state is legal (see
* OPAg1v1, Table 6-4).
*/
static const struct {
u8 allowed[__N_PHYSTATES][__N_PHYSTATES];
} physical_state_transitions = {
{
/* 2 3 4 5 6 7 8 9 10 11 */
/* 2 */ { __A, __A, __D, __D, __D, __D, __D, __D, __D, __D },
/* 3 */ { __A, __I, __D, __D, __D, __D, __D, __D, __D, __A },
/* 4 */ { __U, __U, __U, __U, __U, __U, __U, __U, __U, __U },
/* 5 */ { __A, __A, __D, __I, __D, __D, __D, __D, __D, __D },
/* 6 */ { __U, __U, __U, __U, __U, __U, __U, __U, __U, __U },
/* 7 */ { __D, __A, __D, __D, __D, __I, __D, __D, __D, __D },
/* 8 */ { __U, __U, __U, __U, __U, __U, __U, __U, __U, __U },
/* 9 */ { __I, __A, __D, __D, __D, __D, __D, __I, __D, __D },
/*10 */ { __U, __U, __U, __U, __U, __U, __U, __U, __U, __U },
/*11 */ { __D, __A, __D, __D, __D, __D, __D, __D, __D, __I },
}
};
/*
* IB_PORT_DOWN (1) through IB_PORT_ACTIVE_DEFER (5) are represented
* logical_state_transitions
*/
#define __N_LOGICAL_STATES (IB_PORT_ACTIVE_DEFER - IB_PORT_DOWN + 1)
/*
* Within logical_state_transitions rows represent "old" states,
* columns "new" states, and logical_state_transitions.allowed[old][new]
* indicates if the transition from old state to new state is legal (see
* OPAg1v1, Table 9-12).
*/
static const struct {
u8 allowed[__N_LOGICAL_STATES][__N_LOGICAL_STATES];
} logical_state_transitions = {
{
/* 1 2 3 4 5 */
/* 1 */ { __I, __D, __D, __D, __U},
/* 2 */ { __D, __I, __A, __D, __U},
/* 3 */ { __D, __D, __I, __A, __U},
/* 4 */ { __D, __D, __I, __I, __U},
/* 5 */ { __U, __U, __U, __U, __U},
}
};
static int logical_transition_allowed(int old, int new)
{
if (old < IB_PORT_NOP || old > IB_PORT_ACTIVE_DEFER ||
new < IB_PORT_NOP || new > IB_PORT_ACTIVE_DEFER) {
pr_warn("invalid logical state(s) (old %d new %d)\n",
old, new);
return HFI_TRANSITION_UNDEFINED;
}
if (new == IB_PORT_NOP)
return HFI_TRANSITION_ALLOWED; /* always allowed */
/* adjust states for indexing into logical_state_transitions */
old -= IB_PORT_DOWN;
new -= IB_PORT_DOWN;
if (old < 0 || new < 0)
return HFI_TRANSITION_UNDEFINED;
return logical_state_transitions.allowed[old][new];
}
static int physical_transition_allowed(int old, int new)
{
if (old < IB_PORTPHYSSTATE_NOP || old > OPA_PORTPHYSSTATE_MAX ||
new < IB_PORTPHYSSTATE_NOP || new > OPA_PORTPHYSSTATE_MAX) {
pr_warn("invalid physical state(s) (old %d new %d)\n",
old, new);
return HFI_TRANSITION_UNDEFINED;
}
if (new == IB_PORTPHYSSTATE_NOP)
return HFI_TRANSITION_ALLOWED; /* always allowed */
/* adjust states for indexing into physical_state_transitions */
old -= IB_PORTPHYSSTATE_POLLING;
new -= IB_PORTPHYSSTATE_POLLING;
if (old < 0 || new < 0)
return HFI_TRANSITION_UNDEFINED;
return physical_state_transitions.allowed[old][new];
}
static int port_states_transition_allowed(struct hfi1_pportdata *ppd,
u32 logical_new, u32 physical_new)
{
u32 physical_old = driver_pstate(ppd);
u32 logical_old = driver_lstate(ppd);
int ret, logical_allowed, physical_allowed;
ret = logical_transition_allowed(logical_old, logical_new);
logical_allowed = ret;
if (ret == HFI_TRANSITION_DISALLOWED ||
ret == HFI_TRANSITION_UNDEFINED) {
pr_warn("invalid logical state transition %s -> %s\n",
opa_lstate_name(logical_old),
opa_lstate_name(logical_new));
return ret;
}
ret = physical_transition_allowed(physical_old, physical_new);
physical_allowed = ret;
if (ret == HFI_TRANSITION_DISALLOWED ||
ret == HFI_TRANSITION_UNDEFINED) {
pr_warn("invalid physical state transition %s -> %s\n",
opa_pstate_name(physical_old),
opa_pstate_name(physical_new));
return ret;
}
if (logical_allowed == HFI_TRANSITION_IGNORED &&
physical_allowed == HFI_TRANSITION_IGNORED)
return HFI_TRANSITION_IGNORED;
/*
* A change request of Physical Port State from
* 'Offline' to 'Polling' should be ignored.
*/
if ((physical_old == OPA_PORTPHYSSTATE_OFFLINE) &&
(physical_new == IB_PORTPHYSSTATE_POLLING))
return HFI_TRANSITION_IGNORED;
/*
* Either physical_allowed or logical_allowed is
* HFI_TRANSITION_ALLOWED.
*/
return HFI_TRANSITION_ALLOWED;
}
static int set_port_states(struct hfi1_pportdata *ppd, struct opa_smp *smp,
u32 logical_state, u32 phys_state)
{
struct hfi1_devdata *dd = ppd->dd;
u32 link_state;
int ret;
ret = port_states_transition_allowed(ppd, logical_state, phys_state);
if (ret == HFI_TRANSITION_DISALLOWED ||
ret == HFI_TRANSITION_UNDEFINED) {
/* error message emitted above */
smp->status |= IB_SMP_INVALID_FIELD;
return 0;
}
if (ret == HFI_TRANSITION_IGNORED)
return 0;
if ((phys_state != IB_PORTPHYSSTATE_NOP) &&
!(logical_state == IB_PORT_DOWN ||
logical_state == IB_PORT_NOP)){
pr_warn("SubnSet(OPA_PortInfo) port state invalid: logical_state 0x%x physical_state 0x%x\n",
logical_state, phys_state);
smp->status |= IB_SMP_INVALID_FIELD;
}
/*
* Logical state changes are summarized in OPAv1g1 spec.,
* Table 9-12; physical state changes are summarized in
* OPAv1g1 spec., Table 6.4.
*/
switch (logical_state) {
case IB_PORT_NOP:
if (phys_state == IB_PORTPHYSSTATE_NOP)
break;
/* FALLTHROUGH */
case IB_PORT_DOWN:
if (phys_state == IB_PORTPHYSSTATE_NOP) {
link_state = HLS_DN_DOWNDEF;
} else if (phys_state == IB_PORTPHYSSTATE_POLLING) {
link_state = HLS_DN_POLL;
set_link_down_reason(ppd, OPA_LINKDOWN_REASON_FM_BOUNCE,
0, OPA_LINKDOWN_REASON_FM_BOUNCE);
} else if (phys_state == IB_PORTPHYSSTATE_DISABLED) {
link_state = HLS_DN_DISABLE;
} else {
pr_warn("SubnSet(OPA_PortInfo) invalid physical state 0x%x\n",
phys_state);
smp->status |= IB_SMP_INVALID_FIELD;
break;
}
if ((link_state == HLS_DN_POLL ||
link_state == HLS_DN_DOWNDEF)) {
/*
* Going to poll. No matter what the current state,
* always move offline first, then tune and start the
* link. This correctly handles a FM link bounce and
* a link enable. Going offline is a no-op if already
* offline.
*/
set_link_state(ppd, HLS_DN_OFFLINE);
start_link(ppd);
} else {
set_link_state(ppd, link_state);
}
if (link_state == HLS_DN_DISABLE &&
(ppd->offline_disabled_reason >
HFI1_ODR_MASK(OPA_LINKDOWN_REASON_SMA_DISABLED) ||
ppd->offline_disabled_reason ==
HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
ppd->offline_disabled_reason =
HFI1_ODR_MASK(OPA_LINKDOWN_REASON_SMA_DISABLED);
/*
* Don't send a reply if the response would be sent
* through the disabled port.
*/
if (link_state == HLS_DN_DISABLE && smp->hop_cnt)
return IB_MAD_RESULT_SUCCESS | IB_MAD_RESULT_CONSUMED;
break;
case IB_PORT_ARMED:
ret = set_link_state(ppd, HLS_UP_ARMED);
if (!ret)
send_idle_sma(dd, SMA_IDLE_ARM);
break;
case IB_PORT_ACTIVE:
if (ppd->neighbor_normal) {
ret = set_link_state(ppd, HLS_UP_ACTIVE);
if (ret == 0)
send_idle_sma(dd, SMA_IDLE_ACTIVE);
} else {
pr_warn("SubnSet(OPA_PortInfo) Cannot move to Active with NeighborNormal 0\n");
smp->status |= IB_SMP_INVALID_FIELD;
}
break;
default:
pr_warn("SubnSet(OPA_PortInfo) invalid logical state 0x%x\n",
logical_state);
smp->status |= IB_SMP_INVALID_FIELD;
}
return 0;
}
/**
* subn_set_opa_portinfo - set port information
* @smp: the incoming SM packet
* @ibdev: the infiniband device
* @port: the port on the device
*
*/
static int __subn_set_opa_portinfo(struct opa_smp *smp, u32 am, u8 *data,
struct ib_device *ibdev, u8 port,
u32 *resp_len, u32 max_len)
{
struct opa_port_info *pi = (struct opa_port_info *)data;
struct ib_event event;
struct hfi1_devdata *dd;
struct hfi1_pportdata *ppd;
struct hfi1_ibport *ibp;
u8 clientrereg;
unsigned long flags;
u32 smlid;
u32 lid;
u8 ls_old, ls_new, ps_new;
u8 vls;
u8 msl;
u8 crc_enabled;
u16 lse, lwe, mtu;
u32 num_ports = OPA_AM_NPORT(am);
u32 start_of_sm_config = OPA_AM_START_SM_CFG(am);
int ret, i, invalid = 0, call_set_mtu = 0;
int call_link_downgrade_policy = 0;
if (num_ports != 1 ||
smp_length_check(sizeof(*pi), max_len)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
lid = be32_to_cpu(pi->lid);
if (lid & 0xFF000000) {
pr_warn("OPA_PortInfo lid out of range: %X\n", lid);
smp->status |= IB_SMP_INVALID_FIELD;
goto get_only;
}
smlid = be32_to_cpu(pi->sm_lid);
if (smlid & 0xFF000000) {
pr_warn("OPA_PortInfo SM lid out of range: %X\n", smlid);
smp->status |= IB_SMP_INVALID_FIELD;
goto get_only;
}
clientrereg = (pi->clientrereg_subnettimeout &
OPA_PI_MASK_CLIENT_REREGISTER);
dd = dd_from_ibdev(ibdev);
/* IB numbers ports from 1, hw from 0 */
ppd = dd->pport + (port - 1);
ibp = &ppd->ibport_data;
event.device = ibdev;
event.element.port_num = port;
ls_old = driver_lstate(ppd);
ibp->rvp.mkey = pi->mkey;
if (ibp->rvp.gid_prefix != pi->subnet_prefix) {
ibp->rvp.gid_prefix = pi->subnet_prefix;
event.event = IB_EVENT_GID_CHANGE;
ib_dispatch_event(&event);
}
ibp->rvp.mkey_lease_period = be16_to_cpu(pi->mkey_lease_period);
/* Must be a valid unicast LID address. */
if ((lid == 0 && ls_old > IB_PORT_INIT) ||
(hfi1_is_16B_mcast(lid))) {
smp->status |= IB_SMP_INVALID_FIELD;
pr_warn("SubnSet(OPA_PortInfo) lid invalid 0x%x\n",
lid);
} else if (ppd->lid != lid ||
ppd->lmc != (pi->mkeyprotect_lmc & OPA_PI_MASK_LMC)) {
if (ppd->lid != lid)
hfi1_set_uevent_bits(ppd, _HFI1_EVENT_LID_CHANGE_BIT);
if (ppd->lmc != (pi->mkeyprotect_lmc & OPA_PI_MASK_LMC))
hfi1_set_uevent_bits(ppd, _HFI1_EVENT_LMC_CHANGE_BIT);
hfi1_set_lid(ppd, lid, pi->mkeyprotect_lmc & OPA_PI_MASK_LMC);
event.event = IB_EVENT_LID_CHANGE;
ib_dispatch_event(&event);
if (HFI1_PORT_GUID_INDEX + 1 < HFI1_GUIDS_PER_PORT) {
/* Manufacture GID from LID to support extended
* addresses
*/
ppd->guids[HFI1_PORT_GUID_INDEX + 1] =
be64_to_cpu(OPA_MAKE_ID(lid));
event.event = IB_EVENT_GID_CHANGE;
ib_dispatch_event(&event);
}
}
msl = pi->smsl & OPA_PI_MASK_SMSL;
if (pi->partenforce_filterraw & OPA_PI_MASK_LINKINIT_REASON)
ppd->linkinit_reason =
(pi->partenforce_filterraw &
OPA_PI_MASK_LINKINIT_REASON);
/* Must be a valid unicast LID address. */
if ((smlid == 0 && ls_old > IB_PORT_INIT) ||
(hfi1_is_16B_mcast(smlid))) {
smp->status |= IB_SMP_INVALID_FIELD;
pr_warn("SubnSet(OPA_PortInfo) smlid invalid 0x%x\n", smlid);
} else if (smlid != ibp->rvp.sm_lid || msl != ibp->rvp.sm_sl) {
pr_warn("SubnSet(OPA_PortInfo) smlid 0x%x\n", smlid);
spin_lock_irqsave(&ibp->rvp.lock, flags);
if (ibp->rvp.sm_ah) {
if (smlid != ibp->rvp.sm_lid)
hfi1_modify_qp0_ah(ibp, ibp->rvp.sm_ah, smlid);
if (msl != ibp->rvp.sm_sl)
rdma_ah_set_sl(&ibp->rvp.sm_ah->attr, msl);
}
spin_unlock_irqrestore(&ibp->rvp.lock, flags);
if (smlid != ibp->rvp.sm_lid)
ibp->rvp.sm_lid = smlid;
if (msl != ibp->rvp.sm_sl)
ibp->rvp.sm_sl = msl;
event.event = IB_EVENT_SM_CHANGE;
ib_dispatch_event(&event);
}
if (pi->link_down_reason == 0) {
ppd->local_link_down_reason.sma = 0;
ppd->local_link_down_reason.latest = 0;
}
if (pi->neigh_link_down_reason == 0) {
ppd->neigh_link_down_reason.sma = 0;
ppd->neigh_link_down_reason.latest = 0;
}
ppd->sm_trap_qp = be32_to_cpu(pi->sm_trap_qp);
ppd->sa_qp = be32_to_cpu(pi->sa_qp);
ppd->port_error_action = be32_to_cpu(pi->port_error_action);
lwe = be16_to_cpu(pi->link_width.enabled);
if (lwe) {
if (lwe == OPA_LINK_WIDTH_RESET ||
lwe == OPA_LINK_WIDTH_RESET_OLD)
set_link_width_enabled(ppd, ppd->link_width_supported);
else if ((lwe & ~ppd->link_width_supported) == 0)
set_link_width_enabled(ppd, lwe);
else
smp->status |= IB_SMP_INVALID_FIELD;
}
lwe = be16_to_cpu(pi->link_width_downgrade.enabled);
/* LWD.E is always applied - 0 means "disabled" */
if (lwe == OPA_LINK_WIDTH_RESET ||
lwe == OPA_LINK_WIDTH_RESET_OLD) {
set_link_width_downgrade_enabled(ppd,
ppd->
link_width_downgrade_supported
);
} else if ((lwe & ~ppd->link_width_downgrade_supported) == 0) {
/* only set and apply if something changed */
if (lwe != ppd->link_width_downgrade_enabled) {
set_link_width_downgrade_enabled(ppd, lwe);
call_link_downgrade_policy = 1;
}
} else {
smp->status |= IB_SMP_INVALID_FIELD;
}
lse = be16_to_cpu(pi->link_speed.enabled);
if (lse) {
if (lse & be16_to_cpu(pi->link_speed.supported))
set_link_speed_enabled(ppd, lse);
else
smp->status |= IB_SMP_INVALID_FIELD;
}
ibp->rvp.mkeyprot =
(pi->mkeyprotect_lmc & OPA_PI_MASK_MKEY_PROT_BIT) >> 6;
ibp->rvp.vl_high_limit = be16_to_cpu(pi->vl.high_limit) & 0xFF;
(void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_VL_HIGH_LIMIT,
ibp->rvp.vl_high_limit);
if (ppd->vls_supported / 2 > ARRAY_SIZE(pi->neigh_mtu.pvlx_to_mtu) ||
ppd->vls_supported > ARRAY_SIZE(dd->vld)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
for (i = 0; i < ppd->vls_supported; i++) {
if ((i % 2) == 0)
mtu = enum_to_mtu((pi->neigh_mtu.pvlx_to_mtu[i / 2] >>
4) & 0xF);
else
mtu = enum_to_mtu(pi->neigh_mtu.pvlx_to_mtu[i / 2] &
0xF);
if (mtu == 0xffff) {
pr_warn("SubnSet(OPA_PortInfo) mtu invalid %d (0x%x)\n",
mtu,
(pi->neigh_mtu.pvlx_to_mtu[0] >> 4) & 0xF);
smp->status |= IB_SMP_INVALID_FIELD;
mtu = hfi1_max_mtu; /* use a valid MTU */
}
if (dd->vld[i].mtu != mtu) {
dd_dev_info(dd,
"MTU change on vl %d from %d to %d\n",
i, dd->vld[i].mtu, mtu);
dd->vld[i].mtu = mtu;
call_set_mtu++;
}
}
/* As per OPAV1 spec: VL15 must support and be configured
* for operation with a 2048 or larger MTU.
*/
mtu = enum_to_mtu(pi->neigh_mtu.pvlx_to_mtu[15 / 2] & 0xF);
if (mtu < 2048 || mtu == 0xffff)
mtu = 2048;
if (dd->vld[15].mtu != mtu) {
dd_dev_info(dd,
"MTU change on vl 15 from %d to %d\n",
dd->vld[15].mtu, mtu);
dd->vld[15].mtu = mtu;
call_set_mtu++;
}
if (call_set_mtu)
set_mtu(ppd);
/* Set operational VLs */
vls = pi->operational_vls & OPA_PI_MASK_OPERATIONAL_VL;
if (vls) {
if (vls > ppd->vls_supported) {
pr_warn("SubnSet(OPA_PortInfo) VL's supported invalid %d\n",
pi->operational_vls);
smp->status |= IB_SMP_INVALID_FIELD;
} else {
if (hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_OP_VLS,
vls) == -EINVAL)
smp->status |= IB_SMP_INVALID_FIELD;
}
}
if (pi->mkey_violations == 0)
ibp->rvp.mkey_violations = 0;
if (pi->pkey_violations == 0)
ibp->rvp.pkey_violations = 0;
if (pi->qkey_violations == 0)
ibp->rvp.qkey_violations = 0;
ibp->rvp.subnet_timeout =
pi->clientrereg_subnettimeout & OPA_PI_MASK_SUBNET_TIMEOUT;
crc_enabled = be16_to_cpu(pi->port_ltp_crc_mode);
crc_enabled >>= 4;
crc_enabled &= 0xf;
if (crc_enabled != 0)
ppd->port_crc_mode_enabled = port_ltp_to_cap(crc_enabled);
ppd->is_active_optimize_enabled =
!!(be16_to_cpu(pi->port_mode)
& OPA_PI_MASK_PORT_ACTIVE_OPTOMIZE);
ls_new = pi->port_states.portphysstate_portstate &
OPA_PI_MASK_PORT_STATE;
ps_new = (pi->port_states.portphysstate_portstate &
OPA_PI_MASK_PORT_PHYSICAL_STATE) >> 4;
if (ls_old == IB_PORT_INIT) {
if (start_of_sm_config) {
if (ls_new == ls_old || (ls_new == IB_PORT_ARMED))
ppd->is_sm_config_started = 1;
} else if (ls_new == IB_PORT_ARMED) {
if (ppd->is_sm_config_started == 0) {
invalid = 1;
smp->status |= IB_SMP_INVALID_FIELD;
}
}
}
/* Handle CLIENT_REREGISTER event b/c SM asked us for it */
if (clientrereg) {
event.event = IB_EVENT_CLIENT_REREGISTER;
ib_dispatch_event(&event);
}
/*
* Do the port state change now that the other link parameters
* have been set.
* Changing the port physical state only makes sense if the link
* is down or is being set to down.
*/
if (!invalid) {
ret = set_port_states(ppd, smp, ls_new, ps_new);
if (ret)
return ret;
}
ret = __subn_get_opa_portinfo(smp, am, data, ibdev, port, resp_len,
max_len);
/* restore re-reg bit per o14-12.2.1 */
pi->clientrereg_subnettimeout |= clientrereg;
/*
* Apply the new link downgrade policy. This may result in a link
* bounce. Do this after everything else so things are settled.
* Possible problem: if setting the port state above fails, then
* the policy change is not applied.
*/
if (call_link_downgrade_policy)
apply_link_downgrade_policy(ppd, 0);
return ret;
get_only:
return __subn_get_opa_portinfo(smp, am, data, ibdev, port, resp_len,
max_len);
}
/**
* set_pkeys - set the PKEY table for ctxt 0
* @dd: the hfi1_ib device
* @port: the IB port number
* @pkeys: the PKEY table
*/
static int set_pkeys(struct hfi1_devdata *dd, u8 port, u16 *pkeys)
{
struct hfi1_pportdata *ppd;
int i;
int changed = 0;
int update_includes_mgmt_partition = 0;
/*
* IB port one/two always maps to context zero/one,
* always a kernel context, no locking needed
* If we get here with ppd setup, no need to check
* that rcd is valid.
*/
ppd = dd->pport + (port - 1);
/*
* If the update does not include the management pkey, don't do it.
*/
for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) {
if (pkeys[i] == LIM_MGMT_P_KEY) {
update_includes_mgmt_partition = 1;
break;
}
}
if (!update_includes_mgmt_partition)
return 1;
for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) {
u16 key = pkeys[i];
u16 okey = ppd->pkeys[i];
if (key == okey)
continue;
/*
* The SM gives us the complete PKey table. We have
* to ensure that we put the PKeys in the matching
* slots.
*/
ppd->pkeys[i] = key;
changed = 1;
}
if (changed) {
(void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
hfi1_event_pkey_change(dd, port);
}
return 0;
}
static int __subn_set_opa_pkeytable(struct opa_smp *smp, u32 am, u8 *data,
struct ib_device *ibdev, u8 port,
u32 *resp_len, u32 max_len)
{
struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
u32 n_blocks_sent = OPA_AM_NBLK(am);
u32 start_block = am & 0x7ff;
u16 *p = (u16 *)data;
__be16 *q = (__be16 *)data;
int i;
u16 n_blocks_avail;
unsigned npkeys = hfi1_get_npkeys(dd);
u32 size = 0;
if (n_blocks_sent == 0) {
pr_warn("OPA Get PKey AM Invalid : P = %d; B = 0x%x; N = 0x%x\n",
port, start_block, n_blocks_sent);
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
n_blocks_avail = (u16)(npkeys / OPA_PARTITION_TABLE_BLK_SIZE) + 1;
size = sizeof(u16) * (n_blocks_sent * OPA_PARTITION_TABLE_BLK_SIZE);
if (smp_length_check(size, max_len)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
if (start_block + n_blocks_sent > n_blocks_avail ||
n_blocks_sent > OPA_NUM_PKEY_BLOCKS_PER_SMP) {
pr_warn("OPA Set PKey AM Invalid : s 0x%x; req 0x%x; avail 0x%x; blk/smp 0x%lx\n",
start_block, n_blocks_sent, n_blocks_avail,
OPA_NUM_PKEY_BLOCKS_PER_SMP);
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
for (i = 0; i < n_blocks_sent * OPA_PARTITION_TABLE_BLK_SIZE; i++)
p[i] = be16_to_cpu(q[i]);
if (start_block == 0 && set_pkeys(dd, port, p) != 0) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
return __subn_get_opa_pkeytable(smp, am, data, ibdev, port, resp_len,
max_len);
}
#define ILLEGAL_VL 12
/*
* filter_sc2vlt changes mappings to VL15 to ILLEGAL_VL (except
* for SC15, which must map to VL15). If we don't remap things this
* way it is possible for VL15 counters to increment when we try to
* send on a SC which is mapped to an invalid VL.
* When getting the table convert ILLEGAL_VL back to VL15.
*/
static void filter_sc2vlt(void *data, bool set)
{
int i;
u8 *pd = data;
for (i = 0; i < OPA_MAX_SCS; i++) {
if (i == 15)
continue;
if (set) {
if ((pd[i] & 0x1f) == 0xf)
pd[i] = ILLEGAL_VL;
} else {
if ((pd[i] & 0x1f) == ILLEGAL_VL)
pd[i] = 0xf;
}
}
}
static int set_sc2vlt_tables(struct hfi1_devdata *dd, void *data)
{
u64 *val = data;
filter_sc2vlt(data, true);
write_csr(dd, SEND_SC2VLT0, *val++);
write_csr(dd, SEND_SC2VLT1, *val++);
write_csr(dd, SEND_SC2VLT2, *val++);
write_csr(dd, SEND_SC2VLT3, *val++);
write_seqlock_irq(&dd->sc2vl_lock);
memcpy(dd->sc2vl, data, sizeof(dd->sc2vl));
write_sequnlock_irq(&dd->sc2vl_lock);
return 0;
}
static int get_sc2vlt_tables(struct hfi1_devdata *dd, void *data)
{
u64 *val = (u64 *)data;
*val++ = read_csr(dd, SEND_SC2VLT0);
*val++ = read_csr(dd, SEND_SC2VLT1);
*val++ = read_csr(dd, SEND_SC2VLT2);
*val++ = read_csr(dd, SEND_SC2VLT3);
filter_sc2vlt((u64 *)data, false);
return 0;
}
static int __subn_get_opa_sl_to_sc(struct opa_smp *smp, u32 am, u8 *data,
struct ib_device *ibdev, u8 port,
u32 *resp_len, u32 max_len)
{
struct hfi1_ibport *ibp = to_iport(ibdev, port);
u8 *p = data;
size_t size = ARRAY_SIZE(ibp->sl_to_sc); /* == 32 */
unsigned i;
if (am || smp_length_check(size, max_len)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
for (i = 0; i < ARRAY_SIZE(ibp->sl_to_sc); i++)
*p++ = ibp->sl_to_sc[i];
if (resp_len)
*resp_len += size;
return reply((struct ib_mad_hdr *)smp);
}
static int __subn_set_opa_sl_to_sc(struct opa_smp *smp, u32 am, u8 *data,
struct ib_device *ibdev, u8 port,
u32 *resp_len, u32 max_len)
{
struct hfi1_ibport *ibp = to_iport(ibdev, port);
u8 *p = data;
size_t size = ARRAY_SIZE(ibp->sl_to_sc);
int i;
u8 sc;
if (am || smp_length_check(size, max_len)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
for (i = 0; i < ARRAY_SIZE(ibp->sl_to_sc); i++) {
sc = *p++;
if (ibp->sl_to_sc[i] != sc) {
ibp->sl_to_sc[i] = sc;
/* Put all stale qps into error state */
hfi1_error_port_qps(ibp, i);
}
}
return __subn_get_opa_sl_to_sc(smp, am, data, ibdev, port, resp_len,
max_len);
}
static int __subn_get_opa_sc_to_sl(struct opa_smp *smp, u32 am, u8 *data,
struct ib_device *ibdev, u8 port,
u32 *resp_len, u32 max_len)
{
struct hfi1_ibport *ibp = to_iport(ibdev, port);
u8 *p = data;
size_t size = ARRAY_SIZE(ibp->sc_to_sl); /* == 32 */
unsigned i;
if (am || smp_length_check(size, max_len)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
for (i = 0; i < ARRAY_SIZE(ibp->sc_to_sl); i++)
*p++ = ibp->sc_to_sl[i];
if (resp_len)
*resp_len += size;
return reply((struct ib_mad_hdr *)smp);
}
static int __subn_set_opa_sc_to_sl(struct opa_smp *smp, u32 am, u8 *data,
struct ib_device *ibdev, u8 port,
u32 *resp_len, u32 max_len)
{
struct hfi1_ibport *ibp = to_iport(ibdev, port);
size_t size = ARRAY_SIZE(ibp->sc_to_sl);
u8 *p = data;
int i;
if (am || smp_length_check(size, max_len)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
for (i = 0; i < ARRAY_SIZE(ibp->sc_to_sl); i++)
ibp->sc_to_sl[i] = *p++;
return __subn_get_opa_sc_to_sl(smp, am, data, ibdev, port, resp_len,
max_len);
}
static int __subn_get_opa_sc_to_vlt(struct opa_smp *smp, u32 am, u8 *data,
struct ib_device *ibdev, u8 port,
u32 *resp_len, u32 max_len)
{
u32 n_blocks = OPA_AM_NBLK(am);
struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
void *vp = (void *)data;
size_t size = 4 * sizeof(u64);
if (n_blocks != 1 || smp_length_check(size, max_len)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
get_sc2vlt_tables(dd, vp);
if (resp_len)
*resp_len += size;
return reply((struct ib_mad_hdr *)smp);
}
static int __subn_set_opa_sc_to_vlt(struct opa_smp *smp, u32 am, u8 *data,
struct ib_device *ibdev, u8 port,
u32 *resp_len, u32 max_len)
{
u32 n_blocks = OPA_AM_NBLK(am);
int async_update = OPA_AM_ASYNC(am);
struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
void *vp = (void *)data;
struct hfi1_pportdata *ppd;
int lstate;
/*
* set_sc2vlt_tables writes the information contained in *data
* to four 64-bit registers SendSC2VLt[0-3]. We need to make
* sure *max_len is not greater than the total size of the four
* SendSC2VLt[0-3] registers.
*/
size_t size = 4 * sizeof(u64);
if (n_blocks != 1 || async_update || smp_length_check(size, max_len)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
/* IB numbers ports from 1, hw from 0 */
ppd = dd->pport + (port - 1);
lstate = driver_lstate(ppd);
/*
* it's known that async_update is 0 by this point, but include
* the explicit check for clarity
*/
if (!async_update &&
(lstate == IB_PORT_ARMED || lstate == IB_PORT_ACTIVE)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
set_sc2vlt_tables(dd, vp);
return __subn_get_opa_sc_to_vlt(smp, am, data, ibdev, port, resp_len,
max_len);
}
static int __subn_get_opa_sc_to_vlnt(struct opa_smp *smp, u32 am, u8 *data,
struct ib_device *ibdev, u8 port,
u32 *resp_len, u32 max_len)
{
u32 n_blocks = OPA_AM_NPORT(am);
struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
struct hfi1_pportdata *ppd;
void *vp = (void *)data;
int size = sizeof(struct sc2vlnt);
if (n_blocks != 1 || smp_length_check(size, max_len)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
ppd = dd->pport + (port - 1);
fm_get_table(ppd, FM_TBL_SC2VLNT, vp);
if (resp_len)
*resp_len += size;
return reply((struct ib_mad_hdr *)smp);
}
static int __subn_set_opa_sc_to_vlnt(struct opa_smp *smp, u32 am, u8 *data,
struct ib_device *ibdev, u8 port,
u32 *resp_len, u32 max_len)
{
u32 n_blocks = OPA_AM_NPORT(am);
struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
struct hfi1_pportdata *ppd;
void *vp = (void *)data;
int lstate;
int size = sizeof(struct sc2vlnt);
if (n_blocks != 1 || smp_length_check(size, max_len)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
/* IB numbers ports from 1, hw from 0 */
ppd = dd->pport + (port - 1);
lstate = driver_lstate(ppd);
if (lstate == IB_PORT_ARMED || lstate == IB_PORT_ACTIVE) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
ppd = dd->pport + (port - 1);
fm_set_table(ppd, FM_TBL_SC2VLNT, vp);
return __subn_get_opa_sc_to_vlnt(smp, am, data, ibdev, port,
resp_len, max_len);
}
static int __subn_get_opa_psi(struct opa_smp *smp, u32 am, u8 *data,
struct ib_device *ibdev, u8 port,
u32 *resp_len, u32 max_len)
{
u32 nports = OPA_AM_NPORT(am);
u32 start_of_sm_config = OPA_AM_START_SM_CFG(am);
u32 lstate;
struct hfi1_ibport *ibp;
struct hfi1_pportdata *ppd;
struct opa_port_state_info *psi = (struct opa_port_state_info *)data;
if (nports != 1 || smp_length_check(sizeof(*psi), max_len)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
ibp = to_iport(ibdev, port);
ppd = ppd_from_ibp(ibp);
lstate = driver_lstate(ppd);
if (start_of_sm_config && (lstate == IB_PORT_INIT))
ppd->is_sm_config_started = 1;
psi->port_states.ledenable_offlinereason = ppd->neighbor_normal << 4;
psi->port_states.ledenable_offlinereason |=
ppd->is_sm_config_started << 5;
psi->port_states.ledenable_offlinereason |=
ppd->offline_disabled_reason;
psi->port_states.portphysstate_portstate =
(driver_pstate(ppd) << 4) | (lstate & 0xf);
psi->link_width_downgrade_tx_active =
cpu_to_be16(ppd->link_width_downgrade_tx_active);
psi->link_width_downgrade_rx_active =
cpu_to_be16(ppd->link_width_downgrade_rx_active);
if (resp_len)
*resp_len += sizeof(struct opa_port_state_info);
return reply((struct ib_mad_hdr *)smp);
}
static int __subn_set_opa_psi(struct opa_smp *smp, u32 am, u8 *data,
struct ib_device *ibdev, u8 port,
u32 *resp_len, u32 max_len)
{
u32 nports = OPA_AM_NPORT(am);
u32 start_of_sm_config = OPA_AM_START_SM_CFG(am);
u32 ls_old;
u8 ls_new, ps_new;
struct hfi1_ibport *ibp;
struct hfi1_pportdata *ppd;
struct opa_port_state_info *psi = (struct opa_port_state_info *)data;
int ret, invalid = 0;
if (nports != 1 || smp_length_check(sizeof(*psi), max_len)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
ibp = to_iport(ibdev, port);
ppd = ppd_from_ibp(ibp);
ls_old = driver_lstate(ppd);
ls_new = port_states_to_logical_state(&psi->port_states);
ps_new = port_states_to_phys_state(&psi->port_states);
if (ls_old == IB_PORT_INIT) {
if (start_of_sm_config) {
if (ls_new == ls_old || (ls_new == IB_PORT_ARMED))
ppd->is_sm_config_started = 1;
} else if (ls_new == IB_PORT_ARMED) {
if (ppd->is_sm_config_started == 0) {
invalid = 1;
smp->status |= IB_SMP_INVALID_FIELD;
}
}
}
if (!invalid) {
ret = set_port_states(ppd, smp, ls_new, ps_new);
if (ret)
return ret;
}
return __subn_get_opa_psi(smp, am, data, ibdev, port, resp_len,
max_len);
}
static int __subn_get_opa_cable_info(struct opa_smp *smp, u32 am, u8 *data,
struct ib_device *ibdev, u8 port,
u32 *resp_len, u32 max_len)
{
struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
u32 addr = OPA_AM_CI_ADDR(am);
u32 len = OPA_AM_CI_LEN(am) + 1;
int ret;
if (dd->pport->port_type != PORT_TYPE_QSFP ||
smp_length_check(len, max_len)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
#define __CI_PAGE_SIZE BIT(7) /* 128 bytes */
#define __CI_PAGE_MASK ~(__CI_PAGE_SIZE - 1)
#define __CI_PAGE_NUM(a) ((a) & __CI_PAGE_MASK)
/*
* check that addr is within spec, and
* addr and (addr + len - 1) are on the same "page"
*/
if (addr >= 4096 ||
(__CI_PAGE_NUM(addr) != __CI_PAGE_NUM(addr + len - 1))) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
ret = get_cable_info(dd, port, addr, len, data);
if (ret == -ENODEV) {
smp->status |= IB_SMP_UNSUP_METH_ATTR;
return reply((struct ib_mad_hdr *)smp);
}
/* The address range for the CableInfo SMA query is wider than the
* memory available on the QSFP cable. We want to return a valid
* response, albeit zeroed out, for address ranges beyond available
* memory but that are within the CableInfo query spec
*/
if (ret < 0 && ret != -ERANGE) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
if (resp_len)
*resp_len += len;
return reply((struct ib_mad_hdr *)smp);
}
static int __subn_get_opa_bct(struct opa_smp *smp, u32 am, u8 *data,
struct ib_device *ibdev, u8 port, u32 *resp_len,
u32 max_len)
{
u32 num_ports = OPA_AM_NPORT(am);
struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
struct hfi1_pportdata *ppd;
struct buffer_control *p = (struct buffer_control *)data;
int size = sizeof(struct buffer_control);
if (num_ports != 1 || smp_length_check(size, max_len)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
ppd = dd->pport + (port - 1);
fm_get_table(ppd, FM_TBL_BUFFER_CONTROL, p);
trace_bct_get(dd, p);
if (resp_len)
*resp_len += size;
return reply((struct ib_mad_hdr *)smp);
}
static int __subn_set_opa_bct(struct opa_smp *smp, u32 am, u8 *data,
struct ib_device *ibdev, u8 port, u32 *resp_len,
u32 max_len)
{
u32 num_ports = OPA_AM_NPORT(am);
struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
struct hfi1_pportdata *ppd;
struct buffer_control *p = (struct buffer_control *)data;
if (num_ports != 1 || smp_length_check(sizeof(*p), max_len)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
ppd = dd->pport + (port - 1);
trace_bct_set(dd, p);
if (fm_set_table(ppd, FM_TBL_BUFFER_CONTROL, p) < 0) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
return __subn_get_opa_bct(smp, am, data, ibdev, port, resp_len,
max_len);
}
static int __subn_get_opa_vl_arb(struct opa_smp *smp, u32 am, u8 *data,
struct ib_device *ibdev, u8 port,
u32 *resp_len, u32 max_len)
{
struct hfi1_pportdata *ppd = ppd_from_ibp(to_iport(ibdev, port));
u32 num_ports = OPA_AM_NPORT(am);
u8 section = (am & 0x00ff0000) >> 16;
u8 *p = data;
int size = 256;
if (num_ports != 1 || smp_length_check(size, max_len)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
switch (section) {
case OPA_VLARB_LOW_ELEMENTS:
fm_get_table(ppd, FM_TBL_VL_LOW_ARB, p);
break;
case OPA_VLARB_HIGH_ELEMENTS:
fm_get_table(ppd, FM_TBL_VL_HIGH_ARB, p);
break;
case OPA_VLARB_PREEMPT_ELEMENTS:
fm_get_table(ppd, FM_TBL_VL_PREEMPT_ELEMS, p);
break;
case OPA_VLARB_PREEMPT_MATRIX:
fm_get_table(ppd, FM_TBL_VL_PREEMPT_MATRIX, p);
break;
default:
pr_warn("OPA SubnGet(VL Arb) AM Invalid : 0x%x\n",
be32_to_cpu(smp->attr_mod));
smp->status |= IB_SMP_INVALID_FIELD;
size = 0;
break;
}
if (size > 0 && resp_len)
*resp_len += size;
return reply((struct ib_mad_hdr *)smp);
}
static int __subn_set_opa_vl_arb(struct opa_smp *smp, u32 am, u8 *data,
struct ib_device *ibdev, u8 port,
u32 *resp_len, u32 max_len)
{
struct hfi1_pportdata *ppd = ppd_from_ibp(to_iport(ibdev, port));
u32 num_ports = OPA_AM_NPORT(am);
u8 section = (am & 0x00ff0000) >> 16;
u8 *p = data;
int size = 256;
if (num_ports != 1 || smp_length_check(size, max_len)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
switch (section) {
case OPA_VLARB_LOW_ELEMENTS:
(void)fm_set_table(ppd, FM_TBL_VL_LOW_ARB, p);
break;
case OPA_VLARB_HIGH_ELEMENTS:
(void)fm_set_table(ppd, FM_TBL_VL_HIGH_ARB, p);
break;
/*
* neither OPA_VLARB_PREEMPT_ELEMENTS, or OPA_VLARB_PREEMPT_MATRIX
* can be changed from the default values
*/
case OPA_VLARB_PREEMPT_ELEMENTS:
/* FALLTHROUGH */
case OPA_VLARB_PREEMPT_MATRIX:
smp->status |= IB_SMP_UNSUP_METH_ATTR;
break;
default:
pr_warn("OPA SubnSet(VL Arb) AM Invalid : 0x%x\n",
be32_to_cpu(smp->attr_mod));
smp->status |= IB_SMP_INVALID_FIELD;
break;
}
return __subn_get_opa_vl_arb(smp, am, data, ibdev, port, resp_len,
max_len);
}
struct opa_pma_mad {
struct ib_mad_hdr mad_hdr;
u8 data[2024];
} __packed;
struct opa_port_status_req {
__u8 port_num;
__u8 reserved[3];
__be32 vl_select_mask;
};
#define VL_MASK_ALL 0x000080ff
struct opa_port_status_rsp {
__u8 port_num;
__u8 reserved[3];
__be32 vl_select_mask;
/* Data counters */
__be64 port_xmit_data;
__be64 port_rcv_data;
__be64 port_xmit_pkts;
__be64 port_rcv_pkts;
__be64 port_multicast_xmit_pkts;
__be64 port_multicast_rcv_pkts;
__be64 port_xmit_wait;
__be64 sw_port_congestion;
__be64 port_rcv_fecn;
__be64 port_rcv_becn;
__be64 port_xmit_time_cong;
__be64 port_xmit_wasted_bw;
__be64 port_xmit_wait_data;
__be64 port_rcv_bubble;
__be64 port_mark_fecn;
/* Error counters */
__be64 port_rcv_constraint_errors;
__be64 port_rcv_switch_relay_errors;
__be64 port_xmit_discards;
__be64 port_xmit_constraint_errors;
__be64 port_rcv_remote_physical_errors;
__be64 local_link_integrity_errors;
__be64 port_rcv_errors;
__be64 excessive_buffer_overruns;
__be64 fm_config_errors;
__be32 link_error_recovery;
__be32 link_downed;
u8 uncorrectable_errors;
u8 link_quality_indicator; /* 5res, 3bit */
u8 res2[6];
struct _vls_pctrs {
/* per-VL Data counters */
__be64 port_vl_xmit_data;
__be64 port_vl_rcv_data;
__be64 port_vl_xmit_pkts;
__be64 port_vl_rcv_pkts;
__be64 port_vl_xmit_wait;
__be64 sw_port_vl_congestion;
__be64 port_vl_rcv_fecn;
__be64 port_vl_rcv_becn;
__be64 port_xmit_time_cong;
__be64 port_vl_xmit_wasted_bw;
__be64 port_vl_xmit_wait_data;
__be64 port_vl_rcv_bubble;
__be64 port_vl_mark_fecn;
__be64 port_vl_xmit_discards;
} vls[0]; /* real array size defined by # bits set in vl_select_mask */
};
enum counter_selects {
CS_PORT_XMIT_DATA = (1 << 31),
CS_PORT_RCV_DATA = (1 << 30),
CS_PORT_XMIT_PKTS = (1 << 29),
CS_PORT_RCV_PKTS = (1 << 28),
CS_PORT_MCAST_XMIT_PKTS = (1 << 27),
CS_PORT_MCAST_RCV_PKTS = (1 << 26),
CS_PORT_XMIT_WAIT = (1 << 25),
CS_SW_PORT_CONGESTION = (1 << 24),
CS_PORT_RCV_FECN = (1 << 23),
CS_PORT_RCV_BECN = (1 << 22),
CS_PORT_XMIT_TIME_CONG = (1 << 21),
CS_PORT_XMIT_WASTED_BW = (1 << 20),
CS_PORT_XMIT_WAIT_DATA = (1 << 19),
CS_PORT_RCV_BUBBLE = (1 << 18),
CS_PORT_MARK_FECN = (1 << 17),
CS_PORT_RCV_CONSTRAINT_ERRORS = (1 << 16),
CS_PORT_RCV_SWITCH_RELAY_ERRORS = (1 << 15),
CS_PORT_XMIT_DISCARDS = (1 << 14),
CS_PORT_XMIT_CONSTRAINT_ERRORS = (1 << 13),
CS_PORT_RCV_REMOTE_PHYSICAL_ERRORS = (1 << 12),
CS_LOCAL_LINK_INTEGRITY_ERRORS = (1 << 11),
CS_PORT_RCV_ERRORS = (1 << 10),
CS_EXCESSIVE_BUFFER_OVERRUNS = (1 << 9),
CS_FM_CONFIG_ERRORS = (1 << 8),
CS_LINK_ERROR_RECOVERY = (1 << 7),
CS_LINK_DOWNED = (1 << 6),
CS_UNCORRECTABLE_ERRORS = (1 << 5),
};
struct opa_clear_port_status {
__be64 port_select_mask[4];
__be32 counter_select_mask;
};
struct opa_aggregate {
__be16 attr_id;
__be16 err_reqlength; /* 1 bit, 8 res, 7 bit */
__be32 attr_mod;
u8 data[0];
};
#define MSK_LLI 0x000000f0
#define MSK_LLI_SFT 4
#define MSK_LER 0x0000000f
#define MSK_LER_SFT 0
#define ADD_LLI 8
#define ADD_LER 2
/* Request contains first three fields, response contains those plus the rest */
struct opa_port_data_counters_msg {
__be64 port_select_mask[4];
__be32 vl_select_mask;
__be32 resolution;
/* Response fields follow */
struct _port_dctrs {
u8 port_number;
u8 reserved2[3];
__be32 link_quality_indicator; /* 29res, 3bit */
/* Data counters */
__be64 port_xmit_data;
__be64 port_rcv_data;
__be64 port_xmit_pkts;
__be64 port_rcv_pkts;
__be64 port_multicast_xmit_pkts;
__be64 port_multicast_rcv_pkts;
__be64 port_xmit_wait;
__be64 sw_port_congestion;
__be64 port_rcv_fecn;
__be64 port_rcv_becn;
__be64 port_xmit_time_cong;
__be64 port_xmit_wasted_bw;
__be64 port_xmit_wait_data;
__be64 port_rcv_bubble;
__be64 port_mark_fecn;
__be64 port_error_counter_summary;
/* Sum of error counts/port */
struct _vls_dctrs {
/* per-VL Data counters */
__be64 port_vl_xmit_data;
__be64 port_vl_rcv_data;
__be64 port_vl_xmit_pkts;
__be64 port_vl_rcv_pkts;
__be64 port_vl_xmit_wait;
__be64 sw_port_vl_congestion;
__be64 port_vl_rcv_fecn;
__be64 port_vl_rcv_becn;
__be64 port_xmit_time_cong;
__be64 port_vl_xmit_wasted_bw;
__be64 port_vl_xmit_wait_data;
__be64 port_vl_rcv_bubble;
__be64 port_vl_mark_fecn;
} vls[0];
/* array size defined by #bits set in vl_select_mask*/
} port[1]; /* array size defined by #ports in attribute modifier */
};
struct opa_port_error_counters64_msg {
/*
* Request contains first two fields, response contains the
* whole magilla
*/
__be64 port_select_mask[4];
__be32 vl_select_mask;
/* Response-only fields follow */
__be32 reserved1;
struct _port_ectrs {
u8 port_number;
u8 reserved2[7];
__be64 port_rcv_constraint_errors;
__be64 port_rcv_switch_relay_errors;
__be64 port_xmit_discards;
__be64 port_xmit_constraint_errors;
__be64 port_rcv_remote_physical_errors;
__be64 local_link_integrity_errors;
__be64 port_rcv_errors;
__be64 excessive_buffer_overruns;
__be64 fm_config_errors;
__be32 link_error_recovery;
__be32 link_downed;
u8 uncorrectable_errors;
u8 reserved3[7];
struct _vls_ectrs {
__be64 port_vl_xmit_discards;
} vls[0];
/* array size defined by #bits set in vl_select_mask */
} port[1]; /* array size defined by #ports in attribute modifier */
};
struct opa_port_error_info_msg {
__be64 port_select_mask[4];
__be32 error_info_select_mask;
__be32 reserved1;
struct _port_ei {
u8 port_number;
u8 reserved2[7];
/* PortRcvErrorInfo */
struct {
u8 status_and_code;
union {
u8 raw[17];
struct {
/* EI1to12 format */
u8 packet_flit1[8];
u8 packet_flit2[8];
u8 remaining_flit_bits12;
} ei1to12;
struct {
u8 packet_bytes[8];
u8 remaining_flit_bits;
} ei13;
} ei;
u8 reserved3[6];
} __packed port_rcv_ei;
/* ExcessiveBufferOverrunInfo */
struct {
u8 status_and_sc;
u8 reserved4[7];
} __packed excessive_buffer_overrun_ei;
/* PortXmitConstraintErrorInfo */
struct {
u8 status;
u8 reserved5;
__be16 pkey;
__be32 slid;
} __packed port_xmit_constraint_ei;
/* PortRcvConstraintErrorInfo */
struct {
u8 status;
u8 reserved6;
__be16 pkey;
__be32 slid;
} __packed port_rcv_constraint_ei;
/* PortRcvSwitchRelayErrorInfo */
struct {
u8 status_and_code;
u8 reserved7[3];
__u32 error_info;
} __packed port_rcv_switch_relay_ei;
/* UncorrectableErrorInfo */
struct {
u8 status_and_code;
u8 reserved8;
} __packed uncorrectable_ei;
/* FMConfigErrorInfo */
struct {
u8 status_and_code;
u8 error_info;
} __packed fm_config_ei;
__u32 reserved9;
} port[1]; /* actual array size defined by #ports in attr modifier */
};
/* opa_port_error_info_msg error_info_select_mask bit definitions */
enum error_info_selects {
ES_PORT_RCV_ERROR_INFO = (1 << 31),
ES_EXCESSIVE_BUFFER_OVERRUN_INFO = (1 << 30),
ES_PORT_XMIT_CONSTRAINT_ERROR_INFO = (1 << 29),
ES_PORT_RCV_CONSTRAINT_ERROR_INFO = (1 << 28),
ES_PORT_RCV_SWITCH_RELAY_ERROR_INFO = (1 << 27),
ES_UNCORRECTABLE_ERROR_INFO = (1 << 26),
ES_FM_CONFIG_ERROR_INFO = (1 << 25)
};
static int pma_get_opa_classportinfo(struct opa_pma_mad *pmp,
struct ib_device *ibdev, u32 *resp_len)
{
struct opa_class_port_info *p =
(struct opa_class_port_info *)pmp->data;
memset(pmp->data, 0, sizeof(pmp->data));
if (pmp->mad_hdr.attr_mod != 0)
pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD;
p->base_version = OPA_MGMT_BASE_VERSION;
p->class_version = OPA_SM_CLASS_VERSION;
/*
* Expected response time is 4.096 usec. * 2^18 == 1.073741824 sec.
*/
p->cap_mask2_resp_time = cpu_to_be32(18);
if (resp_len)
*resp_len += sizeof(*p);
return reply((struct ib_mad_hdr *)pmp);
}
static void a0_portstatus(struct hfi1_pportdata *ppd,
struct opa_port_status_rsp *rsp, u32 vl_select_mask)
{
if (!is_bx(ppd->dd)) {
unsigned long vl;
u64 sum_vl_xmit_wait = 0;
u32 vl_all_mask = VL_MASK_ALL;
for_each_set_bit(vl, (unsigned long *)&(vl_all_mask),
8 * sizeof(vl_all_mask)) {
u64 tmp = sum_vl_xmit_wait +
read_port_cntr(ppd, C_TX_WAIT_VL,
idx_from_vl(vl));
if (tmp < sum_vl_xmit_wait) {
/* we wrapped */
sum_vl_xmit_wait = (u64)~0;
break;
}
sum_vl_xmit_wait = tmp;
}
if (be64_to_cpu(rsp->port_xmit_wait) > sum_vl_xmit_wait)
rsp->port_xmit_wait = cpu_to_be64(sum_vl_xmit_wait);
}
}
static int pma_get_opa_portstatus(struct opa_pma_mad *pmp,
struct ib_device *ibdev,
u8 port, u32 *resp_len)
{
struct opa_port_status_req *req =
(struct opa_port_status_req *)pmp->data;
struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
struct opa_port_status_rsp *rsp;
u32 vl_select_mask = be32_to_cpu(req->vl_select_mask);
unsigned long vl;
size_t response_data_size;
u32 nports = be32_to_cpu(pmp->mad_hdr.attr_mod) >> 24;
u8 port_num = req->port_num;
u8 num_vls = hweight32(vl_select_mask);
struct _vls_pctrs *vlinfo;
struct hfi1_ibport *ibp = to_iport(ibdev, port);
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
int vfi;
u64 tmp, tmp2;
response_data_size = sizeof(struct opa_port_status_rsp) +
num_vls * sizeof(struct _vls_pctrs);
if (response_data_size > sizeof(pmp->data)) {
pmp->mad_hdr.status |= OPA_PM_STATUS_REQUEST_TOO_LARGE;
return reply((struct ib_mad_hdr *)pmp);
}
if (nports != 1 || (port_num && port_num != port) ||
num_vls > OPA_MAX_VLS || (vl_select_mask & ~VL_MASK_ALL)) {
pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)pmp);
}
memset(pmp->data, 0, sizeof(pmp->data));
rsp = (struct opa_port_status_rsp *)pmp->data;
if (port_num)
rsp->port_num = port_num;
else
rsp->port_num = port;
rsp->port_rcv_constraint_errors =
cpu_to_be64(read_port_cntr(ppd, C_SW_RCV_CSTR_ERR,
CNTR_INVALID_VL));
hfi1_read_link_quality(dd, &rsp->link_quality_indicator);
rsp->vl_select_mask = cpu_to_be32(vl_select_mask);
rsp->port_xmit_data = cpu_to_be64(read_dev_cntr(dd, C_DC_XMIT_FLITS,
CNTR_INVALID_VL));
rsp->port_rcv_data = cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_FLITS,
CNTR_INVALID_VL));
rsp->port_xmit_pkts = cpu_to_be64(read_dev_cntr(dd, C_DC_XMIT_PKTS,
CNTR_INVALID_VL));
rsp->port_rcv_pkts = cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_PKTS,
CNTR_INVALID_VL));
rsp->port_multicast_xmit_pkts =
cpu_to_be64(read_dev_cntr(dd, C_DC_MC_XMIT_PKTS,
CNTR_INVALID_VL));
rsp->port_multicast_rcv_pkts =
cpu_to_be64(read_dev_cntr(dd, C_DC_MC_RCV_PKTS,
CNTR_INVALID_VL));
rsp->port_xmit_wait =
cpu_to_be64(read_port_cntr(ppd, C_TX_WAIT, CNTR_INVALID_VL));
rsp->port_rcv_fecn =
cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_FCN, CNTR_INVALID_VL));
rsp->port_rcv_becn =
cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_BCN, CNTR_INVALID_VL));
rsp->port_xmit_discards =
cpu_to_be64(read_port_cntr(ppd, C_SW_XMIT_DSCD,
CNTR_INVALID_VL));
rsp->port_xmit_constraint_errors =
cpu_to_be64(read_port_cntr(ppd, C_SW_XMIT_CSTR_ERR,
CNTR_INVALID_VL));
rsp->port_rcv_remote_physical_errors =
cpu_to_be64(read_dev_cntr(dd, C_DC_RMT_PHY_ERR,
CNTR_INVALID_VL));
rsp->local_link_integrity_errors =
cpu_to_be64(read_dev_cntr(dd, C_DC_RX_REPLAY,
CNTR_INVALID_VL));
tmp = read_dev_cntr(dd, C_DC_SEQ_CRC_CNT, CNTR_INVALID_VL);
tmp2 = tmp + read_dev_cntr(dd, C_DC_REINIT_FROM_PEER_CNT,
CNTR_INVALID_VL);
if (tmp2 > (u32)UINT_MAX || tmp2 < tmp) {
/* overflow/wrapped */
rsp->link_error_recovery = cpu_to_be32(~0);
} else {
rsp->link_error_recovery = cpu_to_be32(tmp2);
}
rsp->port_rcv_errors =
cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_ERR, CNTR_INVALID_VL));
rsp->excessive_buffer_overruns =
cpu_to_be64(read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL));
rsp->fm_config_errors =
cpu_to_be64(read_dev_cntr(dd, C_DC_FM_CFG_ERR,
CNTR_INVALID_VL));
rsp->link_downed = cpu_to_be32(read_port_cntr(ppd, C_SW_LINK_DOWN,
CNTR_INVALID_VL));
/* rsp->uncorrectable_errors is 8 bits wide, and it pegs at 0xff */
tmp = read_dev_cntr(dd, C_DC_UNC_ERR, CNTR_INVALID_VL);
rsp->uncorrectable_errors = tmp < 0x100 ? (tmp & 0xff) : 0xff;
vlinfo = &rsp->vls[0];
vfi = 0;
/* The vl_select_mask has been checked above, and we know
* that it contains only entries which represent valid VLs.
* So in the for_each_set_bit() loop below, we don't need
* any additional checks for vl.
*/
for_each_set_bit(vl, (unsigned long *)&(vl_select_mask),
8 * sizeof(vl_select_mask)) {
memset(vlinfo, 0, sizeof(*vlinfo));
tmp = read_dev_cntr(dd, C_DC_RX_FLIT_VL, idx_from_vl(vl));
rsp->vls[vfi].port_vl_rcv_data = cpu_to_be64(tmp);
rsp->vls[vfi].port_vl_rcv_pkts =
cpu_to_be64(read_dev_cntr(dd, C_DC_RX_PKT_VL,
idx_from_vl(vl)));
rsp->vls[vfi].port_vl_xmit_data =
cpu_to_be64(read_port_cntr(ppd, C_TX_FLIT_VL,
idx_from_vl(vl)));
rsp->vls[vfi].port_vl_xmit_pkts =
cpu_to_be64(read_port_cntr(ppd, C_TX_PKT_VL,
idx_from_vl(vl)));
rsp->vls[vfi].port_vl_xmit_wait =
cpu_to_be64(read_port_cntr(ppd, C_TX_WAIT_VL,
idx_from_vl(vl)));
rsp->vls[vfi].port_vl_rcv_fecn =
cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_FCN_VL,
idx_from_vl(vl)));
rsp->vls[vfi].port_vl_rcv_becn =
cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_BCN_VL,
idx_from_vl(vl)));
rsp->vls[vfi].port_vl_xmit_discards =
cpu_to_be64(read_port_cntr(ppd, C_SW_XMIT_DSCD_VL,
idx_from_vl(vl)));
vlinfo++;
vfi++;
}
a0_portstatus(ppd, rsp, vl_select_mask);
if (resp_len)
*resp_len += response_data_size;
return reply((struct ib_mad_hdr *)pmp);
}
static u64 get_error_counter_summary(struct ib_device *ibdev, u8 port,
u8 res_lli, u8 res_ler)
{
struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
struct hfi1_ibport *ibp = to_iport(ibdev, port);
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
u64 error_counter_summary = 0, tmp;
error_counter_summary += read_port_cntr(ppd, C_SW_RCV_CSTR_ERR,
CNTR_INVALID_VL);
/* port_rcv_switch_relay_errors is 0 for HFIs */
error_counter_summary += read_port_cntr(ppd, C_SW_XMIT_DSCD,
CNTR_INVALID_VL);
error_counter_summary += read_port_cntr(ppd, C_SW_XMIT_CSTR_ERR,
CNTR_INVALID_VL);
error_counter_summary += read_dev_cntr(dd, C_DC_RMT_PHY_ERR,
CNTR_INVALID_VL);
/* local link integrity must be right-shifted by the lli resolution */
error_counter_summary += (read_dev_cntr(dd, C_DC_RX_REPLAY,
CNTR_INVALID_VL) >> res_lli);
/* link error recovery must b right-shifted by the ler resolution */
tmp = read_dev_cntr(dd, C_DC_SEQ_CRC_CNT, CNTR_INVALID_VL);
tmp += read_dev_cntr(dd, C_DC_REINIT_FROM_PEER_CNT, CNTR_INVALID_VL);
error_counter_summary += (tmp >> res_ler);
error_counter_summary += read_dev_cntr(dd, C_DC_RCV_ERR,
CNTR_INVALID_VL);
error_counter_summary += read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
error_counter_summary += read_dev_cntr(dd, C_DC_FM_CFG_ERR,
CNTR_INVALID_VL);
/* ppd->link_downed is a 32-bit value */
error_counter_summary += read_port_cntr(ppd, C_SW_LINK_DOWN,
CNTR_INVALID_VL);
tmp = read_dev_cntr(dd, C_DC_UNC_ERR, CNTR_INVALID_VL);
/* this is an 8-bit quantity */
error_counter_summary += tmp < 0x100 ? (tmp & 0xff) : 0xff;
return error_counter_summary;
}
static void a0_datacounters(struct hfi1_pportdata *ppd, struct _port_dctrs *rsp,
u32 vl_select_mask)
{
if (!is_bx(ppd->dd)) {
unsigned long vl;
u64 sum_vl_xmit_wait = 0;
u32 vl_all_mask = VL_MASK_ALL;
for_each_set_bit(vl, (unsigned long *)&(vl_all_mask),
8 * sizeof(vl_all_mask)) {
u64 tmp = sum_vl_xmit_wait +
read_port_cntr(ppd, C_TX_WAIT_VL,
idx_from_vl(vl));
if (tmp < sum_vl_xmit_wait) {
/* we wrapped */
sum_vl_xmit_wait = (u64)~0;
break;
}
sum_vl_xmit_wait = tmp;
}
if (be64_to_cpu(rsp->port_xmit_wait) > sum_vl_xmit_wait)
rsp->port_xmit_wait = cpu_to_be64(sum_vl_xmit_wait);
}
}
static void pma_get_opa_port_dctrs(struct ib_device *ibdev,
struct _port_dctrs *rsp)
{
struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
rsp->port_xmit_data = cpu_to_be64(read_dev_cntr(dd, C_DC_XMIT_FLITS,
CNTR_INVALID_VL));
rsp->port_rcv_data = cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_FLITS,
CNTR_INVALID_VL));
rsp->port_xmit_pkts = cpu_to_be64(read_dev_cntr(dd, C_DC_XMIT_PKTS,
CNTR_INVALID_VL));
rsp->port_rcv_pkts = cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_PKTS,
CNTR_INVALID_VL));
rsp->port_multicast_xmit_pkts =
cpu_to_be64(read_dev_cntr(dd, C_DC_MC_XMIT_PKTS,
CNTR_INVALID_VL));
rsp->port_multicast_rcv_pkts =
cpu_to_be64(read_dev_cntr(dd, C_DC_MC_RCV_PKTS,
CNTR_INVALID_VL));
}
static int pma_get_opa_datacounters(struct opa_pma_mad *pmp,
struct ib_device *ibdev,
u8 port, u32 *resp_len)
{
struct opa_port_data_counters_msg *req =
(struct opa_port_data_counters_msg *)pmp->data;
struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
struct hfi1_ibport *ibp = to_iport(ibdev, port);
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
struct _port_dctrs *rsp;
struct _vls_dctrs *vlinfo;
size_t response_data_size;
u32 num_ports;
u8 lq, num_vls;
u8 res_lli, res_ler;
u64 port_mask;
u8 port_num;
unsigned long vl;
u32 vl_select_mask;
int vfi;
num_ports = be32_to_cpu(pmp->mad_hdr.attr_mod) >> 24;
num_vls = hweight32(be32_to_cpu(req->vl_select_mask));
vl_select_mask = be32_to_cpu(req->vl_select_mask);
res_lli = (u8)(be32_to_cpu(req->resolution) & MSK_LLI) >> MSK_LLI_SFT;
res_lli = res_lli ? res_lli + ADD_LLI : 0;
res_ler = (u8)(be32_to_cpu(req->resolution) & MSK_LER) >> MSK_LER_SFT;
res_ler = res_ler ? res_ler + ADD_LER : 0;
if (num_ports != 1 || (vl_select_mask & ~VL_MASK_ALL)) {
pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)pmp);
}
/* Sanity check */
response_data_size = sizeof(struct opa_port_data_counters_msg) +
num_vls * sizeof(struct _vls_dctrs);
if (response_data_size > sizeof(pmp->data)) {
pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)pmp);
}
/*
* The bit set in the mask needs to be consistent with the
* port the request came in on.
*/
port_mask = be64_to_cpu(req->port_select_mask[3]);
port_num = find_first_bit((unsigned long *)&port_mask,
sizeof(port_mask) * 8);
if (port_num != port) {
pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)pmp);
}
rsp = &req->port[0];
memset(rsp, 0, sizeof(*rsp));
rsp->port_number = port;
/*
* Note that link_quality_indicator is a 32 bit quantity in
* 'datacounters' queries (as opposed to 'portinfo' queries,
* where it's a byte).
*/
hfi1_read_link_quality(dd, &lq);
rsp->link_quality_indicator = cpu_to_be32((u32)lq);
pma_get_opa_port_dctrs(ibdev, rsp);
rsp->port_xmit_wait =
cpu_to_be64(read_port_cntr(ppd, C_TX_WAIT, CNTR_INVALID_VL));
rsp->port_rcv_fecn =
cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_FCN, CNTR_INVALID_VL));
rsp->port_rcv_becn =
cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_BCN, CNTR_INVALID_VL));
rsp->port_error_counter_summary =
cpu_to_be64(get_error_counter_summary(ibdev, port,
res_lli, res_ler));
vlinfo = &rsp->vls[0];
vfi = 0;
/* The vl_select_mask has been checked above, and we know
* that it contains only entries which represent valid VLs.
* So in the for_each_set_bit() loop below, we don't need
* any additional checks for vl.
*/
for_each_set_bit(vl, (unsigned long *)&(vl_select_mask),
8 * sizeof(req->vl_select_mask)) {
memset(vlinfo, 0, sizeof(*vlinfo));
rsp->vls[vfi].port_vl_xmit_data =
cpu_to_be64(read_port_cntr(ppd, C_TX_FLIT_VL,
idx_from_vl(vl)));
rsp->vls[vfi].port_vl_rcv_data =
cpu_to_be64(read_dev_cntr(dd, C_DC_RX_FLIT_VL,
idx_from_vl(vl)));
rsp->vls[vfi].port_vl_xmit_pkts =
cpu_to_be64(read_port_cntr(ppd, C_TX_PKT_VL,
idx_from_vl(vl)));
rsp->vls[vfi].port_vl_rcv_pkts =
cpu_to_be64(read_dev_cntr(dd, C_DC_RX_PKT_VL,
idx_from_vl(vl)));
rsp->vls[vfi].port_vl_xmit_wait =
cpu_to_be64(read_port_cntr(ppd, C_TX_WAIT_VL,
idx_from_vl(vl)));
rsp->vls[vfi].port_vl_rcv_fecn =
cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_FCN_VL,
idx_from_vl(vl)));
rsp->vls[vfi].port_vl_rcv_becn =
cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_BCN_VL,
idx_from_vl(vl)));
/* rsp->port_vl_xmit_time_cong is 0 for HFIs */
/* rsp->port_vl_xmit_wasted_bw ??? */
/* port_vl_xmit_wait_data - TXE (table 13-9 HFI spec) ???
* does this differ from rsp->vls[vfi].port_vl_xmit_wait
*/
/*rsp->vls[vfi].port_vl_mark_fecn =
* cpu_to_be64(read_csr(dd, DCC_PRF_PORT_VL_MARK_FECN_CNT
* + offset));
*/
vlinfo++;
vfi++;
}
a0_datacounters(ppd, rsp, vl_select_mask);
if (resp_len)
*resp_len += response_data_size;
return reply((struct ib_mad_hdr *)pmp);
}
static int pma_get_ib_portcounters_ext(struct ib_pma_mad *pmp,
struct ib_device *ibdev, u8 port)
{
struct ib_pma_portcounters_ext *p = (struct ib_pma_portcounters_ext *)
pmp->data;
struct _port_dctrs rsp;
if (pmp->mad_hdr.attr_mod != 0 || p->port_select != port) {
pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD;
goto bail;
}
memset(&rsp, 0, sizeof(rsp));
pma_get_opa_port_dctrs(ibdev, &rsp);
p->port_xmit_data = rsp.port_xmit_data;
p->port_rcv_data = rsp.port_rcv_data;
p->port_xmit_packets = rsp.port_xmit_pkts;
p->port_rcv_packets = rsp.port_rcv_pkts;
p->port_unicast_xmit_packets = 0;
p->port_unicast_rcv_packets = 0;
p->port_multicast_xmit_packets = rsp.port_multicast_xmit_pkts;
p->port_multicast_rcv_packets = rsp.port_multicast_rcv_pkts;
bail:
return reply((struct ib_mad_hdr *)pmp);
}
static void pma_get_opa_port_ectrs(struct ib_device *ibdev,
struct _port_ectrs *rsp, u8 port)
{
u64 tmp, tmp2;
struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
struct hfi1_ibport *ibp = to_iport(ibdev, port);
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
tmp = read_dev_cntr(dd, C_DC_SEQ_CRC_CNT, CNTR_INVALID_VL);
tmp2 = tmp + read_dev_cntr(dd, C_DC_REINIT_FROM_PEER_CNT,
CNTR_INVALID_VL);
if (tmp2 > (u32)UINT_MAX || tmp2 < tmp) {
/* overflow/wrapped */
rsp->link_error_recovery = cpu_to_be32(~0);
} else {
rsp->link_error_recovery = cpu_to_be32(tmp2);
}
rsp->link_downed = cpu_to_be32(read_port_cntr(ppd, C_SW_LINK_DOWN,
CNTR_INVALID_VL));
rsp->port_rcv_errors =
cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_ERR, CNTR_INVALID_VL));
rsp->port_rcv_remote_physical_errors =
cpu_to_be64(read_dev_cntr(dd, C_DC_RMT_PHY_ERR,
CNTR_INVALID_VL));
rsp->port_rcv_switch_relay_errors = 0;
rsp->port_xmit_discards =
cpu_to_be64(read_port_cntr(ppd, C_SW_XMIT_DSCD,
CNTR_INVALID_VL));
rsp->port_xmit_constraint_errors =
cpu_to_be64(read_port_cntr(ppd, C_SW_XMIT_CSTR_ERR,
CNTR_INVALID_VL));
rsp->port_rcv_constraint_errors =
cpu_to_be64(read_port_cntr(ppd, C_SW_RCV_CSTR_ERR,
CNTR_INVALID_VL));
rsp->local_link_integrity_errors =
cpu_to_be64(read_dev_cntr(dd, C_DC_RX_REPLAY,
CNTR_INVALID_VL));
rsp->excessive_buffer_overruns =
cpu_to_be64(read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL));
}
static int pma_get_opa_porterrors(struct opa_pma_mad *pmp,
struct ib_device *ibdev,
u8 port, u32 *resp_len)
{
size_t response_data_size;
struct _port_ectrs *rsp;
u8 port_num;
struct opa_port_error_counters64_msg *req;
struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
u32 num_ports;
u8 num_pslm;
u8 num_vls;
struct hfi1_ibport *ibp;
struct hfi1_pportdata *ppd;
struct _vls_ectrs *vlinfo;
unsigned long vl;
u64 port_mask, tmp;
u32 vl_select_mask;
int vfi;
req = (struct opa_port_error_counters64_msg *)pmp->data;
num_ports = be32_to_cpu(pmp->mad_hdr.attr_mod) >> 24;
num_pslm = hweight64(be64_to_cpu(req->port_select_mask[3]));
num_vls = hweight32(be32_to_cpu(req->vl_select_mask));
if (num_ports != 1 || num_ports != num_pslm) {
pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)pmp);
}
response_data_size = sizeof(struct opa_port_error_counters64_msg) +
num_vls * sizeof(struct _vls_ectrs);
if (response_data_size > sizeof(pmp->data)) {
pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)pmp);
}
/*
* The bit set in the mask needs to be consistent with the
* port the request came in on.
*/
port_mask = be64_to_cpu(req->port_select_mask[3]);
port_num = find_first_bit((unsigned long *)&port_mask,
sizeof(port_mask) * 8);
if (port_num != port) {
pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)pmp);
}
rsp = &req->port[0];
ibp = to_iport(ibdev, port_num);
ppd = ppd_from_ibp(ibp);
memset(rsp, 0, sizeof(*rsp));
rsp->port_number = port_num;
pma_get_opa_port_ectrs(ibdev, rsp, port_num);
rsp->port_rcv_remote_physical_errors =
cpu_to_be64(read_dev_cntr(dd, C_DC_RMT_PHY_ERR,
CNTR_INVALID_VL));
rsp->fm_config_errors =
cpu_to_be64(read_dev_cntr(dd, C_DC_FM_CFG_ERR,
CNTR_INVALID_VL));
tmp = read_dev_cntr(dd, C_DC_UNC_ERR, CNTR_INVALID_VL);
rsp->uncorrectable_errors = tmp < 0x100 ? (tmp & 0xff) : 0xff;
rsp->port_rcv_errors =
cpu_to_be64(read_dev_cntr(dd, C_DC_RCV_ERR, CNTR_INVALID_VL));
vlinfo = &rsp->vls[0];
vfi = 0;
vl_select_mask = be32_to_cpu(req->vl_select_mask);
for_each_set_bit(vl, (unsigned long *)&(vl_select_mask),
8 * sizeof(req->vl_select_mask)) {
memset(vlinfo, 0, sizeof(*vlinfo));
rsp->vls[vfi].port_vl_xmit_discards =
cpu_to_be64(read_port_cntr(ppd, C_SW_XMIT_DSCD_VL,
idx_from_vl(vl)));
vlinfo += 1;
vfi++;
}
if (resp_len)
*resp_len += response_data_size;
return reply((struct ib_mad_hdr *)pmp);
}
static int pma_get_ib_portcounters(struct ib_pma_mad *pmp,
struct ib_device *ibdev, u8 port)
{
struct ib_pma_portcounters *p = (struct ib_pma_portcounters *)
pmp->data;
struct _port_ectrs rsp;
u64 temp_link_overrun_errors;
u64 temp_64;
u32 temp_32;
memset(&rsp, 0, sizeof(rsp));
pma_get_opa_port_ectrs(ibdev, &rsp, port);
if (pmp->mad_hdr.attr_mod != 0 || p->port_select != port) {
pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD;
goto bail;
}
p->symbol_error_counter = 0; /* N/A for OPA */
temp_32 = be32_to_cpu(rsp.link_error_recovery);
if (temp_32 > 0xFFUL)
p->link_error_recovery_counter = 0xFF;
else
p->link_error_recovery_counter = (u8)temp_32;
temp_32 = be32_to_cpu(rsp.link_downed);
if (temp_32 > 0xFFUL)
p->link_downed_counter = 0xFF;
else
p->link_downed_counter = (u8)temp_32;
temp_64 = be64_to_cpu(rsp.port_rcv_errors);
if (temp_64 > 0xFFFFUL)
p->port_rcv_errors = cpu_to_be16(0xFFFF);
else
p->port_rcv_errors = cpu_to_be16((u16)temp_64);
temp_64 = be64_to_cpu(rsp.port_rcv_remote_physical_errors);
if (temp_64 > 0xFFFFUL)
p->port_rcv_remphys_errors = cpu_to_be16(0xFFFF);
else
p->port_rcv_remphys_errors = cpu_to_be16((u16)temp_64);
temp_64 = be64_to_cpu(rsp.port_rcv_switch_relay_errors);
p->port_rcv_switch_relay_errors = cpu_to_be16((u16)temp_64);
temp_64 = be64_to_cpu(rsp.port_xmit_discards);
if (temp_64 > 0xFFFFUL)
p->port_xmit_discards = cpu_to_be16(0xFFFF);
else
p->port_xmit_discards = cpu_to_be16((u16)temp_64);
temp_64 = be64_to_cpu(rsp.port_xmit_constraint_errors);
if (temp_64 > 0xFFUL)
p->port_xmit_constraint_errors = 0xFF;
else
p->port_xmit_constraint_errors = (u8)temp_64;
temp_64 = be64_to_cpu(rsp.port_rcv_constraint_errors);
if (temp_64 > 0xFFUL)
p->port_rcv_constraint_errors = 0xFFUL;
else
p->port_rcv_constraint_errors = (u8)temp_64;
/* LocalLink: 7:4, BufferOverrun: 3:0 */
temp_64 = be64_to_cpu(rsp.local_link_integrity_errors);
if (temp_64 > 0xFUL)
temp_64 = 0xFUL;
temp_link_overrun_errors = temp_64 << 4;
temp_64 = be64_to_cpu(rsp.excessive_buffer_overruns);
if (temp_64 > 0xFUL)
temp_64 = 0xFUL;
temp_link_overrun_errors |= temp_64;
p->link_overrun_errors = (u8)temp_link_overrun_errors;
p->vl15_dropped = 0; /* N/A for OPA */
bail:
return reply((struct ib_mad_hdr *)pmp);
}
static int pma_get_opa_errorinfo(struct opa_pma_mad *pmp,
struct ib_device *ibdev,
u8 port, u32 *resp_len)
{
size_t response_data_size;
struct _port_ei *rsp;
struct opa_port_error_info_msg *req;
struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
u64 port_mask;
u32 num_ports;
u8 port_num;
u8 num_pslm;
u64 reg;
req = (struct opa_port_error_info_msg *)pmp->data;
rsp = &req->port[0];
num_ports = OPA_AM_NPORT(be32_to_cpu(pmp->mad_hdr.attr_mod));
num_pslm = hweight64(be64_to_cpu(req->port_select_mask[3]));
memset(rsp, 0, sizeof(*rsp));
if (num_ports != 1 || num_ports != num_pslm) {
pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)pmp);
}
/* Sanity check */
response_data_size = sizeof(struct opa_port_error_info_msg);
if (response_data_size > sizeof(pmp->data)) {
pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)pmp);
}
/*
* The bit set in the mask needs to be consistent with the port
* the request came in on.
*/
port_mask = be64_to_cpu(req->port_select_mask[3]);
port_num = find_first_bit((unsigned long *)&port_mask,
sizeof(port_mask) * 8);
if (port_num != port) {
pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)pmp);
}
/* PortRcvErrorInfo */
rsp->port_rcv_ei.status_and_code =
dd->err_info_rcvport.status_and_code;
memcpy(&rsp->port_rcv_ei.ei.ei1to12.packet_flit1,
&dd->err_info_rcvport.packet_flit1, sizeof(u64));
memcpy(&rsp->port_rcv_ei.ei.ei1to12.packet_flit2,
&dd->err_info_rcvport.packet_flit2, sizeof(u64));
/* ExcessiverBufferOverrunInfo */
reg = read_csr(dd, RCV_ERR_INFO);
if (reg & RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK) {
/*
* if the RcvExcessBufferOverrun bit is set, save SC of
* first pkt that encountered an excess buffer overrun
*/
u8 tmp = (u8)reg;
tmp &= RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SC_SMASK;
tmp <<= 2;
rsp->excessive_buffer_overrun_ei.status_and_sc = tmp;
/* set the status bit */
rsp->excessive_buffer_overrun_ei.status_and_sc |= 0x80;
}
rsp->port_xmit_constraint_ei.status =
dd->err_info_xmit_constraint.status;
rsp->port_xmit_constraint_ei.pkey =
cpu_to_be16(dd->err_info_xmit_constraint.pkey);
rsp->port_xmit_constraint_ei.slid =
cpu_to_be32(dd->err_info_xmit_constraint.slid);
rsp->port_rcv_constraint_ei.status =
dd->err_info_rcv_constraint.status;
rsp->port_rcv_constraint_ei.pkey =
cpu_to_be16(dd->err_info_rcv_constraint.pkey);
rsp->port_rcv_constraint_ei.slid =
cpu_to_be32(dd->err_info_rcv_constraint.slid);
/* UncorrectableErrorInfo */
rsp->uncorrectable_ei.status_and_code = dd->err_info_uncorrectable;
/* FMConfigErrorInfo */
rsp->fm_config_ei.status_and_code = dd->err_info_fmconfig;
if (resp_len)
*resp_len += response_data_size;
return reply((struct ib_mad_hdr *)pmp);
}
static int pma_set_opa_portstatus(struct opa_pma_mad *pmp,
struct ib_device *ibdev,
u8 port, u32 *resp_len)
{
struct opa_clear_port_status *req =
(struct opa_clear_port_status *)pmp->data;
struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
struct hfi1_ibport *ibp = to_iport(ibdev, port);
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
u32 nports = be32_to_cpu(pmp->mad_hdr.attr_mod) >> 24;
u64 portn = be64_to_cpu(req->port_select_mask[3]);
u32 counter_select = be32_to_cpu(req->counter_select_mask);
u32 vl_select_mask = VL_MASK_ALL; /* clear all per-vl cnts */
unsigned long vl;
if ((nports != 1) || (portn != 1 << port)) {
pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)pmp);
}
/*
* only counters returned by pma_get_opa_portstatus() are
* handled, so when pma_get_opa_portstatus() gets a fix,
* the corresponding change should be made here as well.
*/
if (counter_select & CS_PORT_XMIT_DATA)
write_dev_cntr(dd, C_DC_XMIT_FLITS, CNTR_INVALID_VL, 0);
if (counter_select & CS_PORT_RCV_DATA)
write_dev_cntr(dd, C_DC_RCV_FLITS, CNTR_INVALID_VL, 0);
if (counter_select & CS_PORT_XMIT_PKTS)
write_dev_cntr(dd, C_DC_XMIT_PKTS, CNTR_INVALID_VL, 0);
if (counter_select & CS_PORT_RCV_PKTS)
write_dev_cntr(dd, C_DC_RCV_PKTS, CNTR_INVALID_VL, 0);
if (counter_select & CS_PORT_MCAST_XMIT_PKTS)
write_dev_cntr(dd, C_DC_MC_XMIT_PKTS, CNTR_INVALID_VL, 0);
if (counter_select & CS_PORT_MCAST_RCV_PKTS)
write_dev_cntr(dd, C_DC_MC_RCV_PKTS, CNTR_INVALID_VL, 0);
if (counter_select & CS_PORT_XMIT_WAIT)
write_port_cntr(ppd, C_TX_WAIT, CNTR_INVALID_VL, 0);
/* ignore cs_sw_portCongestion for HFIs */
if (counter_select & CS_PORT_RCV_FECN)
write_dev_cntr(dd, C_DC_RCV_FCN, CNTR_INVALID_VL, 0);
if (counter_select & CS_PORT_RCV_BECN)
write_dev_cntr(dd, C_DC_RCV_BCN, CNTR_INVALID_VL, 0);
/* ignore cs_port_xmit_time_cong for HFIs */
/* ignore cs_port_xmit_wasted_bw for now */
/* ignore cs_port_xmit_wait_data for now */
if (counter_select & CS_PORT_RCV_BUBBLE)
write_dev_cntr(dd, C_DC_RCV_BBL, CNTR_INVALID_VL, 0);
/* Only applicable for switch */
/* if (counter_select & CS_PORT_MARK_FECN)
* write_csr(dd, DCC_PRF_PORT_MARK_FECN_CNT, 0);
*/
if (counter_select & CS_PORT_RCV_CONSTRAINT_ERRORS)
write_port_cntr(ppd, C_SW_RCV_CSTR_ERR, CNTR_INVALID_VL, 0);
/* ignore cs_port_rcv_switch_relay_errors for HFIs */
if (counter_select & CS_PORT_XMIT_DISCARDS)
write_port_cntr(ppd, C_SW_XMIT_DSCD, CNTR_INVALID_VL, 0);
if (counter_select & CS_PORT_XMIT_CONSTRAINT_ERRORS)
write_port_cntr(ppd, C_SW_XMIT_CSTR_ERR, CNTR_INVALID_VL, 0);
if (counter_select & CS_PORT_RCV_REMOTE_PHYSICAL_ERRORS)
write_dev_cntr(dd, C_DC_RMT_PHY_ERR, CNTR_INVALID_VL, 0);
if (counter_select & CS_LOCAL_LINK_INTEGRITY_ERRORS)
write_dev_cntr(dd, C_DC_RX_REPLAY, CNTR_INVALID_VL, 0);
if (counter_select & CS_LINK_ERROR_RECOVERY) {
write_dev_cntr(dd, C_DC_SEQ_CRC_CNT, CNTR_INVALID_VL, 0);
write_dev_cntr(dd, C_DC_REINIT_FROM_PEER_CNT,
CNTR_INVALID_VL, 0);
}
if (counter_select & CS_PORT_RCV_ERRORS)
write_dev_cntr(dd, C_DC_RCV_ERR, CNTR_INVALID_VL, 0);
if (counter_select & CS_EXCESSIVE_BUFFER_OVERRUNS) {
write_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL, 0);
dd->rcv_ovfl_cnt = 0;
}
if (counter_select & CS_FM_CONFIG_ERRORS)
write_dev_cntr(dd, C_DC_FM_CFG_ERR, CNTR_INVALID_VL, 0);
if (counter_select & CS_LINK_DOWNED)
write_port_cntr(ppd, C_SW_LINK_DOWN, CNTR_INVALID_VL, 0);
if (counter_select & CS_UNCORRECTABLE_ERRORS)
write_dev_cntr(dd, C_DC_UNC_ERR, CNTR_INVALID_VL, 0);
for_each_set_bit(vl, (unsigned long *)&(vl_select_mask),
8 * sizeof(vl_select_mask)) {
if (counter_select & CS_PORT_XMIT_DATA)
write_port_cntr(ppd, C_TX_FLIT_VL, idx_from_vl(vl), 0);
if (counter_select & CS_PORT_RCV_DATA)
write_dev_cntr(dd, C_DC_RX_FLIT_VL, idx_from_vl(vl), 0);
if (counter_select & CS_PORT_XMIT_PKTS)
write_port_cntr(ppd, C_TX_PKT_VL, idx_from_vl(vl), 0);
if (counter_select & CS_PORT_RCV_PKTS)
write_dev_cntr(dd, C_DC_RX_PKT_VL, idx_from_vl(vl), 0);
if (counter_select & CS_PORT_XMIT_WAIT)
write_port_cntr(ppd, C_TX_WAIT_VL, idx_from_vl(vl), 0);
/* sw_port_vl_congestion is 0 for HFIs */
if (counter_select & CS_PORT_RCV_FECN)
write_dev_cntr(dd, C_DC_RCV_FCN_VL, idx_from_vl(vl), 0);
if (counter_select & CS_PORT_RCV_BECN)
write_dev_cntr(dd, C_DC_RCV_BCN_VL, idx_from_vl(vl), 0);
/* port_vl_xmit_time_cong is 0 for HFIs */
/* port_vl_xmit_wasted_bw ??? */
/* port_vl_xmit_wait_data - TXE (table 13-9 HFI spec) ??? */
if (counter_select & CS_PORT_RCV_BUBBLE)
write_dev_cntr(dd, C_DC_RCV_BBL_VL, idx_from_vl(vl), 0);
/* if (counter_select & CS_PORT_MARK_FECN)
* write_csr(dd, DCC_PRF_PORT_VL_MARK_FECN_CNT + offset, 0);
*/
if (counter_select & C_SW_XMIT_DSCD_VL)
write_port_cntr(ppd, C_SW_XMIT_DSCD_VL,
idx_from_vl(vl), 0);
}
if (resp_len)
*resp_len += sizeof(*req);
return reply((struct ib_mad_hdr *)pmp);
}
static int pma_set_opa_errorinfo(struct opa_pma_mad *pmp,
struct ib_device *ibdev,
u8 port, u32 *resp_len)
{
struct _port_ei *rsp;
struct opa_port_error_info_msg *req;
struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
u64 port_mask;
u32 num_ports;
u8 port_num;
u8 num_pslm;
u32 error_info_select;
req = (struct opa_port_error_info_msg *)pmp->data;
rsp = &req->port[0];
num_ports = OPA_AM_NPORT(be32_to_cpu(pmp->mad_hdr.attr_mod));
num_pslm = hweight64(be64_to_cpu(req->port_select_mask[3]));
memset(rsp, 0, sizeof(*rsp));
if (num_ports != 1 || num_ports != num_pslm) {
pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)pmp);
}
/*
* The bit set in the mask needs to be consistent with the port
* the request came in on.
*/
port_mask = be64_to_cpu(req->port_select_mask[3]);
port_num = find_first_bit((unsigned long *)&port_mask,
sizeof(port_mask) * 8);
if (port_num != port) {
pmp->mad_hdr.status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)pmp);
}
error_info_select = be32_to_cpu(req->error_info_select_mask);
/* PortRcvErrorInfo */
if (error_info_select & ES_PORT_RCV_ERROR_INFO)
/* turn off status bit */
dd->err_info_rcvport.status_and_code &= ~OPA_EI_STATUS_SMASK;
/* ExcessiverBufferOverrunInfo */
if (error_info_select & ES_EXCESSIVE_BUFFER_OVERRUN_INFO)
/*
* status bit is essentially kept in the h/w - bit 5 of
* RCV_ERR_INFO
*/
write_csr(dd, RCV_ERR_INFO,
RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
if (error_info_select & ES_PORT_XMIT_CONSTRAINT_ERROR_INFO)
dd->err_info_xmit_constraint.status &= ~OPA_EI_STATUS_SMASK;
if (error_info_select & ES_PORT_RCV_CONSTRAINT_ERROR_INFO)
dd->err_info_rcv_constraint.status &= ~OPA_EI_STATUS_SMASK;
/* UncorrectableErrorInfo */
if (error_info_select & ES_UNCORRECTABLE_ERROR_INFO)
/* turn off status bit */
dd->err_info_uncorrectable &= ~OPA_EI_STATUS_SMASK;
/* FMConfigErrorInfo */
if (error_info_select & ES_FM_CONFIG_ERROR_INFO)
/* turn off status bit */
dd->err_info_fmconfig &= ~OPA_EI_STATUS_SMASK;
if (resp_len)
*resp_len += sizeof(*req);
return reply((struct ib_mad_hdr *)pmp);
}
struct opa_congestion_info_attr {
__be16 congestion_info;
u8 control_table_cap; /* Multiple of 64 entry unit CCTs */
u8 congestion_log_length;
} __packed;
static int __subn_get_opa_cong_info(struct opa_smp *smp, u32 am, u8 *data,
struct ib_device *ibdev, u8 port,
u32 *resp_len, u32 max_len)
{
struct opa_congestion_info_attr *p =
(struct opa_congestion_info_attr *)data;
struct hfi1_ibport *ibp = to_iport(ibdev, port);
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
if (smp_length_check(sizeof(*p), max_len)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
p->congestion_info = 0;
p->control_table_cap = ppd->cc_max_table_entries;
p->congestion_log_length = OPA_CONG_LOG_ELEMS;
if (resp_len)
*resp_len += sizeof(*p);
return reply((struct ib_mad_hdr *)smp);
}
static int __subn_get_opa_cong_setting(struct opa_smp *smp, u32 am,
u8 *data, struct ib_device *ibdev,
u8 port, u32 *resp_len, u32 max_len)
{
int i;
struct opa_congestion_setting_attr *p =
(struct opa_congestion_setting_attr *)data;
struct hfi1_ibport *ibp = to_iport(ibdev, port);
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
struct opa_congestion_setting_entry_shadow *entries;
struct cc_state *cc_state;
if (smp_length_check(sizeof(*p), max_len)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
rcu_read_lock();
cc_state = get_cc_state(ppd);
if (!cc_state) {
rcu_read_unlock();
return reply((struct ib_mad_hdr *)smp);
}
entries = cc_state->cong_setting.entries;
p->port_control = cpu_to_be16(cc_state->cong_setting.port_control);
p->control_map = cpu_to_be32(cc_state->cong_setting.control_map);
for (i = 0; i < OPA_MAX_SLS; i++) {
p->entries[i].ccti_increase = entries[i].ccti_increase;
p->entries[i].ccti_timer = cpu_to_be16(entries[i].ccti_timer);
p->entries[i].trigger_threshold =
entries[i].trigger_threshold;
p->entries[i].ccti_min = entries[i].ccti_min;
}
rcu_read_unlock();
if (resp_len)
*resp_len += sizeof(*p);
return reply((struct ib_mad_hdr *)smp);
}
/*
* Apply congestion control information stored in the ppd to the
* active structure.
*/
static void apply_cc_state(struct hfi1_pportdata *ppd)
{
struct cc_state *old_cc_state, *new_cc_state;
new_cc_state = kzalloc(sizeof(*new_cc_state), GFP_KERNEL);
if (!new_cc_state)
return;
/*
* Hold the lock for updating *and* to prevent ppd information
* from changing during the update.
*/
spin_lock(&ppd->cc_state_lock);
old_cc_state = get_cc_state_protected(ppd);
if (!old_cc_state) {
/* never active, or shutting down */
spin_unlock(&ppd->cc_state_lock);
kfree(new_cc_state);
return;
}
*new_cc_state = *old_cc_state;
if (ppd->total_cct_entry)
new_cc_state->cct.ccti_limit = ppd->total_cct_entry - 1;
else
new_cc_state->cct.ccti_limit = 0;
memcpy(new_cc_state->cct.entries, ppd->ccti_entries,
ppd->total_cct_entry * sizeof(struct ib_cc_table_entry));
new_cc_state->cong_setting.port_control = IB_CC_CCS_PC_SL_BASED;
new_cc_state->cong_setting.control_map = ppd->cc_sl_control_map;
memcpy(new_cc_state->cong_setting.entries, ppd->congestion_entries,
OPA_MAX_SLS * sizeof(struct opa_congestion_setting_entry));
rcu_assign_pointer(ppd->cc_state, new_cc_state);
spin_unlock(&ppd->cc_state_lock);
kfree_rcu(old_cc_state, rcu);
}
static int __subn_set_opa_cong_setting(struct opa_smp *smp, u32 am, u8 *data,
struct ib_device *ibdev, u8 port,
u32 *resp_len, u32 max_len)
{
struct opa_congestion_setting_attr *p =
(struct opa_congestion_setting_attr *)data;
struct hfi1_ibport *ibp = to_iport(ibdev, port);
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
struct opa_congestion_setting_entry_shadow *entries;
int i;
if (smp_length_check(sizeof(*p), max_len)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
/*
* Save details from packet into the ppd. Hold the cc_state_lock so
* our information is consistent with anyone trying to apply the state.
*/
spin_lock(&ppd->cc_state_lock);
ppd->cc_sl_control_map = be32_to_cpu(p->control_map);
entries = ppd->congestion_entries;
for (i = 0; i < OPA_MAX_SLS; i++) {
entries[i].ccti_increase = p->entries[i].ccti_increase;
entries[i].ccti_timer = be16_to_cpu(p->entries[i].ccti_timer);
entries[i].trigger_threshold =
p->entries[i].trigger_threshold;
entries[i].ccti_min = p->entries[i].ccti_min;
}
spin_unlock(&ppd->cc_state_lock);
/* now apply the information */
apply_cc_state(ppd);
return __subn_get_opa_cong_setting(smp, am, data, ibdev, port,
resp_len, max_len);
}
static int __subn_get_opa_hfi1_cong_log(struct opa_smp *smp, u32 am,
u8 *data, struct ib_device *ibdev,
u8 port, u32 *resp_len, u32 max_len)
{
struct hfi1_ibport *ibp = to_iport(ibdev, port);
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
struct opa_hfi1_cong_log *cong_log = (struct opa_hfi1_cong_log *)data;
u64 ts;
int i;
if (am || smp_length_check(sizeof(*cong_log), max_len)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
spin_lock_irq(&ppd->cc_log_lock);
cong_log->log_type = OPA_CC_LOG_TYPE_HFI;
cong_log->congestion_flags = 0;
cong_log->threshold_event_counter =
cpu_to_be16(ppd->threshold_event_counter);
memcpy(cong_log->threshold_cong_event_map,
ppd->threshold_cong_event_map,
sizeof(cong_log->threshold_cong_event_map));
/* keep timestamp in units of 1.024 usec */
ts = ktime_get_ns() / 1024;
cong_log->current_time_stamp = cpu_to_be32(ts);
for (i = 0; i < OPA_CONG_LOG_ELEMS; i++) {
struct opa_hfi1_cong_log_event_internal *cce =
&ppd->cc_events[ppd->cc_mad_idx++];
if (ppd->cc_mad_idx == OPA_CONG_LOG_ELEMS)
ppd->cc_mad_idx = 0;
/*
* Entries which are older than twice the time
* required to wrap the counter are supposed to
* be zeroed (CA10-49 IBTA, release 1.2.1, V1).
*/
if ((ts - cce->timestamp) / 2 > U32_MAX)
continue;
memcpy(cong_log->events[i].local_qp_cn_entry, &cce->lqpn, 3);
memcpy(cong_log->events[i].remote_qp_number_cn_entry,
&cce->rqpn, 3);
cong_log->events[i].sl_svc_type_cn_entry =
((cce->sl & 0x1f) << 3) | (cce->svc_type & 0x7);
cong_log->events[i].remote_lid_cn_entry =
cpu_to_be32(cce->rlid);
cong_log->events[i].timestamp_cn_entry =
cpu_to_be32(cce->timestamp);
}
/*
* Reset threshold_cong_event_map, and threshold_event_counter
* to 0 when log is read.
*/
memset(ppd->threshold_cong_event_map, 0x0,
sizeof(ppd->threshold_cong_event_map));
ppd->threshold_event_counter = 0;
spin_unlock_irq(&ppd->cc_log_lock);
if (resp_len)
*resp_len += sizeof(struct opa_hfi1_cong_log);
return reply((struct ib_mad_hdr *)smp);
}
static int __subn_get_opa_cc_table(struct opa_smp *smp, u32 am, u8 *data,
struct ib_device *ibdev, u8 port,
u32 *resp_len, u32 max_len)
{
struct ib_cc_table_attr *cc_table_attr =
(struct ib_cc_table_attr *)data;
struct hfi1_ibport *ibp = to_iport(ibdev, port);
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
u32 start_block = OPA_AM_START_BLK(am);
u32 n_blocks = OPA_AM_NBLK(am);
struct ib_cc_table_entry_shadow *entries;
int i, j;
u32 sentry, eentry;
struct cc_state *cc_state;
u32 size = sizeof(u16) * (IB_CCT_ENTRIES * n_blocks + 1);
/* sanity check n_blocks, start_block */
if (n_blocks == 0 || smp_length_check(size, max_len) ||
start_block + n_blocks > ppd->cc_max_table_entries) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
rcu_read_lock();
cc_state = get_cc_state(ppd);
if (!cc_state) {
rcu_read_unlock();
return reply((struct ib_mad_hdr *)smp);
}
sentry = start_block * IB_CCT_ENTRIES;
eentry = sentry + (IB_CCT_ENTRIES * n_blocks);
cc_table_attr->ccti_limit = cpu_to_be16(cc_state->cct.ccti_limit);
entries = cc_state->cct.entries;
/* return n_blocks, though the last block may not be full */
for (j = 0, i = sentry; i < eentry; j++, i++)
cc_table_attr->ccti_entries[j].entry =
cpu_to_be16(entries[i].entry);
rcu_read_unlock();
if (resp_len)
*resp_len += size;
return reply((struct ib_mad_hdr *)smp);
}
static int __subn_set_opa_cc_table(struct opa_smp *smp, u32 am, u8 *data,
struct ib_device *ibdev, u8 port,
u32 *resp_len, u32 max_len)
{
struct ib_cc_table_attr *p = (struct ib_cc_table_attr *)data;
struct hfi1_ibport *ibp = to_iport(ibdev, port);
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
u32 start_block = OPA_AM_START_BLK(am);
u32 n_blocks = OPA_AM_NBLK(am);
struct ib_cc_table_entry_shadow *entries;
int i, j;
u32 sentry, eentry;
u16 ccti_limit;
u32 size = sizeof(u16) * (IB_CCT_ENTRIES * n_blocks + 1);
/* sanity check n_blocks, start_block */
if (n_blocks == 0 || smp_length_check(size, max_len) ||
start_block + n_blocks > ppd->cc_max_table_entries) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
sentry = start_block * IB_CCT_ENTRIES;
eentry = sentry + ((n_blocks - 1) * IB_CCT_ENTRIES) +
(be16_to_cpu(p->ccti_limit)) % IB_CCT_ENTRIES + 1;
/* sanity check ccti_limit */
ccti_limit = be16_to_cpu(p->ccti_limit);
if (ccti_limit + 1 > eentry) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
/*
* Save details from packet into the ppd. Hold the cc_state_lock so
* our information is consistent with anyone trying to apply the state.
*/
spin_lock(&ppd->cc_state_lock);
ppd->total_cct_entry = ccti_limit + 1;
entries = ppd->ccti_entries;
for (j = 0, i = sentry; i < eentry; j++, i++)
entries[i].entry = be16_to_cpu(p->ccti_entries[j].entry);
spin_unlock(&ppd->cc_state_lock);
/* now apply the information */
apply_cc_state(ppd);
return __subn_get_opa_cc_table(smp, am, data, ibdev, port, resp_len,
max_len);
}
struct opa_led_info {
__be32 rsvd_led_mask;
__be32 rsvd;
};
#define OPA_LED_SHIFT 31
#define OPA_LED_MASK BIT(OPA_LED_SHIFT)
static int __subn_get_opa_led_info(struct opa_smp *smp, u32 am, u8 *data,
struct ib_device *ibdev, u8 port,
u32 *resp_len, u32 max_len)
{
struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
struct hfi1_pportdata *ppd = dd->pport;
struct opa_led_info *p = (struct opa_led_info *)data;
u32 nport = OPA_AM_NPORT(am);
u32 is_beaconing_active;
if (nport != 1 || smp_length_check(sizeof(*p), max_len)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
/*
* This pairs with the memory barrier in hfi1_start_led_override to
* ensure that we read the correct state of LED beaconing represented
* by led_override_timer_active
*/
smp_rmb();
is_beaconing_active = !!atomic_read(&ppd->led_override_timer_active);
p->rsvd_led_mask = cpu_to_be32(is_beaconing_active << OPA_LED_SHIFT);
if (resp_len)
*resp_len += sizeof(struct opa_led_info);
return reply((struct ib_mad_hdr *)smp);
}
static int __subn_set_opa_led_info(struct opa_smp *smp, u32 am, u8 *data,
struct ib_device *ibdev, u8 port,
u32 *resp_len, u32 max_len)
{
struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
struct opa_led_info *p = (struct opa_led_info *)data;
u32 nport = OPA_AM_NPORT(am);
int on = !!(be32_to_cpu(p->rsvd_led_mask) & OPA_LED_MASK);
if (nport != 1 || smp_length_check(sizeof(*p), max_len)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
if (on)
hfi1_start_led_override(dd->pport, 2000, 1500);
else
shutdown_led_override(dd->pport);
return __subn_get_opa_led_info(smp, am, data, ibdev, port, resp_len,
max_len);
}
static int subn_get_opa_sma(__be16 attr_id, struct opa_smp *smp, u32 am,
u8 *data, struct ib_device *ibdev, u8 port,
u32 *resp_len, u32 max_len)
{
int ret;
struct hfi1_ibport *ibp = to_iport(ibdev, port);
switch (attr_id) {
case IB_SMP_ATTR_NODE_DESC:
ret = __subn_get_opa_nodedesc(smp, am, data, ibdev, port,
resp_len, max_len);
break;
case IB_SMP_ATTR_NODE_INFO:
ret = __subn_get_opa_nodeinfo(smp, am, data, ibdev, port,
resp_len, max_len);
break;
case IB_SMP_ATTR_PORT_INFO:
ret = __subn_get_opa_portinfo(smp, am, data, ibdev, port,
resp_len, max_len);
break;
case IB_SMP_ATTR_PKEY_TABLE:
ret = __subn_get_opa_pkeytable(smp, am, data, ibdev, port,
resp_len, max_len);
break;
case OPA_ATTRIB_ID_SL_TO_SC_MAP:
ret = __subn_get_opa_sl_to_sc(smp, am, data, ibdev, port,
resp_len, max_len);
break;
case OPA_ATTRIB_ID_SC_TO_SL_MAP:
ret = __subn_get_opa_sc_to_sl(smp, am, data, ibdev, port,
resp_len, max_len);
break;
case OPA_ATTRIB_ID_SC_TO_VLT_MAP:
ret = __subn_get_opa_sc_to_vlt(smp, am, data, ibdev, port,
resp_len, max_len);
break;
case OPA_ATTRIB_ID_SC_TO_VLNT_MAP:
ret = __subn_get_opa_sc_to_vlnt(smp, am, data, ibdev, port,
resp_len, max_len);
break;
case OPA_ATTRIB_ID_PORT_STATE_INFO:
ret = __subn_get_opa_psi(smp, am, data, ibdev, port,
resp_len, max_len);
break;
case OPA_ATTRIB_ID_BUFFER_CONTROL_TABLE:
ret = __subn_get_opa_bct(smp, am, data, ibdev, port,
resp_len, max_len);
break;
case OPA_ATTRIB_ID_CABLE_INFO:
ret = __subn_get_opa_cable_info(smp, am, data, ibdev, port,
resp_len, max_len);
break;
case IB_SMP_ATTR_VL_ARB_TABLE:
ret = __subn_get_opa_vl_arb(smp, am, data, ibdev, port,
resp_len, max_len);
break;
case OPA_ATTRIB_ID_CONGESTION_INFO:
ret = __subn_get_opa_cong_info(smp, am, data, ibdev, port,
resp_len, max_len);
break;
case OPA_ATTRIB_ID_HFI_CONGESTION_SETTING:
ret = __subn_get_opa_cong_setting(smp, am, data, ibdev,
port, resp_len, max_len);
break;
case OPA_ATTRIB_ID_HFI_CONGESTION_LOG:
ret = __subn_get_opa_hfi1_cong_log(smp, am, data, ibdev,
port, resp_len, max_len);
break;
case OPA_ATTRIB_ID_CONGESTION_CONTROL_TABLE:
ret = __subn_get_opa_cc_table(smp, am, data, ibdev, port,
resp_len, max_len);
break;
case IB_SMP_ATTR_LED_INFO:
ret = __subn_get_opa_led_info(smp, am, data, ibdev, port,
resp_len, max_len);
break;
case IB_SMP_ATTR_SM_INFO:
if (ibp->rvp.port_cap_flags & IB_PORT_SM_DISABLED)
return IB_MAD_RESULT_SUCCESS | IB_MAD_RESULT_CONSUMED;
if (ibp->rvp.port_cap_flags & IB_PORT_SM)
return IB_MAD_RESULT_SUCCESS;
/* FALLTHROUGH */
default:
smp->status |= IB_SMP_UNSUP_METH_ATTR;
ret = reply((struct ib_mad_hdr *)smp);
break;
}
return ret;
}
static int subn_set_opa_sma(__be16 attr_id, struct opa_smp *smp, u32 am,
u8 *data, struct ib_device *ibdev, u8 port,
u32 *resp_len, u32 max_len)
{
int ret;
struct hfi1_ibport *ibp = to_iport(ibdev, port);
switch (attr_id) {
case IB_SMP_ATTR_PORT_INFO:
ret = __subn_set_opa_portinfo(smp, am, data, ibdev, port,
resp_len, max_len);
break;
case IB_SMP_ATTR_PKEY_TABLE:
ret = __subn_set_opa_pkeytable(smp, am, data, ibdev, port,
resp_len, max_len);
break;
case OPA_ATTRIB_ID_SL_TO_SC_MAP:
ret = __subn_set_opa_sl_to_sc(smp, am, data, ibdev, port,
resp_len, max_len);
break;
case OPA_ATTRIB_ID_SC_TO_SL_MAP:
ret = __subn_set_opa_sc_to_sl(smp, am, data, ibdev, port,
resp_len, max_len);
break;
case OPA_ATTRIB_ID_SC_TO_VLT_MAP:
ret = __subn_set_opa_sc_to_vlt(smp, am, data, ibdev, port,
resp_len, max_len);
break;
case OPA_ATTRIB_ID_SC_TO_VLNT_MAP:
ret = __subn_set_opa_sc_to_vlnt(smp, am, data, ibdev, port,
resp_len, max_len);
break;
case OPA_ATTRIB_ID_PORT_STATE_INFO:
ret = __subn_set_opa_psi(smp, am, data, ibdev, port,
resp_len, max_len);
break;
case OPA_ATTRIB_ID_BUFFER_CONTROL_TABLE:
ret = __subn_set_opa_bct(smp, am, data, ibdev, port,
resp_len, max_len);
break;
case IB_SMP_ATTR_VL_ARB_TABLE:
ret = __subn_set_opa_vl_arb(smp, am, data, ibdev, port,
resp_len, max_len);
break;
case OPA_ATTRIB_ID_HFI_CONGESTION_SETTING:
ret = __subn_set_opa_cong_setting(smp, am, data, ibdev,
port, resp_len, max_len);
break;
case OPA_ATTRIB_ID_CONGESTION_CONTROL_TABLE:
ret = __subn_set_opa_cc_table(smp, am, data, ibdev, port,
resp_len, max_len);
break;
case IB_SMP_ATTR_LED_INFO:
ret = __subn_set_opa_led_info(smp, am, data, ibdev, port,
resp_len, max_len);
break;
case IB_SMP_ATTR_SM_INFO:
if (ibp->rvp.port_cap_flags & IB_PORT_SM_DISABLED)
return IB_MAD_RESULT_SUCCESS | IB_MAD_RESULT_CONSUMED;
if (ibp->rvp.port_cap_flags & IB_PORT_SM)
return IB_MAD_RESULT_SUCCESS;
/* FALLTHROUGH */
default:
smp->status |= IB_SMP_UNSUP_METH_ATTR;
ret = reply((struct ib_mad_hdr *)smp);
break;
}
return ret;
}
static inline void set_aggr_error(struct opa_aggregate *ag)
{
ag->err_reqlength |= cpu_to_be16(0x8000);
}
static int subn_get_opa_aggregate(struct opa_smp *smp,
struct ib_device *ibdev, u8 port,
u32 *resp_len)
{
int i;
u32 num_attr = be32_to_cpu(smp->attr_mod) & 0x000000ff;
u8 *next_smp = opa_get_smp_data(smp);
if (num_attr < 1 || num_attr > 117) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
for (i = 0; i < num_attr; i++) {
struct opa_aggregate *agg;
size_t agg_data_len;
size_t agg_size;
u32 am;
agg = (struct opa_aggregate *)next_smp;
agg_data_len = (be16_to_cpu(agg->err_reqlength) & 0x007f) * 8;
agg_size = sizeof(*agg) + agg_data_len;
am = be32_to_cpu(agg->attr_mod);
*resp_len += agg_size;
if (next_smp + agg_size > ((u8 *)smp) + sizeof(*smp)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
/* zero the payload for this segment */
memset(next_smp + sizeof(*agg), 0, agg_data_len);
(void)subn_get_opa_sma(agg->attr_id, smp, am, agg->data,
ibdev, port, NULL, (u32)agg_data_len);
if (smp->status & IB_SMP_INVALID_FIELD)
break;
if (smp->status & ~IB_SMP_DIRECTION) {
set_aggr_error(agg);
return reply((struct ib_mad_hdr *)smp);
}
next_smp += agg_size;
}
return reply((struct ib_mad_hdr *)smp);
}
static int subn_set_opa_aggregate(struct opa_smp *smp,
struct ib_device *ibdev, u8 port,
u32 *resp_len)
{
int i;
u32 num_attr = be32_to_cpu(smp->attr_mod) & 0x000000ff;
u8 *next_smp = opa_get_smp_data(smp);
if (num_attr < 1 || num_attr > 117) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
for (i = 0; i < num_attr; i++) {
struct opa_aggregate *agg;
size_t agg_data_len;
size_t agg_size;
u32 am;
agg = (struct opa_aggregate *)next_smp;
agg_data_len = (be16_to_cpu(agg->err_reqlength) & 0x007f) * 8;
agg_size = sizeof(*agg) + agg_data_len;
am = be32_to_cpu(agg->attr_mod);
*resp_len += agg_size;
if (next_smp + agg_size > ((u8 *)smp) + sizeof(*smp)) {
smp->status |= IB_SMP_INVALID_FIELD;
return reply((struct ib_mad_hdr *)smp);
}
(void)subn_set_opa_sma(agg->attr_id, smp, am, agg->data,
ibdev, port, NULL, (u32)agg_data_len);
if (smp->status & IB_SMP_INVALID_FIELD)
break;
if (smp->status & ~IB_SMP_DIRECTION) {
set_aggr_error(agg);
return reply((struct ib_mad_hdr *)smp);
}
next_smp += agg_size;
}
return reply((struct ib_mad_hdr *)smp);
}
/*
* OPAv1 specifies that, on the transition to link up, these counters
* are cleared:
* PortRcvErrors [*]
* LinkErrorRecovery
* LocalLinkIntegrityErrors
* ExcessiveBufferOverruns [*]
*
* [*] Error info associated with these counters is retained, but the
* error info status is reset to 0.
*/
void clear_linkup_counters(struct hfi1_devdata *dd)
{
/* PortRcvErrors */
write_dev_cntr(dd, C_DC_RCV_ERR, CNTR_INVALID_VL, 0);
dd->err_info_rcvport.status_and_code &= ~OPA_EI_STATUS_SMASK;
/* LinkErrorRecovery */
write_dev_cntr(dd, C_DC_SEQ_CRC_CNT, CNTR_INVALID_VL, 0);
write_dev_cntr(dd, C_DC_REINIT_FROM_PEER_CNT, CNTR_INVALID_VL, 0);
/* LocalLinkIntegrityErrors */
write_dev_cntr(dd, C_DC_RX_REPLAY, CNTR_INVALID_VL, 0);
/* ExcessiveBufferOverruns */
write_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL, 0);
dd->rcv_ovfl_cnt = 0;
dd->err_info_xmit_constraint.status &= ~OPA_EI_STATUS_SMASK;
}
IB/hfi1: Validate PKEY for incoming GSI MAD packets These are the use-cases where the pkey needs to be tested to see if a packet needs to be dropped. a) Check if pkey is not FULL_MGMT_P_KEY or LIM_MGMT_P_KEY, drop the packet as it's not part of the management partition. Self-originated packets are an exception. b) If pkey index points to FULL_MGMT_P_KEY and LIM_MGMT_P_KEY is in the table, the packet is coming from a management node, and the receiving node is also a management node, so it is safe for the packet to go through. c) If pkey index points to FULL_MGMT_P_KEY and LIM_MGMT_P_KEY is NOT in the table, drop the packet as LIM_MGMT_P_KEY should always be in the pkey table. It could be a misconfiguration. d) If pkey index points to LIM_MGMT_P_KEY and FULL_MGMT_P_KEY is NOT in the table, it is safe for the packet to go through since a non-management node is talking to another non-managment node. e) If pkey index points to LIM_MGMT_P_KEY and FULL_MGMT_P_KEY is in the table, drop the packet because a non-management node is talking to a management node, and it could be an attack. For the implementation, these rules can be simplied to only checking for (a) and (e). There's no need to check for rule (b) as the packet doesn't need to be dropped. Rule (c) is not possible in the driver as LIM_MGMT_P_KEY is always in the pkey table. Reviewed-by: Michael J. Ruhl <michael.j.ruhl@intel.com> Signed-off-by: Sebastian Sanchez <sebastian.sanchez@intel.com> Signed-off-by: Dennis Dalessandro <dennis.dalessandro@intel.com> Signed-off-by: Doug Ledford <dledford@redhat.com>
2017-10-25 22:15:18 +07:00
static int is_full_mgmt_pkey_in_table(struct hfi1_ibport *ibp)
{
unsigned int i;
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
for (i = 0; i < ARRAY_SIZE(ppd->pkeys); ++i)
if (ppd->pkeys[i] == FULL_MGMT_P_KEY)
return 1;
return 0;
}
/*
* is_local_mad() returns 1 if 'mad' is sent from, and destined to the
* local node, 0 otherwise.
*/
static int is_local_mad(struct hfi1_ibport *ibp, const struct opa_mad *mad,
const struct ib_wc *in_wc)
{
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
const struct opa_smp *smp = (const struct opa_smp *)mad;
if (smp->mgmt_class == IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE) {
return (smp->hop_cnt == 0 &&
smp->route.dr.dr_slid == OPA_LID_PERMISSIVE &&
smp->route.dr.dr_dlid == OPA_LID_PERMISSIVE);
}
return (in_wc->slid == ppd->lid);
}
/*
* opa_local_smp_check() should only be called on MADs for which
* is_local_mad() returns true. It applies the SMP checks that are
* specific to SMPs which are sent from, and destined to this node.
* opa_local_smp_check() returns 0 if the SMP passes its checks, 1
* otherwise.
*
* SMPs which arrive from other nodes are instead checked by
* opa_smp_check().
*/
static int opa_local_smp_check(struct hfi1_ibport *ibp,
const struct ib_wc *in_wc)
{
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
u16 pkey;
if (in_wc->pkey_index >= ARRAY_SIZE(ppd->pkeys))
return 1;
pkey = ppd->pkeys[in_wc->pkey_index];
/*
* We need to do the "node-local" checks specified in OPAv1,
* rev 0.90, section 9.10.26, which are:
* - pkey is 0x7fff, or 0xffff
* - Source QPN == 0 || Destination QPN == 0
* - the MAD header's management class is either
* IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE or
* IB_MGMT_CLASS_SUBN_LID_ROUTED
* - SLID != 0
*
* However, we know (and so don't need to check again) that,
* for local SMPs, the MAD stack passes MADs with:
* - Source QPN of 0
* - MAD mgmt_class is IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE
* - SLID is either: OPA_LID_PERMISSIVE (0xFFFFFFFF), or
* our own port's lid
*
*/
if (pkey == LIM_MGMT_P_KEY || pkey == FULL_MGMT_P_KEY)
return 0;
IB/hfi1: Do not warn on lid conversions for OPA On OPA devices opa_local_smp_check will receive 32Bit LIDs when the LID is Extended. In such cases, it is okay to lose the upper 16 bits of the LID as this information is obtained elsewhere. Do not issue a warning when calling ib_lid_cpu16() in this case by masking out the upper 16Bits. [75920.148985] ------------[ cut here ]------------ [75920.154651] WARNING: CPU: 0 PID: 1718 at ./include/rdma/ib_verbs.h:3788 hfi1_process_mad+0x1c1f/0x1c80 [hfi1] [75920.166192] Modules linked in: ib_ipoib hfi1(E) rdmavt(E) rdma_ucm(E) ib_ucm(E) rdma_cm(E) ib_cm(E) iw_cm(E) ib_umad(E) ib_uverbs(E) ib_core(E) libiscsi scsi_transport_iscsi dm_mirror dm_region_hash dm_log dm_mod dax x86_pkg_temp_thermal intel_powerclamp coretemp kvm irqbypass crct10dif_pclmul crc32_pclmul ghash_clmulni_intel pcbc aesni_intel mei_me ipmi_si iTCO_wdt iTCO_vendor_support crypto_simd ipmi_devintf pcspkr mei sg i2c_i801 glue_helper lpc_ich shpchp ioatdma mfd_core wmi ipmi_msghandler cryptd acpi_power_meter acpi_pad nfsd auth_rpcgss nfs_acl lockd grace sunrpc ip_tables xfs libcrc32c sd_mod mgag200 drm_kms_helper syscopyarea sysfillrect sysimgblt fb_sys_fops ttm drm igb ptp ahci libahci pps_core crc32c_intel libata dca i2c_algo_bit i2c_core [last unloaded: ib_core] [75920.246331] CPU: 0 PID: 1718 Comm: kworker/0:1H Tainted: G W I E 4.13.0-rc7+ #1 [75920.255907] Hardware name: Intel Corporation S2600WT2/S2600WT2, BIOS SE5C610.86B.01.01.0008.021120151325 02/11/2015 [75920.268158] Workqueue: ib-comp-wq ib_cq_poll_work [ib_core] [75920.274934] task: ffff88084a718000 task.stack: ffffc9000a424000 [75920.282123] RIP: 0010:hfi1_process_mad+0x1c1f/0x1c80 [hfi1] [75920.288881] RSP: 0018:ffffc9000a427c38 EFLAGS: 00010206 [75920.295265] RAX: 0000000000010001 RBX: ffff8808361420e8 RCX: ffff880837811d80 [75920.303784] RDX: 0000000000000002 RSI: 0000000000007fff RDI: ffff880837811d80 [75920.312302] RBP: ffffc9000a427d38 R08: 0000000000000000 R09: ffff8808361420e8 [75920.320819] R10: ffff88083841f0e8 R11: ffffc9000a427da8 R12: 0000000000000001 [75920.329335] R13: ffff880837810000 R14: 0000000000000000 R15: ffff88084f1a4800 [75920.337849] FS: 0000000000000000(0000) GS:ffff88085f400000(0000) knlGS:0000000000000000 [75920.347450] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [75920.354405] CR2: 00007f9e4b3d9000 CR3: 0000000001c09000 CR4: 00000000001406f0 [75920.362947] Call Trace: [75920.366257] ? ib_mad_recv_done+0x258/0x9b0 [ib_core] [75920.372457] ? ib_mad_recv_done+0x258/0x9b0 [ib_core] [75920.378652] ? __kmalloc+0x1df/0x210 [75920.383229] ib_mad_recv_done+0x305/0x9b0 [ib_core] [75920.389270] __ib_process_cq+0x5d/0xb0 [ib_core] [75920.395032] ib_cq_poll_work+0x20/0x60 [ib_core] [75920.400777] process_one_work+0x149/0x360 [75920.405836] worker_thread+0x4d/0x3c0 [75920.410505] kthread+0x109/0x140 [75920.414681] ? rescuer_thread+0x380/0x380 [75920.419731] ? kthread_park+0x60/0x60 [75920.424406] ret_from_fork+0x25/0x30 [75920.428972] Code: 4c 89 9d 58 ff ff ff 49 89 45 00 66 b8 00 02 49 89 45 08 e8 44 27 89 e0 4c 8b 9d 58 ff ff ff e9 d8 f6 ff ff 0f ff e9 55 e7 ff ff <0f> ff e9 3b e5 ff ff 0f ff 0f 1f 84 00 00 00 00 00 e9 4b e9 ff [75921.451269] ---[ end trace cf26df27c9597265 ]--- Fixes: 62ede7779904 ("Add OPA extended LID support") Reviewed-by: Mike Marciniszyn <mike.marciniszyn@intel.com> Signed-off-by: Don Hiatt <don.hiatt@intel.com> Signed-off-by: Dennis Dalessandro <dennis.dalessandro@intel.com> Reviewed-by: Leon Romanovsky <leonro@mellanox.com> Signed-off-by: Doug Ledford <dledford@redhat.com>
2017-10-03 01:04:55 +07:00
/*
* On OPA devices it is okay to lose the upper 16 bits of LID as this
* information is obtained elsewhere. Mask off the upper 16 bits.
*/
ingress_pkey_table_fail(ppd, pkey, ib_lid_cpu16(0xFFFF & in_wc->slid));
return 1;
}
IB/hfi1: Validate PKEY for incoming GSI MAD packets These are the use-cases where the pkey needs to be tested to see if a packet needs to be dropped. a) Check if pkey is not FULL_MGMT_P_KEY or LIM_MGMT_P_KEY, drop the packet as it's not part of the management partition. Self-originated packets are an exception. b) If pkey index points to FULL_MGMT_P_KEY and LIM_MGMT_P_KEY is in the table, the packet is coming from a management node, and the receiving node is also a management node, so it is safe for the packet to go through. c) If pkey index points to FULL_MGMT_P_KEY and LIM_MGMT_P_KEY is NOT in the table, drop the packet as LIM_MGMT_P_KEY should always be in the pkey table. It could be a misconfiguration. d) If pkey index points to LIM_MGMT_P_KEY and FULL_MGMT_P_KEY is NOT in the table, it is safe for the packet to go through since a non-management node is talking to another non-managment node. e) If pkey index points to LIM_MGMT_P_KEY and FULL_MGMT_P_KEY is in the table, drop the packet because a non-management node is talking to a management node, and it could be an attack. For the implementation, these rules can be simplied to only checking for (a) and (e). There's no need to check for rule (b) as the packet doesn't need to be dropped. Rule (c) is not possible in the driver as LIM_MGMT_P_KEY is always in the pkey table. Reviewed-by: Michael J. Ruhl <michael.j.ruhl@intel.com> Signed-off-by: Sebastian Sanchez <sebastian.sanchez@intel.com> Signed-off-by: Dennis Dalessandro <dennis.dalessandro@intel.com> Signed-off-by: Doug Ledford <dledford@redhat.com>
2017-10-25 22:15:18 +07:00
/**
* hfi1_pkey_validation_pma - It validates PKEYs for incoming PMA MAD packets.
* @ibp: IB port data
* @in_mad: MAD packet with header and data
* @in_wc: Work completion data such as source LID, port number, etc.
*
* These are all the possible logic rules for validating a pkey:
*
* a) If pkey neither FULL_MGMT_P_KEY nor LIM_MGMT_P_KEY,
* and NOT self-originated packet:
* Drop MAD packet as it should always be part of the
* management partition unless it's a self-originated packet.
*
* b) If pkey_index -> FULL_MGMT_P_KEY, and LIM_MGMT_P_KEY in pkey table:
* The packet is coming from a management node and the receiving node
* is also a management node, so it is safe for the packet to go through.
*
* c) If pkey_index -> FULL_MGMT_P_KEY, and LIM_MGMT_P_KEY is NOT in pkey table:
* Drop the packet as LIM_MGMT_P_KEY should always be in the pkey table.
* It could be an FM misconfiguration.
*
* d) If pkey_index -> LIM_MGMT_P_KEY and FULL_MGMT_P_KEY is NOT in pkey table:
* It is safe for the packet to go through since a non-management node is
* talking to another non-management node.
*
* e) If pkey_index -> LIM_MGMT_P_KEY and FULL_MGMT_P_KEY in pkey table:
* Drop the packet because a non-management node is talking to a
* management node, and it could be an attack.
*
* For the implementation, these rules can be simplied to only checking
* for (a) and (e). There's no need to check for rule (b) as
* the packet doesn't need to be dropped. Rule (c) is not possible in
* the driver as LIM_MGMT_P_KEY is always in the pkey table.
*
* Return:
* 0 - pkey is okay, -EINVAL it's a bad pkey
*/
static int hfi1_pkey_validation_pma(struct hfi1_ibport *ibp,
const struct opa_mad *in_mad,
const struct ib_wc *in_wc)
{
u16 pkey_value = hfi1_lookup_pkey_value(ibp, in_wc->pkey_index);
/* Rule (a) from above */
if (!is_local_mad(ibp, in_mad, in_wc) &&
pkey_value != LIM_MGMT_P_KEY &&
pkey_value != FULL_MGMT_P_KEY)
return -EINVAL;
/* Rule (e) from above */
if (pkey_value == LIM_MGMT_P_KEY &&
is_full_mgmt_pkey_in_table(ibp))
return -EINVAL;
return 0;
}
static int process_subn_opa(struct ib_device *ibdev, int mad_flags,
u8 port, const struct opa_mad *in_mad,
struct opa_mad *out_mad,
u32 *resp_len)
{
struct opa_smp *smp = (struct opa_smp *)out_mad;
struct hfi1_ibport *ibp = to_iport(ibdev, port);
u8 *data;
u32 am, data_size;
__be16 attr_id;
int ret;
*out_mad = *in_mad;
data = opa_get_smp_data(smp);
data_size = (u32)opa_get_smp_data_size(smp);
am = be32_to_cpu(smp->attr_mod);
attr_id = smp->attr_id;
if (smp->class_version != OPA_SM_CLASS_VERSION) {
smp->status |= IB_SMP_UNSUP_VERSION;
ret = reply((struct ib_mad_hdr *)smp);
return ret;
}
ret = check_mkey(ibp, (struct ib_mad_hdr *)smp, mad_flags, smp->mkey,
smp->route.dr.dr_slid, smp->route.dr.return_path,
smp->hop_cnt);
if (ret) {
u32 port_num = be32_to_cpu(smp->attr_mod);
/*
* If this is a get/set portinfo, we already check the
* M_Key if the MAD is for another port and the M_Key
* is OK on the receiving port. This check is needed
* to increment the error counters when the M_Key
* fails to match on *both* ports.
*/
if (attr_id == IB_SMP_ATTR_PORT_INFO &&
(smp->method == IB_MGMT_METHOD_GET ||
smp->method == IB_MGMT_METHOD_SET) &&
port_num && port_num <= ibdev->phys_port_cnt &&
port != port_num)
(void)check_mkey(to_iport(ibdev, port_num),
(struct ib_mad_hdr *)smp, 0,
smp->mkey, smp->route.dr.dr_slid,
smp->route.dr.return_path,
smp->hop_cnt);
ret = IB_MAD_RESULT_FAILURE;
return ret;
}
*resp_len = opa_get_smp_header_size(smp);
switch (smp->method) {
case IB_MGMT_METHOD_GET:
switch (attr_id) {
default:
clear_opa_smp_data(smp);
ret = subn_get_opa_sma(attr_id, smp, am, data,
ibdev, port, resp_len,
data_size);
break;
case OPA_ATTRIB_ID_AGGREGATE:
ret = subn_get_opa_aggregate(smp, ibdev, port,
resp_len);
break;
}
break;
case IB_MGMT_METHOD_SET:
switch (attr_id) {
default:
ret = subn_set_opa_sma(attr_id, smp, am, data,
ibdev, port, resp_len,
data_size);
break;
case OPA_ATTRIB_ID_AGGREGATE:
ret = subn_set_opa_aggregate(smp, ibdev, port,
resp_len);
break;
}
break;
case IB_MGMT_METHOD_TRAP:
case IB_MGMT_METHOD_REPORT:
case IB_MGMT_METHOD_REPORT_RESP:
case IB_MGMT_METHOD_GET_RESP:
/*
* The ib_mad module will call us to process responses
* before checking for other consumers.
* Just tell the caller to process it normally.
*/
ret = IB_MAD_RESULT_SUCCESS;
break;
case IB_MGMT_METHOD_TRAP_REPRESS:
subn_handle_opa_trap_repress(ibp, smp);
/* Always successful */
ret = IB_MAD_RESULT_SUCCESS;
break;
default:
smp->status |= IB_SMP_UNSUP_METHOD;
ret = reply((struct ib_mad_hdr *)smp);
break;
}
return ret;
}
static int process_subn(struct ib_device *ibdev, int mad_flags,
u8 port, const struct ib_mad *in_mad,
struct ib_mad *out_mad)
{
struct ib_smp *smp = (struct ib_smp *)out_mad;
struct hfi1_ibport *ibp = to_iport(ibdev, port);
int ret;
*out_mad = *in_mad;
if (smp->class_version != 1) {
smp->status |= IB_SMP_UNSUP_VERSION;
ret = reply((struct ib_mad_hdr *)smp);
return ret;
}
ret = check_mkey(ibp, (struct ib_mad_hdr *)smp, mad_flags,
smp->mkey, (__force __be32)smp->dr_slid,
smp->return_path, smp->hop_cnt);
if (ret) {
u32 port_num = be32_to_cpu(smp->attr_mod);
/*
* If this is a get/set portinfo, we already check the
* M_Key if the MAD is for another port and the M_Key
* is OK on the receiving port. This check is needed
* to increment the error counters when the M_Key
* fails to match on *both* ports.
*/
if (in_mad->mad_hdr.attr_id == IB_SMP_ATTR_PORT_INFO &&
(smp->method == IB_MGMT_METHOD_GET ||
smp->method == IB_MGMT_METHOD_SET) &&
port_num && port_num <= ibdev->phys_port_cnt &&
port != port_num)
(void)check_mkey(to_iport(ibdev, port_num),
(struct ib_mad_hdr *)smp, 0,
smp->mkey,
(__force __be32)smp->dr_slid,
smp->return_path, smp->hop_cnt);
ret = IB_MAD_RESULT_FAILURE;
return ret;
}
switch (smp->method) {
case IB_MGMT_METHOD_GET:
switch (smp->attr_id) {
case IB_SMP_ATTR_NODE_INFO:
ret = subn_get_nodeinfo(smp, ibdev, port);
break;
default:
smp->status |= IB_SMP_UNSUP_METH_ATTR;
ret = reply((struct ib_mad_hdr *)smp);
break;
}
break;
}
return ret;
}
static int process_perf(struct ib_device *ibdev, u8 port,
const struct ib_mad *in_mad,
struct ib_mad *out_mad)
{
struct ib_pma_mad *pmp = (struct ib_pma_mad *)out_mad;
struct ib_class_port_info *cpi = (struct ib_class_port_info *)
&pmp->data;
int ret = IB_MAD_RESULT_FAILURE;
*out_mad = *in_mad;
if (pmp->mad_hdr.class_version != 1) {
pmp->mad_hdr.status |= IB_SMP_UNSUP_VERSION;
ret = reply((struct ib_mad_hdr *)pmp);
return ret;
}
switch (pmp->mad_hdr.method) {
case IB_MGMT_METHOD_GET:
switch (pmp->mad_hdr.attr_id) {
case IB_PMA_PORT_COUNTERS:
ret = pma_get_ib_portcounters(pmp, ibdev, port);
break;
case IB_PMA_PORT_COUNTERS_EXT:
ret = pma_get_ib_portcounters_ext(pmp, ibdev, port);
break;
case IB_PMA_CLASS_PORT_INFO:
cpi->capability_mask = IB_PMA_CLASS_CAP_EXT_WIDTH;
ret = reply((struct ib_mad_hdr *)pmp);
break;
default:
pmp->mad_hdr.status |= IB_SMP_UNSUP_METH_ATTR;
ret = reply((struct ib_mad_hdr *)pmp);
break;
}
break;
case IB_MGMT_METHOD_SET:
if (pmp->mad_hdr.attr_id) {
pmp->mad_hdr.status |= IB_SMP_UNSUP_METH_ATTR;
ret = reply((struct ib_mad_hdr *)pmp);
}
break;
case IB_MGMT_METHOD_TRAP:
case IB_MGMT_METHOD_GET_RESP:
/*
* The ib_mad module will call us to process responses
* before checking for other consumers.
* Just tell the caller to process it normally.
*/
ret = IB_MAD_RESULT_SUCCESS;
break;
default:
pmp->mad_hdr.status |= IB_SMP_UNSUP_METHOD;
ret = reply((struct ib_mad_hdr *)pmp);
break;
}
return ret;
}
static int process_perf_opa(struct ib_device *ibdev, u8 port,
const struct opa_mad *in_mad,
struct opa_mad *out_mad, u32 *resp_len)
{
struct opa_pma_mad *pmp = (struct opa_pma_mad *)out_mad;
int ret;
*out_mad = *in_mad;
if (pmp->mad_hdr.class_version != OPA_SM_CLASS_VERSION) {
pmp->mad_hdr.status |= IB_SMP_UNSUP_VERSION;
return reply((struct ib_mad_hdr *)pmp);
}
*resp_len = sizeof(pmp->mad_hdr);
switch (pmp->mad_hdr.method) {
case IB_MGMT_METHOD_GET:
switch (pmp->mad_hdr.attr_id) {
case IB_PMA_CLASS_PORT_INFO:
ret = pma_get_opa_classportinfo(pmp, ibdev, resp_len);
break;
case OPA_PM_ATTRIB_ID_PORT_STATUS:
ret = pma_get_opa_portstatus(pmp, ibdev, port,
resp_len);
break;
case OPA_PM_ATTRIB_ID_DATA_PORT_COUNTERS:
ret = pma_get_opa_datacounters(pmp, ibdev, port,
resp_len);
break;
case OPA_PM_ATTRIB_ID_ERROR_PORT_COUNTERS:
ret = pma_get_opa_porterrors(pmp, ibdev, port,
resp_len);
break;
case OPA_PM_ATTRIB_ID_ERROR_INFO:
ret = pma_get_opa_errorinfo(pmp, ibdev, port,
resp_len);
break;
default:
pmp->mad_hdr.status |= IB_SMP_UNSUP_METH_ATTR;
ret = reply((struct ib_mad_hdr *)pmp);
break;
}
break;
case IB_MGMT_METHOD_SET:
switch (pmp->mad_hdr.attr_id) {
case OPA_PM_ATTRIB_ID_CLEAR_PORT_STATUS:
ret = pma_set_opa_portstatus(pmp, ibdev, port,
resp_len);
break;
case OPA_PM_ATTRIB_ID_ERROR_INFO:
ret = pma_set_opa_errorinfo(pmp, ibdev, port,
resp_len);
break;
default:
pmp->mad_hdr.status |= IB_SMP_UNSUP_METH_ATTR;
ret = reply((struct ib_mad_hdr *)pmp);
break;
}
break;
case IB_MGMT_METHOD_TRAP:
case IB_MGMT_METHOD_GET_RESP:
/*
* The ib_mad module will call us to process responses
* before checking for other consumers.
* Just tell the caller to process it normally.
*/
ret = IB_MAD_RESULT_SUCCESS;
break;
default:
pmp->mad_hdr.status |= IB_SMP_UNSUP_METHOD;
ret = reply((struct ib_mad_hdr *)pmp);
break;
}
return ret;
}
static int hfi1_process_opa_mad(struct ib_device *ibdev, int mad_flags,
u8 port, const struct ib_wc *in_wc,
const struct ib_grh *in_grh,
const struct opa_mad *in_mad,
struct opa_mad *out_mad, size_t *out_mad_size,
u16 *out_mad_pkey_index)
{
int ret;
int pkey_idx;
u32 resp_len = 0;
struct hfi1_ibport *ibp = to_iport(ibdev, port);
pkey_idx = hfi1_lookup_pkey_idx(ibp, LIM_MGMT_P_KEY);
if (pkey_idx < 0) {
pr_warn("failed to find limited mgmt pkey, defaulting 0x%x\n",
hfi1_get_pkey(ibp, 1));
pkey_idx = 1;
}
*out_mad_pkey_index = (u16)pkey_idx;
switch (in_mad->mad_hdr.mgmt_class) {
case IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE:
case IB_MGMT_CLASS_SUBN_LID_ROUTED:
if (is_local_mad(ibp, in_mad, in_wc)) {
ret = opa_local_smp_check(ibp, in_wc);
if (ret)
return IB_MAD_RESULT_FAILURE;
}
ret = process_subn_opa(ibdev, mad_flags, port, in_mad,
out_mad, &resp_len);
goto bail;
case IB_MGMT_CLASS_PERF_MGMT:
IB/hfi1: Validate PKEY for incoming GSI MAD packets These are the use-cases where the pkey needs to be tested to see if a packet needs to be dropped. a) Check if pkey is not FULL_MGMT_P_KEY or LIM_MGMT_P_KEY, drop the packet as it's not part of the management partition. Self-originated packets are an exception. b) If pkey index points to FULL_MGMT_P_KEY and LIM_MGMT_P_KEY is in the table, the packet is coming from a management node, and the receiving node is also a management node, so it is safe for the packet to go through. c) If pkey index points to FULL_MGMT_P_KEY and LIM_MGMT_P_KEY is NOT in the table, drop the packet as LIM_MGMT_P_KEY should always be in the pkey table. It could be a misconfiguration. d) If pkey index points to LIM_MGMT_P_KEY and FULL_MGMT_P_KEY is NOT in the table, it is safe for the packet to go through since a non-management node is talking to another non-managment node. e) If pkey index points to LIM_MGMT_P_KEY and FULL_MGMT_P_KEY is in the table, drop the packet because a non-management node is talking to a management node, and it could be an attack. For the implementation, these rules can be simplied to only checking for (a) and (e). There's no need to check for rule (b) as the packet doesn't need to be dropped. Rule (c) is not possible in the driver as LIM_MGMT_P_KEY is always in the pkey table. Reviewed-by: Michael J. Ruhl <michael.j.ruhl@intel.com> Signed-off-by: Sebastian Sanchez <sebastian.sanchez@intel.com> Signed-off-by: Dennis Dalessandro <dennis.dalessandro@intel.com> Signed-off-by: Doug Ledford <dledford@redhat.com>
2017-10-25 22:15:18 +07:00
ret = hfi1_pkey_validation_pma(ibp, in_mad, in_wc);
if (ret)
return IB_MAD_RESULT_FAILURE;
ret = process_perf_opa(ibdev, port, in_mad, out_mad, &resp_len);
goto bail;
default:
ret = IB_MAD_RESULT_SUCCESS;
}
bail:
if (ret & IB_MAD_RESULT_REPLY)
*out_mad_size = round_up(resp_len, 8);
else if (ret & IB_MAD_RESULT_SUCCESS)
*out_mad_size = in_wc->byte_len - sizeof(struct ib_grh);
return ret;
}
static int hfi1_process_ib_mad(struct ib_device *ibdev, int mad_flags, u8 port,
const struct ib_wc *in_wc,
const struct ib_grh *in_grh,
const struct ib_mad *in_mad,
struct ib_mad *out_mad)
{
int ret;
switch (in_mad->mad_hdr.mgmt_class) {
case IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE:
case IB_MGMT_CLASS_SUBN_LID_ROUTED:
ret = process_subn(ibdev, mad_flags, port, in_mad, out_mad);
break;
case IB_MGMT_CLASS_PERF_MGMT:
ret = process_perf(ibdev, port, in_mad, out_mad);
break;
default:
ret = IB_MAD_RESULT_SUCCESS;
break;
}
return ret;
}
/**
* hfi1_process_mad - process an incoming MAD packet
* @ibdev: the infiniband device this packet came in on
* @mad_flags: MAD flags
* @port: the port number this packet came in on
* @in_wc: the work completion entry for this packet
* @in_grh: the global route header for this packet
* @in_mad: the incoming MAD
* @out_mad: any outgoing MAD reply
*
* Returns IB_MAD_RESULT_SUCCESS if this is a MAD that we are not
* interested in processing.
*
* Note that the verbs framework has already done the MAD sanity checks,
* and hop count/pointer updating for IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE
* MADs.
*
* This is called by the ib_mad module.
*/
int hfi1_process_mad(struct ib_device *ibdev, int mad_flags, u8 port,
const struct ib_wc *in_wc, const struct ib_grh *in_grh,
const struct ib_mad_hdr *in_mad, size_t in_mad_size,
struct ib_mad_hdr *out_mad, size_t *out_mad_size,
u16 *out_mad_pkey_index)
{
switch (in_mad->base_version) {
case OPA_MGMT_BASE_VERSION:
if (unlikely(in_mad_size != sizeof(struct opa_mad))) {
dev_err(ibdev->dev.parent, "invalid in_mad_size\n");
return IB_MAD_RESULT_FAILURE;
}
return hfi1_process_opa_mad(ibdev, mad_flags, port,
in_wc, in_grh,
(struct opa_mad *)in_mad,
(struct opa_mad *)out_mad,
out_mad_size,
out_mad_pkey_index);
case IB_MGMT_BASE_VERSION:
return hfi1_process_ib_mad(ibdev, mad_flags, port,
in_wc, in_grh,
(const struct ib_mad *)in_mad,
(struct ib_mad *)out_mad);
default:
break;
}
return IB_MAD_RESULT_FAILURE;
}