linux_dsm_epyc7002/arch/sh/Kconfig

864 lines
21 KiB
Plaintext
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 21:07:57 +07:00
# SPDX-License-Identifier: GPL-2.0
config SUPERH
def_bool y
select ARCH_HAS_BINFMT_FLAT if !MMU
mm: introduce ARCH_HAS_PTE_SPECIAL Currently the PTE special supports is turned on in per architecture header files. Most of the time, it is defined in arch/*/include/asm/pgtable.h depending or not on some other per architecture static definition. This patch introduce a new configuration variable to manage this directly in the Kconfig files. It would later replace __HAVE_ARCH_PTE_SPECIAL. Here notes for some architecture where the definition of __HAVE_ARCH_PTE_SPECIAL is not obvious: arm __HAVE_ARCH_PTE_SPECIAL which is currently defined in arch/arm/include/asm/pgtable-3level.h which is included by arch/arm/include/asm/pgtable.h when CONFIG_ARM_LPAE is set. So select ARCH_HAS_PTE_SPECIAL if ARM_LPAE. powerpc __HAVE_ARCH_PTE_SPECIAL is defined in 2 files: - arch/powerpc/include/asm/book3s/64/pgtable.h - arch/powerpc/include/asm/pte-common.h The first one is included if (PPC_BOOK3S & PPC64) while the second is included in all the other cases. So select ARCH_HAS_PTE_SPECIAL all the time. sparc: __HAVE_ARCH_PTE_SPECIAL is defined if defined(__sparc__) && defined(__arch64__) which are defined through the compiler in sparc/Makefile if !SPARC32 which I assume to be if SPARC64. So select ARCH_HAS_PTE_SPECIAL if SPARC64 There is no functional change introduced by this patch. Link: http://lkml.kernel.org/r/1523433816-14460-2-git-send-email-ldufour@linux.vnet.ibm.com Signed-off-by: Laurent Dufour <ldufour@linux.vnet.ibm.com> Suggested-by: Jerome Glisse <jglisse@redhat.com> Reviewed-by: Jerome Glisse <jglisse@redhat.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Rich Felker <dalias@libc.org> Cc: David S. Miller <davem@davemloft.net> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Palmer Dabbelt <palmer@sifive.com> Cc: Albert Ou <albert@sifive.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Robin Murphy <robin.murphy@arm.com> Cc: Christophe LEROY <christophe.leroy@c-s.fr> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-08 07:06:08 +07:00
select ARCH_HAS_PTE_SPECIAL
select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
select ARCH_MIGHT_HAVE_PC_PARPORT
select ARCH_NO_COHERENT_DMA_MMAP if !MMU
select HAVE_PATA_PLATFORM
select CLKDEV_LOOKUP
select DMA_DECLARE_COHERENT
select HAVE_IDE if HAS_IOPORT_MAP
select HAVE_MEMBLOCK_NODE_MAP
select HAVE_OPROFILE
select HAVE_ARCH_TRACEHOOK
perf: Do the big rename: Performance Counters -> Performance Events Bye-bye Performance Counters, welcome Performance Events! In the past few months the perfcounters subsystem has grown out its initial role of counting hardware events, and has become (and is becoming) a much broader generic event enumeration, reporting, logging, monitoring, analysis facility. Naming its core object 'perf_counter' and naming the subsystem 'perfcounters' has become more and more of a misnomer. With pending code like hw-breakpoints support the 'counter' name is less and less appropriate. All in one, we've decided to rename the subsystem to 'performance events' and to propagate this rename through all fields, variables and API names. (in an ABI compatible fashion) The word 'event' is also a bit shorter than 'counter' - which makes it slightly more convenient to write/handle as well. Thanks goes to Stephane Eranian who first observed this misnomer and suggested a rename. User-space tooling and ABI compatibility is not affected - this patch should be function-invariant. (Also, defconfigs were not touched to keep the size down.) This patch has been generated via the following script: FILES=$(find * -type f | grep -vE 'oprofile|[^K]config') sed -i \ -e 's/PERF_EVENT_/PERF_RECORD_/g' \ -e 's/PERF_COUNTER/PERF_EVENT/g' \ -e 's/perf_counter/perf_event/g' \ -e 's/nb_counters/nb_events/g' \ -e 's/swcounter/swevent/g' \ -e 's/tpcounter_event/tp_event/g' \ $FILES for N in $(find . -name perf_counter.[ch]); do M=$(echo $N | sed 's/perf_counter/perf_event/g') mv $N $M done FILES=$(find . -name perf_event.*) sed -i \ -e 's/COUNTER_MASK/REG_MASK/g' \ -e 's/COUNTER/EVENT/g' \ -e 's/\<event\>/event_id/g' \ -e 's/counter/event/g' \ -e 's/Counter/Event/g' \ $FILES ... to keep it as correct as possible. This script can also be used by anyone who has pending perfcounters patches - it converts a Linux kernel tree over to the new naming. We tried to time this change to the point in time where the amount of pending patches is the smallest: the end of the merge window. Namespace clashes were fixed up in a preparatory patch - and some stylistic fallout will be fixed up in a subsequent patch. ( NOTE: 'counters' are still the proper terminology when we deal with hardware registers - and these sed scripts are a bit over-eager in renaming them. I've undone some of that, but in case there's something left where 'counter' would be better than 'event' we can undo that on an individual basis instead of touching an otherwise nicely automated patch. ) Suggested-by: Stephane Eranian <eranian@google.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: Paul Mackerras <paulus@samba.org> Reviewed-by: Arjan van de Ven <arjan@linux.intel.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Howells <dhowells@redhat.com> Cc: Kyle McMartin <kyle@mcmartin.ca> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: <linux-arch@vger.kernel.org> LKML-Reference: <new-submission> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-21 17:02:48 +07:00
select HAVE_PERF_EVENTS
select HAVE_DEBUG_BUGVERBOSE
select HAVE_FAST_GUP if MMU
select ARCH_HAVE_CUSTOM_GPIO_H
Add Kconfig option ARCH_HAVE_NMI_SAFE_CMPXCHG cmpxchg() is widely used by lockless code, including NMI-safe lockless code. But on some architectures, the cmpxchg() implementation is not NMI-safe, on these architectures the lockless code may need a spin_trylock_irqsave() based implementation. This patch adds a Kconfig option: ARCH_HAVE_NMI_SAFE_CMPXCHG, so that NMI-safe lockless code can depend on it or provide different implementation according to it. On many architectures, cmpxchg is only NMI-safe for several specific operand sizes. So, ARCH_HAVE_NMI_SAFE_CMPXCHG define in this patch only guarantees cmpxchg is NMI-safe for sizeof(unsigned long). Signed-off-by: Huang Ying <ying.huang@intel.com> Acked-by: Mike Frysinger <vapier@gentoo.org> Acked-by: Paul Mundt <lethal@linux-sh.org> Acked-by: Hans-Christian Egtvedt <hans-christian.egtvedt@atmel.com> Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Acked-by: Chris Metcalf <cmetcalf@tilera.com> Acked-by: Richard Henderson <rth@twiddle.net> CC: Mikael Starvik <starvik@axis.com> Acked-by: David Howells <dhowells@redhat.com> CC: Yoshinori Sato <ysato@users.sourceforge.jp> CC: Tony Luck <tony.luck@intel.com> CC: Hirokazu Takata <takata@linux-m32r.org> CC: Geert Uytterhoeven <geert@linux-m68k.org> CC: Michal Simek <monstr@monstr.eu> Acked-by: Ralf Baechle <ralf@linux-mips.org> CC: Kyle McMartin <kyle@mcmartin.ca> CC: Martin Schwidefsky <schwidefsky@de.ibm.com> CC: Chen Liqin <liqin.chen@sunplusct.com> CC: "David S. Miller" <davem@davemloft.net> CC: Ingo Molnar <mingo@redhat.com> CC: Chris Zankel <chris@zankel.net> Signed-off-by: Len Brown <len.brown@intel.com>
2011-07-13 12:14:22 +07:00
select ARCH_HAVE_NMI_SAFE_CMPXCHG if (GUSA_RB || CPU_SH4A)
select ARCH_HAS_GCOV_PROFILE_ALL
select PERF_USE_VMALLOC
select HAVE_DEBUG_KMEMLEAK
select HAVE_KERNEL_GZIP
lib/GCD.c: use binary GCD algorithm instead of Euclidean The binary GCD algorithm is based on the following facts: 1. If a and b are all evens, then gcd(a,b) = 2 * gcd(a/2, b/2) 2. If a is even and b is odd, then gcd(a,b) = gcd(a/2, b) 3. If a and b are all odds, then gcd(a,b) = gcd((a-b)/2, b) = gcd((a+b)/2, b) Even on x86 machines with reasonable division hardware, the binary algorithm runs about 25% faster (80% the execution time) than the division-based Euclidian algorithm. On platforms like Alpha and ARMv6 where division is a function call to emulation code, it's even more significant. There are two variants of the code here, depending on whether a fast __ffs (find least significant set bit) instruction is available. This allows the unpredictable branches in the bit-at-a-time shifting loop to be eliminated. If fast __ffs is not available, the "even/odd" GCD variant is used. I use the following code to benchmark: #include <stdio.h> #include <stdlib.h> #include <stdint.h> #include <string.h> #include <time.h> #include <unistd.h> #define swap(a, b) \ do { \ a ^= b; \ b ^= a; \ a ^= b; \ } while (0) unsigned long gcd0(unsigned long a, unsigned long b) { unsigned long r; if (a < b) { swap(a, b); } if (b == 0) return a; while ((r = a % b) != 0) { a = b; b = r; } return b; } unsigned long gcd1(unsigned long a, unsigned long b) { unsigned long r = a | b; if (!a || !b) return r; b >>= __builtin_ctzl(b); for (;;) { a >>= __builtin_ctzl(a); if (a == b) return a << __builtin_ctzl(r); if (a < b) swap(a, b); a -= b; } } unsigned long gcd2(unsigned long a, unsigned long b) { unsigned long r = a | b; if (!a || !b) return r; r &= -r; while (!(b & r)) b >>= 1; for (;;) { while (!(a & r)) a >>= 1; if (a == b) return a; if (a < b) swap(a, b); a -= b; a >>= 1; if (a & r) a += b; a >>= 1; } } unsigned long gcd3(unsigned long a, unsigned long b) { unsigned long r = a | b; if (!a || !b) return r; b >>= __builtin_ctzl(b); if (b == 1) return r & -r; for (;;) { a >>= __builtin_ctzl(a); if (a == 1) return r & -r; if (a == b) return a << __builtin_ctzl(r); if (a < b) swap(a, b); a -= b; } } unsigned long gcd4(unsigned long a, unsigned long b) { unsigned long r = a | b; if (!a || !b) return r; r &= -r; while (!(b & r)) b >>= 1; if (b == r) return r; for (;;) { while (!(a & r)) a >>= 1; if (a == r) return r; if (a == b) return a; if (a < b) swap(a, b); a -= b; a >>= 1; if (a & r) a += b; a >>= 1; } } static unsigned long (*gcd_func[])(unsigned long a, unsigned long b) = { gcd0, gcd1, gcd2, gcd3, gcd4, }; #define TEST_ENTRIES (sizeof(gcd_func) / sizeof(gcd_func[0])) #if defined(__x86_64__) #define rdtscll(val) do { \ unsigned long __a,__d; \ __asm__ __volatile__("rdtsc" : "=a" (__a), "=d" (__d)); \ (val) = ((unsigned long long)__a) | (((unsigned long long)__d)<<32); \ } while(0) static unsigned long long benchmark_gcd_func(unsigned long (*gcd)(unsigned long, unsigned long), unsigned long a, unsigned long b, unsigned long *res) { unsigned long long start, end; unsigned long long ret; unsigned long gcd_res; rdtscll(start); gcd_res = gcd(a, b); rdtscll(end); if (end >= start) ret = end - start; else ret = ~0ULL - start + 1 + end; *res = gcd_res; return ret; } #else static inline struct timespec read_time(void) { struct timespec time; clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &time); return time; } static inline unsigned long long diff_time(struct timespec start, struct timespec end) { struct timespec temp; if ((end.tv_nsec - start.tv_nsec) < 0) { temp.tv_sec = end.tv_sec - start.tv_sec - 1; temp.tv_nsec = 1000000000ULL + end.tv_nsec - start.tv_nsec; } else { temp.tv_sec = end.tv_sec - start.tv_sec; temp.tv_nsec = end.tv_nsec - start.tv_nsec; } return temp.tv_sec * 1000000000ULL + temp.tv_nsec; } static unsigned long long benchmark_gcd_func(unsigned long (*gcd)(unsigned long, unsigned long), unsigned long a, unsigned long b, unsigned long *res) { struct timespec start, end; unsigned long gcd_res; start = read_time(); gcd_res = gcd(a, b); end = read_time(); *res = gcd_res; return diff_time(start, end); } #endif static inline unsigned long get_rand() { if (sizeof(long) == 8) return (unsigned long)rand() << 32 | rand(); else return rand(); } int main(int argc, char **argv) { unsigned int seed = time(0); int loops = 100; int repeats = 1000; unsigned long (*res)[TEST_ENTRIES]; unsigned long long elapsed[TEST_ENTRIES]; int i, j, k; for (;;) { int opt = getopt(argc, argv, "n:r:s:"); /* End condition always first */ if (opt == -1) break; switch (opt) { case 'n': loops = atoi(optarg); break; case 'r': repeats = atoi(optarg); break; case 's': seed = strtoul(optarg, NULL, 10); break; default: /* You won't actually get here. */ break; } } res = malloc(sizeof(unsigned long) * TEST_ENTRIES * loops); memset(elapsed, 0, sizeof(elapsed)); srand(seed); for (j = 0; j < loops; j++) { unsigned long a = get_rand(); /* Do we have args? */ unsigned long b = argc > optind ? strtoul(argv[optind], NULL, 10) : get_rand(); unsigned long long min_elapsed[TEST_ENTRIES]; for (k = 0; k < repeats; k++) { for (i = 0; i < TEST_ENTRIES; i++) { unsigned long long tmp = benchmark_gcd_func(gcd_func[i], a, b, &res[j][i]); if (k == 0 || min_elapsed[i] > tmp) min_elapsed[i] = tmp; } } for (i = 0; i < TEST_ENTRIES; i++) elapsed[i] += min_elapsed[i]; } for (i = 0; i < TEST_ENTRIES; i++) printf("gcd%d: elapsed %llu\n", i, elapsed[i]); k = 0; srand(seed); for (j = 0; j < loops; j++) { unsigned long a = get_rand(); unsigned long b = argc > optind ? strtoul(argv[optind], NULL, 10) : get_rand(); for (i = 1; i < TEST_ENTRIES; i++) { if (res[j][i] != res[j][0]) break; } if (i < TEST_ENTRIES) { if (k == 0) { k = 1; fprintf(stderr, "Error:\n"); } fprintf(stderr, "gcd(%lu, %lu): ", a, b); for (i = 0; i < TEST_ENTRIES; i++) fprintf(stderr, "%ld%s", res[j][i], i < TEST_ENTRIES - 1 ? ", " : "\n"); } } if (k == 0) fprintf(stderr, "PASS\n"); free(res); return 0; } Compiled with "-O2", on "VirtualBox 4.4.0-22-generic #38-Ubuntu x86_64" got: zhaoxiuzeng@zhaoxiuzeng-VirtualBox:~/develop$ ./gcd -r 500000 -n 10 gcd0: elapsed 10174 gcd1: elapsed 2120 gcd2: elapsed 2902 gcd3: elapsed 2039 gcd4: elapsed 2812 PASS zhaoxiuzeng@zhaoxiuzeng-VirtualBox:~/develop$ ./gcd -r 500000 -n 10 gcd0: elapsed 9309 gcd1: elapsed 2280 gcd2: elapsed 2822 gcd3: elapsed 2217 gcd4: elapsed 2710 PASS zhaoxiuzeng@zhaoxiuzeng-VirtualBox:~/develop$ ./gcd -r 500000 -n 10 gcd0: elapsed 9589 gcd1: elapsed 2098 gcd2: elapsed 2815 gcd3: elapsed 2030 gcd4: elapsed 2718 PASS zhaoxiuzeng@zhaoxiuzeng-VirtualBox:~/develop$ ./gcd -r 500000 -n 10 gcd0: elapsed 9914 gcd1: elapsed 2309 gcd2: elapsed 2779 gcd3: elapsed 2228 gcd4: elapsed 2709 PASS [akpm@linux-foundation.org: avoid #defining a CONFIG_ variable] Signed-off-by: Zhaoxiu Zeng <zhaoxiu.zeng@gmail.com> Signed-off-by: George Spelvin <linux@horizon.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21 07:03:57 +07:00
select CPU_NO_EFFICIENT_FFS
select HAVE_KERNEL_BZIP2
select HAVE_KERNEL_LZMA
select HAVE_KERNEL_XZ
select HAVE_KERNEL_LZO
select HAVE_UID16
select ARCH_WANT_IPC_PARSE_VERSION
select HAVE_SYSCALL_TRACEPOINTS
select HAVE_REGS_AND_STACK_ACCESS_API
select MAY_HAVE_SPARSE_IRQ
select IRQ_FORCED_THREADING
select RTC_LIB
select GENERIC_ATOMIC64
select GENERIC_IRQ_SHOW
select GENERIC_SMP_IDLE_THREAD
select GENERIC_IDLE_POLL_SETUP
select GENERIC_CLOCKEVENTS
select GENERIC_CMOS_UPDATE if SH_SH03 || SH_DREAMCAST
select GENERIC_PCI_IOMAP if PCI
select GENERIC_SCHED_CLOCK
select GENERIC_STRNCPY_FROM_USER
select GENERIC_STRNLEN_USER
2012-09-28 12:01:03 +07:00
select HAVE_MOD_ARCH_SPECIFIC if DWARF_UNWINDER
select MODULES_USE_ELF_RELA
select NO_GENERIC_PCI_IOPORT_MAP if PCI
select OLD_SIGSUSPEND
select OLD_SIGACTION
select PCI_DOMAINS if PCI
select HAVE_ARCH_AUDITSYSCALL
select HAVE_FUTEX_CMPXCHG if FUTEX
printk/nmi: generic solution for safe printk in NMI printk() takes some locks and could not be used a safe way in NMI context. The chance of a deadlock is real especially when printing stacks from all CPUs. This particular problem has been addressed on x86 by the commit a9edc8809328 ("x86/nmi: Perform a safe NMI stack trace on all CPUs"). The patchset brings two big advantages. First, it makes the NMI backtraces safe on all architectures for free. Second, it makes all NMI messages almost safe on all architectures (the temporary buffer is limited. We still should keep the number of messages in NMI context at minimum). Note that there already are several messages printed in NMI context: WARN_ON(in_nmi()), BUG_ON(in_nmi()), anything being printed out from MCE handlers. These are not easy to avoid. This patch reuses most of the code and makes it generic. It is useful for all messages and architectures that support NMI. The alternative printk_func is set when entering and is reseted when leaving NMI context. It queues IRQ work to copy the messages into the main ring buffer in a safe context. __printk_nmi_flush() copies all available messages and reset the buffer. Then we could use a simple cmpxchg operations to get synchronized with writers. There is also used a spinlock to get synchronized with other flushers. We do not longer use seq_buf because it depends on external lock. It would be hard to make all supported operations safe for a lockless use. It would be confusing and error prone to make only some operations safe. The code is put into separate printk/nmi.c as suggested by Steven Rostedt. It needs a per-CPU buffer and is compiled only on architectures that call nmi_enter(). This is achieved by the new HAVE_NMI Kconfig flag. The are MN10300 and Xtensa architectures. We need to clean up NMI handling there first. Let's do it separately. The patch is heavily based on the draft from Peter Zijlstra, see https://lkml.org/lkml/2015/6/10/327 [arnd@arndb.de: printk-nmi: use %zu format string for size_t] [akpm@linux-foundation.org: min_t->min - all types are size_t here] Signed-off-by: Petr Mladek <pmladek@suse.com> Suggested-by: Peter Zijlstra <peterz@infradead.org> Suggested-by: Steven Rostedt <rostedt@goodmis.org> Cc: Jan Kara <jack@suse.cz> Acked-by: Russell King <rmk+kernel@arm.linux.org.uk> [arm part] Cc: Daniel Thompson <daniel.thompson@linaro.org> Cc: Jiri Kosina <jkosina@suse.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: David Miller <davem@davemloft.net> Cc: Daniel Thompson <daniel.thompson@linaro.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21 07:00:33 +07:00
select HAVE_NMI
select NEED_SG_DMA_LENGTH
select ARCH_HAS_GIGANTIC_PAGE
help
The SuperH is a RISC processor targeted for use in embedded systems
and consumer electronics; it was also used in the Sega Dreamcast
gaming console. The SuperH port has a home page at
<http://www.linux-sh.org/>.
config SUPERH32
kconfig: reference environment variables directly and remove 'option env=' To get access to environment variables, Kconfig needs to define a symbol using "option env=" syntax. It is tedious to add a symbol entry for each environment variable given that we need to define much more such as 'CC', 'AS', 'srctree' etc. to evaluate the compiler capability in Kconfig. Adding '$' for symbol references is grammatically inconsistent. Looking at the code, the symbols prefixed with 'S' are expanded by: - conf_expand_value() This is used to expand 'arch/$ARCH/defconfig' and 'defconfig_list' - sym_expand_string_value() This is used to expand strings in 'source' and 'mainmenu' All of them are fixed values independent of user configuration. So, they can be changed into the direct expansion instead of symbols. This change makes the code much cleaner. The bounce symbols 'SRCARCH', 'ARCH', 'SUBARCH', 'KERNELVERSION' are gone. sym_init() hard-coding 'UNAME_RELEASE' is also gone. 'UNAME_RELEASE' should be replaced with an environment variable. ARCH_DEFCONFIG is a normal symbol, so it should be simply referenced without '$' prefix. The new syntax is addicted by Make. The variable reference needs parentheses, like $(FOO), but you can omit them for single-letter variables, like $F. Yet, in Makefiles, people tend to use the parenthetical form for consistency / clarification. At this moment, only the environment variable is supported, but I will extend the concept of 'variable' later on. The variables are expanded in the lexer so we can simplify the token handling on the parser side. For example, the following code works. [Example code] config MY_TOOLCHAIN_LIST string default "My tools: CC=$(CC), AS=$(AS), CPP=$(CPP)" [Result] $ make -s alldefconfig && tail -n 1 .config CONFIG_MY_TOOLCHAIN_LIST="My tools: CC=gcc, AS=as, CPP=gcc -E" Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com> Reviewed-by: Kees Cook <keescook@chromium.org>
2018-05-28 16:21:40 +07:00
def_bool "$(ARCH)" = "sh"
select ARCH_32BIT_OFF_T
select GUP_GET_PTE_LOW_HIGH if X2TLB
select HAVE_KPROBES
select HAVE_KRETPROBES
select HAVE_IOREMAP_PROT if MMU && !X2TLB
select HAVE_FUNCTION_TRACER
select HAVE_FTRACE_MCOUNT_RECORD
select HAVE_DYNAMIC_FTRACE
select HAVE_FTRACE_NMI_ENTER if DYNAMIC_FTRACE
select ARCH_WANT_IPC_PARSE_VERSION
select HAVE_FUNCTION_GRAPH_TRACER
select HAVE_ARCH_KGDB
select HAVE_HW_BREAKPOINT
select HAVE_MIXED_BREAKPOINTS_REGS
select PERF_EVENTS
select ARCH_HIBERNATION_POSSIBLE if MMU
select SPARSE_IRQ
select HAVE_STACKPROTECTOR
config SUPERH64
kconfig: reference environment variables directly and remove 'option env=' To get access to environment variables, Kconfig needs to define a symbol using "option env=" syntax. It is tedious to add a symbol entry for each environment variable given that we need to define much more such as 'CC', 'AS', 'srctree' etc. to evaluate the compiler capability in Kconfig. Adding '$' for symbol references is grammatically inconsistent. Looking at the code, the symbols prefixed with 'S' are expanded by: - conf_expand_value() This is used to expand 'arch/$ARCH/defconfig' and 'defconfig_list' - sym_expand_string_value() This is used to expand strings in 'source' and 'mainmenu' All of them are fixed values independent of user configuration. So, they can be changed into the direct expansion instead of symbols. This change makes the code much cleaner. The bounce symbols 'SRCARCH', 'ARCH', 'SUBARCH', 'KERNELVERSION' are gone. sym_init() hard-coding 'UNAME_RELEASE' is also gone. 'UNAME_RELEASE' should be replaced with an environment variable. ARCH_DEFCONFIG is a normal symbol, so it should be simply referenced without '$' prefix. The new syntax is addicted by Make. The variable reference needs parentheses, like $(FOO), but you can omit them for single-letter variables, like $F. Yet, in Makefiles, people tend to use the parenthetical form for consistency / clarification. At this moment, only the environment variable is supported, but I will extend the concept of 'variable' later on. The variables are expanded in the lexer so we can simplify the token handling on the parser side. For example, the following code works. [Example code] config MY_TOOLCHAIN_LIST string default "My tools: CC=$(CC), AS=$(AS), CPP=$(CPP)" [Result] $ make -s alldefconfig && tail -n 1 .config CONFIG_MY_TOOLCHAIN_LIST="My tools: CC=gcc, AS=as, CPP=gcc -E" Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com> Reviewed-by: Kees Cook <keescook@chromium.org>
2018-05-28 16:21:40 +07:00
def_bool "$(ARCH)" = "sh64"
exit_thread: remove empty bodies Define HAVE_EXIT_THREAD for archs which want to do something in exit_thread. For others, let's define exit_thread as an empty inline. This is a cleanup before we change the prototype of exit_thread to accept a task parameter. [akpm@linux-foundation.org: fix mips] Signed-off-by: Jiri Slaby <jslaby@suse.cz> Cc: "David S. Miller" <davem@davemloft.net> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: Aurelien Jacquiot <a-jacquiot@ti.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chen Liqin <liqin.linux@gmail.com> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Howells <dhowells@redhat.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Guan Xuetao <gxt@mprc.pku.edu.cn> Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Hans-Christian Egtvedt <egtvedt@samfundet.no> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Helge Deller <deller@gmx.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Hogan <james.hogan@imgtec.com> Cc: Jeff Dike <jdike@addtoit.com> Cc: Jesper Nilsson <jesper.nilsson@axis.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Jonas Bonn <jonas@southpole.se> Cc: Koichi Yasutake <yasutake.koichi@jp.panasonic.com> Cc: Lennox Wu <lennox.wu@gmail.com> Cc: Ley Foon Tan <lftan@altera.com> Cc: Mark Salter <msalter@redhat.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Mikael Starvik <starvik@axis.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Rich Felker <dalias@libc.org> Cc: Richard Henderson <rth@twiddle.net> Cc: Richard Kuo <rkuo@codeaurora.org> Cc: Richard Weinberger <richard@nod.at> Cc: Russell King <linux@arm.linux.org.uk> Cc: Steven Miao <realmz6@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21 07:00:16 +07:00
select HAVE_EXIT_THREAD
select KALLSYMS
config ARCH_DEFCONFIG
string
default "arch/sh/configs/shx3_defconfig" if SUPERH32
default "arch/sh/configs/cayman_defconfig" if SUPERH64
config GENERIC_BUG
def_bool y
depends on BUG && SUPERH32
config GENERIC_CSUM
def_bool y
depends on SUPERH64
config GENERIC_HWEIGHT
def_bool y
config GENERIC_CALIBRATE_DELAY
bool
config GENERIC_LOCKBREAK
def_bool y
depends on SMP && PREEMPT
config ARCH_SUSPEND_POSSIBLE
def_bool n
config ARCH_HIBERNATION_POSSIBLE
def_bool n
config SYS_SUPPORTS_APM_EMULATION
bool
select ARCH_SUSPEND_POSSIBLE
config SYS_SUPPORTS_HUGETLBFS
bool
config SYS_SUPPORTS_SMP
bool
config SYS_SUPPORTS_NUMA
bool
config STACKTRACE_SUPPORT
def_bool y
config LOCKDEP_SUPPORT
def_bool y
config ARCH_HAS_ILOG2_U32
def_bool n
config ARCH_HAS_ILOG2_U64
def_bool n
config NO_IOPORT_MAP
def_bool !PCI
depends on !SH_CAYMAN && !SH_SH4202_MICRODEV && !SH_SHMIN && \
!SH_HP6XX && !SH_SOLUTION_ENGINE
config IO_TRAPPED
bool
config SWAP_IO_SPACE
bool
config DMA_COHERENT
bool
config DMA_NONCOHERENT
def_bool !DMA_COHERENT
select ARCH_HAS_SYNC_DMA_FOR_DEVICE
config PGTABLE_LEVELS
default 3 if X2TLB
default 2
menu "System type"
#
# Processor families
#
config CPU_SH2
bool
select SH_INTC
config CPU_SH2A
bool
select CPU_SH2
select UNCACHED_MAPPING
config CPU_J2
bool
select CPU_SH2
select OF
select OF_EARLY_FLATTREE
config CPU_SH3
bool
select CPU_HAS_INTEVT
select CPU_HAS_SR_RB
select SH_INTC
select SYS_SUPPORTS_SH_TMU
config CPU_SH4
bool
select CPU_HAS_INTEVT
select CPU_HAS_SR_RB
select CPU_HAS_FPU if !CPU_SH4AL_DSP
select SH_INTC
select SYS_SUPPORTS_SH_TMU
select SYS_SUPPORTS_HUGETLBFS if MMU
config CPU_SH4A
bool
select CPU_SH4
config CPU_SH4AL_DSP
bool
select CPU_SH4A
select CPU_HAS_DSP
config CPU_SH5
bool
select CPU_HAS_FPU
select SYS_SUPPORTS_SH_TMU
select SYS_SUPPORTS_HUGETLBFS if MMU
config CPU_SHX2
bool
config CPU_SHX3
bool
select DMA_COHERENT
select SYS_SUPPORTS_SMP
select SYS_SUPPORTS_NUMA
config ARCH_SHMOBILE
bool
select ARCH_SUSPEND_POSSIBLE
select PM
config CPU_HAS_PMU
depends on CPU_SH4 || CPU_SH4A
default y
bool
if SUPERH32
choice
prompt "Processor sub-type selection"
#
# Processor subtypes
#
# SH-2 Processor Support
config CPU_SUBTYPE_SH7619
bool "Support SH7619 processor"
select CPU_SH2
select SYS_SUPPORTS_SH_CMT
config CPU_SUBTYPE_J2
bool "Support J2 processor"
select CPU_J2
select SYS_SUPPORTS_SMP
select GENERIC_CLOCKEVENTS_BROADCAST if SMP
# SH-2A Processor Support
config CPU_SUBTYPE_SH7201
bool "Support SH7201 processor"
select CPU_SH2A
select CPU_HAS_FPU
select SYS_SUPPORTS_SH_MTU2
config CPU_SUBTYPE_SH7203
bool "Support SH7203 processor"
select CPU_SH2A
select CPU_HAS_FPU
select SYS_SUPPORTS_SH_CMT
select SYS_SUPPORTS_SH_MTU2
select PINCTRL
config CPU_SUBTYPE_SH7206
bool "Support SH7206 processor"
select CPU_SH2A
select SYS_SUPPORTS_SH_CMT
select SYS_SUPPORTS_SH_MTU2
config CPU_SUBTYPE_SH7263
bool "Support SH7263 processor"
select CPU_SH2A
select CPU_HAS_FPU
select SYS_SUPPORTS_SH_CMT
select SYS_SUPPORTS_SH_MTU2
config CPU_SUBTYPE_SH7264
bool "Support SH7264 processor"
select CPU_SH2A
select CPU_HAS_FPU
select SYS_SUPPORTS_SH_CMT
select SYS_SUPPORTS_SH_MTU2
select PINCTRL
config CPU_SUBTYPE_SH7269
bool "Support SH7269 processor"
select CPU_SH2A
select CPU_HAS_FPU
select SYS_SUPPORTS_SH_CMT
select SYS_SUPPORTS_SH_MTU2
select PINCTRL
config CPU_SUBTYPE_MXG
bool "Support MX-G processor"
select CPU_SH2A
select SYS_SUPPORTS_SH_MTU2
help
Select MX-G if running on an R8A03022BG part.
# SH-3 Processor Support
config CPU_SUBTYPE_SH7705
bool "Support SH7705 processor"
select CPU_SH3
config CPU_SUBTYPE_SH7706
bool "Support SH7706 processor"
select CPU_SH3
help
Select SH7706 if you have a 133 Mhz SH-3 HD6417706 CPU.
config CPU_SUBTYPE_SH7707
bool "Support SH7707 processor"
select CPU_SH3
help
Select SH7707 if you have a 60 Mhz SH-3 HD6417707 CPU.
config CPU_SUBTYPE_SH7708
bool "Support SH7708 processor"
select CPU_SH3
help
Select SH7708 if you have a 60 Mhz SH-3 HD6417708S or
if you have a 100 Mhz SH-3 HD6417708R CPU.
config CPU_SUBTYPE_SH7709
bool "Support SH7709 processor"
select CPU_SH3
help
Select SH7709 if you have a 80 Mhz SH-3 HD6417709 CPU.
config CPU_SUBTYPE_SH7710
bool "Support SH7710 processor"
select CPU_SH3
select CPU_HAS_DSP
help
Select SH7710 if you have a SH3-DSP SH7710 CPU.
config CPU_SUBTYPE_SH7712
bool "Support SH7712 processor"
select CPU_SH3
select CPU_HAS_DSP
help
Select SH7712 if you have a SH3-DSP SH7712 CPU.
config CPU_SUBTYPE_SH7720
bool "Support SH7720 processor"
select CPU_SH3
select CPU_HAS_DSP
select SYS_SUPPORTS_SH_CMT
select USB_OHCI_SH if USB_OHCI_HCD
select PINCTRL
help
Select SH7720 if you have a SH3-DSP SH7720 CPU.
config CPU_SUBTYPE_SH7721
bool "Support SH7721 processor"
select CPU_SH3
select CPU_HAS_DSP
select SYS_SUPPORTS_SH_CMT
select USB_OHCI_SH if USB_OHCI_HCD
help
Select SH7721 if you have a SH3-DSP SH7721 CPU.
# SH-4 Processor Support
config CPU_SUBTYPE_SH7750
bool "Support SH7750 processor"
select CPU_SH4
help
Select SH7750 if you have a 200 Mhz SH-4 HD6417750 CPU.
config CPU_SUBTYPE_SH7091
bool "Support SH7091 processor"
select CPU_SH4
help
Select SH7091 if you have an SH-4 based Sega device (such as
the Dreamcast, Naomi, and Naomi 2).
config CPU_SUBTYPE_SH7750R
bool "Support SH7750R processor"
select CPU_SH4
config CPU_SUBTYPE_SH7750S
bool "Support SH7750S processor"
select CPU_SH4
config CPU_SUBTYPE_SH7751
bool "Support SH7751 processor"
select CPU_SH4
help
Select SH7751 if you have a 166 Mhz SH-4 HD6417751 CPU,
or if you have a HD6417751R CPU.
config CPU_SUBTYPE_SH7751R
bool "Support SH7751R processor"
select CPU_SH4
config CPU_SUBTYPE_SH7760
bool "Support SH7760 processor"
select CPU_SH4
config CPU_SUBTYPE_SH4_202
bool "Support SH4-202 processor"
select CPU_SH4
# SH-4A Processor Support
config CPU_SUBTYPE_SH7723
bool "Support SH7723 processor"
select CPU_SH4A
select CPU_SHX2
select ARCH_SHMOBILE
select ARCH_SPARSEMEM_ENABLE
select SYS_SUPPORTS_SH_CMT
select PINCTRL
help
Select SH7723 if you have an SH-MobileR2 CPU.
config CPU_SUBTYPE_SH7724
bool "Support SH7724 processor"
select CPU_SH4A
select CPU_SHX2
select ARCH_SHMOBILE
select ARCH_SPARSEMEM_ENABLE
select SYS_SUPPORTS_SH_CMT
select PINCTRL
help
Select SH7724 if you have an SH-MobileR2R CPU.
config CPU_SUBTYPE_SH7734
bool "Support SH7734 processor"
select CPU_SH4A
select CPU_SHX2
select PINCTRL
help
Select SH7734 if you have a SH4A SH7734 CPU.
config CPU_SUBTYPE_SH7757
bool "Support SH7757 processor"
select CPU_SH4A
select CPU_SHX2
select PINCTRL
help
Select SH7757 if you have a SH4A SH7757 CPU.
config CPU_SUBTYPE_SH7763
bool "Support SH7763 processor"
select CPU_SH4A
select USB_OHCI_SH if USB_OHCI_HCD
help
Select SH7763 if you have a SH4A SH7763(R5S77631) CPU.
config CPU_SUBTYPE_SH7770
bool "Support SH7770 processor"
select CPU_SH4A
config CPU_SUBTYPE_SH7780
bool "Support SH7780 processor"
select CPU_SH4A
config CPU_SUBTYPE_SH7785
bool "Support SH7785 processor"
select CPU_SH4A
select CPU_SHX2
select ARCH_SPARSEMEM_ENABLE
select SYS_SUPPORTS_NUMA
select PINCTRL
config CPU_SUBTYPE_SH7786
bool "Support SH7786 processor"
select CPU_SH4A
select CPU_SHX3
select CPU_HAS_PTEAEX
select GENERIC_CLOCKEVENTS_BROADCAST if SMP
select USB_OHCI_SH if USB_OHCI_HCD
select USB_EHCI_SH if USB_EHCI_HCD
select PINCTRL
config CPU_SUBTYPE_SHX3
bool "Support SH-X3 processor"
select CPU_SH4A
select CPU_SHX3
select GENERIC_CLOCKEVENTS_BROADCAST if SMP
select GPIOLIB
select PINCTRL
# SH4AL-DSP Processor Support
config CPU_SUBTYPE_SH7343
bool "Support SH7343 processor"
select CPU_SH4AL_DSP
select ARCH_SHMOBILE
select SYS_SUPPORTS_SH_CMT
config CPU_SUBTYPE_SH7722
bool "Support SH7722 processor"
select CPU_SH4AL_DSP
select CPU_SHX2
select ARCH_SHMOBILE
select ARCH_SPARSEMEM_ENABLE
select SYS_SUPPORTS_NUMA
select SYS_SUPPORTS_SH_CMT
select PINCTRL
config CPU_SUBTYPE_SH7366
bool "Support SH7366 processor"
select CPU_SH4AL_DSP
select CPU_SHX2
select ARCH_SHMOBILE
select ARCH_SPARSEMEM_ENABLE
select SYS_SUPPORTS_NUMA
select SYS_SUPPORTS_SH_CMT
endchoice
endif
if SUPERH64
choice
prompt "Processor sub-type selection"
# SH-5 Processor Support
config CPU_SUBTYPE_SH5_101
bool "Support SH5-101 processor"
select CPU_SH5
config CPU_SUBTYPE_SH5_103
bool "Support SH5-103 processor"
select CPU_SH5
endchoice
endif
source "arch/sh/mm/Kconfig"
source "arch/sh/Kconfig.cpu"
source "arch/sh/boards/Kconfig"
menu "Timer and clock configuration"
config SH_PCLK_FREQ
int "Peripheral clock frequency (in Hz)"
depends on SH_CLK_CPG_LEGACY
default "31250000" if CPU_SUBTYPE_SH7619
default "33333333" if CPU_SUBTYPE_SH7770 || \
CPU_SUBTYPE_SH7760 || \
CPU_SUBTYPE_SH7705 || \
CPU_SUBTYPE_SH7203 || \
CPU_SUBTYPE_SH7206 || \
CPU_SUBTYPE_SH7263 || \
CPU_SUBTYPE_MXG
default "60000000" if CPU_SUBTYPE_SH7751 || CPU_SUBTYPE_SH7751R
default "66000000" if CPU_SUBTYPE_SH4_202
default "50000000"
help
This option is used to specify the peripheral clock frequency.
This is necessary for determining the reference clock value on
platforms lacking an RTC.
config SH_CLK_CPG
def_bool y
config SH_CLK_CPG_LEGACY
depends on SH_CLK_CPG
def_bool y if !CPU_SUBTYPE_SH7785 && !ARCH_SHMOBILE && \
!CPU_SHX3 && !CPU_SUBTYPE_SH7757 && \
!CPU_SUBTYPE_SH7734 && !CPU_SUBTYPE_SH7264 && \
!CPU_SUBTYPE_SH7269
endmenu
menu "CPU Frequency scaling"
source "drivers/cpufreq/Kconfig"
endmenu
source "arch/sh/drivers/Kconfig"
endmenu
menu "Kernel features"
source "kernel/Kconfig.hz"
config KEXEC
bool "kexec system call (EXPERIMENTAL)"
depends on SUPERH32 && MMU
2015-09-10 05:38:55 +07:00
select KEXEC_CORE
help
kexec is a system call that implements the ability to shutdown your
current kernel, and to start another kernel. It is like a reboot
but it is independent of the system firmware. And like a reboot
you can start any kernel with it, not just Linux.
The name comes from the similarity to the exec system call.
It is an ongoing process to be certain the hardware in a machine
is properly shutdown, so do not be surprised if this code does not
initially work for you. As of this writing the exact hardware
interface is strongly in flux, so no good recommendation can be
made.
config CRASH_DUMP
bool "kernel crash dumps (EXPERIMENTAL)"
depends on SUPERH32 && BROKEN_ON_SMP
help
Generate crash dump after being started by kexec.
This should be normally only set in special crash dump kernels
which are loaded in the main kernel with kexec-tools into
a specially reserved region and then later executed after
a crash by kdump/kexec. The crash dump kernel must be compiled
to a memory address not used by the main kernel using
PHYSICAL_START.
For more details see Documentation/admin-guide/kdump/kdump.rst
config KEXEC_JUMP
bool "kexec jump (EXPERIMENTAL)"
depends on SUPERH32 && KEXEC && HIBERNATION
help
Jump between original kernel and kexeced kernel and invoke
code via KEXEC
config PHYSICAL_START
hex "Physical address where the kernel is loaded" if (EXPERT || CRASH_DUMP)
default MEMORY_START
---help---
This gives the physical address where the kernel is loaded
and is ordinarily the same as MEMORY_START.
Different values are primarily used in the case of kexec on panic
where the fail safe kernel needs to run at a different address
than the panic-ed kernel.
config SECCOMP
bool "Enable seccomp to safely compute untrusted bytecode"
depends on PROC_FS
help
This kernel feature is useful for number crunching applications
that may need to compute untrusted bytecode during their
execution. By using pipes or other transports made available to
the process as file descriptors supporting the read/write
syscalls, it's possible to isolate those applications in
their own address space using seccomp. Once seccomp is
enabled via prctl, it cannot be disabled and the task is only
allowed to execute a few safe syscalls defined by each seccomp
mode.
If unsure, say N.
config SMP
bool "Symmetric multi-processing support"
depends on SYS_SUPPORTS_SMP
---help---
This enables support for systems with more than one CPU. If you have
a system with only one CPU, say N. If you have a system with more
than one CPU, say Y.
If you say N here, the kernel will run on uni- and multiprocessor
machines, but will use only one CPU of a multiprocessor machine. If
you say Y here, the kernel will run on many, but not all,
uniprocessor machines. On a uniprocessor machine, the kernel
will run faster if you say N here.
People using multiprocessor machines who say Y here should also say
Y to "Enhanced Real Time Clock Support", below.
See also <file:Documentation/admin-guide/lockup-watchdogs.rst> and the SMP-HOWTO
available at <http://www.tldp.org/docs.html#howto>.
If you don't know what to do here, say N.
config NR_CPUS
int "Maximum number of CPUs (2-32)"
range 2 32
depends on SMP
default "4" if CPU_SUBTYPE_SHX3
default "2"
help
This allows you to specify the maximum number of CPUs which this
kernel will support. The maximum supported value is 32 and the
minimum value which makes sense is 2.
This is purely to save memory - each supported CPU adds
approximately eight kilobytes to the kernel image.
config HOTPLUG_CPU
bool "Support for hot-pluggable CPUs (EXPERIMENTAL)"
depends on SMP
help
Say Y here to experiment with turning CPUs off and on. CPUs
can be controlled through /sys/devices/system/cpu.
config GUSA
def_bool y
depends on !SMP && SUPERH32
help
This enables support for gUSA (general UserSpace Atomicity).
This is the default implementation for both UP and non-ll/sc
CPUs, and is used by the libc, amongst others.
For additional information, design information can be found
in <http://lc.linux.or.jp/lc2002/papers/niibe0919p.pdf>.
This should only be disabled for special cases where alternate
atomicity implementations exist.
config GUSA_RB
bool "Implement atomic operations by roll-back (gRB) (EXPERIMENTAL)"
depends on GUSA && CPU_SH3 || (CPU_SH4 && !CPU_SH4A)
help
Enabling this option will allow the kernel to implement some
atomic operations using a software implementation of load-locked/
store-conditional (LLSC). On machines which do not have hardware
LLSC, this should be more efficient than the other alternative of
disabling interrupts around the atomic sequence.
config HW_PERF_EVENTS
bool "Enable hardware performance counter support for perf events"
depends on PERF_EVENTS && CPU_HAS_PMU
default y
help
Enable hardware performance counter support for perf events. If
disabled, perf events will use software events only.
source "drivers/sh/Kconfig"
endmenu
menu "Boot options"
config USE_BUILTIN_DTB
bool "Use builtin DTB"
default n
depends on SH_DEVICE_TREE
help
Link a device tree blob for particular hardware into the kernel,
suppressing use of the DTB pointer provided by the bootloader.
This option should only be used with legacy bootloaders that are
not capable of providing a DTB to the kernel, or for experimental
hardware without stable device tree bindings.
config BUILTIN_DTB_SOURCE
string "Source file for builtin DTB"
default ""
depends on USE_BUILTIN_DTB
help
Base name (without suffix, relative to arch/sh/boot/dts) for the
a DTS file that will be used to produce the DTB linked into the
kernel.
config ZERO_PAGE_OFFSET
hex
default "0x00010000" if PAGE_SIZE_64KB || SH_RTS7751R2D || \
SH_7751_SOLUTION_ENGINE
default "0x00004000" if PAGE_SIZE_16KB || SH_SH03
default "0x00002000" if PAGE_SIZE_8KB
default "0x00001000"
help
This sets the default offset of zero page.
config BOOT_LINK_OFFSET
hex
default "0x00210000" if SH_SHMIN
default "0x00400000" if SH_CAYMAN
default "0x00810000" if SH_7780_SOLUTION_ENGINE
default "0x009e0000" if SH_TITAN
default "0x01800000" if SH_SDK7780
default "0x02000000" if SH_EDOSK7760
default "0x00800000"
help
This option allows you to set the link address offset of the zImage.
This can be useful if you are on a board which has a small amount of
memory.
config ENTRY_OFFSET
hex
default "0x00001000" if PAGE_SIZE_4KB
default "0x00002000" if PAGE_SIZE_8KB
default "0x00004000" if PAGE_SIZE_16KB
default "0x00010000" if PAGE_SIZE_64KB
default "0x00000000"
config ROMIMAGE_MMCIF
bool "Include MMCIF loader in romImage (EXPERIMENTAL)"
depends on CPU_SUBTYPE_SH7724
help
Say Y here to include experimental MMCIF loading code in
romImage. With this enabled it is possible to write the romImage
kernel image to an MMC card and boot the kernel straight from
the reset vector. At reset the processor Mask ROM will load the
first part of the romImage which in turn loads the rest the kernel
image to RAM using the MMCIF hardware block.
choice
prompt "Kernel command line"
optional
default CMDLINE_OVERWRITE
help
Setting this option allows the kernel command line arguments
to be set.
config CMDLINE_OVERWRITE
bool "Overwrite bootloader kernel arguments"
help
Given string will overwrite any arguments passed in by
a bootloader.
config CMDLINE_EXTEND
bool "Extend bootloader kernel arguments"
help
Given string will be concatenated with arguments passed in
by a bootloader.
endchoice
config CMDLINE
string "Kernel command line arguments string"
depends on CMDLINE_OVERWRITE || CMDLINE_EXTEND
default "console=ttySC1,115200"
endmenu
menu "Bus options"
config SUPERHYWAY
tristate "SuperHyway Bus support"
depends on CPU_SUBTYPE_SH4_202
config MAPLE
bool "Maple Bus support"
depends on SH_DREAMCAST
help
The Maple Bus is SEGA's serial communication bus for peripherals
on the Dreamcast. Without this bus support you won't be able to
get your Dreamcast keyboard etc to work, so most users
probably want to say 'Y' here, unless you are only using the
Dreamcast with a serial line terminal or a remote network
connection.
endmenu
menu "Power management options (EXPERIMENTAL)"
source "kernel/power/Kconfig"
source "drivers/cpuidle/Kconfig"
endmenu