linux_dsm_epyc7002/drivers/infiniband/core/verbs.c

907 lines
21 KiB
C
Raw Normal View History

/*
* Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
* Copyright (c) 2004 Infinicon Corporation. All rights reserved.
* Copyright (c) 2004 Intel Corporation. All rights reserved.
* Copyright (c) 2004 Topspin Corporation. All rights reserved.
* Copyright (c) 2004 Voltaire Corporation. All rights reserved.
* Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
* Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/string.h>
#include <rdma/ib_verbs.h>
#include <rdma/ib_cache.h>
int ib_rate_to_mult(enum ib_rate rate)
{
switch (rate) {
case IB_RATE_2_5_GBPS: return 1;
case IB_RATE_5_GBPS: return 2;
case IB_RATE_10_GBPS: return 4;
case IB_RATE_20_GBPS: return 8;
case IB_RATE_30_GBPS: return 12;
case IB_RATE_40_GBPS: return 16;
case IB_RATE_60_GBPS: return 24;
case IB_RATE_80_GBPS: return 32;
case IB_RATE_120_GBPS: return 48;
default: return -1;
}
}
EXPORT_SYMBOL(ib_rate_to_mult);
enum ib_rate mult_to_ib_rate(int mult)
{
switch (mult) {
case 1: return IB_RATE_2_5_GBPS;
case 2: return IB_RATE_5_GBPS;
case 4: return IB_RATE_10_GBPS;
case 8: return IB_RATE_20_GBPS;
case 12: return IB_RATE_30_GBPS;
case 16: return IB_RATE_40_GBPS;
case 24: return IB_RATE_60_GBPS;
case 32: return IB_RATE_80_GBPS;
case 48: return IB_RATE_120_GBPS;
default: return IB_RATE_PORT_CURRENT;
}
}
EXPORT_SYMBOL(mult_to_ib_rate);
enum rdma_transport_type
rdma_node_get_transport(enum rdma_node_type node_type)
{
switch (node_type) {
case RDMA_NODE_IB_CA:
case RDMA_NODE_IB_SWITCH:
case RDMA_NODE_IB_ROUTER:
return RDMA_TRANSPORT_IB;
case RDMA_NODE_RNIC:
return RDMA_TRANSPORT_IWARP;
default:
BUG();
return 0;
}
}
EXPORT_SYMBOL(rdma_node_get_transport);
/* Protection domains */
struct ib_pd *ib_alloc_pd(struct ib_device *device)
{
struct ib_pd *pd;
pd = device->alloc_pd(device, NULL, NULL);
if (!IS_ERR(pd)) {
pd->device = device;
pd->uobject = NULL;
atomic_set(&pd->usecnt, 0);
}
return pd;
}
EXPORT_SYMBOL(ib_alloc_pd);
int ib_dealloc_pd(struct ib_pd *pd)
{
if (atomic_read(&pd->usecnt))
return -EBUSY;
return pd->device->dealloc_pd(pd);
}
EXPORT_SYMBOL(ib_dealloc_pd);
/* Address handles */
struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr)
{
struct ib_ah *ah;
ah = pd->device->create_ah(pd, ah_attr);
if (!IS_ERR(ah)) {
ah->device = pd->device;
ah->pd = pd;
ah->uobject = NULL;
atomic_inc(&pd->usecnt);
}
return ah;
}
EXPORT_SYMBOL(ib_create_ah);
int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc,
struct ib_grh *grh, struct ib_ah_attr *ah_attr)
{
u32 flow_class;
u16 gid_index;
int ret;
memset(ah_attr, 0, sizeof *ah_attr);
ah_attr->dlid = wc->slid;
ah_attr->sl = wc->sl;
ah_attr->src_path_bits = wc->dlid_path_bits;
ah_attr->port_num = port_num;
if (wc->wc_flags & IB_WC_GRH) {
ah_attr->ah_flags = IB_AH_GRH;
ah_attr->grh.dgid = grh->sgid;
ret = ib_find_cached_gid(device, &grh->dgid, &port_num,
&gid_index);
if (ret)
return ret;
ah_attr->grh.sgid_index = (u8) gid_index;
flow_class = be32_to_cpu(grh->version_tclass_flow);
ah_attr->grh.flow_label = flow_class & 0xFFFFF;
ah_attr->grh.hop_limit = 0xFF;
ah_attr->grh.traffic_class = (flow_class >> 20) & 0xFF;
}
return 0;
}
EXPORT_SYMBOL(ib_init_ah_from_wc);
struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc,
struct ib_grh *grh, u8 port_num)
{
struct ib_ah_attr ah_attr;
int ret;
ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr);
if (ret)
return ERR_PTR(ret);
return ib_create_ah(pd, &ah_attr);
}
EXPORT_SYMBOL(ib_create_ah_from_wc);
int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
{
return ah->device->modify_ah ?
ah->device->modify_ah(ah, ah_attr) :
-ENOSYS;
}
EXPORT_SYMBOL(ib_modify_ah);
int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
{
return ah->device->query_ah ?
ah->device->query_ah(ah, ah_attr) :
-ENOSYS;
}
EXPORT_SYMBOL(ib_query_ah);
int ib_destroy_ah(struct ib_ah *ah)
{
struct ib_pd *pd;
int ret;
pd = ah->pd;
ret = ah->device->destroy_ah(ah);
if (!ret)
atomic_dec(&pd->usecnt);
return ret;
}
EXPORT_SYMBOL(ib_destroy_ah);
/* Shared receive queues */
struct ib_srq *ib_create_srq(struct ib_pd *pd,
struct ib_srq_init_attr *srq_init_attr)
{
struct ib_srq *srq;
if (!pd->device->create_srq)
return ERR_PTR(-ENOSYS);
srq = pd->device->create_srq(pd, srq_init_attr, NULL);
if (!IS_ERR(srq)) {
srq->device = pd->device;
srq->pd = pd;
srq->uobject = NULL;
srq->event_handler = srq_init_attr->event_handler;
srq->srq_context = srq_init_attr->srq_context;
atomic_inc(&pd->usecnt);
atomic_set(&srq->usecnt, 0);
}
return srq;
}
EXPORT_SYMBOL(ib_create_srq);
int ib_modify_srq(struct ib_srq *srq,
struct ib_srq_attr *srq_attr,
enum ib_srq_attr_mask srq_attr_mask)
{
return srq->device->modify_srq ?
srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
-ENOSYS;
}
EXPORT_SYMBOL(ib_modify_srq);
int ib_query_srq(struct ib_srq *srq,
struct ib_srq_attr *srq_attr)
{
return srq->device->query_srq ?
srq->device->query_srq(srq, srq_attr) : -ENOSYS;
}
EXPORT_SYMBOL(ib_query_srq);
int ib_destroy_srq(struct ib_srq *srq)
{
struct ib_pd *pd;
int ret;
if (atomic_read(&srq->usecnt))
return -EBUSY;
pd = srq->pd;
ret = srq->device->destroy_srq(srq);
if (!ret)
atomic_dec(&pd->usecnt);
return ret;
}
EXPORT_SYMBOL(ib_destroy_srq);
/* Queue pairs */
struct ib_qp *ib_create_qp(struct ib_pd *pd,
struct ib_qp_init_attr *qp_init_attr)
{
struct ib_qp *qp;
qp = pd->device->create_qp(pd, qp_init_attr, NULL);
if (!IS_ERR(qp)) {
qp->device = pd->device;
qp->pd = pd;
qp->send_cq = qp_init_attr->send_cq;
qp->recv_cq = qp_init_attr->recv_cq;
qp->srq = qp_init_attr->srq;
qp->uobject = NULL;
qp->event_handler = qp_init_attr->event_handler;
qp->qp_context = qp_init_attr->qp_context;
qp->qp_type = qp_init_attr->qp_type;
atomic_inc(&pd->usecnt);
atomic_inc(&qp_init_attr->send_cq->usecnt);
atomic_inc(&qp_init_attr->recv_cq->usecnt);
if (qp_init_attr->srq)
atomic_inc(&qp_init_attr->srq->usecnt);
}
return qp;
}
EXPORT_SYMBOL(ib_create_qp);
static const struct {
int valid;
enum ib_qp_attr_mask req_param[IB_QPT_RAW_ETY + 1];
enum ib_qp_attr_mask opt_param[IB_QPT_RAW_ETY + 1];
} qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
[IB_QPS_RESET] = {
[IB_QPS_RESET] = { .valid = 1 },
[IB_QPS_INIT] = {
.valid = 1,
.req_param = {
[IB_QPT_UD] = (IB_QP_PKEY_INDEX |
IB_QP_PORT |
IB_QP_QKEY),
[IB_QPT_UC] = (IB_QP_PKEY_INDEX |
IB_QP_PORT |
IB_QP_ACCESS_FLAGS),
[IB_QPT_RC] = (IB_QP_PKEY_INDEX |
IB_QP_PORT |
IB_QP_ACCESS_FLAGS),
[IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
IB_QP_QKEY),
[IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
IB_QP_QKEY),
}
},
},
[IB_QPS_INIT] = {
[IB_QPS_RESET] = { .valid = 1 },
[IB_QPS_ERR] = { .valid = 1 },
[IB_QPS_INIT] = {
.valid = 1,
.opt_param = {
[IB_QPT_UD] = (IB_QP_PKEY_INDEX |
IB_QP_PORT |
IB_QP_QKEY),
[IB_QPT_UC] = (IB_QP_PKEY_INDEX |
IB_QP_PORT |
IB_QP_ACCESS_FLAGS),
[IB_QPT_RC] = (IB_QP_PKEY_INDEX |
IB_QP_PORT |
IB_QP_ACCESS_FLAGS),
[IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
IB_QP_QKEY),
[IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
IB_QP_QKEY),
}
},
[IB_QPS_RTR] = {
.valid = 1,
.req_param = {
[IB_QPT_UC] = (IB_QP_AV |
IB_QP_PATH_MTU |
IB_QP_DEST_QPN |
IB_QP_RQ_PSN),
[IB_QPT_RC] = (IB_QP_AV |
IB_QP_PATH_MTU |
IB_QP_DEST_QPN |
IB_QP_RQ_PSN |
IB_QP_MAX_DEST_RD_ATOMIC |
IB_QP_MIN_RNR_TIMER),
},
.opt_param = {
[IB_QPT_UD] = (IB_QP_PKEY_INDEX |
IB_QP_QKEY),
[IB_QPT_UC] = (IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_PKEY_INDEX),
[IB_QPT_RC] = (IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_PKEY_INDEX),
[IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
IB_QP_QKEY),
[IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
IB_QP_QKEY),
}
}
},
[IB_QPS_RTR] = {
[IB_QPS_RESET] = { .valid = 1 },
[IB_QPS_ERR] = { .valid = 1 },
[IB_QPS_RTS] = {
.valid = 1,
.req_param = {
[IB_QPT_UD] = IB_QP_SQ_PSN,
[IB_QPT_UC] = IB_QP_SQ_PSN,
[IB_QPT_RC] = (IB_QP_TIMEOUT |
IB_QP_RETRY_CNT |
IB_QP_RNR_RETRY |
IB_QP_SQ_PSN |
IB_QP_MAX_QP_RD_ATOMIC),
[IB_QPT_SMI] = IB_QP_SQ_PSN,
[IB_QPT_GSI] = IB_QP_SQ_PSN,
},
.opt_param = {
[IB_QPT_UD] = (IB_QP_CUR_STATE |
IB_QP_QKEY),
[IB_QPT_UC] = (IB_QP_CUR_STATE |
IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_PATH_MIG_STATE),
[IB_QPT_RC] = (IB_QP_CUR_STATE |
IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_MIN_RNR_TIMER |
IB_QP_PATH_MIG_STATE),
[IB_QPT_SMI] = (IB_QP_CUR_STATE |
IB_QP_QKEY),
[IB_QPT_GSI] = (IB_QP_CUR_STATE |
IB_QP_QKEY),
}
}
},
[IB_QPS_RTS] = {
[IB_QPS_RESET] = { .valid = 1 },
[IB_QPS_ERR] = { .valid = 1 },
[IB_QPS_RTS] = {
.valid = 1,
.opt_param = {
[IB_QPT_UD] = (IB_QP_CUR_STATE |
IB_QP_QKEY),
[IB_QPT_UC] = (IB_QP_CUR_STATE |
IB_QP_ACCESS_FLAGS |
IB_QP_ALT_PATH |
IB_QP_PATH_MIG_STATE),
[IB_QPT_RC] = (IB_QP_CUR_STATE |
IB_QP_ACCESS_FLAGS |
IB_QP_ALT_PATH |
IB_QP_PATH_MIG_STATE |
IB_QP_MIN_RNR_TIMER),
[IB_QPT_SMI] = (IB_QP_CUR_STATE |
IB_QP_QKEY),
[IB_QPT_GSI] = (IB_QP_CUR_STATE |
IB_QP_QKEY),
}
},
[IB_QPS_SQD] = {
.valid = 1,
.opt_param = {
[IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY,
[IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
[IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
[IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
[IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
}
},
},
[IB_QPS_SQD] = {
[IB_QPS_RESET] = { .valid = 1 },
[IB_QPS_ERR] = { .valid = 1 },
[IB_QPS_RTS] = {
.valid = 1,
.opt_param = {
[IB_QPT_UD] = (IB_QP_CUR_STATE |
IB_QP_QKEY),
[IB_QPT_UC] = (IB_QP_CUR_STATE |
IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_PATH_MIG_STATE),
[IB_QPT_RC] = (IB_QP_CUR_STATE |
IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_MIN_RNR_TIMER |
IB_QP_PATH_MIG_STATE),
[IB_QPT_SMI] = (IB_QP_CUR_STATE |
IB_QP_QKEY),
[IB_QPT_GSI] = (IB_QP_CUR_STATE |
IB_QP_QKEY),
}
},
[IB_QPS_SQD] = {
.valid = 1,
.opt_param = {
[IB_QPT_UD] = (IB_QP_PKEY_INDEX |
IB_QP_QKEY),
[IB_QPT_UC] = (IB_QP_AV |
IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_PKEY_INDEX |
IB_QP_PATH_MIG_STATE),
[IB_QPT_RC] = (IB_QP_PORT |
IB_QP_AV |
IB_QP_TIMEOUT |
IB_QP_RETRY_CNT |
IB_QP_RNR_RETRY |
IB_QP_MAX_QP_RD_ATOMIC |
IB_QP_MAX_DEST_RD_ATOMIC |
IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_PKEY_INDEX |
IB_QP_MIN_RNR_TIMER |
IB_QP_PATH_MIG_STATE),
[IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
IB_QP_QKEY),
[IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
IB_QP_QKEY),
}
}
},
[IB_QPS_SQE] = {
[IB_QPS_RESET] = { .valid = 1 },
[IB_QPS_ERR] = { .valid = 1 },
[IB_QPS_RTS] = {
.valid = 1,
.opt_param = {
[IB_QPT_UD] = (IB_QP_CUR_STATE |
IB_QP_QKEY),
[IB_QPT_UC] = (IB_QP_CUR_STATE |
IB_QP_ACCESS_FLAGS),
[IB_QPT_SMI] = (IB_QP_CUR_STATE |
IB_QP_QKEY),
[IB_QPT_GSI] = (IB_QP_CUR_STATE |
IB_QP_QKEY),
}
}
},
[IB_QPS_ERR] = {
[IB_QPS_RESET] = { .valid = 1 },
[IB_QPS_ERR] = { .valid = 1 }
}
};
int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
enum ib_qp_type type, enum ib_qp_attr_mask mask)
{
enum ib_qp_attr_mask req_param, opt_param;
if (cur_state < 0 || cur_state > IB_QPS_ERR ||
next_state < 0 || next_state > IB_QPS_ERR)
return 0;
if (mask & IB_QP_CUR_STATE &&
cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
return 0;
if (!qp_state_table[cur_state][next_state].valid)
return 0;
req_param = qp_state_table[cur_state][next_state].req_param[type];
opt_param = qp_state_table[cur_state][next_state].opt_param[type];
if ((mask & req_param) != req_param)
return 0;
if (mask & ~(req_param | opt_param | IB_QP_STATE))
return 0;
return 1;
}
EXPORT_SYMBOL(ib_modify_qp_is_ok);
int ib_modify_qp(struct ib_qp *qp,
struct ib_qp_attr *qp_attr,
int qp_attr_mask)
{
return qp->device->modify_qp(qp, qp_attr, qp_attr_mask, NULL);
}
EXPORT_SYMBOL(ib_modify_qp);
int ib_query_qp(struct ib_qp *qp,
struct ib_qp_attr *qp_attr,
int qp_attr_mask,
struct ib_qp_init_attr *qp_init_attr)
{
return qp->device->query_qp ?
qp->device->query_qp(qp, qp_attr, qp_attr_mask, qp_init_attr) :
-ENOSYS;
}
EXPORT_SYMBOL(ib_query_qp);
int ib_destroy_qp(struct ib_qp *qp)
{
struct ib_pd *pd;
struct ib_cq *scq, *rcq;
struct ib_srq *srq;
int ret;
pd = qp->pd;
scq = qp->send_cq;
rcq = qp->recv_cq;
srq = qp->srq;
ret = qp->device->destroy_qp(qp);
if (!ret) {
atomic_dec(&pd->usecnt);
atomic_dec(&scq->usecnt);
atomic_dec(&rcq->usecnt);
if (srq)
atomic_dec(&srq->usecnt);
}
return ret;
}
EXPORT_SYMBOL(ib_destroy_qp);
/* Completion queues */
struct ib_cq *ib_create_cq(struct ib_device *device,
ib_comp_handler comp_handler,
void (*event_handler)(struct ib_event *, void *),
void *cq_context, int cqe, int comp_vector)
{
struct ib_cq *cq;
cq = device->create_cq(device, cqe, comp_vector, NULL, NULL);
if (!IS_ERR(cq)) {
cq->device = device;
cq->uobject = NULL;
cq->comp_handler = comp_handler;
cq->event_handler = event_handler;
cq->cq_context = cq_context;
atomic_set(&cq->usecnt, 0);
}
return cq;
}
EXPORT_SYMBOL(ib_create_cq);
int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period)
{
return cq->device->modify_cq ?
cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
}
EXPORT_SYMBOL(ib_modify_cq);
int ib_destroy_cq(struct ib_cq *cq)
{
if (atomic_read(&cq->usecnt))
return -EBUSY;
return cq->device->destroy_cq(cq);
}
EXPORT_SYMBOL(ib_destroy_cq);
int ib_resize_cq(struct ib_cq *cq, int cqe)
{
return cq->device->resize_cq ?
cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
}
EXPORT_SYMBOL(ib_resize_cq);
/* Memory regions */
struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags)
{
struct ib_mr *mr;
mr = pd->device->get_dma_mr(pd, mr_access_flags);
if (!IS_ERR(mr)) {
mr->device = pd->device;
mr->pd = pd;
mr->uobject = NULL;
atomic_inc(&pd->usecnt);
atomic_set(&mr->usecnt, 0);
}
return mr;
}
EXPORT_SYMBOL(ib_get_dma_mr);
struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd,
struct ib_phys_buf *phys_buf_array,
int num_phys_buf,
int mr_access_flags,
u64 *iova_start)
{
struct ib_mr *mr;
if (!pd->device->reg_phys_mr)
return ERR_PTR(-ENOSYS);
mr = pd->device->reg_phys_mr(pd, phys_buf_array, num_phys_buf,
mr_access_flags, iova_start);
if (!IS_ERR(mr)) {
mr->device = pd->device;
mr->pd = pd;
mr->uobject = NULL;
atomic_inc(&pd->usecnt);
atomic_set(&mr->usecnt, 0);
}
return mr;
}
EXPORT_SYMBOL(ib_reg_phys_mr);
int ib_rereg_phys_mr(struct ib_mr *mr,
int mr_rereg_mask,
struct ib_pd *pd,
struct ib_phys_buf *phys_buf_array,
int num_phys_buf,
int mr_access_flags,
u64 *iova_start)
{
struct ib_pd *old_pd;
int ret;
if (!mr->device->rereg_phys_mr)
return -ENOSYS;
if (atomic_read(&mr->usecnt))
return -EBUSY;
old_pd = mr->pd;
ret = mr->device->rereg_phys_mr(mr, mr_rereg_mask, pd,
phys_buf_array, num_phys_buf,
mr_access_flags, iova_start);
if (!ret && (mr_rereg_mask & IB_MR_REREG_PD)) {
atomic_dec(&old_pd->usecnt);
atomic_inc(&pd->usecnt);
}
return ret;
}
EXPORT_SYMBOL(ib_rereg_phys_mr);
int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr)
{
return mr->device->query_mr ?
mr->device->query_mr(mr, mr_attr) : -ENOSYS;
}
EXPORT_SYMBOL(ib_query_mr);
int ib_dereg_mr(struct ib_mr *mr)
{
struct ib_pd *pd;
int ret;
if (atomic_read(&mr->usecnt))
return -EBUSY;
pd = mr->pd;
ret = mr->device->dereg_mr(mr);
if (!ret)
atomic_dec(&pd->usecnt);
return ret;
}
EXPORT_SYMBOL(ib_dereg_mr);
RDMA/core: Add memory management extensions support This patch adds support for the IB "base memory management extension" (BMME) and the equivalent iWARP operations (which the iWARP verbs mandates all devices must implement). The new operations are: - Allocate an ib_mr for use in fast register work requests. - Allocate/free a physical buffer lists for use in fast register work requests. This allows device drivers to allocate this memory as needed for use in posting send requests (eg via dma_alloc_coherent). - New send queue work requests: * send with remote invalidate * fast register memory region * local invalidate memory region * RDMA read with invalidate local memory region (iWARP only) Consumer interface details: - A new device capability flag IB_DEVICE_MEM_MGT_EXTENSIONS is added to indicate device support for these features. - New send work request opcodes IB_WR_FAST_REG_MR, IB_WR_LOCAL_INV, IB_WR_RDMA_READ_WITH_INV are added. - A new consumer API function, ib_alloc_mr() is added to allocate fast register memory regions. - New consumer API functions, ib_alloc_fast_reg_page_list() and ib_free_fast_reg_page_list() are added to allocate and free device-specific memory for fast registration page lists. - A new consumer API function, ib_update_fast_reg_key(), is added to allow the key portion of the R_Key and L_Key of a fast registration MR to be updated. Consumers call this if desired before posting a IB_WR_FAST_REG_MR work request. Consumers can use this as follows: - MR is allocated with ib_alloc_mr(). - Page list memory is allocated with ib_alloc_fast_reg_page_list(). - MR R_Key/L_Key "key" field is updated with ib_update_fast_reg_key(). - MR made VALID and bound to a specific page list via ib_post_send(IB_WR_FAST_REG_MR) - MR made INVALID via ib_post_send(IB_WR_LOCAL_INV), ib_post_send(IB_WR_RDMA_READ_WITH_INV) or an incoming send with invalidate operation. - MR is deallocated with ib_dereg_mr() - page lists dealloced via ib_free_fast_reg_page_list(). Applications can allocate a fast register MR once, and then can repeatedly bind the MR to different physical block lists (PBLs) via posting work requests to a send queue (SQ). For each outstanding MR-to-PBL binding in the SQ pipe, a fast_reg_page_list needs to be allocated (the fast_reg_page_list is owned by the low-level driver from the consumer posting a work request until the request completes). Thus pipelining can be achieved while still allowing device-specific page_list processing. The 32-bit fast register memory key/STag is composed of a 24-bit index and an 8-bit key. The application can change the key each time it fast registers thus allowing more control over the peer's use of the key/STag (ie it can effectively be changed each time the rkey is rebound to a page list). Signed-off-by: Steve Wise <swise@opengridcomputing.com> Signed-off-by: Roland Dreier <rolandd@cisco.com>
2008-07-15 13:48:45 +07:00
struct ib_mr *ib_alloc_fast_reg_mr(struct ib_pd *pd, int max_page_list_len)
{
struct ib_mr *mr;
if (!pd->device->alloc_fast_reg_mr)
return ERR_PTR(-ENOSYS);
mr = pd->device->alloc_fast_reg_mr(pd, max_page_list_len);
if (!IS_ERR(mr)) {
mr->device = pd->device;
mr->pd = pd;
mr->uobject = NULL;
atomic_inc(&pd->usecnt);
atomic_set(&mr->usecnt, 0);
}
return mr;
}
EXPORT_SYMBOL(ib_alloc_fast_reg_mr);
struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list(struct ib_device *device,
int max_page_list_len)
{
struct ib_fast_reg_page_list *page_list;
if (!device->alloc_fast_reg_page_list)
return ERR_PTR(-ENOSYS);
page_list = device->alloc_fast_reg_page_list(device, max_page_list_len);
if (!IS_ERR(page_list)) {
page_list->device = device;
page_list->max_page_list_len = max_page_list_len;
}
return page_list;
}
EXPORT_SYMBOL(ib_alloc_fast_reg_page_list);
void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list)
{
page_list->device->free_fast_reg_page_list(page_list);
}
EXPORT_SYMBOL(ib_free_fast_reg_page_list);
/* Memory windows */
struct ib_mw *ib_alloc_mw(struct ib_pd *pd)
{
struct ib_mw *mw;
if (!pd->device->alloc_mw)
return ERR_PTR(-ENOSYS);
mw = pd->device->alloc_mw(pd);
if (!IS_ERR(mw)) {
mw->device = pd->device;
mw->pd = pd;
mw->uobject = NULL;
atomic_inc(&pd->usecnt);
}
return mw;
}
EXPORT_SYMBOL(ib_alloc_mw);
int ib_dealloc_mw(struct ib_mw *mw)
{
struct ib_pd *pd;
int ret;
pd = mw->pd;
ret = mw->device->dealloc_mw(mw);
if (!ret)
atomic_dec(&pd->usecnt);
return ret;
}
EXPORT_SYMBOL(ib_dealloc_mw);
/* "Fast" memory regions */
struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
int mr_access_flags,
struct ib_fmr_attr *fmr_attr)
{
struct ib_fmr *fmr;
if (!pd->device->alloc_fmr)
return ERR_PTR(-ENOSYS);
fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
if (!IS_ERR(fmr)) {
fmr->device = pd->device;
fmr->pd = pd;
atomic_inc(&pd->usecnt);
}
return fmr;
}
EXPORT_SYMBOL(ib_alloc_fmr);
int ib_unmap_fmr(struct list_head *fmr_list)
{
struct ib_fmr *fmr;
if (list_empty(fmr_list))
return 0;
fmr = list_entry(fmr_list->next, struct ib_fmr, list);
return fmr->device->unmap_fmr(fmr_list);
}
EXPORT_SYMBOL(ib_unmap_fmr);
int ib_dealloc_fmr(struct ib_fmr *fmr)
{
struct ib_pd *pd;
int ret;
pd = fmr->pd;
ret = fmr->device->dealloc_fmr(fmr);
if (!ret)
atomic_dec(&pd->usecnt);
return ret;
}
EXPORT_SYMBOL(ib_dealloc_fmr);
/* Multicast groups */
int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
{
if (!qp->device->attach_mcast)
return -ENOSYS;
if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD)
return -EINVAL;
return qp->device->attach_mcast(qp, gid, lid);
}
EXPORT_SYMBOL(ib_attach_mcast);
int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
{
if (!qp->device->detach_mcast)
return -ENOSYS;
if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD)
return -EINVAL;
return qp->device->detach_mcast(qp, gid, lid);
}
EXPORT_SYMBOL(ib_detach_mcast);