2018-01-27 01:50:27 +07:00
|
|
|
// SPDX-License-Identifier: GPL-2.0
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
/*
|
|
|
|
* Volume Management Device driver
|
|
|
|
* Copyright (c) 2015, Intel Corporation.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/device.h>
|
|
|
|
#include <linux/interrupt.h>
|
|
|
|
#include <linux/irq.h>
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/msi.h>
|
|
|
|
#include <linux/pci.h>
|
2016-11-12 06:08:45 +07:00
|
|
|
#include <linux/srcu.h>
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
#include <linux/rculist.h>
|
|
|
|
#include <linux/rcupdate.h>
|
|
|
|
|
|
|
|
#include <asm/irqdomain.h>
|
|
|
|
#include <asm/device.h>
|
|
|
|
#include <asm/msi.h>
|
|
|
|
#include <asm/msidef.h>
|
|
|
|
|
|
|
|
#define VMD_CFGBAR 0
|
|
|
|
#define VMD_MEMBAR1 2
|
|
|
|
#define VMD_MEMBAR2 4
|
|
|
|
|
2018-05-19 02:28:00 +07:00
|
|
|
#define PCI_REG_VMCAP 0x40
|
|
|
|
#define BUS_RESTRICT_CAP(vmcap) (vmcap & 0x1)
|
|
|
|
#define PCI_REG_VMCONFIG 0x44
|
|
|
|
#define BUS_RESTRICT_CFG(vmcfg) ((vmcfg >> 8) & 0x3)
|
2018-05-19 02:27:59 +07:00
|
|
|
#define PCI_REG_VMLOCK 0x70
|
|
|
|
#define MB2_SHADOW_EN(vmlock) (vmlock & 0x2)
|
|
|
|
|
|
|
|
enum vmd_features {
|
|
|
|
/*
|
|
|
|
* Device may contain registers which hint the physical location of the
|
|
|
|
* membars, in order to allow proper address translation during
|
|
|
|
* resource assignment to enable guest virtualization
|
|
|
|
*/
|
|
|
|
VMD_FEAT_HAS_MEMBAR_SHADOW = (1 << 0),
|
2018-05-19 02:28:00 +07:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Device may provide root port configuration information which limits
|
|
|
|
* bus numbering
|
|
|
|
*/
|
|
|
|
VMD_FEAT_HAS_BUS_RESTRICTIONS = (1 << 1),
|
2018-05-19 02:27:59 +07:00
|
|
|
};
|
|
|
|
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
/*
|
|
|
|
* Lock for manipulating VMD IRQ lists.
|
|
|
|
*/
|
|
|
|
static DEFINE_RAW_SPINLOCK(list_lock);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* struct vmd_irq - private data to map driver IRQ to the VMD shared vector
|
|
|
|
* @node: list item for parent traversal.
|
|
|
|
* @irq: back pointer to parent.
|
2016-08-24 04:36:42 +07:00
|
|
|
* @enabled: true if driver enabled IRQ
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
* @virq: the virtual IRQ value provided to the requesting driver.
|
|
|
|
*
|
|
|
|
* Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
|
|
|
|
* a VMD IRQ using this structure.
|
|
|
|
*/
|
|
|
|
struct vmd_irq {
|
|
|
|
struct list_head node;
|
|
|
|
struct vmd_irq_list *irq;
|
2016-08-24 04:36:42 +07:00
|
|
|
bool enabled;
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
unsigned int virq;
|
|
|
|
};
|
|
|
|
|
|
|
|
/**
|
|
|
|
* struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
|
|
|
|
* @irq_list: the list of irq's the VMD one demuxes to.
|
2016-11-12 06:08:45 +07:00
|
|
|
* @srcu: SRCU struct for local synchronization.
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
* @count: number of child IRQs assigned to this vector; used to track
|
|
|
|
* sharing.
|
|
|
|
*/
|
|
|
|
struct vmd_irq_list {
|
|
|
|
struct list_head irq_list;
|
2016-11-12 06:08:45 +07:00
|
|
|
struct srcu_struct srcu;
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
unsigned int count;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct vmd_dev {
|
|
|
|
struct pci_dev *dev;
|
|
|
|
|
|
|
|
spinlock_t cfg_lock;
|
|
|
|
char __iomem *cfgbar;
|
|
|
|
|
|
|
|
int msix_count;
|
|
|
|
struct vmd_irq_list *irqs;
|
|
|
|
|
|
|
|
struct pci_sysdata sysdata;
|
|
|
|
struct resource resources[3];
|
|
|
|
struct irq_domain *irq_domain;
|
|
|
|
struct pci_bus *bus;
|
|
|
|
|
|
|
|
#ifdef CONFIG_X86_DEV_DMA_OPS
|
|
|
|
struct dma_map_ops dma_ops;
|
|
|
|
struct dma_domain dma_domain;
|
|
|
|
#endif
|
|
|
|
};
|
|
|
|
|
|
|
|
static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
|
|
|
|
{
|
|
|
|
return container_of(bus->sysdata, struct vmd_dev, sysdata);
|
|
|
|
}
|
|
|
|
|
2016-09-03 00:53:05 +07:00
|
|
|
static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
|
|
|
|
struct vmd_irq_list *irqs)
|
|
|
|
{
|
|
|
|
return irqs - vmd->irqs;
|
|
|
|
}
|
|
|
|
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
/*
|
|
|
|
* Drivers managing a device in a VMD domain allocate their own IRQs as before,
|
|
|
|
* but the MSI entry for the hardware it's driving will be programmed with a
|
|
|
|
* destination ID for the VMD MSI-X table. The VMD muxes interrupts in its
|
|
|
|
* domain into one of its own, and the VMD driver de-muxes these for the
|
|
|
|
* handlers sharing that VMD IRQ. The vmd irq_domain provides the operations
|
|
|
|
* and irq_chip to set this up.
|
|
|
|
*/
|
|
|
|
static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
|
|
|
|
{
|
|
|
|
struct vmd_irq *vmdirq = data->chip_data;
|
|
|
|
struct vmd_irq_list *irq = vmdirq->irq;
|
2016-09-03 00:53:05 +07:00
|
|
|
struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
|
|
|
|
msg->address_hi = MSI_ADDR_BASE_HI;
|
2016-09-03 00:53:05 +07:00
|
|
|
msg->address_lo = MSI_ADDR_BASE_LO |
|
|
|
|
MSI_ADDR_DEST_ID(index_from_irqs(vmd, irq));
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
msg->data = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
|
|
|
|
*/
|
|
|
|
static void vmd_irq_enable(struct irq_data *data)
|
|
|
|
{
|
|
|
|
struct vmd_irq *vmdirq = data->chip_data;
|
2016-06-20 22:39:51 +07:00
|
|
|
unsigned long flags;
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
|
2016-06-20 22:39:51 +07:00
|
|
|
raw_spin_lock_irqsave(&list_lock, flags);
|
2016-08-24 04:36:42 +07:00
|
|
|
WARN_ON(vmdirq->enabled);
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
|
2016-08-24 04:36:42 +07:00
|
|
|
vmdirq->enabled = true;
|
2016-06-20 22:39:51 +07:00
|
|
|
raw_spin_unlock_irqrestore(&list_lock, flags);
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
|
|
|
|
data->chip->irq_unmask(data);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void vmd_irq_disable(struct irq_data *data)
|
|
|
|
{
|
|
|
|
struct vmd_irq *vmdirq = data->chip_data;
|
2016-06-20 22:39:51 +07:00
|
|
|
unsigned long flags;
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
|
|
|
|
data->chip->irq_mask(data);
|
|
|
|
|
2016-06-20 22:39:51 +07:00
|
|
|
raw_spin_lock_irqsave(&list_lock, flags);
|
2016-08-24 04:36:42 +07:00
|
|
|
if (vmdirq->enabled) {
|
|
|
|
list_del_rcu(&vmdirq->node);
|
|
|
|
vmdirq->enabled = false;
|
|
|
|
}
|
2016-06-20 22:39:51 +07:00
|
|
|
raw_spin_unlock_irqrestore(&list_lock, flags);
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* XXX: Stubbed until we develop acceptable way to not create conflicts with
|
|
|
|
* other devices sharing the same vector.
|
|
|
|
*/
|
|
|
|
static int vmd_irq_set_affinity(struct irq_data *data,
|
|
|
|
const struct cpumask *dest, bool force)
|
|
|
|
{
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct irq_chip vmd_msi_controller = {
|
|
|
|
.name = "VMD-MSI",
|
|
|
|
.irq_enable = vmd_irq_enable,
|
|
|
|
.irq_disable = vmd_irq_disable,
|
|
|
|
.irq_compose_msi_msg = vmd_compose_msi_msg,
|
|
|
|
.irq_set_affinity = vmd_irq_set_affinity,
|
|
|
|
};
|
|
|
|
|
|
|
|
static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
|
|
|
|
msi_alloc_info_t *arg)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* XXX: We can be even smarter selecting the best IRQ once we solve the
|
|
|
|
* affinity problem.
|
|
|
|
*/
|
2016-06-20 22:39:53 +07:00
|
|
|
static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
{
|
2016-06-20 22:39:53 +07:00
|
|
|
int i, best = 1;
|
2016-06-20 22:39:51 +07:00
|
|
|
unsigned long flags;
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
|
2018-05-08 23:00:22 +07:00
|
|
|
if (vmd->msix_count == 1)
|
2016-06-20 22:39:53 +07:00
|
|
|
return &vmd->irqs[0];
|
|
|
|
|
2018-05-08 23:00:22 +07:00
|
|
|
/*
|
|
|
|
* White list for fast-interrupt handlers. All others will share the
|
|
|
|
* "slow" interrupt vector.
|
|
|
|
*/
|
|
|
|
switch (msi_desc_to_pci_dev(desc)->class) {
|
|
|
|
case PCI_CLASS_STORAGE_EXPRESS:
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
return &vmd->irqs[0];
|
|
|
|
}
|
|
|
|
|
2016-06-20 22:39:51 +07:00
|
|
|
raw_spin_lock_irqsave(&list_lock, flags);
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
for (i = 1; i < vmd->msix_count; i++)
|
|
|
|
if (vmd->irqs[i].count < vmd->irqs[best].count)
|
|
|
|
best = i;
|
|
|
|
vmd->irqs[best].count++;
|
2016-06-20 22:39:51 +07:00
|
|
|
raw_spin_unlock_irqrestore(&list_lock, flags);
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
|
|
|
|
return &vmd->irqs[best];
|
|
|
|
}
|
|
|
|
|
|
|
|
static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
|
|
|
|
unsigned int virq, irq_hw_number_t hwirq,
|
|
|
|
msi_alloc_info_t *arg)
|
|
|
|
{
|
2016-06-20 22:39:53 +07:00
|
|
|
struct msi_desc *desc = arg->desc;
|
|
|
|
struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
|
2016-09-03 00:53:05 +07:00
|
|
|
unsigned int index, vector;
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
|
|
|
|
if (!vmdirq)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
INIT_LIST_HEAD(&vmdirq->node);
|
2016-06-20 22:39:53 +07:00
|
|
|
vmdirq->irq = vmd_next_irq(vmd, desc);
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
vmdirq->virq = virq;
|
2016-09-03 00:53:05 +07:00
|
|
|
index = index_from_irqs(vmd, vmdirq->irq);
|
|
|
|
vector = pci_irq_vector(vmd->dev, index);
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
|
2016-09-03 00:53:05 +07:00
|
|
|
irq_domain_set_info(domain, virq, vector, info->chip, vmdirq,
|
2016-09-03 00:53:04 +07:00
|
|
|
handle_untracked_irq, vmd, NULL);
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void vmd_msi_free(struct irq_domain *domain,
|
|
|
|
struct msi_domain_info *info, unsigned int virq)
|
|
|
|
{
|
|
|
|
struct vmd_irq *vmdirq = irq_get_chip_data(virq);
|
2016-06-20 22:39:51 +07:00
|
|
|
unsigned long flags;
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
|
2016-11-12 06:08:45 +07:00
|
|
|
synchronize_srcu(&vmdirq->irq->srcu);
|
2016-08-05 05:09:09 +07:00
|
|
|
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
/* XXX: Potential optimization to rebalance */
|
2016-06-20 22:39:51 +07:00
|
|
|
raw_spin_lock_irqsave(&list_lock, flags);
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
vmdirq->irq->count--;
|
2016-06-20 22:39:51 +07:00
|
|
|
raw_spin_unlock_irqrestore(&list_lock, flags);
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
|
2016-11-12 06:08:45 +07:00
|
|
|
kfree(vmdirq);
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
|
|
|
|
int nvec, msi_alloc_info_t *arg)
|
|
|
|
{
|
|
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
|
|
struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
|
|
|
|
|
|
|
|
if (nvec > vmd->msix_count)
|
|
|
|
return vmd->msix_count;
|
|
|
|
|
|
|
|
memset(arg, 0, sizeof(*arg));
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
|
|
|
|
{
|
|
|
|
arg->desc = desc;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct msi_domain_ops vmd_msi_domain_ops = {
|
|
|
|
.get_hwirq = vmd_get_hwirq,
|
|
|
|
.msi_init = vmd_msi_init,
|
|
|
|
.msi_free = vmd_msi_free,
|
|
|
|
.msi_prepare = vmd_msi_prepare,
|
|
|
|
.set_desc = vmd_set_desc,
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct msi_domain_info vmd_msi_domain_info = {
|
|
|
|
.flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
|
|
|
|
MSI_FLAG_PCI_MSIX,
|
|
|
|
.ops = &vmd_msi_domain_ops,
|
|
|
|
.chip = &vmd_msi_controller,
|
|
|
|
};
|
|
|
|
|
|
|
|
#ifdef CONFIG_X86_DEV_DMA_OPS
|
|
|
|
/*
|
|
|
|
* VMD replaces the requester ID with its own. DMA mappings for devices in a
|
|
|
|
* VMD domain need to be mapped for the VMD, not the device requiring
|
|
|
|
* the mapping.
|
|
|
|
*/
|
|
|
|
static struct device *to_vmd_dev(struct device *dev)
|
|
|
|
{
|
|
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
|
|
struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
|
|
|
|
|
|
|
|
return &vmd->dev->dev;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void *vmd_alloc(struct device *dev, size_t size, dma_addr_t *addr,
|
2016-08-04 03:46:00 +07:00
|
|
|
gfp_t flag, unsigned long attrs)
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
{
|
2018-12-07 04:37:00 +07:00
|
|
|
return dma_alloc_attrs(to_vmd_dev(dev), size, addr, flag, attrs);
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
static void vmd_free(struct device *dev, size_t size, void *vaddr,
|
2016-08-04 03:46:00 +07:00
|
|
|
dma_addr_t addr, unsigned long attrs)
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
{
|
2018-12-07 04:37:00 +07:00
|
|
|
return dma_free_attrs(to_vmd_dev(dev), size, vaddr, addr, attrs);
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
static int vmd_mmap(struct device *dev, struct vm_area_struct *vma,
|
|
|
|
void *cpu_addr, dma_addr_t addr, size_t size,
|
2016-08-04 03:46:00 +07:00
|
|
|
unsigned long attrs)
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
{
|
2018-12-07 04:37:00 +07:00
|
|
|
return dma_mmap_attrs(to_vmd_dev(dev), vma, cpu_addr, addr, size,
|
|
|
|
attrs);
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
static int vmd_get_sgtable(struct device *dev, struct sg_table *sgt,
|
|
|
|
void *cpu_addr, dma_addr_t addr, size_t size,
|
2016-08-04 03:46:00 +07:00
|
|
|
unsigned long attrs)
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
{
|
2018-12-07 04:37:00 +07:00
|
|
|
return dma_get_sgtable_attrs(to_vmd_dev(dev), sgt, cpu_addr, addr, size,
|
|
|
|
attrs);
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
static dma_addr_t vmd_map_page(struct device *dev, struct page *page,
|
|
|
|
unsigned long offset, size_t size,
|
|
|
|
enum dma_data_direction dir,
|
2016-08-04 03:46:00 +07:00
|
|
|
unsigned long attrs)
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
{
|
2018-12-07 04:37:00 +07:00
|
|
|
return dma_map_page_attrs(to_vmd_dev(dev), page, offset, size, dir,
|
|
|
|
attrs);
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
static void vmd_unmap_page(struct device *dev, dma_addr_t addr, size_t size,
|
2016-08-04 03:46:00 +07:00
|
|
|
enum dma_data_direction dir, unsigned long attrs)
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
{
|
2018-12-07 04:37:00 +07:00
|
|
|
dma_unmap_page_attrs(to_vmd_dev(dev), addr, size, dir, attrs);
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
static int vmd_map_sg(struct device *dev, struct scatterlist *sg, int nents,
|
2016-08-04 03:46:00 +07:00
|
|
|
enum dma_data_direction dir, unsigned long attrs)
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
{
|
2018-12-07 04:37:00 +07:00
|
|
|
return dma_map_sg_attrs(to_vmd_dev(dev), sg, nents, dir, attrs);
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
static void vmd_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
|
2016-08-04 03:46:00 +07:00
|
|
|
enum dma_data_direction dir, unsigned long attrs)
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
{
|
2018-12-07 04:37:00 +07:00
|
|
|
dma_unmap_sg_attrs(to_vmd_dev(dev), sg, nents, dir, attrs);
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
static void vmd_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
|
|
|
|
size_t size, enum dma_data_direction dir)
|
|
|
|
{
|
2018-12-07 04:37:00 +07:00
|
|
|
dma_sync_single_for_cpu(to_vmd_dev(dev), addr, size, dir);
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
static void vmd_sync_single_for_device(struct device *dev, dma_addr_t addr,
|
|
|
|
size_t size, enum dma_data_direction dir)
|
|
|
|
{
|
2018-12-07 04:37:00 +07:00
|
|
|
dma_sync_single_for_device(to_vmd_dev(dev), addr, size, dir);
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
static void vmd_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
|
|
|
|
int nents, enum dma_data_direction dir)
|
|
|
|
{
|
2018-12-07 04:37:00 +07:00
|
|
|
dma_sync_sg_for_cpu(to_vmd_dev(dev), sg, nents, dir);
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
static void vmd_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
|
|
|
|
int nents, enum dma_data_direction dir)
|
|
|
|
{
|
2018-12-07 04:37:00 +07:00
|
|
|
dma_sync_sg_for_device(to_vmd_dev(dev), sg, nents, dir);
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
static int vmd_dma_supported(struct device *dev, u64 mask)
|
|
|
|
{
|
2018-12-07 04:37:00 +07:00
|
|
|
return dma_supported(to_vmd_dev(dev), mask);
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
static u64 vmd_get_required_mask(struct device *dev)
|
|
|
|
{
|
2018-12-07 04:37:00 +07:00
|
|
|
return dma_get_required_mask(to_vmd_dev(dev));
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
static void vmd_teardown_dma_ops(struct vmd_dev *vmd)
|
|
|
|
{
|
|
|
|
struct dma_domain *domain = &vmd->dma_domain;
|
|
|
|
|
2016-05-18 00:13:24 +07:00
|
|
|
if (get_dma_ops(&vmd->dev->dev))
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
del_dma_domain(domain);
|
|
|
|
}
|
|
|
|
|
|
|
|
#define ASSIGN_VMD_DMA_OPS(source, dest, fn) \
|
|
|
|
do { \
|
|
|
|
if (source->fn) \
|
|
|
|
dest->fn = vmd_##fn; \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
static void vmd_setup_dma_ops(struct vmd_dev *vmd)
|
|
|
|
{
|
2016-05-18 00:13:24 +07:00
|
|
|
const struct dma_map_ops *source = get_dma_ops(&vmd->dev->dev);
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
struct dma_map_ops *dest = &vmd->dma_ops;
|
|
|
|
struct dma_domain *domain = &vmd->dma_domain;
|
|
|
|
|
|
|
|
domain->domain_nr = vmd->sysdata.domain;
|
|
|
|
domain->dma_ops = dest;
|
|
|
|
|
|
|
|
if (!source)
|
|
|
|
return;
|
|
|
|
ASSIGN_VMD_DMA_OPS(source, dest, alloc);
|
|
|
|
ASSIGN_VMD_DMA_OPS(source, dest, free);
|
|
|
|
ASSIGN_VMD_DMA_OPS(source, dest, mmap);
|
|
|
|
ASSIGN_VMD_DMA_OPS(source, dest, get_sgtable);
|
|
|
|
ASSIGN_VMD_DMA_OPS(source, dest, map_page);
|
|
|
|
ASSIGN_VMD_DMA_OPS(source, dest, unmap_page);
|
|
|
|
ASSIGN_VMD_DMA_OPS(source, dest, map_sg);
|
|
|
|
ASSIGN_VMD_DMA_OPS(source, dest, unmap_sg);
|
|
|
|
ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_cpu);
|
|
|
|
ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_device);
|
|
|
|
ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_cpu);
|
|
|
|
ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_device);
|
|
|
|
ASSIGN_VMD_DMA_OPS(source, dest, dma_supported);
|
|
|
|
ASSIGN_VMD_DMA_OPS(source, dest, get_required_mask);
|
|
|
|
add_dma_domain(domain);
|
|
|
|
}
|
|
|
|
#undef ASSIGN_VMD_DMA_OPS
|
|
|
|
#else
|
|
|
|
static void vmd_teardown_dma_ops(struct vmd_dev *vmd) {}
|
|
|
|
static void vmd_setup_dma_ops(struct vmd_dev *vmd) {}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
static char __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
|
|
|
|
unsigned int devfn, int reg, int len)
|
|
|
|
{
|
|
|
|
char __iomem *addr = vmd->cfgbar +
|
|
|
|
(bus->number << 20) + (devfn << 12) + reg;
|
|
|
|
|
|
|
|
if ((addr - vmd->cfgbar) + len >=
|
|
|
|
resource_size(&vmd->dev->resource[VMD_CFGBAR]))
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
return addr;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* CPU may deadlock if config space is not serialized on some versions of this
|
|
|
|
* hardware, so all config space access is done under a spinlock.
|
|
|
|
*/
|
|
|
|
static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
|
|
|
|
int len, u32 *value)
|
|
|
|
{
|
|
|
|
struct vmd_dev *vmd = vmd_from_bus(bus);
|
|
|
|
char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
|
|
|
|
unsigned long flags;
|
|
|
|
int ret = 0;
|
|
|
|
|
|
|
|
if (!addr)
|
|
|
|
return -EFAULT;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&vmd->cfg_lock, flags);
|
|
|
|
switch (len) {
|
|
|
|
case 1:
|
|
|
|
*value = readb(addr);
|
|
|
|
break;
|
|
|
|
case 2:
|
|
|
|
*value = readw(addr);
|
|
|
|
break;
|
|
|
|
case 4:
|
|
|
|
*value = readl(addr);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
ret = -EINVAL;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
spin_unlock_irqrestore(&vmd->cfg_lock, flags);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* VMD h/w converts non-posted config writes to posted memory writes. The
|
|
|
|
* read-back in this function forces the completion so it returns only after
|
|
|
|
* the config space was written, as expected.
|
|
|
|
*/
|
|
|
|
static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
|
|
|
|
int len, u32 value)
|
|
|
|
{
|
|
|
|
struct vmd_dev *vmd = vmd_from_bus(bus);
|
|
|
|
char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
|
|
|
|
unsigned long flags;
|
|
|
|
int ret = 0;
|
|
|
|
|
|
|
|
if (!addr)
|
|
|
|
return -EFAULT;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&vmd->cfg_lock, flags);
|
|
|
|
switch (len) {
|
|
|
|
case 1:
|
|
|
|
writeb(value, addr);
|
|
|
|
readb(addr);
|
|
|
|
break;
|
|
|
|
case 2:
|
|
|
|
writew(value, addr);
|
|
|
|
readw(addr);
|
|
|
|
break;
|
|
|
|
case 4:
|
|
|
|
writel(value, addr);
|
|
|
|
readl(addr);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
ret = -EINVAL;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
spin_unlock_irqrestore(&vmd->cfg_lock, flags);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct pci_ops vmd_ops = {
|
|
|
|
.read = vmd_pci_read,
|
|
|
|
.write = vmd_pci_write,
|
|
|
|
};
|
|
|
|
|
2016-02-25 00:06:37 +07:00
|
|
|
static void vmd_attach_resources(struct vmd_dev *vmd)
|
|
|
|
{
|
|
|
|
vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
|
|
|
|
vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
|
|
|
|
}
|
|
|
|
|
|
|
|
static void vmd_detach_resources(struct vmd_dev *vmd)
|
|
|
|
{
|
|
|
|
vmd->dev->resource[VMD_MEMBAR1].child = NULL;
|
|
|
|
vmd->dev->resource[VMD_MEMBAR2].child = NULL;
|
|
|
|
}
|
|
|
|
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
/*
|
2017-06-20 03:26:57 +07:00
|
|
|
* VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
|
|
|
|
* Per ACPI r6.0, sec 6.5.6, _SEG returns an integer, of which the lower
|
|
|
|
* 16 bits are the PCI Segment Group (domain) number. Other bits are
|
|
|
|
* currently reserved.
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
*/
|
|
|
|
static int vmd_find_free_domain(void)
|
|
|
|
{
|
|
|
|
int domain = 0xffff;
|
|
|
|
struct pci_bus *bus = NULL;
|
|
|
|
|
|
|
|
while ((bus = pci_find_next_bus(bus)) != NULL)
|
|
|
|
domain = max_t(int, domain, pci_domain_nr(bus));
|
|
|
|
return domain + 1;
|
|
|
|
}
|
|
|
|
|
2018-05-19 02:27:59 +07:00
|
|
|
static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features)
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
{
|
|
|
|
struct pci_sysdata *sd = &vmd->sysdata;
|
2017-06-20 06:37:15 +07:00
|
|
|
struct fwnode_handle *fn;
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
struct resource *res;
|
|
|
|
u32 upper_bits;
|
|
|
|
unsigned long flags;
|
|
|
|
LIST_HEAD(resources);
|
2018-05-19 02:27:59 +07:00
|
|
|
resource_size_t offset[2] = {0};
|
2018-05-19 02:28:00 +07:00
|
|
|
resource_size_t membar2_offset = 0x2000, busn_start = 0;
|
2018-12-13 23:23:42 +07:00
|
|
|
struct pci_bus *child;
|
2018-05-19 02:27:59 +07:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Shadow registers may exist in certain VMD device ids which allow
|
|
|
|
* guests to correctly assign host physical addresses to the root ports
|
|
|
|
* and child devices. These registers will either return the host value
|
|
|
|
* or 0, depending on an enable bit in the VMD device.
|
|
|
|
*/
|
|
|
|
if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) {
|
|
|
|
u32 vmlock;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
membar2_offset = 0x2018;
|
|
|
|
ret = pci_read_config_dword(vmd->dev, PCI_REG_VMLOCK, &vmlock);
|
|
|
|
if (ret || vmlock == ~0)
|
|
|
|
return -ENODEV;
|
|
|
|
|
|
|
|
if (MB2_SHADOW_EN(vmlock)) {
|
|
|
|
void __iomem *membar2;
|
|
|
|
|
|
|
|
membar2 = pci_iomap(vmd->dev, VMD_MEMBAR2, 0);
|
|
|
|
if (!membar2)
|
|
|
|
return -ENOMEM;
|
|
|
|
offset[0] = vmd->dev->resource[VMD_MEMBAR1].start -
|
|
|
|
readq(membar2 + 0x2008);
|
|
|
|
offset[1] = vmd->dev->resource[VMD_MEMBAR2].start -
|
|
|
|
readq(membar2 + 0x2010);
|
|
|
|
pci_iounmap(vmd->dev, membar2);
|
|
|
|
}
|
|
|
|
}
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
|
2018-05-19 02:28:00 +07:00
|
|
|
/*
|
|
|
|
* Certain VMD devices may have a root port configuration option which
|
|
|
|
* limits the bus range to between 0-127 or 128-255
|
|
|
|
*/
|
|
|
|
if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) {
|
|
|
|
u32 vmcap, vmconfig;
|
|
|
|
|
|
|
|
pci_read_config_dword(vmd->dev, PCI_REG_VMCAP, &vmcap);
|
|
|
|
pci_read_config_dword(vmd->dev, PCI_REG_VMCONFIG, &vmconfig);
|
|
|
|
if (BUS_RESTRICT_CAP(vmcap) &&
|
|
|
|
(BUS_RESTRICT_CFG(vmconfig) == 0x1))
|
|
|
|
busn_start = 128;
|
|
|
|
}
|
|
|
|
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
res = &vmd->dev->resource[VMD_CFGBAR];
|
|
|
|
vmd->resources[0] = (struct resource) {
|
|
|
|
.name = "VMD CFGBAR",
|
2018-05-19 02:28:00 +07:00
|
|
|
.start = busn_start,
|
|
|
|
.end = busn_start + (resource_size(res) >> 20) - 1,
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
.flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
|
|
|
|
};
|
|
|
|
|
2016-03-03 05:31:03 +07:00
|
|
|
/*
|
|
|
|
* If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
|
|
|
|
* put 32-bit resources in the window.
|
|
|
|
*
|
|
|
|
* There's no hardware reason why a 64-bit window *couldn't*
|
|
|
|
* contain a 32-bit resource, but pbus_size_mem() computes the
|
|
|
|
* bridge window size assuming a 64-bit window will contain no
|
|
|
|
* 32-bit resources. __pci_assign_resource() enforces that
|
|
|
|
* artificial restriction to make sure everything will fit.
|
|
|
|
*
|
|
|
|
* The only way we could use a 64-bit non-prefechable MEMBAR is
|
|
|
|
* if its address is <4GB so that we can convert it to a 32-bit
|
|
|
|
* resource. To be visible to the host OS, all VMD endpoints must
|
|
|
|
* be initially configured by platform BIOS, which includes setting
|
|
|
|
* up these resources. We can assume the device is configured
|
|
|
|
* according to the platform needs.
|
|
|
|
*/
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
res = &vmd->dev->resource[VMD_MEMBAR1];
|
|
|
|
upper_bits = upper_32_bits(res->end);
|
|
|
|
flags = res->flags & ~IORESOURCE_SIZEALIGN;
|
|
|
|
if (!upper_bits)
|
|
|
|
flags &= ~IORESOURCE_MEM_64;
|
|
|
|
vmd->resources[1] = (struct resource) {
|
|
|
|
.name = "VMD MEMBAR1",
|
|
|
|
.start = res->start,
|
|
|
|
.end = res->end,
|
|
|
|
.flags = flags,
|
2016-02-25 00:06:37 +07:00
|
|
|
.parent = res,
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
};
|
|
|
|
|
|
|
|
res = &vmd->dev->resource[VMD_MEMBAR2];
|
|
|
|
upper_bits = upper_32_bits(res->end);
|
|
|
|
flags = res->flags & ~IORESOURCE_SIZEALIGN;
|
|
|
|
if (!upper_bits)
|
|
|
|
flags &= ~IORESOURCE_MEM_64;
|
|
|
|
vmd->resources[2] = (struct resource) {
|
|
|
|
.name = "VMD MEMBAR2",
|
2018-05-19 02:27:59 +07:00
|
|
|
.start = res->start + membar2_offset,
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
.end = res->end,
|
|
|
|
.flags = flags,
|
2016-02-25 00:06:37 +07:00
|
|
|
.parent = res,
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
};
|
|
|
|
|
2016-09-13 22:05:40 +07:00
|
|
|
sd->vmd_domain = true;
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
sd->domain = vmd_find_free_domain();
|
|
|
|
if (sd->domain < 0)
|
|
|
|
return sd->domain;
|
|
|
|
|
|
|
|
sd->node = pcibus_to_node(vmd->dev->bus);
|
|
|
|
|
2017-06-20 06:37:15 +07:00
|
|
|
fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain);
|
|
|
|
if (!fn)
|
|
|
|
return -ENODEV;
|
|
|
|
|
|
|
|
vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info,
|
2016-06-20 22:39:52 +07:00
|
|
|
x86_vector_domain);
|
2017-06-20 06:37:15 +07:00
|
|
|
irq_domain_free_fwnode(fn);
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
if (!vmd->irq_domain)
|
|
|
|
return -ENODEV;
|
|
|
|
|
|
|
|
pci_add_resource(&resources, &vmd->resources[0]);
|
2018-05-19 02:27:59 +07:00
|
|
|
pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]);
|
|
|
|
pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]);
|
|
|
|
|
2018-05-19 02:28:00 +07:00
|
|
|
vmd->bus = pci_create_root_bus(&vmd->dev->dev, busn_start, &vmd_ops,
|
|
|
|
sd, &resources);
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
if (!vmd->bus) {
|
|
|
|
pci_free_resource_list(&resources);
|
|
|
|
irq_domain_remove(vmd->irq_domain);
|
|
|
|
return -ENODEV;
|
|
|
|
}
|
|
|
|
|
2016-02-25 00:06:37 +07:00
|
|
|
vmd_attach_resources(vmd);
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
vmd_setup_dma_ops(vmd);
|
|
|
|
dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
|
2018-12-13 23:23:42 +07:00
|
|
|
|
|
|
|
pci_scan_child_bus(vmd->bus);
|
|
|
|
pci_assign_unassigned_bus_resources(vmd->bus);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* VMD root buses are virtual and don't return true on pci_is_pcie()
|
|
|
|
* and will fail pcie_bus_configure_settings() early. It can instead be
|
|
|
|
* run on each of the real root ports.
|
|
|
|
*/
|
|
|
|
list_for_each_entry(child, &vmd->bus->children, node)
|
|
|
|
pcie_bus_configure_settings(child);
|
|
|
|
|
|
|
|
pci_bus_add_devices(vmd->bus);
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
|
|
|
|
WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
|
|
|
|
"domain"), "Can't create symlink to domain\n");
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static irqreturn_t vmd_irq(int irq, void *data)
|
|
|
|
{
|
|
|
|
struct vmd_irq_list *irqs = data;
|
|
|
|
struct vmd_irq *vmdirq;
|
2016-11-12 06:08:45 +07:00
|
|
|
int idx;
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
|
2016-11-12 06:08:45 +07:00
|
|
|
idx = srcu_read_lock(&irqs->srcu);
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
|
|
|
|
generic_handle_irq(vmdirq->virq);
|
2016-11-12 06:08:45 +07:00
|
|
|
srcu_read_unlock(&irqs->srcu, idx);
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
|
|
|
|
return IRQ_HANDLED;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
|
|
|
|
{
|
|
|
|
struct vmd_dev *vmd;
|
|
|
|
int i, err;
|
|
|
|
|
|
|
|
if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
|
|
|
|
if (!vmd)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
vmd->dev = dev;
|
|
|
|
err = pcim_enable_device(dev);
|
|
|
|
if (err < 0)
|
|
|
|
return err;
|
|
|
|
|
|
|
|
vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
|
|
|
|
if (!vmd->cfgbar)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
pci_set_master(dev);
|
|
|
|
if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
|
|
|
|
dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32)))
|
|
|
|
return -ENODEV;
|
|
|
|
|
|
|
|
vmd->msix_count = pci_msix_vec_count(dev);
|
|
|
|
if (vmd->msix_count < 0)
|
|
|
|
return -ENODEV;
|
|
|
|
|
2017-08-30 23:15:04 +07:00
|
|
|
vmd->msix_count = pci_alloc_irq_vectors(dev, 1, vmd->msix_count,
|
|
|
|
PCI_IRQ_MSIX);
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
if (vmd->msix_count < 0)
|
|
|
|
return vmd->msix_count;
|
|
|
|
|
|
|
|
vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
|
|
|
|
GFP_KERNEL);
|
|
|
|
if (!vmd->irqs)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
for (i = 0; i < vmd->msix_count; i++) {
|
2016-11-12 06:08:45 +07:00
|
|
|
err = init_srcu_struct(&vmd->irqs[i].srcu);
|
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
|
2016-09-03 00:53:04 +07:00
|
|
|
err = devm_request_irq(&dev->dev, pci_irq_vector(dev, i),
|
2017-04-20 17:27:18 +07:00
|
|
|
vmd_irq, IRQF_NO_THREAD,
|
|
|
|
"vmd", &vmd->irqs[i]);
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
spin_lock_init(&vmd->cfg_lock);
|
|
|
|
pci_set_drvdata(dev, vmd);
|
2018-05-19 02:27:59 +07:00
|
|
|
err = vmd_enable_domain(vmd, (unsigned long) id->driver_data);
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
|
|
|
|
dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
|
|
|
|
vmd->sysdata.domain);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2016-11-12 06:08:45 +07:00
|
|
|
static void vmd_cleanup_srcu(struct vmd_dev *vmd)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < vmd->msix_count; i++)
|
|
|
|
cleanup_srcu_struct(&vmd->irqs[i].srcu);
|
|
|
|
}
|
|
|
|
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
static void vmd_remove(struct pci_dev *dev)
|
|
|
|
{
|
|
|
|
struct vmd_dev *vmd = pci_get_drvdata(dev);
|
|
|
|
|
|
|
|
sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
|
|
|
|
pci_stop_root_bus(vmd->bus);
|
|
|
|
pci_remove_root_bus(vmd->bus);
|
2017-06-22 22:15:42 +07:00
|
|
|
vmd_cleanup_srcu(vmd);
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
vmd_teardown_dma_ops(vmd);
|
2018-10-16 07:48:07 +07:00
|
|
|
vmd_detach_resources(vmd);
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
irq_domain_remove(vmd->irq_domain);
|
|
|
|
}
|
|
|
|
|
2016-11-27 01:29:57 +07:00
|
|
|
#ifdef CONFIG_PM_SLEEP
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
static int vmd_suspend(struct device *dev)
|
|
|
|
{
|
|
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
2017-08-12 03:54:32 +07:00
|
|
|
struct vmd_dev *vmd = pci_get_drvdata(pdev);
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < vmd->msix_count; i++)
|
|
|
|
devm_free_irq(dev, pci_irq_vector(pdev, i), &vmd->irqs[i]);
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
|
|
|
|
pci_save_state(pdev);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int vmd_resume(struct device *dev)
|
|
|
|
{
|
|
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
2017-08-12 03:54:32 +07:00
|
|
|
struct vmd_dev *vmd = pci_get_drvdata(pdev);
|
|
|
|
int err, i;
|
|
|
|
|
|
|
|
for (i = 0; i < vmd->msix_count; i++) {
|
|
|
|
err = devm_request_irq(dev, pci_irq_vector(pdev, i),
|
|
|
|
vmd_irq, IRQF_NO_THREAD,
|
|
|
|
"vmd", &vmd->irqs[i]);
|
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
}
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
|
|
|
|
pci_restore_state(pdev);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
|
|
|
|
|
|
|
|
static const struct pci_device_id vmd_ids[] = {
|
2018-05-19 02:27:58 +07:00
|
|
|
{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_201D),},
|
2018-05-19 02:28:02 +07:00
|
|
|
{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0),
|
|
|
|
.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW |
|
|
|
|
VMD_FEAT_HAS_BUS_RESTRICTIONS,},
|
x86/PCI: Add driver for Intel Volume Management Device (VMD)
The Intel Volume Management Device (VMD) is a Root Complex Integrated
Endpoint that acts as a host bridge to a secondary PCIe domain. BIOS can
reassign one or more Root Ports to appear within a VMD domain instead of
the primary domain. The immediate benefit is that additional PCIe domains
allow more than 256 buses in a system by letting bus numbers be reused
across different domains.
VMD domains do not define ACPI _SEG, so to avoid domain clashing with host
bridges defining this segment, VMD domains start at 0x10000, which is
greater than the highest possible 16-bit ACPI defined _SEG.
This driver enumerates and enables the domain using the root bus
configuration interface provided by the PCI subsystem. The driver provides
configuration space accessor functions (pci_ops), bus and memory resources,
an MSI IRQ domain with irq_chip implementation, and DMA operations
necessary to use devices through the VMD endpoint's interface.
VMD routes I/O as follows:
1) Configuration Space: BAR 0 ("CFGBAR") of VMD provides the base
address and size for configuration space register access to VMD-owned
root ports. It works similarly to MMCONFIG for extended configuration
space. Bus numbering is independent and does not conflict with the
primary domain.
2) MMIO Space: BARs 2 and 4 ("MEMBAR1" and "MEMBAR2") of VMD provide the
base address, size, and type for MMIO register access. These addresses
are not translated by VMD hardware; they are simply reservations to be
distributed to root ports' memory base/limit registers and subdivided
among devices downstream.
3) DMA: To interact appropriately with an IOMMU, the source ID DMA read
and write requests are translated to the bus-device-function of the VMD
endpoint. Otherwise, DMA operates normally without VMD-specific address
translation.
4) Interrupts: Part of VMD's BAR 4 is reserved for VMD's MSI-X Table and
PBA. MSIs from VMD domain devices and ports are remapped to appear as
if they were issued using one of VMD's MSI-X table entries. Each MSI
and MSI-X address of VMD-owned devices and ports has a special format
where the address refers to specific entries in the VMD's MSI-X table.
As with DMA, the interrupt source ID is translated to VMD's
bus-device-function.
The driver provides its own MSI and MSI-X configuration functions
specific to how MSI messages are used within the VMD domain, and
provides an irq_chip for independent IRQ allocation to relay interrupts
from VMD's interrupt handler to the appropriate device driver's handler.
5) Errors: PCIe error message are intercepted by the root ports normally
(e.g., AER), except with VMD, system errors (i.e., firmware first) are
disabled by default. AER and hotplug interrupts are translated in the
same way as endpoint interrupts.
6) VMD does not support INTx interrupts or IO ports. Devices or drivers
requiring these features should either not be placed below VMD-owned
root ports, or VMD should be disabled by BIOS for such endpoints.
[bhelgaas: add VMD BAR #defines, factor out vmd_cfg_addr(), rework VMD
resource setup, whitespace, changelog]
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de> (IRQ-related parts)
2016-01-13 03:18:10 +07:00
|
|
|
{0,}
|
|
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(pci, vmd_ids);
|
|
|
|
|
|
|
|
static struct pci_driver vmd_drv = {
|
|
|
|
.name = "vmd",
|
|
|
|
.id_table = vmd_ids,
|
|
|
|
.probe = vmd_probe,
|
|
|
|
.remove = vmd_remove,
|
|
|
|
.driver = {
|
|
|
|
.pm = &vmd_dev_pm_ops,
|
|
|
|
},
|
|
|
|
};
|
|
|
|
module_pci_driver(vmd_drv);
|
|
|
|
|
|
|
|
MODULE_AUTHOR("Intel Corporation");
|
|
|
|
MODULE_LICENSE("GPL v2");
|
|
|
|
MODULE_VERSION("0.6");
|