linux_dsm_epyc7002/drivers/gpu/drm/nouveau/nv50_sor.c

531 lines
14 KiB
C
Raw Normal View History

/*
* Copyright (C) 2008 Maarten Maathuis.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial
* portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <drm/drmP.h>
#include <drm/drm_crtc_helper.h>
#define NOUVEAU_DMA_DEBUG (nouveau_reg_debug & NOUVEAU_REG_DEBUG_EVO)
#include "nouveau_reg.h"
#include "nouveau_drm.h"
#include "nouveau_dma.h"
#include "nouveau_encoder.h"
#include "nouveau_connector.h"
#include "nouveau_crtc.h"
#include "nv50_display.h"
#include <subdev/timer.h>
static u32
nv50_sor_dp_lane_map(struct drm_device *dev, struct dcb_output *dcb, u8 lane)
{
struct nouveau_drm *drm = nouveau_drm(dev);
static const u8 nvaf[] = { 24, 16, 8, 0 }; /* thanks, apple.. */
static const u8 nv50[] = { 16, 8, 0, 24 };
if (nv_device(drm->device)->chipset == 0xaf)
return nvaf[lane];
return nv50[lane];
}
static void
nv50_sor_dp_train_set(struct drm_device *dev, struct dcb_output *dcb, u8 pattern)
{
struct nouveau_device *device = nouveau_dev(dev);
u32 or = ffs(dcb->or) - 1, link = !(dcb->sorconf.link & 1);
nv_mask(device, NV50_SOR_DP_CTRL(or, link), 0x0f000000, pattern << 24);
}
static void
nv50_sor_dp_train_adj(struct drm_device *dev, struct dcb_output *dcb,
u8 lane, u8 swing, u8 preem)
{
struct nouveau_device *device = nouveau_dev(dev);
struct nouveau_drm *drm = nouveau_drm(dev);
u32 or = ffs(dcb->or) - 1, link = !(dcb->sorconf.link & 1);
u32 shift = nv50_sor_dp_lane_map(dev, dcb, lane);
u32 mask = 0x000000ff << shift;
u8 *table, *entry, *config;
table = nouveau_dp_bios_data(dev, dcb, &entry);
if (!table || (table[0] != 0x20 && table[0] != 0x21)) {
NV_ERROR(drm, "PDISP: unsupported DP table for chipset\n");
return;
}
config = entry + table[4];
while (config[0] != swing || config[1] != preem) {
config += table[5];
if (config >= entry + table[4] + entry[4] * table[5])
return;
}
nv_mask(device, NV50_SOR_DP_UNK118(or, link), mask, config[2] << shift);
nv_mask(device, NV50_SOR_DP_UNK120(or, link), mask, config[3] << shift);
nv_mask(device, NV50_SOR_DP_UNK130(or, link), 0x0000ff00, config[4] << 8);
}
static void
nv50_sor_dp_link_set(struct drm_device *dev, struct dcb_output *dcb, int crtc,
int link_nr, u32 link_bw, bool enhframe)
{
struct nouveau_device *device = nouveau_dev(dev);
struct nouveau_drm *drm = nouveau_drm(dev);
u32 or = ffs(dcb->or) - 1, link = !(dcb->sorconf.link & 1);
u32 dpctrl = nv_rd32(device, NV50_SOR_DP_CTRL(or, link)) & ~0x001f4000;
u32 clksor = nv_rd32(device, 0x614300 + (or * 0x800)) & ~0x000c0000;
u8 *table, *entry, mask;
int i;
table = nouveau_dp_bios_data(dev, dcb, &entry);
if (!table || (table[0] != 0x20 && table[0] != 0x21)) {
NV_ERROR(drm, "PDISP: unsupported DP table for chipset\n");
return;
}
entry = ROMPTR(dev, entry[10]);
if (entry) {
while (link_bw < ROM16(entry[0]) * 10)
entry += 4;
nouveau_bios_run_init_table(dev, ROM16(entry[2]), dcb, crtc);
}
dpctrl |= ((1 << link_nr) - 1) << 16;
if (enhframe)
dpctrl |= 0x00004000;
if (link_bw > 162000)
clksor |= 0x00040000;
nv_wr32(device, 0x614300 + (or * 0x800), clksor);
nv_wr32(device, NV50_SOR_DP_CTRL(or, link), dpctrl);
mask = 0;
for (i = 0; i < link_nr; i++)
mask |= 1 << (nv50_sor_dp_lane_map(dev, dcb, i) >> 3);
nv_mask(device, NV50_SOR_DP_UNK130(or, link), 0x0000000f, mask);
}
static void
nv50_sor_dp_link_get(struct drm_device *dev, u32 or, u32 link, u32 *nr, u32 *bw)
{
struct nouveau_device *device = nouveau_dev(dev);
u32 dpctrl = nv_rd32(device, NV50_SOR_DP_CTRL(or, link)) & 0x000f0000;
u32 clksor = nv_rd32(device, 0x614300 + (or * 0x800));
if (clksor & 0x000c0000)
*bw = 270000;
else
*bw = 162000;
if (dpctrl > 0x00030000) *nr = 4;
else if (dpctrl > 0x00010000) *nr = 2;
else *nr = 1;
}
void
nv50_sor_dp_calc_tu(struct drm_device *dev, int or, int link, u32 clk, u32 bpp)
{
struct nouveau_device *device = nouveau_dev(dev);
struct nouveau_drm *drm = nouveau_drm(dev);
const u32 symbol = 100000;
int bestTU = 0, bestVTUi = 0, bestVTUf = 0, bestVTUa = 0;
int TU, VTUi, VTUf, VTUa;
u64 link_data_rate, link_ratio, unk;
u32 best_diff = 64 * symbol;
u32 link_nr, link_bw, r;
/* calculate packed data rate for each lane */
nv50_sor_dp_link_get(dev, or, link, &link_nr, &link_bw);
link_data_rate = (clk * bpp / 8) / link_nr;
/* calculate ratio of packed data rate to link symbol rate */
link_ratio = link_data_rate * symbol;
r = do_div(link_ratio, link_bw);
for (TU = 64; TU >= 32; TU--) {
/* calculate average number of valid symbols in each TU */
u32 tu_valid = link_ratio * TU;
u32 calc, diff;
/* find a hw representation for the fraction.. */
VTUi = tu_valid / symbol;
calc = VTUi * symbol;
diff = tu_valid - calc;
if (diff) {
if (diff >= (symbol / 2)) {
VTUf = symbol / (symbol - diff);
if (symbol - (VTUf * diff))
VTUf++;
if (VTUf <= 15) {
VTUa = 1;
calc += symbol - (symbol / VTUf);
} else {
VTUa = 0;
VTUf = 1;
calc += symbol;
}
} else {
VTUa = 0;
VTUf = min((int)(symbol / diff), 15);
calc += symbol / VTUf;
}
diff = calc - tu_valid;
} else {
/* no remainder, but the hw doesn't like the fractional
* part to be zero. decrement the integer part and
* have the fraction add a whole symbol back
*/
VTUa = 0;
VTUf = 1;
VTUi--;
}
if (diff < best_diff) {
best_diff = diff;
bestTU = TU;
bestVTUa = VTUa;
bestVTUf = VTUf;
bestVTUi = VTUi;
if (diff == 0)
break;
}
}
if (!bestTU) {
NV_ERROR(drm, "DP: unable to find suitable config\n");
return;
}
/* XXX close to vbios numbers, but not right */
unk = (symbol - link_ratio) * bestTU;
unk *= link_ratio;
r = do_div(unk, symbol);
r = do_div(unk, symbol);
unk += 6;
nv_mask(device, NV50_SOR_DP_CTRL(or, link), 0x000001fc, bestTU << 2);
nv_mask(device, NV50_SOR_DP_SCFG(or, link), 0x010f7f3f, bestVTUa << 24 |
bestVTUf << 16 |
bestVTUi << 8 |
unk);
}
static void
nv50_sor_disconnect(struct drm_encoder *encoder)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_drm *drm = nouveau_drm(encoder->dev);
struct drm_device *dev = encoder->dev;
struct nouveau_channel *evo = nv50_display(dev)->master;
int ret;
if (!nv_encoder->crtc)
return;
nv50_crtc_blank(nouveau_crtc(nv_encoder->crtc), true);
NV_DEBUG(drm, "Disconnecting SOR %d\n", nv_encoder->or);
ret = RING_SPACE(evo, 4);
if (ret) {
NV_ERROR(drm, "no space while disconnecting SOR\n");
return;
}
BEGIN_NV04(evo, 0, NV50_EVO_SOR(nv_encoder->or, MODE_CTRL), 1);
OUT_RING (evo, 0);
BEGIN_NV04(evo, 0, NV50_EVO_UPDATE, 1);
OUT_RING (evo, 0);
nouveau_hdmi_mode_set(encoder, NULL);
nv_encoder->crtc = NULL;
nv_encoder->last_dpms = DRM_MODE_DPMS_OFF;
}
static void
nv50_sor_dpms(struct drm_encoder *encoder, int mode)
{
struct nouveau_device *device = nouveau_dev(encoder->dev);
struct nouveau_drm *drm = nouveau_drm(encoder->dev);
struct drm_device *dev = encoder->dev;
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct drm_encoder *enc;
uint32_t val;
int or = nv_encoder->or;
NV_DEBUG(drm, "or %d type %d mode %d\n", or, nv_encoder->dcb->type, mode);
nv_encoder->last_dpms = mode;
list_for_each_entry(enc, &dev->mode_config.encoder_list, head) {
struct nouveau_encoder *nvenc = nouveau_encoder(enc);
if (nvenc == nv_encoder ||
(nvenc->dcb->type != DCB_OUTPUT_TMDS &&
nvenc->dcb->type != DCB_OUTPUT_LVDS &&
nvenc->dcb->type != DCB_OUTPUT_DP) ||
nvenc->dcb->or != nv_encoder->dcb->or)
continue;
if (nvenc->last_dpms == DRM_MODE_DPMS_ON)
return;
}
/* wait for it to be done */
if (!nv_wait(device, NV50_PDISPLAY_SOR_DPMS_CTRL(or),
NV50_PDISPLAY_SOR_DPMS_CTRL_PENDING, 0)) {
NV_ERROR(drm, "timeout: SOR_DPMS_CTRL_PENDING(%d) == 0\n", or);
NV_ERROR(drm, "SOR_DPMS_CTRL(%d) = 0x%08x\n", or,
nv_rd32(device, NV50_PDISPLAY_SOR_DPMS_CTRL(or)));
}
val = nv_rd32(device, NV50_PDISPLAY_SOR_DPMS_CTRL(or));
if (mode == DRM_MODE_DPMS_ON)
val |= NV50_PDISPLAY_SOR_DPMS_CTRL_ON;
else
val &= ~NV50_PDISPLAY_SOR_DPMS_CTRL_ON;
nv_wr32(device, NV50_PDISPLAY_SOR_DPMS_CTRL(or), val |
NV50_PDISPLAY_SOR_DPMS_CTRL_PENDING);
if (!nv_wait(device, NV50_PDISPLAY_SOR_DPMS_STATE(or),
NV50_PDISPLAY_SOR_DPMS_STATE_WAIT, 0)) {
NV_ERROR(drm, "timeout: SOR_DPMS_STATE_WAIT(%d) == 0\n", or);
NV_ERROR(drm, "SOR_DPMS_STATE(%d) = 0x%08x\n", or,
nv_rd32(device, NV50_PDISPLAY_SOR_DPMS_STATE(or)));
}
if (nv_encoder->dcb->type == DCB_OUTPUT_DP) {
struct dp_train_func func = {
.link_set = nv50_sor_dp_link_set,
.train_set = nv50_sor_dp_train_set,
.train_adj = nv50_sor_dp_train_adj
};
nouveau_dp_dpms(encoder, mode, nv_encoder->dp.datarate, &func);
}
}
static void
nv50_sor_save(struct drm_encoder *encoder)
{
struct nouveau_drm *drm = nouveau_drm(encoder->dev);
NV_ERROR(drm, "!!\n");
}
static void
nv50_sor_restore(struct drm_encoder *encoder)
{
struct nouveau_drm *drm = nouveau_drm(encoder->dev);
NV_ERROR(drm, "!!\n");
}
static bool
nv50_sor_mode_fixup(struct drm_encoder *encoder,
const struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct nouveau_drm *drm = nouveau_drm(encoder->dev);
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_connector *connector;
NV_DEBUG(drm, "or %d\n", nv_encoder->or);
connector = nouveau_encoder_connector_get(nv_encoder);
if (!connector) {
NV_ERROR(drm, "Encoder has no connector\n");
return false;
}
if (connector->scaling_mode != DRM_MODE_SCALE_NONE &&
connector->native_mode)
drm_mode_copy(adjusted_mode, connector->native_mode);
return true;
}
static void
nv50_sor_prepare(struct drm_encoder *encoder)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
nv50_sor_disconnect(encoder);
if (nv_encoder->dcb->type == DCB_OUTPUT_DP) {
/* avoid race between link training and supervisor intr */
nv50_display_sync(encoder->dev);
}
}
static void
nv50_sor_commit(struct drm_encoder *encoder)
{
}
static void
nv50_sor_mode_set(struct drm_encoder *encoder, struct drm_display_mode *umode,
struct drm_display_mode *mode)
{
struct nouveau_channel *evo = nv50_display(encoder->dev)->master;
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_drm *drm = nouveau_drm(encoder->dev);
struct nouveau_crtc *crtc = nouveau_crtc(encoder->crtc);
struct nouveau_connector *nv_connector;
uint32_t mode_ctl = 0;
int ret;
NV_DEBUG(drm, "or %d type %d -> crtc %d\n",
nv_encoder->or, nv_encoder->dcb->type, crtc->index);
nv_encoder->crtc = encoder->crtc;
switch (nv_encoder->dcb->type) {
case DCB_OUTPUT_TMDS:
if (nv_encoder->dcb->sorconf.link & 1) {
if (mode->clock < 165000)
mode_ctl = 0x0100;
else
mode_ctl = 0x0500;
} else
mode_ctl = 0x0200;
nouveau_hdmi_mode_set(encoder, mode);
break;
case DCB_OUTPUT_DP:
nv_connector = nouveau_encoder_connector_get(nv_encoder);
if (nv_connector && nv_connector->base.display_info.bpc == 6) {
nv_encoder->dp.datarate = mode->clock * 18 / 8;
mode_ctl |= 0x00020000;
} else {
nv_encoder->dp.datarate = mode->clock * 24 / 8;
mode_ctl |= 0x00050000;
}
if (nv_encoder->dcb->sorconf.link & 1)
mode_ctl |= 0x00000800;
else
mode_ctl |= 0x00000900;
break;
default:
break;
}
if (crtc->index == 1)
mode_ctl |= NV50_EVO_SOR_MODE_CTRL_CRTC1;
else
mode_ctl |= NV50_EVO_SOR_MODE_CTRL_CRTC0;
if (mode->flags & DRM_MODE_FLAG_NHSYNC)
mode_ctl |= NV50_EVO_SOR_MODE_CTRL_NHSYNC;
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
mode_ctl |= NV50_EVO_SOR_MODE_CTRL_NVSYNC;
nv50_sor_dpms(encoder, DRM_MODE_DPMS_ON);
ret = RING_SPACE(evo, 2);
if (ret) {
NV_ERROR(drm, "no space while connecting SOR\n");
nv_encoder->crtc = NULL;
return;
}
BEGIN_NV04(evo, 0, NV50_EVO_SOR(nv_encoder->or, MODE_CTRL), 1);
OUT_RING(evo, mode_ctl);
}
static struct drm_crtc *
nv50_sor_crtc_get(struct drm_encoder *encoder)
{
return nouveau_encoder(encoder)->crtc;
}
static const struct drm_encoder_helper_funcs nv50_sor_helper_funcs = {
.dpms = nv50_sor_dpms,
.save = nv50_sor_save,
.restore = nv50_sor_restore,
.mode_fixup = nv50_sor_mode_fixup,
.prepare = nv50_sor_prepare,
.commit = nv50_sor_commit,
.mode_set = nv50_sor_mode_set,
.get_crtc = nv50_sor_crtc_get,
.detect = NULL,
.disable = nv50_sor_disconnect
};
static void
nv50_sor_destroy(struct drm_encoder *encoder)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_drm *drm = nouveau_drm(encoder->dev);
NV_DEBUG(drm, "\n");
drm_encoder_cleanup(encoder);
kfree(nv_encoder);
}
static const struct drm_encoder_funcs nv50_sor_encoder_funcs = {
.destroy = nv50_sor_destroy,
};
int
nv50_sor_create(struct drm_connector *connector, struct dcb_output *entry)
{
struct nouveau_encoder *nv_encoder = NULL;
struct drm_device *dev = connector->dev;
struct nouveau_drm *drm = nouveau_drm(dev);
struct drm_encoder *encoder;
int type;
NV_DEBUG(drm, "\n");
switch (entry->type) {
case DCB_OUTPUT_TMDS:
case DCB_OUTPUT_DP:
type = DRM_MODE_ENCODER_TMDS;
break;
case DCB_OUTPUT_LVDS:
type = DRM_MODE_ENCODER_LVDS;
break;
default:
return -EINVAL;
}
nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
if (!nv_encoder)
return -ENOMEM;
encoder = to_drm_encoder(nv_encoder);
nv_encoder->dcb = entry;
nv_encoder->or = ffs(entry->or) - 1;
nv_encoder->last_dpms = DRM_MODE_DPMS_OFF;
drm_encoder_init(dev, encoder, &nv50_sor_encoder_funcs, type);
drm_encoder_helper_add(encoder, &nv50_sor_helper_funcs);
encoder->possible_crtcs = entry->heads;
encoder->possible_clones = 0;
drm_mode_connector_attach_encoder(connector, encoder);
return 0;
}