linux_dsm_epyc7002/drivers/xen/xen-pciback/conf_space.h

137 lines
4.0 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 21:07:57 +07:00
/* SPDX-License-Identifier: GPL-2.0 */
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 04:22:20 +07:00
/*
* PCI Backend - Common data structures for overriding the configuration space
*
* Author: Ryan Wilson <hap9@epoch.ncsc.mil>
*/
#ifndef __XEN_PCIBACK_CONF_SPACE_H__
#define __XEN_PCIBACK_CONF_SPACE_H__
#include <linux/list.h>
#include <linux/err.h>
/* conf_field_init can return an errno in a ptr with ERR_PTR() */
typedef void *(*conf_field_init) (struct pci_dev *dev, int offset);
typedef void (*conf_field_reset) (struct pci_dev *dev, int offset, void *data);
typedef void (*conf_field_free) (struct pci_dev *dev, int offset, void *data);
typedef int (*conf_dword_write) (struct pci_dev *dev, int offset, u32 value,
void *data);
typedef int (*conf_word_write) (struct pci_dev *dev, int offset, u16 value,
void *data);
typedef int (*conf_byte_write) (struct pci_dev *dev, int offset, u8 value,
void *data);
typedef int (*conf_dword_read) (struct pci_dev *dev, int offset, u32 *value,
void *data);
typedef int (*conf_word_read) (struct pci_dev *dev, int offset, u16 *value,
void *data);
typedef int (*conf_byte_read) (struct pci_dev *dev, int offset, u8 *value,
void *data);
/* These are the fields within the configuration space which we
* are interested in intercepting reads/writes to and changing their
* values.
*/
struct config_field {
unsigned int offset;
unsigned int size;
unsigned int mask;
conf_field_init init;
conf_field_reset reset;
conf_field_free release;
void (*clean) (struct config_field *field);
union {
struct {
conf_dword_write write;
conf_dword_read read;
} dw;
struct {
conf_word_write write;
conf_word_read read;
} w;
struct {
conf_byte_write write;
conf_byte_read read;
} b;
} u;
struct list_head list;
};
struct config_field_entry {
struct list_head list;
const struct config_field *field;
unsigned int base_offset;
void *data;
};
#define INTERRUPT_TYPE_NONE (0)
#define INTERRUPT_TYPE_INTX (1<<0)
#define INTERRUPT_TYPE_MSI (1<<1)
#define INTERRUPT_TYPE_MSIX (1<<2)
xen-pciback: optionally allow interrupt enable flag writes QEMU running in a stubdom needs to be able to set INTX_DISABLE, and the MSI(-X) enable flags in the PCI config space. This adds an attribute 'allow_interrupt_control' which when set for a PCI device allows writes to this flag(s). The toolstack will need to set this for stubdoms. When enabled, guest (stubdomain) will be allowed to set relevant enable flags, but only one at a time - i.e. it refuses to enable more than one of INTx, MSI, MSI-X at a time. This functionality is needed only for config space access done by device model (stubdomain) serving a HVM with the actual PCI device. It is not necessary and unsafe to enable direct access to those bits for PV domain with the device attached. For PV domains, there are separate protocol messages (XEN_PCI_OP_{enable,disable}_{msi,msix}) for this purpose. Those ops in addition to setting enable bits, also configure MSI(-X) in dom0 kernel - which is undesirable for PCI passthrough to HVM guests. This should not introduce any new security issues since a malicious guest (or stubdom) can already generate MSIs through other ways, see [1] page 8. Additionally, when qemu runs in dom0, it already have direct access to those bits. This is the second iteration of this feature. First was proposed as a direct Xen interface through a new hypercall, but ultimately it was rejected by the maintainer, because of mixing pciback and hypercalls for PCI config space access isn't a good design. Full discussion at [2]. [1]: https://invisiblethingslab.com/resources/2011/Software%20Attacks%20on%20Intel%20VT-d.pdf [2]: https://xen.markmail.org/thread/smpgpws4umdzizze [part of the commit message and sysfs handling] Signed-off-by: Simon Gaiser <simon@invisiblethingslab.com> [the rest] Signed-off-by: Marek Marczykowski-Górecki <marmarek@invisiblethingslab.com> Reviewed-by: Roger Pau Monné <roger.pau@citrix.com> [boris: A few small changes suggested by Roger, some formatting changes] Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
2020-01-15 08:46:29 +07:00
extern bool xen_pcibk_permissive;
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 04:22:20 +07:00
#define OFFSET(cfg_entry) ((cfg_entry)->base_offset+(cfg_entry)->field->offset)
/* Add fields to a device - the add_fields macro expects to get a pointer to
* the first entry in an array (of which the ending is marked by size==0)
*/
int xen_pcibk_config_add_field_offset(struct pci_dev *dev,
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 04:22:20 +07:00
const struct config_field *field,
unsigned int offset);
static inline int xen_pcibk_config_add_field(struct pci_dev *dev,
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 04:22:20 +07:00
const struct config_field *field)
{
return xen_pcibk_config_add_field_offset(dev, field, 0);
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 04:22:20 +07:00
}
static inline int xen_pcibk_config_add_fields(struct pci_dev *dev,
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 04:22:20 +07:00
const struct config_field *field)
{
int i, err = 0;
for (i = 0; field[i].size != 0; i++) {
err = xen_pcibk_config_add_field(dev, &field[i]);
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 04:22:20 +07:00
if (err)
break;
}
return err;
}
static inline int xen_pcibk_config_add_fields_offset(struct pci_dev *dev,
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 04:22:20 +07:00
const struct config_field *field,
unsigned int offset)
{
int i, err = 0;
for (i = 0; field[i].size != 0; i++) {
err = xen_pcibk_config_add_field_offset(dev, &field[i], offset);
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 04:22:20 +07:00
if (err)
break;
}
return err;
}
/* Read/Write the real configuration space */
int xen_pcibk_read_config_byte(struct pci_dev *dev, int offset, u8 *value,
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 04:22:20 +07:00
void *data);
int xen_pcibk_read_config_word(struct pci_dev *dev, int offset, u16 *value,
void *data);
int xen_pcibk_read_config_dword(struct pci_dev *dev, int offset, u32 *value,
void *data);
int xen_pcibk_write_config_byte(struct pci_dev *dev, int offset, u8 value,
void *data);
int xen_pcibk_write_config_word(struct pci_dev *dev, int offset, u16 value,
void *data);
int xen_pcibk_write_config_dword(struct pci_dev *dev, int offset, u32 value,
void *data);
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 04:22:20 +07:00
int xen_pcibk_config_capability_init(void);
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 04:22:20 +07:00
int xen_pcibk_config_header_add_fields(struct pci_dev *dev);
int xen_pcibk_config_capability_add_fields(struct pci_dev *dev);
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 04:22:20 +07:00
xen-pciback: optionally allow interrupt enable flag writes QEMU running in a stubdom needs to be able to set INTX_DISABLE, and the MSI(-X) enable flags in the PCI config space. This adds an attribute 'allow_interrupt_control' which when set for a PCI device allows writes to this flag(s). The toolstack will need to set this for stubdoms. When enabled, guest (stubdomain) will be allowed to set relevant enable flags, but only one at a time - i.e. it refuses to enable more than one of INTx, MSI, MSI-X at a time. This functionality is needed only for config space access done by device model (stubdomain) serving a HVM with the actual PCI device. It is not necessary and unsafe to enable direct access to those bits for PV domain with the device attached. For PV domains, there are separate protocol messages (XEN_PCI_OP_{enable,disable}_{msi,msix}) for this purpose. Those ops in addition to setting enable bits, also configure MSI(-X) in dom0 kernel - which is undesirable for PCI passthrough to HVM guests. This should not introduce any new security issues since a malicious guest (or stubdom) can already generate MSIs through other ways, see [1] page 8. Additionally, when qemu runs in dom0, it already have direct access to those bits. This is the second iteration of this feature. First was proposed as a direct Xen interface through a new hypercall, but ultimately it was rejected by the maintainer, because of mixing pciback and hypercalls for PCI config space access isn't a good design. Full discussion at [2]. [1]: https://invisiblethingslab.com/resources/2011/Software%20Attacks%20on%20Intel%20VT-d.pdf [2]: https://xen.markmail.org/thread/smpgpws4umdzizze [part of the commit message and sysfs handling] Signed-off-by: Simon Gaiser <simon@invisiblethingslab.com> [the rest] Signed-off-by: Marek Marczykowski-Górecki <marmarek@invisiblethingslab.com> Reviewed-by: Roger Pau Monné <roger.pau@citrix.com> [boris: A few small changes suggested by Roger, some formatting changes] Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
2020-01-15 08:46:29 +07:00
int xen_pcibk_get_interrupt_type(struct pci_dev *dev);
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 04:22:20 +07:00
#endif /* __XEN_PCIBACK_CONF_SPACE_H__ */