linux_dsm_epyc7002/drivers/i2c/busses/i2c-bcm-iproc.c

583 lines
15 KiB
C
Raw Normal View History

/*
* Copyright (C) 2014 Broadcom Corporation
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation version 2.
*
* This program is distributed "as is" WITHOUT ANY WARRANTY of any
* kind, whether express or implied; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/delay.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#define CFG_OFFSET 0x00
#define CFG_RESET_SHIFT 31
#define CFG_EN_SHIFT 30
#define CFG_M_RETRY_CNT_SHIFT 16
#define CFG_M_RETRY_CNT_MASK 0x0f
#define TIM_CFG_OFFSET 0x04
#define TIM_CFG_MODE_400_SHIFT 31
#define M_FIFO_CTRL_OFFSET 0x0c
#define M_FIFO_RX_FLUSH_SHIFT 31
#define M_FIFO_TX_FLUSH_SHIFT 30
#define M_FIFO_RX_CNT_SHIFT 16
#define M_FIFO_RX_CNT_MASK 0x7f
#define M_FIFO_RX_THLD_SHIFT 8
#define M_FIFO_RX_THLD_MASK 0x3f
#define M_CMD_OFFSET 0x30
#define M_CMD_START_BUSY_SHIFT 31
#define M_CMD_STATUS_SHIFT 25
#define M_CMD_STATUS_MASK 0x07
#define M_CMD_STATUS_SUCCESS 0x0
#define M_CMD_STATUS_LOST_ARB 0x1
#define M_CMD_STATUS_NACK_ADDR 0x2
#define M_CMD_STATUS_NACK_DATA 0x3
#define M_CMD_STATUS_TIMEOUT 0x4
#define M_CMD_PROTOCOL_SHIFT 9
#define M_CMD_PROTOCOL_MASK 0xf
#define M_CMD_PROTOCOL_BLK_WR 0x7
#define M_CMD_PROTOCOL_BLK_RD 0x8
#define M_CMD_PEC_SHIFT 8
#define M_CMD_RD_CNT_SHIFT 0
#define M_CMD_RD_CNT_MASK 0xff
#define IE_OFFSET 0x38
#define IE_M_RX_FIFO_FULL_SHIFT 31
#define IE_M_RX_THLD_SHIFT 30
#define IE_M_START_BUSY_SHIFT 28
#define IE_M_TX_UNDERRUN_SHIFT 27
#define IS_OFFSET 0x3c
#define IS_M_RX_FIFO_FULL_SHIFT 31
#define IS_M_RX_THLD_SHIFT 30
#define IS_M_START_BUSY_SHIFT 28
#define IS_M_TX_UNDERRUN_SHIFT 27
#define M_TX_OFFSET 0x40
#define M_TX_WR_STATUS_SHIFT 31
#define M_TX_DATA_SHIFT 0
#define M_TX_DATA_MASK 0xff
#define M_RX_OFFSET 0x44
#define M_RX_STATUS_SHIFT 30
#define M_RX_STATUS_MASK 0x03
#define M_RX_PEC_ERR_SHIFT 29
#define M_RX_DATA_SHIFT 0
#define M_RX_DATA_MASK 0xff
#define I2C_TIMEOUT_MSEC 50000
#define M_TX_RX_FIFO_SIZE 64
enum bus_speed_index {
I2C_SPD_100K = 0,
I2C_SPD_400K,
};
struct bcm_iproc_i2c_dev {
struct device *device;
int irq;
void __iomem *base;
struct i2c_adapter adapter;
unsigned int bus_speed;
struct completion done;
int xfer_is_done;
struct i2c_msg *msg;
/* bytes that have been transferred */
unsigned int tx_bytes;
};
/*
* Can be expanded in the future if more interrupt status bits are utilized
*/
#define ISR_MASK (BIT(IS_M_START_BUSY_SHIFT) | BIT(IS_M_TX_UNDERRUN_SHIFT))
static irqreturn_t bcm_iproc_i2c_isr(int irq, void *data)
{
struct bcm_iproc_i2c_dev *iproc_i2c = data;
u32 status = readl(iproc_i2c->base + IS_OFFSET);
status &= ISR_MASK;
if (!status)
return IRQ_NONE;
/* TX FIFO is empty and we have more data to send */
if (status & BIT(IS_M_TX_UNDERRUN_SHIFT)) {
struct i2c_msg *msg = iproc_i2c->msg;
unsigned int tx_bytes = msg->len - iproc_i2c->tx_bytes;
unsigned int i;
u32 val;
/* can only fill up to the FIFO size */
tx_bytes = min_t(unsigned int, tx_bytes, M_TX_RX_FIFO_SIZE);
for (i = 0; i < tx_bytes; i++) {
/* start from where we left over */
unsigned int idx = iproc_i2c->tx_bytes + i;
val = msg->buf[idx];
/* mark the last byte */
if (idx == msg->len - 1) {
u32 tmp;
val |= BIT(M_TX_WR_STATUS_SHIFT);
/*
* Since this is the last byte, we should
* now disable TX FIFO underrun interrupt
*/
tmp = readl(iproc_i2c->base + IE_OFFSET);
tmp &= ~BIT(IE_M_TX_UNDERRUN_SHIFT);
writel(tmp, iproc_i2c->base + IE_OFFSET);
}
/* load data into TX FIFO */
writel(val, iproc_i2c->base + M_TX_OFFSET);
}
/* update number of transferred bytes */
iproc_i2c->tx_bytes += tx_bytes;
}
if (status & BIT(IS_M_START_BUSY_SHIFT)) {
iproc_i2c->xfer_is_done = 1;
complete(&iproc_i2c->done);
}
writel(status, iproc_i2c->base + IS_OFFSET);
return IRQ_HANDLED;
}
static int bcm_iproc_i2c_init(struct bcm_iproc_i2c_dev *iproc_i2c)
{
u32 val;
/* put controller in reset */
val = readl(iproc_i2c->base + CFG_OFFSET);
val |= 1 << CFG_RESET_SHIFT;
val &= ~(1 << CFG_EN_SHIFT);
writel(val, iproc_i2c->base + CFG_OFFSET);
/* wait 100 usec per spec */
udelay(100);
/* bring controller out of reset */
val &= ~(1 << CFG_RESET_SHIFT);
writel(val, iproc_i2c->base + CFG_OFFSET);
/* flush TX/RX FIFOs and set RX FIFO threshold to zero */
val = (1 << M_FIFO_RX_FLUSH_SHIFT) | (1 << M_FIFO_TX_FLUSH_SHIFT);
writel(val, iproc_i2c->base + M_FIFO_CTRL_OFFSET);
/* disable all interrupts */
writel(0, iproc_i2c->base + IE_OFFSET);
/* clear all pending interrupts */
writel(0xffffffff, iproc_i2c->base + IS_OFFSET);
return 0;
}
static void bcm_iproc_i2c_enable_disable(struct bcm_iproc_i2c_dev *iproc_i2c,
bool enable)
{
u32 val;
val = readl(iproc_i2c->base + CFG_OFFSET);
if (enable)
val |= BIT(CFG_EN_SHIFT);
else
val &= ~BIT(CFG_EN_SHIFT);
writel(val, iproc_i2c->base + CFG_OFFSET);
}
static int bcm_iproc_i2c_check_status(struct bcm_iproc_i2c_dev *iproc_i2c,
struct i2c_msg *msg)
{
u32 val;
val = readl(iproc_i2c->base + M_CMD_OFFSET);
val = (val >> M_CMD_STATUS_SHIFT) & M_CMD_STATUS_MASK;
switch (val) {
case M_CMD_STATUS_SUCCESS:
return 0;
case M_CMD_STATUS_LOST_ARB:
dev_dbg(iproc_i2c->device, "lost bus arbitration\n");
return -EAGAIN;
case M_CMD_STATUS_NACK_ADDR:
dev_dbg(iproc_i2c->device, "NAK addr:0x%02x\n", msg->addr);
return -ENXIO;
case M_CMD_STATUS_NACK_DATA:
dev_dbg(iproc_i2c->device, "NAK data\n");
return -ENXIO;
case M_CMD_STATUS_TIMEOUT:
dev_dbg(iproc_i2c->device, "bus timeout\n");
return -ETIMEDOUT;
default:
dev_dbg(iproc_i2c->device, "unknown error code=%d\n", val);
/* re-initialize i2c for recovery */
bcm_iproc_i2c_enable_disable(iproc_i2c, false);
bcm_iproc_i2c_init(iproc_i2c);
bcm_iproc_i2c_enable_disable(iproc_i2c, true);
return -EIO;
}
}
static int bcm_iproc_i2c_xfer_single_msg(struct bcm_iproc_i2c_dev *iproc_i2c,
struct i2c_msg *msg)
{
int ret, i;
u8 addr;
u32 val;
unsigned int tx_bytes;
unsigned long time_left = msecs_to_jiffies(I2C_TIMEOUT_MSEC);
/* check if bus is busy */
if (!!(readl(iproc_i2c->base + M_CMD_OFFSET) &
BIT(M_CMD_START_BUSY_SHIFT))) {
dev_warn(iproc_i2c->device, "bus is busy\n");
return -EBUSY;
}
iproc_i2c->msg = msg;
/* format and load slave address into the TX FIFO */
addr = i2c_8bit_addr_from_msg(msg);
writel(addr, iproc_i2c->base + M_TX_OFFSET);
/*
* For a write transaction, load data into the TX FIFO. Only allow
* loading up to TX FIFO size - 1 bytes of data since the first byte
* has been used up by the slave address
*/
tx_bytes = min_t(unsigned int, msg->len, M_TX_RX_FIFO_SIZE - 1);
if (!(msg->flags & I2C_M_RD)) {
for (i = 0; i < tx_bytes; i++) {
val = msg->buf[i];
/* mark the last byte */
if (i == msg->len - 1)
val |= 1 << M_TX_WR_STATUS_SHIFT;
writel(val, iproc_i2c->base + M_TX_OFFSET);
}
iproc_i2c->tx_bytes = tx_bytes;
}
/* mark as incomplete before starting the transaction */
reinit_completion(&iproc_i2c->done);
iproc_i2c->xfer_is_done = 0;
/*
* Enable the "start busy" interrupt, which will be triggered after the
* transaction is done, i.e., the internal start_busy bit, transitions
* from 1 to 0.
*/
val = BIT(IE_M_START_BUSY_SHIFT);
/*
* If TX data size is larger than the TX FIFO, need to enable TX
* underrun interrupt, which will be triggerred when the TX FIFO is
* empty. When that happens we can then pump more data into the FIFO
*/
if (!(msg->flags & I2C_M_RD) &&
msg->len > iproc_i2c->tx_bytes)
val |= BIT(IE_M_TX_UNDERRUN_SHIFT);
writel(val, iproc_i2c->base + IE_OFFSET);
/*
* Now we can activate the transfer. For a read operation, specify the
* number of bytes to read
*/
val = BIT(M_CMD_START_BUSY_SHIFT);
if (msg->flags & I2C_M_RD) {
val |= (M_CMD_PROTOCOL_BLK_RD << M_CMD_PROTOCOL_SHIFT) |
(msg->len << M_CMD_RD_CNT_SHIFT);
} else {
val |= (M_CMD_PROTOCOL_BLK_WR << M_CMD_PROTOCOL_SHIFT);
}
writel(val, iproc_i2c->base + M_CMD_OFFSET);
time_left = wait_for_completion_timeout(&iproc_i2c->done, time_left);
/* disable all interrupts */
writel(0, iproc_i2c->base + IE_OFFSET);
/* read it back to flush the write */
readl(iproc_i2c->base + IE_OFFSET);
/* make sure the interrupt handler isn't running */
synchronize_irq(iproc_i2c->irq);
if (!time_left && !iproc_i2c->xfer_is_done) {
dev_err(iproc_i2c->device, "transaction timed out\n");
/* flush FIFOs */
val = (1 << M_FIFO_RX_FLUSH_SHIFT) |
(1 << M_FIFO_TX_FLUSH_SHIFT);
writel(val, iproc_i2c->base + M_FIFO_CTRL_OFFSET);
return -ETIMEDOUT;
}
ret = bcm_iproc_i2c_check_status(iproc_i2c, msg);
if (ret) {
/* flush both TX/RX FIFOs */
val = (1 << M_FIFO_RX_FLUSH_SHIFT) |
(1 << M_FIFO_TX_FLUSH_SHIFT);
writel(val, iproc_i2c->base + M_FIFO_CTRL_OFFSET);
return ret;
}
/*
* For a read operation, we now need to load the data from FIFO
* into the memory buffer
*/
if (msg->flags & I2C_M_RD) {
for (i = 0; i < msg->len; i++) {
msg->buf[i] = (readl(iproc_i2c->base + M_RX_OFFSET) >>
M_RX_DATA_SHIFT) & M_RX_DATA_MASK;
}
}
return 0;
}
static int bcm_iproc_i2c_xfer(struct i2c_adapter *adapter,
struct i2c_msg msgs[], int num)
{
struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(adapter);
int ret, i;
/* go through all messages */
for (i = 0; i < num; i++) {
ret = bcm_iproc_i2c_xfer_single_msg(iproc_i2c, &msgs[i]);
if (ret) {
dev_dbg(iproc_i2c->device, "xfer failed\n");
return ret;
}
}
return num;
}
static uint32_t bcm_iproc_i2c_functionality(struct i2c_adapter *adap)
{
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
}
static const struct i2c_algorithm bcm_iproc_algo = {
.master_xfer = bcm_iproc_i2c_xfer,
.functionality = bcm_iproc_i2c_functionality,
};
static const struct i2c_adapter_quirks bcm_iproc_i2c_quirks = {
/* need to reserve one byte in the FIFO for the slave address */
.max_read_len = M_TX_RX_FIFO_SIZE - 1,
};
static int bcm_iproc_i2c_cfg_speed(struct bcm_iproc_i2c_dev *iproc_i2c)
{
unsigned int bus_speed;
u32 val;
int ret = of_property_read_u32(iproc_i2c->device->of_node,
"clock-frequency", &bus_speed);
if (ret < 0) {
dev_info(iproc_i2c->device,
"unable to interpret clock-frequency DT property\n");
bus_speed = 100000;
}
if (bus_speed < 100000) {
dev_err(iproc_i2c->device, "%d Hz bus speed not supported\n",
bus_speed);
dev_err(iproc_i2c->device,
"valid speeds are 100khz and 400khz\n");
return -EINVAL;
} else if (bus_speed < 400000) {
bus_speed = 100000;
} else {
bus_speed = 400000;
}
iproc_i2c->bus_speed = bus_speed;
val = readl(iproc_i2c->base + TIM_CFG_OFFSET);
val &= ~(1 << TIM_CFG_MODE_400_SHIFT);
val |= (bus_speed == 400000) << TIM_CFG_MODE_400_SHIFT;
writel(val, iproc_i2c->base + TIM_CFG_OFFSET);
dev_info(iproc_i2c->device, "bus set to %u Hz\n", bus_speed);
return 0;
}
static int bcm_iproc_i2c_probe(struct platform_device *pdev)
{
int irq, ret = 0;
struct bcm_iproc_i2c_dev *iproc_i2c;
struct i2c_adapter *adap;
struct resource *res;
iproc_i2c = devm_kzalloc(&pdev->dev, sizeof(*iproc_i2c),
GFP_KERNEL);
if (!iproc_i2c)
return -ENOMEM;
platform_set_drvdata(pdev, iproc_i2c);
iproc_i2c->device = &pdev->dev;
init_completion(&iproc_i2c->done);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
iproc_i2c->base = devm_ioremap_resource(iproc_i2c->device, res);
if (IS_ERR(iproc_i2c->base))
return PTR_ERR(iproc_i2c->base);
ret = bcm_iproc_i2c_init(iproc_i2c);
if (ret)
return ret;
ret = bcm_iproc_i2c_cfg_speed(iproc_i2c);
if (ret)
return ret;
irq = platform_get_irq(pdev, 0);
if (irq <= 0) {
dev_err(iproc_i2c->device, "no irq resource\n");
return irq;
}
iproc_i2c->irq = irq;
ret = devm_request_irq(iproc_i2c->device, irq, bcm_iproc_i2c_isr, 0,
pdev->name, iproc_i2c);
if (ret < 0) {
dev_err(iproc_i2c->device, "unable to request irq %i\n", irq);
return ret;
}
bcm_iproc_i2c_enable_disable(iproc_i2c, true);
adap = &iproc_i2c->adapter;
i2c_set_adapdata(adap, iproc_i2c);
strlcpy(adap->name, "Broadcom iProc I2C adapter", sizeof(adap->name));
adap->algo = &bcm_iproc_algo;
adap->quirks = &bcm_iproc_i2c_quirks;
adap->dev.parent = &pdev->dev;
adap->dev.of_node = pdev->dev.of_node;
return i2c_add_adapter(adap);
}
static int bcm_iproc_i2c_remove(struct platform_device *pdev)
{
struct bcm_iproc_i2c_dev *iproc_i2c = platform_get_drvdata(pdev);
/* make sure there's no pending interrupt when we remove the adapter */
writel(0, iproc_i2c->base + IE_OFFSET);
readl(iproc_i2c->base + IE_OFFSET);
synchronize_irq(iproc_i2c->irq);
i2c_del_adapter(&iproc_i2c->adapter);
bcm_iproc_i2c_enable_disable(iproc_i2c, false);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int bcm_iproc_i2c_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct bcm_iproc_i2c_dev *iproc_i2c = platform_get_drvdata(pdev);
/* make sure there's no pending interrupt when we go into suspend */
writel(0, iproc_i2c->base + IE_OFFSET);
readl(iproc_i2c->base + IE_OFFSET);
synchronize_irq(iproc_i2c->irq);
/* now disable the controller */
bcm_iproc_i2c_enable_disable(iproc_i2c, false);
return 0;
}
static int bcm_iproc_i2c_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct bcm_iproc_i2c_dev *iproc_i2c = platform_get_drvdata(pdev);
int ret;
u32 val;
/*
* Power domain could have been shut off completely in system deep
* sleep, so re-initialize the block here
*/
ret = bcm_iproc_i2c_init(iproc_i2c);
if (ret)
return ret;
/* configure to the desired bus speed */
val = readl(iproc_i2c->base + TIM_CFG_OFFSET);
val &= ~(1 << TIM_CFG_MODE_400_SHIFT);
val |= (iproc_i2c->bus_speed == 400000) << TIM_CFG_MODE_400_SHIFT;
writel(val, iproc_i2c->base + TIM_CFG_OFFSET);
bcm_iproc_i2c_enable_disable(iproc_i2c, true);
return 0;
}
static const struct dev_pm_ops bcm_iproc_i2c_pm_ops = {
.suspend_late = &bcm_iproc_i2c_suspend,
.resume_early = &bcm_iproc_i2c_resume
};
#define BCM_IPROC_I2C_PM_OPS (&bcm_iproc_i2c_pm_ops)
#else
#define BCM_IPROC_I2C_PM_OPS NULL
#endif /* CONFIG_PM_SLEEP */
static const struct of_device_id bcm_iproc_i2c_of_match[] = {
{ .compatible = "brcm,iproc-i2c" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, bcm_iproc_i2c_of_match);
static struct platform_driver bcm_iproc_i2c_driver = {
.driver = {
.name = "bcm-iproc-i2c",
.of_match_table = bcm_iproc_i2c_of_match,
.pm = BCM_IPROC_I2C_PM_OPS,
},
.probe = bcm_iproc_i2c_probe,
.remove = bcm_iproc_i2c_remove,
};
module_platform_driver(bcm_iproc_i2c_driver);
MODULE_AUTHOR("Ray Jui <rjui@broadcom.com>");
MODULE_DESCRIPTION("Broadcom iProc I2C Driver");
MODULE_LICENSE("GPL v2");