linux_dsm_epyc7002/include/uapi/linux/pkt_cls.h

620 lines
13 KiB
C
Raw Normal View History

License cleanup: add SPDX license identifier to uapi header files with no license Many user space API headers are missing licensing information, which makes it hard for compliance tools to determine the correct license. By default are files without license information under the default license of the kernel, which is GPLV2. Marking them GPLV2 would exclude them from being included in non GPLV2 code, which is obviously not intended. The user space API headers fall under the syscall exception which is in the kernels COPYING file: NOTE! This copyright does *not* cover user programs that use kernel services by normal system calls - this is merely considered normal use of the kernel, and does *not* fall under the heading of "derived work". otherwise syscall usage would not be possible. Update the files which contain no license information with an SPDX license identifier. The chosen identifier is 'GPL-2.0 WITH Linux-syscall-note' which is the officially assigned identifier for the Linux syscall exception. SPDX license identifiers are a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. See the previous patch in this series for the methodology of how this patch was researched. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 21:08:43 +07:00
/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
#ifndef __LINUX_PKT_CLS_H
#define __LINUX_PKT_CLS_H
#include <linux/types.h>
#include <linux/pkt_sched.h>
#define TC_COOKIE_MAX_SIZE 16
/* Action attributes */
enum {
TCA_ACT_UNSPEC,
TCA_ACT_KIND,
TCA_ACT_OPTIONS,
TCA_ACT_INDEX,
TCA_ACT_STATS,
TCA_ACT_PAD,
TCA_ACT_COOKIE,
__TCA_ACT_MAX
};
#define TCA_ACT_MAX __TCA_ACT_MAX
#define TCA_OLD_COMPAT (TCA_ACT_MAX+1)
#define TCA_ACT_MAX_PRIO 32
#define TCA_ACT_BIND 1
#define TCA_ACT_NOBIND 0
#define TCA_ACT_UNBIND 1
#define TCA_ACT_NOUNBIND 0
#define TCA_ACT_REPLACE 1
#define TCA_ACT_NOREPLACE 0
#define TC_ACT_UNSPEC (-1)
#define TC_ACT_OK 0
#define TC_ACT_RECLASSIFY 1
#define TC_ACT_SHOT 2
#define TC_ACT_PIPE 3
#define TC_ACT_STOLEN 4
#define TC_ACT_QUEUED 5
#define TC_ACT_REPEAT 6
2015-09-16 13:05:43 +07:00
#define TC_ACT_REDIRECT 7
#define TC_ACT_TRAP 8 /* For hw path, this means "trap to cpu"
* and don't further process the frame
* in hardware. For sw path, this is
* equivalent of TC_ACT_STOLEN - drop
* the skb and act like everything
* is alright.
*/
#define TC_ACT_VALUE_MAX TC_ACT_TRAP
/* There is a special kind of actions called "extended actions",
* which need a value parameter. These have a local opcode located in
* the highest nibble, starting from 1. The rest of the bits
* are used to carry the value. These two parts together make
* a combined opcode.
*/
#define __TC_ACT_EXT_SHIFT 28
#define __TC_ACT_EXT(local) ((local) << __TC_ACT_EXT_SHIFT)
#define TC_ACT_EXT_VAL_MASK ((1 << __TC_ACT_EXT_SHIFT) - 1)
#define TC_ACT_EXT_OPCODE(combined) ((combined) & (~TC_ACT_EXT_VAL_MASK))
#define TC_ACT_EXT_CMP(combined, opcode) (TC_ACT_EXT_OPCODE(combined) == opcode)
#define TC_ACT_JUMP __TC_ACT_EXT(1)
#define TC_ACT_GOTO_CHAIN __TC_ACT_EXT(2)
#define TC_ACT_EXT_OPCODE_MAX TC_ACT_GOTO_CHAIN
/* Action type identifiers*/
enum {
TCA_ID_UNSPEC=0,
TCA_ID_POLICE=1,
/* other actions go here */
__TCA_ID_MAX=255
};
#define TCA_ID_MAX __TCA_ID_MAX
struct tc_police {
__u32 index;
int action;
#define TC_POLICE_UNSPEC TC_ACT_UNSPEC
#define TC_POLICE_OK TC_ACT_OK
#define TC_POLICE_RECLASSIFY TC_ACT_RECLASSIFY
#define TC_POLICE_SHOT TC_ACT_SHOT
#define TC_POLICE_PIPE TC_ACT_PIPE
__u32 limit;
__u32 burst;
__u32 mtu;
struct tc_ratespec rate;
struct tc_ratespec peakrate;
int refcnt;
int bindcnt;
__u32 capab;
};
struct tcf_t {
__u64 install;
__u64 lastuse;
__u64 expires;
__u64 firstuse;
};
struct tc_cnt {
int refcnt;
int bindcnt;
};
#define tc_gen \
__u32 index; \
__u32 capab; \
int action; \
int refcnt; \
int bindcnt
enum {
TCA_POLICE_UNSPEC,
TCA_POLICE_TBF,
TCA_POLICE_RATE,
TCA_POLICE_PEAKRATE,
TCA_POLICE_AVRATE,
TCA_POLICE_RESULT,
TCA_POLICE_TM,
TCA_POLICE_PAD,
__TCA_POLICE_MAX
#define TCA_POLICE_RESULT TCA_POLICE_RESULT
};
#define TCA_POLICE_MAX (__TCA_POLICE_MAX - 1)
/* tca flags definitions */
#define TCA_CLS_FLAGS_SKIP_HW (1 << 0) /* don't offload filter to HW */
#define TCA_CLS_FLAGS_SKIP_SW (1 << 1) /* don't use filter in SW */
#define TCA_CLS_FLAGS_IN_HW (1 << 2) /* filter is offloaded to HW */
#define TCA_CLS_FLAGS_NOT_IN_HW (1 << 3) /* filter isn't offloaded to HW */
sched: cls: enable verbose logging Currently, when the rule is not to be exclusively executed by the hardware, extack is not passed along and offloading failures don't get logged. The idea was that hardware failures are okay because the rule will get executed in software then and this way it doesn't confuse unware users. But this is not helpful in case one needs to understand why a certain rule failed to get offloaded. Considering it may have been a temporary failure, like resources exceeded or so, reproducing it later and knowing that it is triggering the same reason may be challenging. The ultimate goal is to improve Open vSwitch debuggability when using flower offloading. This patch adds a new flag to enable verbose logging. With the flag set, extack will be passed to the driver, which will be able to log the error. As the operation itself probably won't fail (not because of this, at least), current iproute will already log it as a Warning. The flag is generic, so it can be reused later. No need to restrict it just for HW offloading. The command line will follow the syntax that tc-ebpf already uses, tc ... [ verbose ] ... , and extend its meaning. For example: # ./tc qdisc add dev p7p1 ingress # ./tc filter add dev p7p1 parent ffff: protocol ip prio 1 \ flower verbose \ src_mac ed:13:db:00:00:00 dst_mac 01:80:c2:00:00:d0 \ src_ip 56.0.0.0 dst_ip 55.0.0.0 action drop Warning: TC offload is disabled on net device. # echo $? 0 # ./tc filter add dev p7p1 parent ffff: protocol ip prio 1 \ flower \ src_mac ff:13:db:00:00:00 dst_mac 01:80:c2:00:00:d0 \ src_ip 56.0.0.0 dst_ip 55.0.0.0 action drop # echo $? 0 Signed-off-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-05-14 03:44:27 +07:00
#define TCA_CLS_FLAGS_VERBOSE (1 << 4) /* verbose logging */
/* U32 filters */
#define TC_U32_HTID(h) ((h)&0xFFF00000)
#define TC_U32_USERHTID(h) (TC_U32_HTID(h)>>20)
#define TC_U32_HASH(h) (((h)>>12)&0xFF)
#define TC_U32_NODE(h) ((h)&0xFFF)
#define TC_U32_KEY(h) ((h)&0xFFFFF)
#define TC_U32_UNSPEC 0
#define TC_U32_ROOT (0xFFF00000)
enum {
TCA_U32_UNSPEC,
TCA_U32_CLASSID,
TCA_U32_HASH,
TCA_U32_LINK,
TCA_U32_DIVISOR,
TCA_U32_SEL,
TCA_U32_POLICE,
TCA_U32_ACT,
TCA_U32_INDEV,
TCA_U32_PCNT,
TCA_U32_MARK,
net: sched: cls_u32 add bit to specify software only rules In the initial implementation the only way to stop a rule from being inserted into the hardware table was via the device feature flag. However this doesn't work well when working on an end host system where packets are expect to hit both the hardware and software datapaths. For example we can imagine a rule that will match an IP address and increment a field. If we install this rule in both hardware and software we may increment the field twice. To date we have only added support for the drop action so we have been able to ignore these cases. But as we extend the action support we will hit this example plus more such cases. Arguably these are not even corner cases in many working systems these cases will be common. To avoid forcing the driver to always abort (i.e. the above example) this patch adds a flag to add a rule in software only. A careful user can use this flag to build software and hardware datapaths that work together. One example we have found particularly useful is to use hardware resources to set the skb->mark on the skb when the match may be expensive to run in software but a mark lookup in a hash table is cheap. The idea here is hardware can do in one lookup what the u32 classifier may need to traverse multiple lists and hash tables to compute. The flag is only passed down on inserts. On deletion to avoid stale references in hardware we always try to remove a rule if it exists. The flags field is part of the classifier specific options. Although it is tempting to lift this into the generic structure doing this proves difficult do to how the tc netlink attributes are implemented along with how the dump/change routines are called. There is also precedence for putting seemingly generic pieces in the specific classifier options such as TCA_U32_POLICE, TCA_U32_ACT, etc. So although not ideal I've left FLAGS in the u32 options as well as it simplifies the code greatly and user space has already learned how to manage these bits ala 'tc' tool. Another thing if trying to update a rule we require the flags to be unchanged. This is to force user space, software u32 and the hardware u32 to keep in sync. Thanks to Simon Horman for catching this case. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-26 22:54:39 +07:00
TCA_U32_FLAGS,
TCA_U32_PAD,
__TCA_U32_MAX
};
#define TCA_U32_MAX (__TCA_U32_MAX - 1)
struct tc_u32_key {
__be32 mask;
__be32 val;
int off;
int offmask;
};
struct tc_u32_sel {
unsigned char flags;
unsigned char offshift;
unsigned char nkeys;
__be16 offmask;
__u16 off;
short offoff;
short hoff;
__be32 hmask;
struct tc_u32_key keys[0];
};
struct tc_u32_mark {
__u32 val;
__u32 mask;
__u32 success;
};
struct tc_u32_pcnt {
__u64 rcnt;
__u64 rhit;
__u64 kcnts[0];
};
/* Flags */
#define TC_U32_TERMINAL 1
#define TC_U32_OFFSET 2
#define TC_U32_VAROFFSET 4
#define TC_U32_EAT 8
#define TC_U32_MAXDEPTH 8
/* RSVP filter */
enum {
TCA_RSVP_UNSPEC,
TCA_RSVP_CLASSID,
TCA_RSVP_DST,
TCA_RSVP_SRC,
TCA_RSVP_PINFO,
TCA_RSVP_POLICE,
TCA_RSVP_ACT,
__TCA_RSVP_MAX
};
#define TCA_RSVP_MAX (__TCA_RSVP_MAX - 1 )
struct tc_rsvp_gpi {
__u32 key;
__u32 mask;
int offset;
};
struct tc_rsvp_pinfo {
struct tc_rsvp_gpi dpi;
struct tc_rsvp_gpi spi;
__u8 protocol;
__u8 tunnelid;
__u8 tunnelhdr;
__u8 pad;
};
/* ROUTE filter */
enum {
TCA_ROUTE4_UNSPEC,
TCA_ROUTE4_CLASSID,
TCA_ROUTE4_TO,
TCA_ROUTE4_FROM,
TCA_ROUTE4_IIF,
TCA_ROUTE4_POLICE,
TCA_ROUTE4_ACT,
__TCA_ROUTE4_MAX
};
#define TCA_ROUTE4_MAX (__TCA_ROUTE4_MAX - 1)
/* FW filter */
enum {
TCA_FW_UNSPEC,
TCA_FW_CLASSID,
TCA_FW_POLICE,
TCA_FW_INDEV, /* used by CONFIG_NET_CLS_IND */
TCA_FW_ACT, /* used by CONFIG_NET_CLS_ACT */
TCA_FW_MASK,
__TCA_FW_MAX
};
#define TCA_FW_MAX (__TCA_FW_MAX - 1)
/* TC index filter */
enum {
TCA_TCINDEX_UNSPEC,
TCA_TCINDEX_HASH,
TCA_TCINDEX_MASK,
TCA_TCINDEX_SHIFT,
TCA_TCINDEX_FALL_THROUGH,
TCA_TCINDEX_CLASSID,
TCA_TCINDEX_POLICE,
TCA_TCINDEX_ACT,
__TCA_TCINDEX_MAX
};
#define TCA_TCINDEX_MAX (__TCA_TCINDEX_MAX - 1)
/* Flow filter */
enum {
FLOW_KEY_SRC,
FLOW_KEY_DST,
FLOW_KEY_PROTO,
FLOW_KEY_PROTO_SRC,
FLOW_KEY_PROTO_DST,
FLOW_KEY_IIF,
FLOW_KEY_PRIORITY,
FLOW_KEY_MARK,
FLOW_KEY_NFCT,
FLOW_KEY_NFCT_SRC,
FLOW_KEY_NFCT_DST,
FLOW_KEY_NFCT_PROTO_SRC,
FLOW_KEY_NFCT_PROTO_DST,
FLOW_KEY_RTCLASSID,
FLOW_KEY_SKUID,
FLOW_KEY_SKGID,
FLOW_KEY_VLAN_TAG,
FLOW_KEY_RXHASH,
__FLOW_KEY_MAX,
};
#define FLOW_KEY_MAX (__FLOW_KEY_MAX - 1)
enum {
FLOW_MODE_MAP,
FLOW_MODE_HASH,
};
enum {
TCA_FLOW_UNSPEC,
TCA_FLOW_KEYS,
TCA_FLOW_MODE,
TCA_FLOW_BASECLASS,
TCA_FLOW_RSHIFT,
TCA_FLOW_ADDEND,
TCA_FLOW_MASK,
TCA_FLOW_XOR,
TCA_FLOW_DIVISOR,
TCA_FLOW_ACT,
TCA_FLOW_POLICE,
TCA_FLOW_EMATCHES,
TCA_FLOW_PERTURB,
__TCA_FLOW_MAX
};
#define TCA_FLOW_MAX (__TCA_FLOW_MAX - 1)
/* Basic filter */
enum {
TCA_BASIC_UNSPEC,
TCA_BASIC_CLASSID,
TCA_BASIC_EMATCHES,
TCA_BASIC_ACT,
TCA_BASIC_POLICE,
__TCA_BASIC_MAX
};
#define TCA_BASIC_MAX (__TCA_BASIC_MAX - 1)
/* Cgroup classifier */
enum {
TCA_CGROUP_UNSPEC,
TCA_CGROUP_ACT,
TCA_CGROUP_POLICE,
TCA_CGROUP_EMATCHES,
__TCA_CGROUP_MAX,
};
#define TCA_CGROUP_MAX (__TCA_CGROUP_MAX - 1)
net: sched: cls_bpf: add BPF-based classifier This work contains a lightweight BPF-based traffic classifier that can serve as a flexible alternative to ematch-based tree classification, i.e. now that BPF filter engine can also be JITed in the kernel. Naturally, tc actions and policies are supported as well with cls_bpf. Multiple BPF programs/filter can be attached for a class, or they can just as well be written within a single BPF program, that's really up to the user how he wishes to run/optimize the code, e.g. also for inversion of verdicts etc. The notion of a BPF program's return/exit codes is being kept as follows: 0: No match -1: Select classid given in "tc filter ..." command else: flowid, overwrite the default one As a minimal usage example with iproute2, we use a 3 band prio root qdisc on a router with sfq each as leave, and assign ssh and icmp bpf-based filters to band 1, http traffic to band 2 and the rest to band 3. For the first two bands we load the bytecode from a file, in the 2nd we load it inline as an example: echo 1 > /proc/sys/net/core/bpf_jit_enable tc qdisc del dev em1 root tc qdisc add dev em1 root handle 1: prio bands 3 priomap 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 tc qdisc add dev em1 parent 1:1 sfq perturb 16 tc qdisc add dev em1 parent 1:2 sfq perturb 16 tc qdisc add dev em1 parent 1:3 sfq perturb 16 tc filter add dev em1 parent 1: bpf run bytecode-file /etc/tc/ssh.bpf flowid 1:1 tc filter add dev em1 parent 1: bpf run bytecode-file /etc/tc/icmp.bpf flowid 1:1 tc filter add dev em1 parent 1: bpf run bytecode-file /etc/tc/http.bpf flowid 1:2 tc filter add dev em1 parent 1: bpf run bytecode "`bpfc -f tc -i misc.ops`" flowid 1:3 BPF programs can be easily created and passed to tc, either as inline 'bytecode' or 'bytecode-file'. There are a couple of front-ends that can compile opcodes, for example: 1) People familiar with tcpdump-like filters: tcpdump -iem1 -ddd port 22 | tr '\n' ',' > /etc/tc/ssh.bpf 2) People that want to low-level program their filters or use BPF extensions that lack support by libpcap's compiler: bpfc -f tc -i ssh.ops > /etc/tc/ssh.bpf ssh.ops example code: ldh [12] jne #0x800, drop ldb [23] jneq #6, drop ldh [20] jset #0x1fff, drop ldxb 4 * ([14] & 0xf) ldh [%x + 14] jeq #0x16, pass ldh [%x + 16] jne #0x16, drop pass: ret #-1 drop: ret #0 It was chosen to load bytecode into tc, since the reverse operation, tc filter list dev em1, is then able to show the exact commands again. Possible follow-up work could also include a small expression compiler for iproute2. Tested with the help of bmon. This idea came up during the Netfilter Workshop 2013 in Copenhagen. Also thanks to feedback from Eric Dumazet! Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Cc: Thomas Graf <tgraf@suug.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-10-28 22:43:02 +07:00
/* BPF classifier */
#define TCA_BPF_FLAG_ACT_DIRECT (1 << 0)
net: sched: cls_bpf: add BPF-based classifier This work contains a lightweight BPF-based traffic classifier that can serve as a flexible alternative to ematch-based tree classification, i.e. now that BPF filter engine can also be JITed in the kernel. Naturally, tc actions and policies are supported as well with cls_bpf. Multiple BPF programs/filter can be attached for a class, or they can just as well be written within a single BPF program, that's really up to the user how he wishes to run/optimize the code, e.g. also for inversion of verdicts etc. The notion of a BPF program's return/exit codes is being kept as follows: 0: No match -1: Select classid given in "tc filter ..." command else: flowid, overwrite the default one As a minimal usage example with iproute2, we use a 3 band prio root qdisc on a router with sfq each as leave, and assign ssh and icmp bpf-based filters to band 1, http traffic to band 2 and the rest to band 3. For the first two bands we load the bytecode from a file, in the 2nd we load it inline as an example: echo 1 > /proc/sys/net/core/bpf_jit_enable tc qdisc del dev em1 root tc qdisc add dev em1 root handle 1: prio bands 3 priomap 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 tc qdisc add dev em1 parent 1:1 sfq perturb 16 tc qdisc add dev em1 parent 1:2 sfq perturb 16 tc qdisc add dev em1 parent 1:3 sfq perturb 16 tc filter add dev em1 parent 1: bpf run bytecode-file /etc/tc/ssh.bpf flowid 1:1 tc filter add dev em1 parent 1: bpf run bytecode-file /etc/tc/icmp.bpf flowid 1:1 tc filter add dev em1 parent 1: bpf run bytecode-file /etc/tc/http.bpf flowid 1:2 tc filter add dev em1 parent 1: bpf run bytecode "`bpfc -f tc -i misc.ops`" flowid 1:3 BPF programs can be easily created and passed to tc, either as inline 'bytecode' or 'bytecode-file'. There are a couple of front-ends that can compile opcodes, for example: 1) People familiar with tcpdump-like filters: tcpdump -iem1 -ddd port 22 | tr '\n' ',' > /etc/tc/ssh.bpf 2) People that want to low-level program their filters or use BPF extensions that lack support by libpcap's compiler: bpfc -f tc -i ssh.ops > /etc/tc/ssh.bpf ssh.ops example code: ldh [12] jne #0x800, drop ldb [23] jneq #6, drop ldh [20] jset #0x1fff, drop ldxb 4 * ([14] & 0xf) ldh [%x + 14] jeq #0x16, pass ldh [%x + 16] jne #0x16, drop pass: ret #-1 drop: ret #0 It was chosen to load bytecode into tc, since the reverse operation, tc filter list dev em1, is then able to show the exact commands again. Possible follow-up work could also include a small expression compiler for iproute2. Tested with the help of bmon. This idea came up during the Netfilter Workshop 2013 in Copenhagen. Also thanks to feedback from Eric Dumazet! Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Cc: Thomas Graf <tgraf@suug.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-10-28 22:43:02 +07:00
enum {
TCA_BPF_UNSPEC,
TCA_BPF_ACT,
TCA_BPF_POLICE,
TCA_BPF_CLASSID,
TCA_BPF_OPS_LEN,
TCA_BPF_OPS,
cls_bpf: add initial eBPF support for programmable classifiers This work extends the "classic" BPF programmable tc classifier by extending its scope also to native eBPF code! This allows for user space to implement own custom, 'safe' C like classifiers (or whatever other frontend language LLVM et al may provide in future), that can then be compiled with the LLVM eBPF backend to an eBPF elf file. The result of this can be loaded into the kernel via iproute2's tc. In the kernel, they can be JITed on major archs and thus run in native performance. Simple, minimal toy example to demonstrate the workflow: #include <linux/ip.h> #include <linux/if_ether.h> #include <linux/bpf.h> #include "tc_bpf_api.h" __section("classify") int cls_main(struct sk_buff *skb) { return (0x800 << 16) | load_byte(skb, ETH_HLEN + __builtin_offsetof(struct iphdr, tos)); } char __license[] __section("license") = "GPL"; The classifier can then be compiled into eBPF opcodes and loaded via tc, for example: clang -O2 -emit-llvm -c cls.c -o - | llc -march=bpf -filetype=obj -o cls.o tc filter add dev em1 parent 1: bpf cls.o [...] As it has been demonstrated, the scope can even reach up to a fully fledged flow dissector (similarly as in samples/bpf/sockex2_kern.c). For tc, maps are allowed to be used, but from kernel context only, in other words, eBPF code can keep state across filter invocations. In future, we perhaps may reattach from a different application to those maps e.g., to read out collected statistics/state. Similarly as in socket filters, we may extend functionality for eBPF classifiers over time depending on the use cases. For that purpose, cls_bpf programs are using BPF_PROG_TYPE_SCHED_CLS program type, so we can allow additional functions/accessors (e.g. an ABI compatible offset translation to skb fields/metadata). For an initial cls_bpf support, we allow the same set of helper functions as eBPF socket filters, but we could diverge at some point in time w/o problem. I was wondering whether cls_bpf and act_bpf could share C programs, I can imagine that at some point, we introduce i) further common handlers for both (or even beyond their scope), and/or if truly needed ii) some restricted function space for each of them. Both can be abstracted easily through struct bpf_verifier_ops in future. The context of cls_bpf versus act_bpf is slightly different though: a cls_bpf program will return a specific classid whereas act_bpf a drop/non-drop return code, latter may also in future mangle skbs. That said, we can surely have a "classify" and "action" section in a single object file, or considered mentioned constraint add a possibility of a shared section. The workflow for getting native eBPF running from tc [1] is as follows: for f_bpf, I've added a slightly modified ELF parser code from Alexei's kernel sample, which reads out the LLVM compiled object, sets up maps (and dynamically fixes up map fds) if any, and loads the eBPF instructions all centrally through the bpf syscall. The resulting fd from the loaded program itself is being passed down to cls_bpf, which looks up struct bpf_prog from the fd store, and holds reference, so that it stays available also after tc program lifetime. On tc filter destruction, it will then drop its reference. Moreover, I've also added the optional possibility to annotate an eBPF filter with a name (e.g. path to object file, or something else if preferred) so that when tc dumps currently installed filters, some more context can be given to an admin for a given instance (as opposed to just the file descriptor number). Last but not least, bpf_prog_get() and bpf_prog_put() needed to be exported, so that eBPF can be used from cls_bpf built as a module. Thanks to 60a3b2253c41 ("net: bpf: make eBPF interpreter images read-only") I think this is of no concern since anything wanting to alter eBPF opcode after verification stage would crash the kernel. [1] http://git.breakpoint.cc/cgit/dborkman/iproute2.git/log/?h=ebpf Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Cc: Jamal Hadi Salim <jhs@mojatatu.com> Cc: Jiri Pirko <jiri@resnulli.us> Acked-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-03-01 18:31:48 +07:00
TCA_BPF_FD,
TCA_BPF_NAME,
TCA_BPF_FLAGS,
TCA_BPF_FLAGS_GEN,
bpf: rework prog_digest into prog_tag Commit 7bd509e311f4 ("bpf: add prog_digest and expose it via fdinfo/netlink") was recently discussed, partially due to admittedly suboptimal name of "prog_digest" in combination with sha1 hash usage, thus inevitably and rightfully concerns about its security in terms of collision resistance were raised with regards to use-cases. The intended use cases are for debugging resp. introspection only for providing a stable "tag" over the instruction sequence that both kernel and user space can calculate independently. It's not usable at all for making a security relevant decision. So collisions where two different instruction sequences generate the same tag can happen, but ideally at a rather low rate. The "tag" will be dumped in hex and is short enough to introspect in tracepoints or kallsyms output along with other data such as stack trace, etc. Thus, this patch performs a rename into prog_tag and truncates the tag to a short output (64 bits) to make it obvious it's not collision-free. Should in future a hash or facility be needed with a security relevant focus, then we can think about requirements, constraints, etc that would fit to that situation. For now, rework the exposed parts for the current use cases as long as nothing has been released yet. Tested on x86_64 and s390x. Fixes: 7bd509e311f4 ("bpf: add prog_digest and expose it via fdinfo/netlink") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Cc: Andy Lutomirski <luto@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-14 05:38:15 +07:00
TCA_BPF_TAG,
TCA_BPF_ID,
net: sched: cls_bpf: add BPF-based classifier This work contains a lightweight BPF-based traffic classifier that can serve as a flexible alternative to ematch-based tree classification, i.e. now that BPF filter engine can also be JITed in the kernel. Naturally, tc actions and policies are supported as well with cls_bpf. Multiple BPF programs/filter can be attached for a class, or they can just as well be written within a single BPF program, that's really up to the user how he wishes to run/optimize the code, e.g. also for inversion of verdicts etc. The notion of a BPF program's return/exit codes is being kept as follows: 0: No match -1: Select classid given in "tc filter ..." command else: flowid, overwrite the default one As a minimal usage example with iproute2, we use a 3 band prio root qdisc on a router with sfq each as leave, and assign ssh and icmp bpf-based filters to band 1, http traffic to band 2 and the rest to band 3. For the first two bands we load the bytecode from a file, in the 2nd we load it inline as an example: echo 1 > /proc/sys/net/core/bpf_jit_enable tc qdisc del dev em1 root tc qdisc add dev em1 root handle 1: prio bands 3 priomap 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 tc qdisc add dev em1 parent 1:1 sfq perturb 16 tc qdisc add dev em1 parent 1:2 sfq perturb 16 tc qdisc add dev em1 parent 1:3 sfq perturb 16 tc filter add dev em1 parent 1: bpf run bytecode-file /etc/tc/ssh.bpf flowid 1:1 tc filter add dev em1 parent 1: bpf run bytecode-file /etc/tc/icmp.bpf flowid 1:1 tc filter add dev em1 parent 1: bpf run bytecode-file /etc/tc/http.bpf flowid 1:2 tc filter add dev em1 parent 1: bpf run bytecode "`bpfc -f tc -i misc.ops`" flowid 1:3 BPF programs can be easily created and passed to tc, either as inline 'bytecode' or 'bytecode-file'. There are a couple of front-ends that can compile opcodes, for example: 1) People familiar with tcpdump-like filters: tcpdump -iem1 -ddd port 22 | tr '\n' ',' > /etc/tc/ssh.bpf 2) People that want to low-level program their filters or use BPF extensions that lack support by libpcap's compiler: bpfc -f tc -i ssh.ops > /etc/tc/ssh.bpf ssh.ops example code: ldh [12] jne #0x800, drop ldb [23] jneq #6, drop ldh [20] jset #0x1fff, drop ldxb 4 * ([14] & 0xf) ldh [%x + 14] jeq #0x16, pass ldh [%x + 16] jne #0x16, drop pass: ret #-1 drop: ret #0 It was chosen to load bytecode into tc, since the reverse operation, tc filter list dev em1, is then able to show the exact commands again. Possible follow-up work could also include a small expression compiler for iproute2. Tested with the help of bmon. This idea came up during the Netfilter Workshop 2013 in Copenhagen. Also thanks to feedback from Eric Dumazet! Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Cc: Thomas Graf <tgraf@suug.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-10-28 22:43:02 +07:00
__TCA_BPF_MAX,
};
#define TCA_BPF_MAX (__TCA_BPF_MAX - 1)
/* Flower classifier */
enum {
TCA_FLOWER_UNSPEC,
TCA_FLOWER_CLASSID,
TCA_FLOWER_INDEV,
TCA_FLOWER_ACT,
TCA_FLOWER_KEY_ETH_DST, /* ETH_ALEN */
TCA_FLOWER_KEY_ETH_DST_MASK, /* ETH_ALEN */
TCA_FLOWER_KEY_ETH_SRC, /* ETH_ALEN */
TCA_FLOWER_KEY_ETH_SRC_MASK, /* ETH_ALEN */
TCA_FLOWER_KEY_ETH_TYPE, /* be16 */
TCA_FLOWER_KEY_IP_PROTO, /* u8 */
TCA_FLOWER_KEY_IPV4_SRC, /* be32 */
TCA_FLOWER_KEY_IPV4_SRC_MASK, /* be32 */
TCA_FLOWER_KEY_IPV4_DST, /* be32 */
TCA_FLOWER_KEY_IPV4_DST_MASK, /* be32 */
TCA_FLOWER_KEY_IPV6_SRC, /* struct in6_addr */
TCA_FLOWER_KEY_IPV6_SRC_MASK, /* struct in6_addr */
TCA_FLOWER_KEY_IPV6_DST, /* struct in6_addr */
TCA_FLOWER_KEY_IPV6_DST_MASK, /* struct in6_addr */
TCA_FLOWER_KEY_TCP_SRC, /* be16 */
TCA_FLOWER_KEY_TCP_DST, /* be16 */
TCA_FLOWER_KEY_UDP_SRC, /* be16 */
TCA_FLOWER_KEY_UDP_DST, /* be16 */
TCA_FLOWER_FLAGS,
TCA_FLOWER_KEY_VLAN_ID, /* be16 */
TCA_FLOWER_KEY_VLAN_PRIO, /* u8 */
TCA_FLOWER_KEY_VLAN_ETH_TYPE, /* be16 */
TCA_FLOWER_KEY_ENC_KEY_ID, /* be32 */
TCA_FLOWER_KEY_ENC_IPV4_SRC, /* be32 */
TCA_FLOWER_KEY_ENC_IPV4_SRC_MASK,/* be32 */
TCA_FLOWER_KEY_ENC_IPV4_DST, /* be32 */
TCA_FLOWER_KEY_ENC_IPV4_DST_MASK,/* be32 */
TCA_FLOWER_KEY_ENC_IPV6_SRC, /* struct in6_addr */
TCA_FLOWER_KEY_ENC_IPV6_SRC_MASK,/* struct in6_addr */
TCA_FLOWER_KEY_ENC_IPV6_DST, /* struct in6_addr */
TCA_FLOWER_KEY_ENC_IPV6_DST_MASK,/* struct in6_addr */
TCA_FLOWER_KEY_TCP_SRC_MASK, /* be16 */
TCA_FLOWER_KEY_TCP_DST_MASK, /* be16 */
TCA_FLOWER_KEY_UDP_SRC_MASK, /* be16 */
TCA_FLOWER_KEY_UDP_DST_MASK, /* be16 */
TCA_FLOWER_KEY_SCTP_SRC_MASK, /* be16 */
TCA_FLOWER_KEY_SCTP_DST_MASK, /* be16 */
TCA_FLOWER_KEY_SCTP_SRC, /* be16 */
TCA_FLOWER_KEY_SCTP_DST, /* be16 */
TCA_FLOWER_KEY_ENC_UDP_SRC_PORT, /* be16 */
TCA_FLOWER_KEY_ENC_UDP_SRC_PORT_MASK, /* be16 */
TCA_FLOWER_KEY_ENC_UDP_DST_PORT, /* be16 */
TCA_FLOWER_KEY_ENC_UDP_DST_PORT_MASK, /* be16 */
TCA_FLOWER_KEY_FLAGS, /* be32 */
TCA_FLOWER_KEY_FLAGS_MASK, /* be32 */
TCA_FLOWER_KEY_ICMPV4_CODE, /* u8 */
TCA_FLOWER_KEY_ICMPV4_CODE_MASK,/* u8 */
TCA_FLOWER_KEY_ICMPV4_TYPE, /* u8 */
TCA_FLOWER_KEY_ICMPV4_TYPE_MASK,/* u8 */
TCA_FLOWER_KEY_ICMPV6_CODE, /* u8 */
TCA_FLOWER_KEY_ICMPV6_CODE_MASK,/* u8 */
TCA_FLOWER_KEY_ICMPV6_TYPE, /* u8 */
TCA_FLOWER_KEY_ICMPV6_TYPE_MASK,/* u8 */
TCA_FLOWER_KEY_ARP_SIP, /* be32 */
TCA_FLOWER_KEY_ARP_SIP_MASK, /* be32 */
TCA_FLOWER_KEY_ARP_TIP, /* be32 */
TCA_FLOWER_KEY_ARP_TIP_MASK, /* be32 */
TCA_FLOWER_KEY_ARP_OP, /* u8 */
TCA_FLOWER_KEY_ARP_OP_MASK, /* u8 */
TCA_FLOWER_KEY_ARP_SHA, /* ETH_ALEN */
TCA_FLOWER_KEY_ARP_SHA_MASK, /* ETH_ALEN */
TCA_FLOWER_KEY_ARP_THA, /* ETH_ALEN */
TCA_FLOWER_KEY_ARP_THA_MASK, /* ETH_ALEN */
TCA_FLOWER_KEY_MPLS_TTL, /* u8 - 8 bits */
TCA_FLOWER_KEY_MPLS_BOS, /* u8 - 1 bit */
TCA_FLOWER_KEY_MPLS_TC, /* u8 - 3 bits */
TCA_FLOWER_KEY_MPLS_LABEL, /* be32 - 20 bits */
TCA_FLOWER_KEY_TCP_FLAGS, /* be16 */
TCA_FLOWER_KEY_TCP_FLAGS_MASK, /* be16 */
TCA_FLOWER_KEY_IP_TOS, /* u8 */
TCA_FLOWER_KEY_IP_TOS_MASK, /* u8 */
TCA_FLOWER_KEY_IP_TTL, /* u8 */
TCA_FLOWER_KEY_IP_TTL_MASK, /* u8 */
TCA_FLOWER_KEY_CVLAN_ID, /* be16 */
TCA_FLOWER_KEY_CVLAN_PRIO, /* u8 */
TCA_FLOWER_KEY_CVLAN_ETH_TYPE, /* be16 */
TCA_FLOWER_KEY_ENC_IP_TOS, /* u8 */
TCA_FLOWER_KEY_ENC_IP_TOS_MASK, /* u8 */
TCA_FLOWER_KEY_ENC_IP_TTL, /* u8 */
TCA_FLOWER_KEY_ENC_IP_TTL_MASK, /* u8 */
net/sched: allow flower to match tunnel options Allow matching on options in Geneve tunnel headers. This makes use of existing tunnel metadata support. The options can be described in the form CLASS:TYPE:DATA/CLASS_MASK:TYPE_MASK:DATA_MASK, where CLASS is represented as a 16bit hexadecimal value, TYPE as an 8bit hexadecimal value and DATA as a variable length hexadecimal value. e.g. # ip link add name geneve0 type geneve dstport 0 external # tc qdisc add dev geneve0 ingress # tc filter add dev geneve0 protocol ip parent ffff: \ flower \ enc_src_ip 10.0.99.192 \ enc_dst_ip 10.0.99.193 \ enc_key_id 11 \ geneve_opts 0102:80:1122334421314151/ffff:ff:ffffffffffffffff \ ip_proto udp \ action mirred egress redirect dev eth1 This patch adds support for matching Geneve options in the order supplied by the user. This leads to an efficient implementation in the software datapath (and in our opinion hardware datapaths that offload this feature). It is also compatible with Geneve options matching provided by the Open vSwitch kernel datapath which is relevant here as the Flower classifier may be used as a mechanism to program flows into hardware as a form of Open vSwitch datapath offload (sometimes referred to as OVS-TC). The netlink Kernel/Userspace API may be extended, for example by adding a flag, if other matching options are desired, for example matching given options in any order. This would require an implementation in the TC software datapath. And be done in a way that drivers that facilitate offload of the Flower classifier can reject or accept such flows based on hardware datapath capabilities. This approach was discussed and agreed on at Netconf 2017 in Seoul. Signed-off-by: Simon Horman <simon.horman@netronome.com> Signed-off-by: Pieter Jansen van Vuuren <pieter.jansenvanvuuren@netronome.com> Acked-by: Jakub Kicinski <jakub.kicinski@netronome.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-08-07 22:36:01 +07:00
TCA_FLOWER_KEY_ENC_OPTS,
TCA_FLOWER_KEY_ENC_OPTS_MASK,
TCA_FLOWER_IN_HW_COUNT,
net: sched: cls_flower: Classify packets using port ranges Added support in tc flower for filtering based on port ranges. Example: 1. Match on a port range: ------------------------- $ tc filter add dev enp4s0 protocol ip parent ffff:\ prio 1 flower ip_proto tcp dst_port range 20-30 skip_hw\ action drop $ tc -s filter show dev enp4s0 parent ffff: filter protocol ip pref 1 flower chain 0 filter protocol ip pref 1 flower chain 0 handle 0x1 eth_type ipv4 ip_proto tcp dst_port range 20-30 skip_hw not_in_hw action order 1: gact action drop random type none pass val 0 index 1 ref 1 bind 1 installed 85 sec used 3 sec Action statistics: Sent 460 bytes 10 pkt (dropped 10, overlimits 0 requeues 0) backlog 0b 0p requeues 0 2. Match on IP address and port range: -------------------------------------- $ tc filter add dev enp4s0 protocol ip parent ffff:\ prio 1 flower dst_ip 192.168.1.1 ip_proto tcp dst_port range 100-200\ skip_hw action drop $ tc -s filter show dev enp4s0 parent ffff: filter protocol ip pref 1 flower chain 0 handle 0x2 eth_type ipv4 ip_proto tcp dst_ip 192.168.1.1 dst_port range 100-200 skip_hw not_in_hw action order 1: gact action drop random type none pass val 0 index 2 ref 1 bind 1 installed 58 sec used 2 sec Action statistics: Sent 920 bytes 20 pkt (dropped 20, overlimits 0 requeues 0) backlog 0b 0p requeues 0 v4: 1. Added condition before setting port key. 2. Organized setting and dumping port range keys into functions and added validation of input range. v3: 1. Moved new fields in UAPI enum to the end of enum. 2. Removed couple of empty lines. v2: Addressed Jiri's comments: 1. Added separate functions for dst and src comparisons. 2. Removed endpoint enum. 3. Added new bit TCA_FLOWER_FLAGS_RANGE to decide normal/range lookup. 4. Cleaned up fl_lookup function. Signed-off-by: Amritha Nambiar <amritha.nambiar@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-11-13 07:15:55 +07:00
TCA_FLOWER_KEY_PORT_SRC_MIN, /* be16 */
TCA_FLOWER_KEY_PORT_SRC_MAX, /* be16 */
TCA_FLOWER_KEY_PORT_DST_MIN, /* be16 */
TCA_FLOWER_KEY_PORT_DST_MAX, /* be16 */
__TCA_FLOWER_MAX,
};
#define TCA_FLOWER_MAX (__TCA_FLOWER_MAX - 1)
net/sched: allow flower to match tunnel options Allow matching on options in Geneve tunnel headers. This makes use of existing tunnel metadata support. The options can be described in the form CLASS:TYPE:DATA/CLASS_MASK:TYPE_MASK:DATA_MASK, where CLASS is represented as a 16bit hexadecimal value, TYPE as an 8bit hexadecimal value and DATA as a variable length hexadecimal value. e.g. # ip link add name geneve0 type geneve dstport 0 external # tc qdisc add dev geneve0 ingress # tc filter add dev geneve0 protocol ip parent ffff: \ flower \ enc_src_ip 10.0.99.192 \ enc_dst_ip 10.0.99.193 \ enc_key_id 11 \ geneve_opts 0102:80:1122334421314151/ffff:ff:ffffffffffffffff \ ip_proto udp \ action mirred egress redirect dev eth1 This patch adds support for matching Geneve options in the order supplied by the user. This leads to an efficient implementation in the software datapath (and in our opinion hardware datapaths that offload this feature). It is also compatible with Geneve options matching provided by the Open vSwitch kernel datapath which is relevant here as the Flower classifier may be used as a mechanism to program flows into hardware as a form of Open vSwitch datapath offload (sometimes referred to as OVS-TC). The netlink Kernel/Userspace API may be extended, for example by adding a flag, if other matching options are desired, for example matching given options in any order. This would require an implementation in the TC software datapath. And be done in a way that drivers that facilitate offload of the Flower classifier can reject or accept such flows based on hardware datapath capabilities. This approach was discussed and agreed on at Netconf 2017 in Seoul. Signed-off-by: Simon Horman <simon.horman@netronome.com> Signed-off-by: Pieter Jansen van Vuuren <pieter.jansenvanvuuren@netronome.com> Acked-by: Jakub Kicinski <jakub.kicinski@netronome.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-08-07 22:36:01 +07:00
enum {
TCA_FLOWER_KEY_ENC_OPTS_UNSPEC,
TCA_FLOWER_KEY_ENC_OPTS_GENEVE, /* Nested
* TCA_FLOWER_KEY_ENC_OPT_GENEVE_
* attributes
*/
__TCA_FLOWER_KEY_ENC_OPTS_MAX,
};
#define TCA_FLOWER_KEY_ENC_OPTS_MAX (__TCA_FLOWER_KEY_ENC_OPTS_MAX - 1)
enum {
TCA_FLOWER_KEY_ENC_OPT_GENEVE_UNSPEC,
TCA_FLOWER_KEY_ENC_OPT_GENEVE_CLASS, /* u16 */
TCA_FLOWER_KEY_ENC_OPT_GENEVE_TYPE, /* u8 */
TCA_FLOWER_KEY_ENC_OPT_GENEVE_DATA, /* 4 to 128 bytes */
__TCA_FLOWER_KEY_ENC_OPT_GENEVE_MAX,
};
#define TCA_FLOWER_KEY_ENC_OPT_GENEVE_MAX \
(__TCA_FLOWER_KEY_ENC_OPT_GENEVE_MAX - 1)
enum {
TCA_FLOWER_KEY_FLAGS_IS_FRAGMENT = (1 << 0),
TCA_FLOWER_KEY_FLAGS_FRAG_IS_FIRST = (1 << 1),
};
net: sched: cls_flower: Classify packets using port ranges Added support in tc flower for filtering based on port ranges. Example: 1. Match on a port range: ------------------------- $ tc filter add dev enp4s0 protocol ip parent ffff:\ prio 1 flower ip_proto tcp dst_port range 20-30 skip_hw\ action drop $ tc -s filter show dev enp4s0 parent ffff: filter protocol ip pref 1 flower chain 0 filter protocol ip pref 1 flower chain 0 handle 0x1 eth_type ipv4 ip_proto tcp dst_port range 20-30 skip_hw not_in_hw action order 1: gact action drop random type none pass val 0 index 1 ref 1 bind 1 installed 85 sec used 3 sec Action statistics: Sent 460 bytes 10 pkt (dropped 10, overlimits 0 requeues 0) backlog 0b 0p requeues 0 2. Match on IP address and port range: -------------------------------------- $ tc filter add dev enp4s0 protocol ip parent ffff:\ prio 1 flower dst_ip 192.168.1.1 ip_proto tcp dst_port range 100-200\ skip_hw action drop $ tc -s filter show dev enp4s0 parent ffff: filter protocol ip pref 1 flower chain 0 handle 0x2 eth_type ipv4 ip_proto tcp dst_ip 192.168.1.1 dst_port range 100-200 skip_hw not_in_hw action order 1: gact action drop random type none pass val 0 index 2 ref 1 bind 1 installed 58 sec used 2 sec Action statistics: Sent 920 bytes 20 pkt (dropped 20, overlimits 0 requeues 0) backlog 0b 0p requeues 0 v4: 1. Added condition before setting port key. 2. Organized setting and dumping port range keys into functions and added validation of input range. v3: 1. Moved new fields in UAPI enum to the end of enum. 2. Removed couple of empty lines. v2: Addressed Jiri's comments: 1. Added separate functions for dst and src comparisons. 2. Removed endpoint enum. 3. Added new bit TCA_FLOWER_FLAGS_RANGE to decide normal/range lookup. 4. Cleaned up fl_lookup function. Signed-off-by: Amritha Nambiar <amritha.nambiar@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-11-13 07:15:55 +07:00
#define TCA_FLOWER_MASK_FLAGS_RANGE (1 << 0) /* Range-based match */
/* Match-all classifier */
enum {
TCA_MATCHALL_UNSPEC,
TCA_MATCHALL_CLASSID,
TCA_MATCHALL_ACT,
TCA_MATCHALL_FLAGS,
__TCA_MATCHALL_MAX,
};
#define TCA_MATCHALL_MAX (__TCA_MATCHALL_MAX - 1)
/* Extended Matches */
struct tcf_ematch_tree_hdr {
__u16 nmatches;
__u16 progid;
};
enum {
TCA_EMATCH_TREE_UNSPEC,
TCA_EMATCH_TREE_HDR,
TCA_EMATCH_TREE_LIST,
__TCA_EMATCH_TREE_MAX
};
#define TCA_EMATCH_TREE_MAX (__TCA_EMATCH_TREE_MAX - 1)
struct tcf_ematch_hdr {
__u16 matchid;
__u16 kind;
__u16 flags;
__u16 pad; /* currently unused */
};
/* 0 1
* 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
* +-----------------------+-+-+---+
* | Unused |S|I| R |
* +-----------------------+-+-+---+
*
* R(2) ::= relation to next ematch
* where: 0 0 END (last ematch)
* 0 1 AND
* 1 0 OR
* 1 1 Unused (invalid)
* I(1) ::= invert result
* S(1) ::= simple payload
*/
#define TCF_EM_REL_END 0
#define TCF_EM_REL_AND (1<<0)
#define TCF_EM_REL_OR (1<<1)
#define TCF_EM_INVERT (1<<2)
#define TCF_EM_SIMPLE (1<<3)
#define TCF_EM_REL_MASK 3
#define TCF_EM_REL_VALID(v) (((v) & TCF_EM_REL_MASK) != TCF_EM_REL_MASK)
enum {
TCF_LAYER_LINK,
TCF_LAYER_NETWORK,
TCF_LAYER_TRANSPORT,
__TCF_LAYER_MAX
};
#define TCF_LAYER_MAX (__TCF_LAYER_MAX - 1)
/* Ematch type assignments
* 1..32767 Reserved for ematches inside kernel tree
* 32768..65535 Free to use, not reliable
*/
#define TCF_EM_CONTAINER 0
#define TCF_EM_CMP 1
#define TCF_EM_NBYTE 2
#define TCF_EM_U32 3
#define TCF_EM_META 4
#define TCF_EM_TEXT 5
#define TCF_EM_VLAN 6
#define TCF_EM_CANID 7
#define TCF_EM_IPSET 8
#define TCF_EM_IPT 9
#define TCF_EM_MAX 9
enum {
TCF_EM_PROG_TC
};
enum {
TCF_EM_OPND_EQ,
TCF_EM_OPND_GT,
TCF_EM_OPND_LT
};
#endif