linux_dsm_epyc7002/drivers/hwmon/vt8231.c

1071 lines
31 KiB
C
Raw Normal View History

/*
* vt8231.c - Part of lm_sensors, Linux kernel modules
* for hardware monitoring
*
* Copyright (c) 2005 Roger Lucas <vt8231@hiddenengine.co.uk>
* Copyright (c) 2002 Mark D. Studebaker <mdsxyz123@yahoo.com>
* Aaron M. Marsh <amarsh@sdf.lonestar.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* Supports VIA VT8231 South Bridge embedded sensors
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/pci.h>
#include <linux/jiffies.h>
#include <linux/platform_device.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/hwmon-vid.h>
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/acpi.h>
#include <linux/io.h>
static int force_addr;
module_param(force_addr, int, 0);
MODULE_PARM_DESC(force_addr, "Initialize the base address of the sensors");
static struct platform_device *pdev;
#define VT8231_EXTENT 0x80
#define VT8231_BASE_REG 0x70
#define VT8231_ENABLE_REG 0x74
/*
* The VT8231 registers
*
* The reset value for the input channel configuration is used (Reg 0x4A=0x07)
* which sets the selected inputs marked with '*' below if multiple options are
* possible:
*
* Voltage Mode Temperature Mode
* Sensor Linux Id Linux Id VIA Id
* -------- -------- -------- ------
* CPU Diode N/A temp1 0
* UIC1 in0 temp2 * 1
* UIC2 in1 * temp3 2
* UIC3 in2 * temp4 3
* UIC4 in3 * temp5 4
* UIC5 in4 * temp6 5
* 3.3V in5 N/A
*
* Note that the BIOS may set the configuration register to a different value
* to match the motherboard configuration.
*/
/* fans numbered 0-1 */
#define VT8231_REG_FAN_MIN(nr) (0x3b + (nr))
#define VT8231_REG_FAN(nr) (0x29 + (nr))
/* Voltage inputs numbered 0-5 */
static const u8 regvolt[] = { 0x21, 0x22, 0x23, 0x24, 0x25, 0x26 };
static const u8 regvoltmax[] = { 0x3d, 0x2b, 0x2d, 0x2f, 0x31, 0x33 };
static const u8 regvoltmin[] = { 0x3e, 0x2c, 0x2e, 0x30, 0x32, 0x34 };
/*
* Temperatures are numbered 1-6 according to the Linux kernel specification.
*
* In the VIA datasheet, however, the temperatures are numbered from zero.
* Since it is important that this driver can easily be compared to the VIA
* datasheet, we will use the VIA numbering within this driver and map the
* kernel sysfs device name to the VIA number in the sysfs callback.
*/
#define VT8231_REG_TEMP_LOW01 0x49
#define VT8231_REG_TEMP_LOW25 0x4d
static const u8 regtemp[] = { 0x1f, 0x21, 0x22, 0x23, 0x24, 0x25 };
static const u8 regtempmax[] = { 0x39, 0x3d, 0x2b, 0x2d, 0x2f, 0x31 };
static const u8 regtempmin[] = { 0x3a, 0x3e, 0x2c, 0x2e, 0x30, 0x32 };
#define TEMP_FROM_REG(reg) (((253 * 4 - (reg)) * 550 + 105) / 210)
#define TEMP_MAXMIN_FROM_REG(reg) (((253 - (reg)) * 2200 + 105) / 210)
#define TEMP_MAXMIN_TO_REG(val) (253 - ((val) * 210 + 1100) / 2200)
#define VT8231_REG_CONFIG 0x40
#define VT8231_REG_ALARM1 0x41
#define VT8231_REG_ALARM2 0x42
#define VT8231_REG_FANDIV 0x47
#define VT8231_REG_UCH_CONFIG 0x4a
#define VT8231_REG_TEMP1_CONFIG 0x4b
#define VT8231_REG_TEMP2_CONFIG 0x4c
/*
* temps 0-5 as numbered in VIA datasheet - see later for mapping to Linux
* numbering
*/
#define ISTEMP(i, ch_config) ((i) == 0 ? 1 : \
((ch_config) >> ((i)+1)) & 0x01)
/* voltages 0-5 */
#define ISVOLT(i, ch_config) ((i) == 5 ? 1 : \
!(((ch_config) >> ((i)+2)) & 0x01))
#define DIV_FROM_REG(val) (1 << (val))
/*
* NB The values returned here are NOT temperatures. The calibration curves
* for the thermistor curves are board-specific and must go in the
* sensors.conf file. Temperature sensors are actually ten bits, but the
* VIA datasheet only considers the 8 MSBs obtained from the regtemp[]
* register. The temperature value returned should have a magnitude of 3,
* so we use the VIA scaling as the "true" scaling and use the remaining 2
* LSBs as fractional precision.
*
* All the on-chip hardware temperature comparisons for the alarms are only
* 8-bits wide, and compare against the 8 MSBs of the temperature. The bits
* in the registers VT8231_REG_TEMP_LOW01 and VT8231_REG_TEMP_LOW25 are
* ignored.
*/
/*
****** FAN RPM CONVERSIONS ********
* This chip saturates back at 0, not at 255 like many the other chips.
* So, 0 means 0 RPM
*/
static inline u8 FAN_TO_REG(long rpm, int div)
{
if (rpm == 0)
return 0;
return SENSORS_LIMIT(1310720 / (rpm * div), 1, 255);
}
#define FAN_FROM_REG(val, div) ((val) == 0 ? 0 : 1310720 / ((val) * (div)))
struct vt8231_data {
unsigned short addr;
const char *name;
struct mutex update_lock;
struct device *hwmon_dev;
char valid; /* !=0 if following fields are valid */
unsigned long last_updated; /* In jiffies */
u8 in[6]; /* Register value */
u8 in_max[6]; /* Register value */
u8 in_min[6]; /* Register value */
u16 temp[6]; /* Register value 10 bit, right aligned */
u8 temp_max[6]; /* Register value */
u8 temp_min[6]; /* Register value */
u8 fan[2]; /* Register value */
u8 fan_min[2]; /* Register value */
u8 fan_div[2]; /* Register encoding, shifted right */
u16 alarms; /* Register encoding */
u8 uch_config;
};
static struct pci_dev *s_bridge;
static int vt8231_probe(struct platform_device *pdev);
static int __devexit vt8231_remove(struct platform_device *pdev);
static struct vt8231_data *vt8231_update_device(struct device *dev);
static void vt8231_init_device(struct vt8231_data *data);
static inline int vt8231_read_value(struct vt8231_data *data, u8 reg)
{
return inb_p(data->addr + reg);
}
static inline void vt8231_write_value(struct vt8231_data *data, u8 reg,
u8 value)
{
outb_p(value, data->addr + reg);
}
/* following are the sysfs callback functions */
static ssize_t show_in(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct vt8231_data *data = vt8231_update_device(dev);
return sprintf(buf, "%d\n", ((data->in[nr] - 3) * 10000) / 958);
}
static ssize_t show_in_min(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct vt8231_data *data = vt8231_update_device(dev);
return sprintf(buf, "%d\n", ((data->in_min[nr] - 3) * 10000) / 958);
}
static ssize_t show_in_max(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct vt8231_data *data = vt8231_update_device(dev);
return sprintf(buf, "%d\n", (((data->in_max[nr] - 3) * 10000) / 958));
}
static ssize_t set_in_min(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct vt8231_data *data = dev_get_drvdata(dev);
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->in_min[nr] = SENSORS_LIMIT(((val * 958) / 10000) + 3, 0, 255);
vt8231_write_value(data, regvoltmin[nr], data->in_min[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t set_in_max(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct vt8231_data *data = dev_get_drvdata(dev);
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->in_max[nr] = SENSORS_LIMIT(((val * 958) / 10000) + 3, 0, 255);
vt8231_write_value(data, regvoltmax[nr], data->in_max[nr]);
mutex_unlock(&data->update_lock);
return count;
}
/* Special case for input 5 as this has 3.3V scaling built into the chip */
static ssize_t show_in5(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct vt8231_data *data = vt8231_update_device(dev);
return sprintf(buf, "%d\n",
(((data->in[5] - 3) * 10000 * 54) / (958 * 34)));
}
static ssize_t show_in5_min(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct vt8231_data *data = vt8231_update_device(dev);
return sprintf(buf, "%d\n",
(((data->in_min[5] - 3) * 10000 * 54) / (958 * 34)));
}
static ssize_t show_in5_max(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct vt8231_data *data = vt8231_update_device(dev);
return sprintf(buf, "%d\n",
(((data->in_max[5] - 3) * 10000 * 54) / (958 * 34)));
}
static ssize_t set_in5_min(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct vt8231_data *data = dev_get_drvdata(dev);
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->in_min[5] = SENSORS_LIMIT(((val * 958 * 34) / (10000 * 54)) + 3,
0, 255);
vt8231_write_value(data, regvoltmin[5], data->in_min[5]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t set_in5_max(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct vt8231_data *data = dev_get_drvdata(dev);
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->in_max[5] = SENSORS_LIMIT(((val * 958 * 34) / (10000 * 54)) + 3,
0, 255);
vt8231_write_value(data, regvoltmax[5], data->in_max[5]);
mutex_unlock(&data->update_lock);
return count;
}
#define define_voltage_sysfs(offset) \
static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \
show_in, NULL, offset); \
static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
show_in_min, set_in_min, offset); \
static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
show_in_max, set_in_max, offset)
define_voltage_sysfs(0);
define_voltage_sysfs(1);
define_voltage_sysfs(2);
define_voltage_sysfs(3);
define_voltage_sysfs(4);
static DEVICE_ATTR(in5_input, S_IRUGO, show_in5, NULL);
static DEVICE_ATTR(in5_min, S_IRUGO | S_IWUSR, show_in5_min, set_in5_min);
static DEVICE_ATTR(in5_max, S_IRUGO | S_IWUSR, show_in5_max, set_in5_max);
/* Temperatures */
static ssize_t show_temp0(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct vt8231_data *data = vt8231_update_device(dev);
return sprintf(buf, "%d\n", data->temp[0] * 250);
}
static ssize_t show_temp0_max(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct vt8231_data *data = vt8231_update_device(dev);
return sprintf(buf, "%d\n", data->temp_max[0] * 1000);
}
static ssize_t show_temp0_min(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct vt8231_data *data = vt8231_update_device(dev);
return sprintf(buf, "%d\n", data->temp_min[0] * 1000);
}
static ssize_t set_temp0_max(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct vt8231_data *data = dev_get_drvdata(dev);
long val;
int err;
err = kstrtol(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->temp_max[0] = SENSORS_LIMIT((val + 500) / 1000, 0, 255);
vt8231_write_value(data, regtempmax[0], data->temp_max[0]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t set_temp0_min(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct vt8231_data *data = dev_get_drvdata(dev);
long val;
int err;
err = kstrtol(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->temp_min[0] = SENSORS_LIMIT((val + 500) / 1000, 0, 255);
vt8231_write_value(data, regtempmin[0], data->temp_min[0]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_temp(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct vt8231_data *data = vt8231_update_device(dev);
return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp[nr]));
}
static ssize_t show_temp_max(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct vt8231_data *data = vt8231_update_device(dev);
return sprintf(buf, "%d\n", TEMP_MAXMIN_FROM_REG(data->temp_max[nr]));
}
static ssize_t show_temp_min(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct vt8231_data *data = vt8231_update_device(dev);
return sprintf(buf, "%d\n", TEMP_MAXMIN_FROM_REG(data->temp_min[nr]));
}
static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct vt8231_data *data = dev_get_drvdata(dev);
long val;
int err;
err = kstrtol(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->temp_max[nr] = SENSORS_LIMIT(TEMP_MAXMIN_TO_REG(val), 0, 255);
vt8231_write_value(data, regtempmax[nr], data->temp_max[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct vt8231_data *data = dev_get_drvdata(dev);
long val;
int err;
err = kstrtol(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->temp_min[nr] = SENSORS_LIMIT(TEMP_MAXMIN_TO_REG(val), 0, 255);
vt8231_write_value(data, regtempmin[nr], data->temp_min[nr]);
mutex_unlock(&data->update_lock);
return count;
}
/*
* Note that these map the Linux temperature sensor numbering (1-6) to the VIA
* temperature sensor numbering (0-5)
*/
#define define_temperature_sysfs(offset) \
static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, \
show_temp, NULL, offset - 1); \
static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \
show_temp_max, set_temp_max, offset - 1); \
static SENSOR_DEVICE_ATTR(temp##offset##_max_hyst, S_IRUGO | S_IWUSR, \
show_temp_min, set_temp_min, offset - 1)
static DEVICE_ATTR(temp1_input, S_IRUGO, show_temp0, NULL);
static DEVICE_ATTR(temp1_max, S_IRUGO | S_IWUSR, show_temp0_max, set_temp0_max);
static DEVICE_ATTR(temp1_max_hyst, S_IRUGO | S_IWUSR, show_temp0_min,
set_temp0_min);
define_temperature_sysfs(2);
define_temperature_sysfs(3);
define_temperature_sysfs(4);
define_temperature_sysfs(5);
define_temperature_sysfs(6);
/* Fans */
static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct vt8231_data *data = vt8231_update_device(dev);
return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr],
DIV_FROM_REG(data->fan_div[nr])));
}
static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct vt8231_data *data = vt8231_update_device(dev);
return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr],
DIV_FROM_REG(data->fan_div[nr])));
}
static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct vt8231_data *data = vt8231_update_device(dev);
return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]));
}
static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct vt8231_data *data = dev_get_drvdata(dev);
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr]));
vt8231_write_value(data, VT8231_REG_FAN_MIN(nr), data->fan_min[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct vt8231_data *data = dev_get_drvdata(dev);
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
unsigned long val;
int nr = sensor_attr->index;
int old = vt8231_read_value(data, VT8231_REG_FANDIV);
long min = FAN_FROM_REG(data->fan_min[nr],
DIV_FROM_REG(data->fan_div[nr]));
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
switch (val) {
case 1:
data->fan_div[nr] = 0;
break;
case 2:
data->fan_div[nr] = 1;
break;
case 4:
data->fan_div[nr] = 2;
break;
case 8:
data->fan_div[nr] = 3;
break;
default:
dev_err(dev, "fan_div value %ld not supported. "
"Choose one of 1, 2, 4 or 8!\n", val);
mutex_unlock(&data->update_lock);
return -EINVAL;
}
/* Correct the fan minimum speed */
data->fan_min[nr] = FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr]));
vt8231_write_value(data, VT8231_REG_FAN_MIN(nr), data->fan_min[nr]);
old = (old & 0x0f) | (data->fan_div[1] << 6) | (data->fan_div[0] << 4);
vt8231_write_value(data, VT8231_REG_FANDIV, old);
mutex_unlock(&data->update_lock);
return count;
}
#define define_fan_sysfs(offset) \
static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
show_fan, NULL, offset - 1); \
static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \
show_fan_div, set_fan_div, offset - 1); \
static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
show_fan_min, set_fan_min, offset - 1)
define_fan_sysfs(1);
define_fan_sysfs(2);
/* Alarms */
static ssize_t show_alarms(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct vt8231_data *data = vt8231_update_device(dev);
return sprintf(buf, "%d\n", data->alarms);
}
static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
char *buf)
{
int bitnr = to_sensor_dev_attr(attr)->index;
struct vt8231_data *data = vt8231_update_device(dev);
return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1);
}
static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 11);
static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 0);
static SENSOR_DEVICE_ATTR(temp4_alarm, S_IRUGO, show_alarm, NULL, 1);
static SENSOR_DEVICE_ATTR(temp5_alarm, S_IRUGO, show_alarm, NULL, 3);
static SENSOR_DEVICE_ATTR(temp6_alarm, S_IRUGO, show_alarm, NULL, 8);
static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 11);
static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 0);
static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 1);
static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 2);
static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6);
static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7);
static ssize_t show_name(struct device *dev, struct device_attribute
*devattr, char *buf)
{
struct vt8231_data *data = dev_get_drvdata(dev);
return sprintf(buf, "%s\n", data->name);
}
static DEVICE_ATTR(name, S_IRUGO, show_name, NULL);
static struct attribute *vt8231_attributes_temps[6][5] = {
{
&dev_attr_temp1_input.attr,
&dev_attr_temp1_max_hyst.attr,
&dev_attr_temp1_max.attr,
&sensor_dev_attr_temp1_alarm.dev_attr.attr,
NULL
}, {
&sensor_dev_attr_temp2_input.dev_attr.attr,
&sensor_dev_attr_temp2_max_hyst.dev_attr.attr,
&sensor_dev_attr_temp2_max.dev_attr.attr,
&sensor_dev_attr_temp2_alarm.dev_attr.attr,
NULL
}, {
&sensor_dev_attr_temp3_input.dev_attr.attr,
&sensor_dev_attr_temp3_max_hyst.dev_attr.attr,
&sensor_dev_attr_temp3_max.dev_attr.attr,
&sensor_dev_attr_temp3_alarm.dev_attr.attr,
NULL
}, {
&sensor_dev_attr_temp4_input.dev_attr.attr,
&sensor_dev_attr_temp4_max_hyst.dev_attr.attr,
&sensor_dev_attr_temp4_max.dev_attr.attr,
&sensor_dev_attr_temp4_alarm.dev_attr.attr,
NULL
}, {
&sensor_dev_attr_temp5_input.dev_attr.attr,
&sensor_dev_attr_temp5_max_hyst.dev_attr.attr,
&sensor_dev_attr_temp5_max.dev_attr.attr,
&sensor_dev_attr_temp5_alarm.dev_attr.attr,
NULL
}, {
&sensor_dev_attr_temp6_input.dev_attr.attr,
&sensor_dev_attr_temp6_max_hyst.dev_attr.attr,
&sensor_dev_attr_temp6_max.dev_attr.attr,
&sensor_dev_attr_temp6_alarm.dev_attr.attr,
NULL
}
};
static const struct attribute_group vt8231_group_temps[6] = {
{ .attrs = vt8231_attributes_temps[0] },
{ .attrs = vt8231_attributes_temps[1] },
{ .attrs = vt8231_attributes_temps[2] },
{ .attrs = vt8231_attributes_temps[3] },
{ .attrs = vt8231_attributes_temps[4] },
{ .attrs = vt8231_attributes_temps[5] },
};
static struct attribute *vt8231_attributes_volts[6][5] = {
{
&sensor_dev_attr_in0_input.dev_attr.attr,
&sensor_dev_attr_in0_min.dev_attr.attr,
&sensor_dev_attr_in0_max.dev_attr.attr,
&sensor_dev_attr_in0_alarm.dev_attr.attr,
NULL
}, {
&sensor_dev_attr_in1_input.dev_attr.attr,
&sensor_dev_attr_in1_min.dev_attr.attr,
&sensor_dev_attr_in1_max.dev_attr.attr,
&sensor_dev_attr_in1_alarm.dev_attr.attr,
NULL
}, {
&sensor_dev_attr_in2_input.dev_attr.attr,
&sensor_dev_attr_in2_min.dev_attr.attr,
&sensor_dev_attr_in2_max.dev_attr.attr,
&sensor_dev_attr_in2_alarm.dev_attr.attr,
NULL
}, {
&sensor_dev_attr_in3_input.dev_attr.attr,
&sensor_dev_attr_in3_min.dev_attr.attr,
&sensor_dev_attr_in3_max.dev_attr.attr,
&sensor_dev_attr_in3_alarm.dev_attr.attr,
NULL
}, {
&sensor_dev_attr_in4_input.dev_attr.attr,
&sensor_dev_attr_in4_min.dev_attr.attr,
&sensor_dev_attr_in4_max.dev_attr.attr,
&sensor_dev_attr_in4_alarm.dev_attr.attr,
NULL
}, {
&dev_attr_in5_input.attr,
&dev_attr_in5_min.attr,
&dev_attr_in5_max.attr,
&sensor_dev_attr_in5_alarm.dev_attr.attr,
NULL
}
};
static const struct attribute_group vt8231_group_volts[6] = {
{ .attrs = vt8231_attributes_volts[0] },
{ .attrs = vt8231_attributes_volts[1] },
{ .attrs = vt8231_attributes_volts[2] },
{ .attrs = vt8231_attributes_volts[3] },
{ .attrs = vt8231_attributes_volts[4] },
{ .attrs = vt8231_attributes_volts[5] },
};
static struct attribute *vt8231_attributes[] = {
&sensor_dev_attr_fan1_input.dev_attr.attr,
&sensor_dev_attr_fan2_input.dev_attr.attr,
&sensor_dev_attr_fan1_min.dev_attr.attr,
&sensor_dev_attr_fan2_min.dev_attr.attr,
&sensor_dev_attr_fan1_div.dev_attr.attr,
&sensor_dev_attr_fan2_div.dev_attr.attr,
&sensor_dev_attr_fan1_alarm.dev_attr.attr,
&sensor_dev_attr_fan2_alarm.dev_attr.attr,
&dev_attr_alarms.attr,
&dev_attr_name.attr,
NULL
};
static const struct attribute_group vt8231_group = {
.attrs = vt8231_attributes,
};
static struct platform_driver vt8231_driver = {
.driver = {
.owner = THIS_MODULE,
.name = "vt8231",
},
.probe = vt8231_probe,
.remove = vt8231_remove,
};
static DEFINE_PCI_DEVICE_TABLE(vt8231_pci_ids) = {
{ PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_8231_4) },
{ 0, }
};
MODULE_DEVICE_TABLE(pci, vt8231_pci_ids);
static int __devinit vt8231_pci_probe(struct pci_dev *dev,
const struct pci_device_id *id);
static struct pci_driver vt8231_pci_driver = {
.name = "vt8231",
.id_table = vt8231_pci_ids,
.probe = vt8231_pci_probe,
};
static int vt8231_probe(struct platform_device *pdev)
{
struct resource *res;
struct vt8231_data *data;
int err = 0, i;
/* Reserve the ISA region */
res = platform_get_resource(pdev, IORESOURCE_IO, 0);
if (!devm_request_region(&pdev->dev, res->start, VT8231_EXTENT,
vt8231_driver.driver.name)) {
dev_err(&pdev->dev, "Region 0x%lx-0x%lx already in use!\n",
(unsigned long)res->start, (unsigned long)res->end);
return -ENODEV;
}
data = devm_kzalloc(&pdev->dev, sizeof(struct vt8231_data), GFP_KERNEL);
if (!data)
return -ENOMEM;
platform_set_drvdata(pdev, data);
data->addr = res->start;
data->name = "vt8231";
mutex_init(&data->update_lock);
vt8231_init_device(data);
/* Register sysfs hooks */
err = sysfs_create_group(&pdev->dev.kobj, &vt8231_group);
if (err)
return err;
/* Must update device information to find out the config field */
data->uch_config = vt8231_read_value(data, VT8231_REG_UCH_CONFIG);
for (i = 0; i < ARRAY_SIZE(vt8231_group_temps); i++) {
if (ISTEMP(i, data->uch_config)) {
err = sysfs_create_group(&pdev->dev.kobj,
&vt8231_group_temps[i]);
if (err)
goto exit_remove_files;
}
}
for (i = 0; i < ARRAY_SIZE(vt8231_group_volts); i++) {
if (ISVOLT(i, data->uch_config)) {
err = sysfs_create_group(&pdev->dev.kobj,
&vt8231_group_volts[i]);
if (err)
goto exit_remove_files;
}
}
data->hwmon_dev = hwmon_device_register(&pdev->dev);
if (IS_ERR(data->hwmon_dev)) {
err = PTR_ERR(data->hwmon_dev);
goto exit_remove_files;
}
return 0;
exit_remove_files:
for (i = 0; i < ARRAY_SIZE(vt8231_group_volts); i++)
sysfs_remove_group(&pdev->dev.kobj, &vt8231_group_volts[i]);
for (i = 0; i < ARRAY_SIZE(vt8231_group_temps); i++)
sysfs_remove_group(&pdev->dev.kobj, &vt8231_group_temps[i]);
sysfs_remove_group(&pdev->dev.kobj, &vt8231_group);
return err;
}
static int __devexit vt8231_remove(struct platform_device *pdev)
{
struct vt8231_data *data = platform_get_drvdata(pdev);
int i;
hwmon_device_unregister(data->hwmon_dev);
for (i = 0; i < ARRAY_SIZE(vt8231_group_volts); i++)
sysfs_remove_group(&pdev->dev.kobj, &vt8231_group_volts[i]);
for (i = 0; i < ARRAY_SIZE(vt8231_group_temps); i++)
sysfs_remove_group(&pdev->dev.kobj, &vt8231_group_temps[i]);
sysfs_remove_group(&pdev->dev.kobj, &vt8231_group);
return 0;
}
static void vt8231_init_device(struct vt8231_data *data)
{
vt8231_write_value(data, VT8231_REG_TEMP1_CONFIG, 0);
vt8231_write_value(data, VT8231_REG_TEMP2_CONFIG, 0);
}
static struct vt8231_data *vt8231_update_device(struct device *dev)
{
struct vt8231_data *data = dev_get_drvdata(dev);
int i;
u16 low;
mutex_lock(&data->update_lock);
if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
|| !data->valid) {
for (i = 0; i < 6; i++) {
if (ISVOLT(i, data->uch_config)) {
data->in[i] = vt8231_read_value(data,
regvolt[i]);
data->in_min[i] = vt8231_read_value(data,
regvoltmin[i]);
data->in_max[i] = vt8231_read_value(data,
regvoltmax[i]);
}
}
for (i = 0; i < 2; i++) {
data->fan[i] = vt8231_read_value(data,
VT8231_REG_FAN(i));
data->fan_min[i] = vt8231_read_value(data,
VT8231_REG_FAN_MIN(i));
}
low = vt8231_read_value(data, VT8231_REG_TEMP_LOW01);
low = (low >> 6) | ((low & 0x30) >> 2)
| (vt8231_read_value(data, VT8231_REG_TEMP_LOW25) << 4);
for (i = 0; i < 6; i++) {
if (ISTEMP(i, data->uch_config)) {
data->temp[i] = (vt8231_read_value(data,
regtemp[i]) << 2)
| ((low >> (2 * i)) & 0x03);
data->temp_max[i] = vt8231_read_value(data,
regtempmax[i]);
data->temp_min[i] = vt8231_read_value(data,
regtempmin[i]);
}
}
i = vt8231_read_value(data, VT8231_REG_FANDIV);
data->fan_div[0] = (i >> 4) & 0x03;
data->fan_div[1] = i >> 6;
data->alarms = vt8231_read_value(data, VT8231_REG_ALARM1) |
(vt8231_read_value(data, VT8231_REG_ALARM2) << 8);
/* Set alarm flags correctly */
if (!data->fan[0] && data->fan_min[0])
data->alarms |= 0x40;
else if (data->fan[0] && !data->fan_min[0])
data->alarms &= ~0x40;
if (!data->fan[1] && data->fan_min[1])
data->alarms |= 0x80;
else if (data->fan[1] && !data->fan_min[1])
data->alarms &= ~0x80;
data->last_updated = jiffies;
data->valid = 1;
}
mutex_unlock(&data->update_lock);
return data;
}
static int __devinit vt8231_device_add(unsigned short address)
{
struct resource res = {
.start = address,
.end = address + VT8231_EXTENT - 1,
.name = "vt8231",
.flags = IORESOURCE_IO,
};
int err;
err = acpi_check_resource_conflict(&res);
if (err)
goto exit;
pdev = platform_device_alloc("vt8231", address);
if (!pdev) {
err = -ENOMEM;
pr_err("Device allocation failed\n");
goto exit;
}
err = platform_device_add_resources(pdev, &res, 1);
if (err) {
pr_err("Device resource addition failed (%d)\n", err);
goto exit_device_put;
}
err = platform_device_add(pdev);
if (err) {
pr_err("Device addition failed (%d)\n", err);
goto exit_device_put;
}
return 0;
exit_device_put:
platform_device_put(pdev);
exit:
return err;
}
static int __devinit vt8231_pci_probe(struct pci_dev *dev,
const struct pci_device_id *id)
{
u16 address, val;
if (force_addr) {
address = force_addr & 0xff00;
dev_warn(&dev->dev, "Forcing ISA address 0x%x\n",
address);
if (PCIBIOS_SUCCESSFUL !=
pci_write_config_word(dev, VT8231_BASE_REG, address | 1))
return -ENODEV;
}
if (PCIBIOS_SUCCESSFUL != pci_read_config_word(dev, VT8231_BASE_REG,
&val))
return -ENODEV;
address = val & ~(VT8231_EXTENT - 1);
if (address == 0) {
dev_err(&dev->dev, "base address not set - upgrade BIOS or use force_addr=0xaddr\n");
return -ENODEV;
}
if (PCIBIOS_SUCCESSFUL != pci_read_config_word(dev, VT8231_ENABLE_REG,
&val))
return -ENODEV;
if (!(val & 0x0001)) {
dev_warn(&dev->dev, "enabling sensors\n");
if (PCIBIOS_SUCCESSFUL !=
pci_write_config_word(dev, VT8231_ENABLE_REG,
val | 0x0001))
return -ENODEV;
}
if (platform_driver_register(&vt8231_driver))
goto exit;
/* Sets global pdev as a side effect */
if (vt8231_device_add(address))
goto exit_unregister;
/*
* Always return failure here. This is to allow other drivers to bind
* to this pci device. We don't really want to have control over the
* pci device, we only wanted to read as few register values from it.
*/
/*
* We do, however, mark ourselves as using the PCI device to stop it
* getting unloaded.
*/
s_bridge = pci_dev_get(dev);
return -ENODEV;
exit_unregister:
platform_driver_unregister(&vt8231_driver);
exit:
return -ENODEV;
}
static int __init sm_vt8231_init(void)
{
return pci_register_driver(&vt8231_pci_driver);
}
static void __exit sm_vt8231_exit(void)
{
pci_unregister_driver(&vt8231_pci_driver);
if (s_bridge != NULL) {
platform_device_unregister(pdev);
platform_driver_unregister(&vt8231_driver);
pci_dev_put(s_bridge);
s_bridge = NULL;
}
}
MODULE_AUTHOR("Roger Lucas <vt8231@hiddenengine.co.uk>");
MODULE_DESCRIPTION("VT8231 sensors");
MODULE_LICENSE("GPL");
module_init(sm_vt8231_init);
module_exit(sm_vt8231_exit);