2005-04-17 05:20:36 +07:00
|
|
|
/*
|
|
|
|
* Generic hugetlb support.
|
2012-12-06 16:39:54 +07:00
|
|
|
* (C) Nadia Yvette Chambers, April 2004
|
2005-04-17 05:20:36 +07:00
|
|
|
*/
|
|
|
|
#include <linux/list.h>
|
|
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/mm.h>
|
2008-10-16 02:50:22 +07:00
|
|
|
#include <linux/seq_file.h>
|
2005-04-17 05:20:36 +07:00
|
|
|
#include <linux/sysctl.h>
|
|
|
|
#include <linux/highmem.h>
|
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 05:46:29 +07:00
|
|
|
#include <linux/mmu_notifier.h>
|
2005-04-17 05:20:36 +07:00
|
|
|
#include <linux/nodemask.h>
|
2005-06-22 07:14:44 +07:00
|
|
|
#include <linux/pagemap.h>
|
2006-01-06 15:10:46 +07:00
|
|
|
#include <linux/mempolicy.h>
|
2006-01-08 16:00:57 +07:00
|
|
|
#include <linux/cpuset.h>
|
[PATCH] hugepage: serialize hugepage allocation and instantiation
Currently, no lock or mutex is held between allocating a hugepage and
inserting it into the pagetables / page cache. When we do go to insert the
page into pagetables or page cache, we recheck and may free the newly
allocated hugepage. However, since the number of hugepages in the system
is strictly limited, and it's usualy to want to use all of them, this can
still lead to spurious allocation failures.
For example, suppose two processes are both mapping (MAP_SHARED) the same
hugepage file, large enough to consume the entire available hugepage pool.
If they race instantiating the last page in the mapping, they will both
attempt to allocate the last available hugepage. One will fail, of course,
returning OOM from the fault and thus causing the process to be killed,
despite the fact that the entire mapping can, in fact, be instantiated.
The patch fixes this race by the simple method of adding a (sleeping) mutex
to serialize the hugepage fault path between allocation and insertion into
pagetables and/or page cache. It would be possible to avoid the
serialization by catching the allocation failures, waiting on some
condition, then rechecking to see if someone else has instantiated the page
for us. Given the likely frequency of hugepage instantiations, it seems
very doubtful it's worth the extra complexity.
This patch causes no regression on the libhugetlbfs testsuite, and one
test, which can trigger this race now passes where it previously failed.
Actually, the test still sometimes fails, though less often and only as a
shmat() failure, rather processes getting OOM killed by the VM. The dodgy
heuristic tests in fs/hugetlbfs/inode.c for whether there's enough hugepage
space aren't protected by the new mutex, and would be ugly to do so, so
there's still a race there. Another patch to replace those tests with
something saner for this reason as well as others coming...
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-22 15:08:53 +07:00
|
|
|
#include <linux/mutex.h>
|
2008-07-24 11:27:47 +07:00
|
|
|
#include <linux/bootmem.h>
|
2008-07-24 11:27:44 +07:00
|
|
|
#include <linux/sysfs.h>
|
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 15:04:11 +07:00
|
|
|
#include <linux/slab.h>
|
2010-05-28 07:29:16 +07:00
|
|
|
#include <linux/rmap.h>
|
2010-05-28 07:29:21 +07:00
|
|
|
#include <linux/swap.h>
|
|
|
|
#include <linux/swapops.h>
|
2013-09-12 04:22:09 +07:00
|
|
|
#include <linux/page-isolation.h>
|
2008-08-07 02:04:54 +07:00
|
|
|
|
2005-06-22 07:14:44 +07:00
|
|
|
#include <asm/page.h>
|
|
|
|
#include <asm/pgtable.h>
|
2012-08-01 06:42:03 +07:00
|
|
|
#include <asm/tlb.h>
|
2005-06-22 07:14:44 +07:00
|
|
|
|
2012-08-01 06:42:03 +07:00
|
|
|
#include <linux/io.h>
|
2005-06-22 07:14:44 +07:00
|
|
|
#include <linux/hugetlb.h>
|
2012-08-01 06:42:15 +07:00
|
|
|
#include <linux/hugetlb_cgroup.h>
|
2009-12-15 08:58:25 +07:00
|
|
|
#include <linux/node.h>
|
2006-03-22 15:08:40 +07:00
|
|
|
#include "internal.h"
|
2005-04-17 05:20:36 +07:00
|
|
|
|
|
|
|
const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
|
2007-07-17 18:03:13 +07:00
|
|
|
unsigned long hugepages_treat_as_movable;
|
2008-07-24 11:27:41 +07:00
|
|
|
|
2012-08-01 06:42:10 +07:00
|
|
|
int hugetlb_max_hstate __read_mostly;
|
2008-07-24 11:27:42 +07:00
|
|
|
unsigned int default_hstate_idx;
|
|
|
|
struct hstate hstates[HUGE_MAX_HSTATE];
|
|
|
|
|
2008-07-24 11:27:52 +07:00
|
|
|
__initdata LIST_HEAD(huge_boot_pages);
|
|
|
|
|
2008-07-24 11:27:42 +07:00
|
|
|
/* for command line parsing */
|
|
|
|
static struct hstate * __initdata parsed_hstate;
|
|
|
|
static unsigned long __initdata default_hstate_max_huge_pages;
|
2008-07-24 11:27:52 +07:00
|
|
|
static unsigned long __initdata default_hstate_size;
|
2008-07-24 11:27:42 +07:00
|
|
|
|
[PATCH] hugepage: serialize hugepage allocation and instantiation
Currently, no lock or mutex is held between allocating a hugepage and
inserting it into the pagetables / page cache. When we do go to insert the
page into pagetables or page cache, we recheck and may free the newly
allocated hugepage. However, since the number of hugepages in the system
is strictly limited, and it's usualy to want to use all of them, this can
still lead to spurious allocation failures.
For example, suppose two processes are both mapping (MAP_SHARED) the same
hugepage file, large enough to consume the entire available hugepage pool.
If they race instantiating the last page in the mapping, they will both
attempt to allocate the last available hugepage. One will fail, of course,
returning OOM from the fault and thus causing the process to be killed,
despite the fact that the entire mapping can, in fact, be instantiated.
The patch fixes this race by the simple method of adding a (sleeping) mutex
to serialize the hugepage fault path between allocation and insertion into
pagetables and/or page cache. It would be possible to avoid the
serialization by catching the allocation failures, waiting on some
condition, then rechecking to see if someone else has instantiated the page
for us. Given the likely frequency of hugepage instantiations, it seems
very doubtful it's worth the extra complexity.
This patch causes no regression on the libhugetlbfs testsuite, and one
test, which can trigger this race now passes where it previously failed.
Actually, the test still sometimes fails, though less often and only as a
shmat() failure, rather processes getting OOM killed by the VM. The dodgy
heuristic tests in fs/hugetlbfs/inode.c for whether there's enough hugepage
space aren't protected by the new mutex, and would be ugly to do so, so
there's still a race there. Another patch to replace those tests with
something saner for this reason as well as others coming...
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-22 15:08:53 +07:00
|
|
|
/*
|
mm: migrate: make core migration code aware of hugepage
Currently hugepage migration is available only for soft offlining, but
it's also useful for some other users of page migration (clearly because
users of hugepage can enjoy the benefit of mempolicy and memory hotplug.)
So this patchset tries to extend such users to support hugepage migration.
The target of this patchset is to enable hugepage migration for NUMA
related system calls (migrate_pages(2), move_pages(2), and mbind(2)), and
memory hotplug.
This patchset does not add hugepage migration for memory compaction,
because users of memory compaction mainly expect to construct thp by
arranging raw pages, and there's little or no need to compact hugepages.
CMA, another user of page migration, can have benefit from hugepage
migration, but is not enabled to support it for now (just because of lack
of testing and expertise in CMA.)
Hugepage migration of non pmd-based hugepage (for example 1GB hugepage in
x86_64, or hugepages in architectures like ia64) is not enabled for now
(again, because of lack of testing.)
As for how these are achived, I extended the API (migrate_pages()) to
handle hugepage (with patch 1 and 2) and adjusted code of each caller to
check and collect movable hugepages (with patch 3-7). Remaining 2 patches
are kind of miscellaneous ones to avoid unexpected behavior. Patch 8 is
about making sure that we only migrate pmd-based hugepages. And patch 9
is about choosing appropriate zone for hugepage allocation.
My test is mainly functional one, simply kicking hugepage migration via
each entry point and confirm that migration is done correctly. Test code
is available here:
git://github.com/Naoya-Horiguchi/test_hugepage_migration_extension.git
And I always run libhugetlbfs test when changing hugetlbfs's code. With
this patchset, no regression was found in the test.
This patch (of 9):
Before enabling each user of page migration to support hugepage,
this patch enables the list of pages for migration to link not only
LRU pages, but also hugepages. As a result, putback_movable_pages()
and migrate_pages() can handle both of LRU pages and hugepages.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Acked-by: Hillf Danton <dhillf@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 04:21:59 +07:00
|
|
|
* Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
|
|
|
|
* free_huge_pages, and surplus_huge_pages.
|
[PATCH] hugepage: serialize hugepage allocation and instantiation
Currently, no lock or mutex is held between allocating a hugepage and
inserting it into the pagetables / page cache. When we do go to insert the
page into pagetables or page cache, we recheck and may free the newly
allocated hugepage. However, since the number of hugepages in the system
is strictly limited, and it's usualy to want to use all of them, this can
still lead to spurious allocation failures.
For example, suppose two processes are both mapping (MAP_SHARED) the same
hugepage file, large enough to consume the entire available hugepage pool.
If they race instantiating the last page in the mapping, they will both
attempt to allocate the last available hugepage. One will fail, of course,
returning OOM from the fault and thus causing the process to be killed,
despite the fact that the entire mapping can, in fact, be instantiated.
The patch fixes this race by the simple method of adding a (sleeping) mutex
to serialize the hugepage fault path between allocation and insertion into
pagetables and/or page cache. It would be possible to avoid the
serialization by catching the allocation failures, waiting on some
condition, then rechecking to see if someone else has instantiated the page
for us. Given the likely frequency of hugepage instantiations, it seems
very doubtful it's worth the extra complexity.
This patch causes no regression on the libhugetlbfs testsuite, and one
test, which can trigger this race now passes where it previously failed.
Actually, the test still sometimes fails, though less often and only as a
shmat() failure, rather processes getting OOM killed by the VM. The dodgy
heuristic tests in fs/hugetlbfs/inode.c for whether there's enough hugepage
space aren't protected by the new mutex, and would be ugly to do so, so
there's still a race there. Another patch to replace those tests with
something saner for this reason as well as others coming...
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-22 15:08:53 +07:00
|
|
|
*/
|
2012-08-01 06:42:10 +07:00
|
|
|
DEFINE_SPINLOCK(hugetlb_lock);
|
2005-11-22 12:32:28 +07:00
|
|
|
|
hugepages: fix use after free bug in "quota" handling
hugetlbfs_{get,put}_quota() are badly named. They don't interact with the
general quota handling code, and they don't much resemble its behaviour.
Rather than being about maintaining limits on on-disk block usage by
particular users, they are instead about maintaining limits on in-memory
page usage (including anonymous MAP_PRIVATE copied-on-write pages)
associated with a particular hugetlbfs filesystem instance.
Worse, they work by having callbacks to the hugetlbfs filesystem code from
the low-level page handling code, in particular from free_huge_page().
This is a layering violation of itself, but more importantly, if the
kernel does a get_user_pages() on hugepages (which can happen from KVM
amongst others), then the free_huge_page() can be delayed until after the
associated inode has already been freed. If an unmount occurs at the
wrong time, even the hugetlbfs superblock where the "quota" limits are
stored may have been freed.
Andrew Barry proposed a patch to fix this by having hugepages, instead of
storing a pointer to their address_space and reaching the superblock from
there, had the hugepages store pointers directly to the superblock,
bumping the reference count as appropriate to avoid it being freed.
Andrew Morton rejected that version, however, on the grounds that it made
the existing layering violation worse.
This is a reworked version of Andrew's patch, which removes the extra, and
some of the existing, layering violation. It works by introducing the
concept of a hugepage "subpool" at the lower hugepage mm layer - that is a
finite logical pool of hugepages to allocate from. hugetlbfs now creates
a subpool for each filesystem instance with a page limit set, and a
pointer to the subpool gets added to each allocated hugepage, instead of
the address_space pointer used now. The subpool has its own lifetime and
is only freed once all pages in it _and_ all other references to it (i.e.
superblocks) are gone.
subpools are optional - a NULL subpool pointer is taken by the code to
mean that no subpool limits are in effect.
Previous discussion of this bug found in: "Fix refcounting in hugetlbfs
quota handling.". See: https://lkml.org/lkml/2011/8/11/28 or
http://marc.info/?l=linux-mm&m=126928970510627&w=1
v2: Fixed a bug spotted by Hillf Danton, and removed the extra parameter to
alloc_huge_page() - since it already takes the vma, it is not necessary.
Signed-off-by: Andrew Barry <abarry@cray.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22 06:34:12 +07:00
|
|
|
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
|
|
|
|
{
|
|
|
|
bool free = (spool->count == 0) && (spool->used_hpages == 0);
|
|
|
|
|
|
|
|
spin_unlock(&spool->lock);
|
|
|
|
|
|
|
|
/* If no pages are used, and no other handles to the subpool
|
|
|
|
* remain, free the subpool the subpool remain */
|
|
|
|
if (free)
|
|
|
|
kfree(spool);
|
|
|
|
}
|
|
|
|
|
|
|
|
struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
|
|
|
|
{
|
|
|
|
struct hugepage_subpool *spool;
|
|
|
|
|
|
|
|
spool = kmalloc(sizeof(*spool), GFP_KERNEL);
|
|
|
|
if (!spool)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
spin_lock_init(&spool->lock);
|
|
|
|
spool->count = 1;
|
|
|
|
spool->max_hpages = nr_blocks;
|
|
|
|
spool->used_hpages = 0;
|
|
|
|
|
|
|
|
return spool;
|
|
|
|
}
|
|
|
|
|
|
|
|
void hugepage_put_subpool(struct hugepage_subpool *spool)
|
|
|
|
{
|
|
|
|
spin_lock(&spool->lock);
|
|
|
|
BUG_ON(!spool->count);
|
|
|
|
spool->count--;
|
|
|
|
unlock_or_release_subpool(spool);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
|
|
|
|
long delta)
|
|
|
|
{
|
|
|
|
int ret = 0;
|
|
|
|
|
|
|
|
if (!spool)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
spin_lock(&spool->lock);
|
|
|
|
if ((spool->used_hpages + delta) <= spool->max_hpages) {
|
|
|
|
spool->used_hpages += delta;
|
|
|
|
} else {
|
|
|
|
ret = -ENOMEM;
|
|
|
|
}
|
|
|
|
spin_unlock(&spool->lock);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
|
|
|
|
long delta)
|
|
|
|
{
|
|
|
|
if (!spool)
|
|
|
|
return;
|
|
|
|
|
|
|
|
spin_lock(&spool->lock);
|
|
|
|
spool->used_hpages -= delta;
|
|
|
|
/* If hugetlbfs_put_super couldn't free spool due to
|
|
|
|
* an outstanding quota reference, free it now. */
|
|
|
|
unlock_or_release_subpool(spool);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
|
|
|
|
{
|
|
|
|
return HUGETLBFS_SB(inode->i_sb)->spool;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
|
|
|
|
{
|
2013-01-24 05:07:38 +07:00
|
|
|
return subpool_inode(file_inode(vma->vm_file));
|
hugepages: fix use after free bug in "quota" handling
hugetlbfs_{get,put}_quota() are badly named. They don't interact with the
general quota handling code, and they don't much resemble its behaviour.
Rather than being about maintaining limits on on-disk block usage by
particular users, they are instead about maintaining limits on in-memory
page usage (including anonymous MAP_PRIVATE copied-on-write pages)
associated with a particular hugetlbfs filesystem instance.
Worse, they work by having callbacks to the hugetlbfs filesystem code from
the low-level page handling code, in particular from free_huge_page().
This is a layering violation of itself, but more importantly, if the
kernel does a get_user_pages() on hugepages (which can happen from KVM
amongst others), then the free_huge_page() can be delayed until after the
associated inode has already been freed. If an unmount occurs at the
wrong time, even the hugetlbfs superblock where the "quota" limits are
stored may have been freed.
Andrew Barry proposed a patch to fix this by having hugepages, instead of
storing a pointer to their address_space and reaching the superblock from
there, had the hugepages store pointers directly to the superblock,
bumping the reference count as appropriate to avoid it being freed.
Andrew Morton rejected that version, however, on the grounds that it made
the existing layering violation worse.
This is a reworked version of Andrew's patch, which removes the extra, and
some of the existing, layering violation. It works by introducing the
concept of a hugepage "subpool" at the lower hugepage mm layer - that is a
finite logical pool of hugepages to allocate from. hugetlbfs now creates
a subpool for each filesystem instance with a page limit set, and a
pointer to the subpool gets added to each allocated hugepage, instead of
the address_space pointer used now. The subpool has its own lifetime and
is only freed once all pages in it _and_ all other references to it (i.e.
superblocks) are gone.
subpools are optional - a NULL subpool pointer is taken by the code to
mean that no subpool limits are in effect.
Previous discussion of this bug found in: "Fix refcounting in hugetlbfs
quota handling.". See: https://lkml.org/lkml/2011/8/11/28 or
http://marc.info/?l=linux-mm&m=126928970510627&w=1
v2: Fixed a bug spotted by Hillf Danton, and removed the extra parameter to
alloc_huge_page() - since it already takes the vma, it is not necessary.
Signed-off-by: Andrew Barry <abarry@cray.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22 06:34:12 +07:00
|
|
|
}
|
|
|
|
|
2008-07-24 11:27:29 +07:00
|
|
|
/*
|
|
|
|
* Region tracking -- allows tracking of reservations and instantiated pages
|
|
|
|
* across the pages in a mapping.
|
2008-07-24 11:27:32 +07:00
|
|
|
*
|
|
|
|
* The region data structures are protected by a combination of the mmap_sem
|
2013-09-12 04:20:57 +07:00
|
|
|
* and the hugetlb_instantiation_mutex. To access or modify a region the caller
|
2008-07-24 11:27:32 +07:00
|
|
|
* must either hold the mmap_sem for write, or the mmap_sem for read and
|
2013-09-12 04:20:57 +07:00
|
|
|
* the hugetlb_instantiation_mutex:
|
2008-07-24 11:27:32 +07:00
|
|
|
*
|
2011-07-26 07:12:14 +07:00
|
|
|
* down_write(&mm->mmap_sem);
|
2008-07-24 11:27:32 +07:00
|
|
|
* or
|
2011-07-26 07:12:14 +07:00
|
|
|
* down_read(&mm->mmap_sem);
|
|
|
|
* mutex_lock(&hugetlb_instantiation_mutex);
|
2008-07-24 11:27:29 +07:00
|
|
|
*/
|
|
|
|
struct file_region {
|
|
|
|
struct list_head link;
|
|
|
|
long from;
|
|
|
|
long to;
|
|
|
|
};
|
|
|
|
|
|
|
|
static long region_add(struct list_head *head, long f, long t)
|
|
|
|
{
|
|
|
|
struct file_region *rg, *nrg, *trg;
|
|
|
|
|
|
|
|
/* Locate the region we are either in or before. */
|
|
|
|
list_for_each_entry(rg, head, link)
|
|
|
|
if (f <= rg->to)
|
|
|
|
break;
|
|
|
|
|
|
|
|
/* Round our left edge to the current segment if it encloses us. */
|
|
|
|
if (f > rg->from)
|
|
|
|
f = rg->from;
|
|
|
|
|
|
|
|
/* Check for and consume any regions we now overlap with. */
|
|
|
|
nrg = rg;
|
|
|
|
list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
|
|
|
|
if (&rg->link == head)
|
|
|
|
break;
|
|
|
|
if (rg->from > t)
|
|
|
|
break;
|
|
|
|
|
|
|
|
/* If this area reaches higher then extend our area to
|
|
|
|
* include it completely. If this is not the first area
|
|
|
|
* which we intend to reuse, free it. */
|
|
|
|
if (rg->to > t)
|
|
|
|
t = rg->to;
|
|
|
|
if (rg != nrg) {
|
|
|
|
list_del(&rg->link);
|
|
|
|
kfree(rg);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
nrg->from = f;
|
|
|
|
nrg->to = t;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static long region_chg(struct list_head *head, long f, long t)
|
|
|
|
{
|
|
|
|
struct file_region *rg, *nrg;
|
|
|
|
long chg = 0;
|
|
|
|
|
|
|
|
/* Locate the region we are before or in. */
|
|
|
|
list_for_each_entry(rg, head, link)
|
|
|
|
if (f <= rg->to)
|
|
|
|
break;
|
|
|
|
|
|
|
|
/* If we are below the current region then a new region is required.
|
|
|
|
* Subtle, allocate a new region at the position but make it zero
|
|
|
|
* size such that we can guarantee to record the reservation. */
|
|
|
|
if (&rg->link == head || t < rg->from) {
|
|
|
|
nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
|
|
|
|
if (!nrg)
|
|
|
|
return -ENOMEM;
|
|
|
|
nrg->from = f;
|
|
|
|
nrg->to = f;
|
|
|
|
INIT_LIST_HEAD(&nrg->link);
|
|
|
|
list_add(&nrg->link, rg->link.prev);
|
|
|
|
|
|
|
|
return t - f;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Round our left edge to the current segment if it encloses us. */
|
|
|
|
if (f > rg->from)
|
|
|
|
f = rg->from;
|
|
|
|
chg = t - f;
|
|
|
|
|
|
|
|
/* Check for and consume any regions we now overlap with. */
|
|
|
|
list_for_each_entry(rg, rg->link.prev, link) {
|
|
|
|
if (&rg->link == head)
|
|
|
|
break;
|
|
|
|
if (rg->from > t)
|
|
|
|
return chg;
|
|
|
|
|
2011-03-31 08:57:33 +07:00
|
|
|
/* We overlap with this area, if it extends further than
|
2008-07-24 11:27:29 +07:00
|
|
|
* us then we must extend ourselves. Account for its
|
|
|
|
* existing reservation. */
|
|
|
|
if (rg->to > t) {
|
|
|
|
chg += rg->to - t;
|
|
|
|
t = rg->to;
|
|
|
|
}
|
|
|
|
chg -= rg->to - rg->from;
|
|
|
|
}
|
|
|
|
return chg;
|
|
|
|
}
|
|
|
|
|
|
|
|
static long region_truncate(struct list_head *head, long end)
|
|
|
|
{
|
|
|
|
struct file_region *rg, *trg;
|
|
|
|
long chg = 0;
|
|
|
|
|
|
|
|
/* Locate the region we are either in or before. */
|
|
|
|
list_for_each_entry(rg, head, link)
|
|
|
|
if (end <= rg->to)
|
|
|
|
break;
|
|
|
|
if (&rg->link == head)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/* If we are in the middle of a region then adjust it. */
|
|
|
|
if (end > rg->from) {
|
|
|
|
chg = rg->to - end;
|
|
|
|
rg->to = end;
|
|
|
|
rg = list_entry(rg->link.next, typeof(*rg), link);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Drop any remaining regions. */
|
|
|
|
list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
|
|
|
|
if (&rg->link == head)
|
|
|
|
break;
|
|
|
|
chg += rg->to - rg->from;
|
|
|
|
list_del(&rg->link);
|
|
|
|
kfree(rg);
|
|
|
|
}
|
|
|
|
return chg;
|
|
|
|
}
|
|
|
|
|
2008-07-24 11:27:32 +07:00
|
|
|
static long region_count(struct list_head *head, long f, long t)
|
|
|
|
{
|
|
|
|
struct file_region *rg;
|
|
|
|
long chg = 0;
|
|
|
|
|
|
|
|
/* Locate each segment we overlap with, and count that overlap. */
|
|
|
|
list_for_each_entry(rg, head, link) {
|
2012-05-30 05:06:17 +07:00
|
|
|
long seg_from;
|
|
|
|
long seg_to;
|
2008-07-24 11:27:32 +07:00
|
|
|
|
|
|
|
if (rg->to <= f)
|
|
|
|
continue;
|
|
|
|
if (rg->from >= t)
|
|
|
|
break;
|
|
|
|
|
|
|
|
seg_from = max(rg->from, f);
|
|
|
|
seg_to = min(rg->to, t);
|
|
|
|
|
|
|
|
chg += seg_to - seg_from;
|
|
|
|
}
|
|
|
|
|
|
|
|
return chg;
|
|
|
|
}
|
|
|
|
|
2008-07-24 11:27:26 +07:00
|
|
|
/*
|
|
|
|
* Convert the address within this vma to the page offset within
|
|
|
|
* the mapping, in pagecache page units; huge pages here.
|
|
|
|
*/
|
2008-07-24 11:27:41 +07:00
|
|
|
static pgoff_t vma_hugecache_offset(struct hstate *h,
|
|
|
|
struct vm_area_struct *vma, unsigned long address)
|
2008-07-24 11:27:26 +07:00
|
|
|
{
|
2008-07-24 11:27:41 +07:00
|
|
|
return ((address - vma->vm_start) >> huge_page_shift(h)) +
|
|
|
|
(vma->vm_pgoff >> huge_page_order(h));
|
2008-07-24 11:27:26 +07:00
|
|
|
}
|
|
|
|
|
2010-05-28 07:29:16 +07:00
|
|
|
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
|
|
|
|
unsigned long address)
|
|
|
|
{
|
|
|
|
return vma_hugecache_offset(hstate_vma(vma), vma, address);
|
|
|
|
}
|
|
|
|
|
2009-01-07 05:38:53 +07:00
|
|
|
/*
|
|
|
|
* Return the size of the pages allocated when backing a VMA. In the majority
|
|
|
|
* cases this will be same size as used by the page table entries.
|
|
|
|
*/
|
|
|
|
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
|
|
|
|
{
|
|
|
|
struct hstate *hstate;
|
|
|
|
|
|
|
|
if (!is_vm_hugetlb_page(vma))
|
|
|
|
return PAGE_SIZE;
|
|
|
|
|
|
|
|
hstate = hstate_vma(vma);
|
|
|
|
|
2013-07-04 05:02:43 +07:00
|
|
|
return 1UL << huge_page_shift(hstate);
|
2009-01-07 05:38:53 +07:00
|
|
|
}
|
2009-06-19 20:16:22 +07:00
|
|
|
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
|
2009-01-07 05:38:53 +07:00
|
|
|
|
2009-01-07 05:38:54 +07:00
|
|
|
/*
|
|
|
|
* Return the page size being used by the MMU to back a VMA. In the majority
|
|
|
|
* of cases, the page size used by the kernel matches the MMU size. On
|
|
|
|
* architectures where it differs, an architecture-specific version of this
|
|
|
|
* function is required.
|
|
|
|
*/
|
|
|
|
#ifndef vma_mmu_pagesize
|
|
|
|
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
|
|
|
|
{
|
|
|
|
return vma_kernel_pagesize(vma);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2008-07-24 11:27:32 +07:00
|
|
|
/*
|
|
|
|
* Flags for MAP_PRIVATE reservations. These are stored in the bottom
|
|
|
|
* bits of the reservation map pointer, which are always clear due to
|
|
|
|
* alignment.
|
|
|
|
*/
|
|
|
|
#define HPAGE_RESV_OWNER (1UL << 0)
|
|
|
|
#define HPAGE_RESV_UNMAPPED (1UL << 1)
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 11:27:25 +07:00
|
|
|
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
|
2008-07-24 11:27:32 +07:00
|
|
|
|
2008-07-24 11:27:23 +07:00
|
|
|
/*
|
|
|
|
* These helpers are used to track how many pages are reserved for
|
|
|
|
* faults in a MAP_PRIVATE mapping. Only the process that called mmap()
|
|
|
|
* is guaranteed to have their future faults succeed.
|
|
|
|
*
|
|
|
|
* With the exception of reset_vma_resv_huge_pages() which is called at fork(),
|
|
|
|
* the reserve counters are updated with the hugetlb_lock held. It is safe
|
|
|
|
* to reset the VMA at fork() time as it is not in use yet and there is no
|
|
|
|
* chance of the global counters getting corrupted as a result of the values.
|
2008-07-24 11:27:32 +07:00
|
|
|
*
|
|
|
|
* The private mapping reservation is represented in a subtly different
|
|
|
|
* manner to a shared mapping. A shared mapping has a region map associated
|
|
|
|
* with the underlying file, this region map represents the backing file
|
|
|
|
* pages which have ever had a reservation assigned which this persists even
|
|
|
|
* after the page is instantiated. A private mapping has a region map
|
|
|
|
* associated with the original mmap which is attached to all VMAs which
|
|
|
|
* reference it, this region map represents those offsets which have consumed
|
|
|
|
* reservation ie. where pages have been instantiated.
|
2008-07-24 11:27:23 +07:00
|
|
|
*/
|
2008-07-24 11:27:26 +07:00
|
|
|
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
|
|
|
|
{
|
|
|
|
return (unsigned long)vma->vm_private_data;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void set_vma_private_data(struct vm_area_struct *vma,
|
|
|
|
unsigned long value)
|
|
|
|
{
|
|
|
|
vma->vm_private_data = (void *)value;
|
|
|
|
}
|
|
|
|
|
2008-07-24 11:27:32 +07:00
|
|
|
struct resv_map {
|
|
|
|
struct kref refs;
|
|
|
|
struct list_head regions;
|
|
|
|
};
|
|
|
|
|
2008-10-19 10:27:06 +07:00
|
|
|
static struct resv_map *resv_map_alloc(void)
|
2008-07-24 11:27:32 +07:00
|
|
|
{
|
|
|
|
struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
|
|
|
|
if (!resv_map)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
kref_init(&resv_map->refs);
|
|
|
|
INIT_LIST_HEAD(&resv_map->regions);
|
|
|
|
|
|
|
|
return resv_map;
|
|
|
|
}
|
|
|
|
|
2008-10-19 10:27:06 +07:00
|
|
|
static void resv_map_release(struct kref *ref)
|
2008-07-24 11:27:32 +07:00
|
|
|
{
|
|
|
|
struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
|
|
|
|
|
|
|
|
/* Clear out any active regions before we release the map. */
|
|
|
|
region_truncate(&resv_map->regions, 0);
|
|
|
|
kfree(resv_map);
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
|
2008-07-24 11:27:23 +07:00
|
|
|
{
|
|
|
|
VM_BUG_ON(!is_vm_hugetlb_page(vma));
|
2009-05-29 04:34:40 +07:00
|
|
|
if (!(vma->vm_flags & VM_MAYSHARE))
|
2008-07-24 11:27:32 +07:00
|
|
|
return (struct resv_map *)(get_vma_private_data(vma) &
|
|
|
|
~HPAGE_RESV_MASK);
|
2008-10-19 10:27:06 +07:00
|
|
|
return NULL;
|
2008-07-24 11:27:23 +07:00
|
|
|
}
|
|
|
|
|
2008-07-24 11:27:32 +07:00
|
|
|
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
|
2008-07-24 11:27:23 +07:00
|
|
|
{
|
|
|
|
VM_BUG_ON(!is_vm_hugetlb_page(vma));
|
2009-05-29 04:34:40 +07:00
|
|
|
VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
|
2008-07-24 11:27:23 +07:00
|
|
|
|
2008-07-24 11:27:32 +07:00
|
|
|
set_vma_private_data(vma, (get_vma_private_data(vma) &
|
|
|
|
HPAGE_RESV_MASK) | (unsigned long)map);
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 11:27:25 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
|
|
|
|
{
|
|
|
|
VM_BUG_ON(!is_vm_hugetlb_page(vma));
|
2009-05-29 04:34:40 +07:00
|
|
|
VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
|
2008-07-24 11:27:26 +07:00
|
|
|
|
|
|
|
set_vma_private_data(vma, get_vma_private_data(vma) | flags);
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 11:27:25 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
|
|
|
|
{
|
|
|
|
VM_BUG_ON(!is_vm_hugetlb_page(vma));
|
2008-07-24 11:27:26 +07:00
|
|
|
|
|
|
|
return (get_vma_private_data(vma) & flag) != 0;
|
2008-07-24 11:27:23 +07:00
|
|
|
}
|
|
|
|
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 11:27:25 +07:00
|
|
|
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
|
2008-07-24 11:27:23 +07:00
|
|
|
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
|
|
|
|
{
|
|
|
|
VM_BUG_ON(!is_vm_hugetlb_page(vma));
|
2009-05-29 04:34:40 +07:00
|
|
|
if (!(vma->vm_flags & VM_MAYSHARE))
|
2008-07-24 11:27:23 +07:00
|
|
|
vma->vm_private_data = (void *)0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Returns true if the VMA has associated reserve pages */
|
mm, hugetlb: decrement reserve count if VM_NORESERVE alloc page cache
If a vma with VM_NORESERVE allocate a new page for page cache, we should
check whether this area is reserved or not. If this address is already
reserved by other process(in case of chg == 0), we should decrement
reserve count, because this allocated page will go into page cache and
currently, there is no way to know that this page comes from reserved pool
or not when releasing inode. This may introduce over-counting problem to
reserved count. With following example code, you can easily reproduce
this situation.
Assume 2MB, nr_hugepages = 100
size = 20 * MB;
flag = MAP_SHARED;
p = mmap(NULL, size, PROT_READ|PROT_WRITE, flag, fd, 0);
if (p == MAP_FAILED) {
fprintf(stderr, "mmap() failed: %s\n", strerror(errno));
return -1;
}
flag = MAP_SHARED | MAP_NORESERVE;
q = mmap(NULL, size, PROT_READ|PROT_WRITE, flag, fd, 0);
if (q == MAP_FAILED) {
fprintf(stderr, "mmap() failed: %s\n", strerror(errno));
}
q[0] = 'c';
After finish the program, run 'cat /proc/meminfo'. You can see below
result.
HugePages_Free: 100
HugePages_Rsvd: 1
To fix this, we should check our mapping type and tracked region. If our
mapping is VM_NORESERVE, VM_MAYSHARE and chg is 0, this imply that current
allocated page will go into page cache which is already reserved region
when mapping is created. In this case, we should decrease reserve count.
As implementing above, this patch solve the problem.
[akpm@linux-foundation.org: fix spelling in comment]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Hillf Danton <dhillf@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Davidlohr Bueso <davidlohr.bueso@hp.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 04:21:18 +07:00
|
|
|
static int vma_has_reserves(struct vm_area_struct *vma, long chg)
|
2008-07-24 11:27:23 +07:00
|
|
|
{
|
mm, hugetlb: decrement reserve count if VM_NORESERVE alloc page cache
If a vma with VM_NORESERVE allocate a new page for page cache, we should
check whether this area is reserved or not. If this address is already
reserved by other process(in case of chg == 0), we should decrement
reserve count, because this allocated page will go into page cache and
currently, there is no way to know that this page comes from reserved pool
or not when releasing inode. This may introduce over-counting problem to
reserved count. With following example code, you can easily reproduce
this situation.
Assume 2MB, nr_hugepages = 100
size = 20 * MB;
flag = MAP_SHARED;
p = mmap(NULL, size, PROT_READ|PROT_WRITE, flag, fd, 0);
if (p == MAP_FAILED) {
fprintf(stderr, "mmap() failed: %s\n", strerror(errno));
return -1;
}
flag = MAP_SHARED | MAP_NORESERVE;
q = mmap(NULL, size, PROT_READ|PROT_WRITE, flag, fd, 0);
if (q == MAP_FAILED) {
fprintf(stderr, "mmap() failed: %s\n", strerror(errno));
}
q[0] = 'c';
After finish the program, run 'cat /proc/meminfo'. You can see below
result.
HugePages_Free: 100
HugePages_Rsvd: 1
To fix this, we should check our mapping type and tracked region. If our
mapping is VM_NORESERVE, VM_MAYSHARE and chg is 0, this imply that current
allocated page will go into page cache which is already reserved region
when mapping is created. In this case, we should decrease reserve count.
As implementing above, this patch solve the problem.
[akpm@linux-foundation.org: fix spelling in comment]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Hillf Danton <dhillf@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Davidlohr Bueso <davidlohr.bueso@hp.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 04:21:18 +07:00
|
|
|
if (vma->vm_flags & VM_NORESERVE) {
|
|
|
|
/*
|
|
|
|
* This address is already reserved by other process(chg == 0),
|
|
|
|
* so, we should decrement reserved count. Without decrementing,
|
|
|
|
* reserve count remains after releasing inode, because this
|
|
|
|
* allocated page will go into page cache and is regarded as
|
|
|
|
* coming from reserved pool in releasing step. Currently, we
|
|
|
|
* don't have any other solution to deal with this situation
|
|
|
|
* properly, so add work-around here.
|
|
|
|
*/
|
|
|
|
if (vma->vm_flags & VM_MAYSHARE && chg == 0)
|
|
|
|
return 1;
|
|
|
|
else
|
|
|
|
return 0;
|
|
|
|
}
|
2013-09-12 04:21:07 +07:00
|
|
|
|
|
|
|
/* Shared mappings always use reserves */
|
2009-05-29 04:34:40 +07:00
|
|
|
if (vma->vm_flags & VM_MAYSHARE)
|
2008-07-24 11:27:58 +07:00
|
|
|
return 1;
|
2013-09-12 04:21:07 +07:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Only the process that called mmap() has reserves for
|
|
|
|
* private mappings.
|
|
|
|
*/
|
2008-07-24 11:27:58 +07:00
|
|
|
if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
|
|
|
|
return 1;
|
2013-09-12 04:21:07 +07:00
|
|
|
|
2008-07-24 11:27:58 +07:00
|
|
|
return 0;
|
2008-07-24 11:27:23 +07:00
|
|
|
}
|
|
|
|
|
2010-09-08 08:19:34 +07:00
|
|
|
static void copy_gigantic_page(struct page *dst, struct page *src)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
struct hstate *h = page_hstate(src);
|
|
|
|
struct page *dst_base = dst;
|
|
|
|
struct page *src_base = src;
|
|
|
|
|
|
|
|
for (i = 0; i < pages_per_huge_page(h); ) {
|
|
|
|
cond_resched();
|
|
|
|
copy_highpage(dst, src);
|
|
|
|
|
|
|
|
i++;
|
|
|
|
dst = mem_map_next(dst, dst_base, i);
|
|
|
|
src = mem_map_next(src, src_base, i);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void copy_huge_page(struct page *dst, struct page *src)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
struct hstate *h = page_hstate(src);
|
|
|
|
|
|
|
|
if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
|
|
|
|
copy_gigantic_page(dst, src);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
might_sleep();
|
|
|
|
for (i = 0; i < pages_per_huge_page(h); i++) {
|
|
|
|
cond_resched();
|
|
|
|
copy_highpage(dst + i, src + i);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2008-07-24 11:27:41 +07:00
|
|
|
static void enqueue_huge_page(struct hstate *h, struct page *page)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
int nid = page_to_nid(page);
|
2012-08-01 06:42:07 +07:00
|
|
|
list_move(&page->lru, &h->hugepage_freelists[nid]);
|
2008-07-24 11:27:41 +07:00
|
|
|
h->free_huge_pages++;
|
|
|
|
h->free_huge_pages_node[nid]++;
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
|
|
|
|
2010-09-08 08:19:33 +07:00
|
|
|
static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
|
|
|
|
{
|
|
|
|
struct page *page;
|
|
|
|
|
2013-09-12 04:22:09 +07:00
|
|
|
list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
|
|
|
|
if (!is_migrate_isolate_page(page))
|
|
|
|
break;
|
|
|
|
/*
|
|
|
|
* if 'non-isolated free hugepage' not found on the list,
|
|
|
|
* the allocation fails.
|
|
|
|
*/
|
|
|
|
if (&h->hugepage_freelists[nid] == &page->lru)
|
2010-09-08 08:19:33 +07:00
|
|
|
return NULL;
|
2012-08-01 06:42:07 +07:00
|
|
|
list_move(&page->lru, &h->hugepage_activelist);
|
2010-09-08 08:19:37 +07:00
|
|
|
set_page_refcounted(page);
|
2010-09-08 08:19:33 +07:00
|
|
|
h->free_huge_pages--;
|
|
|
|
h->free_huge_pages_node[nid]--;
|
|
|
|
return page;
|
|
|
|
}
|
|
|
|
|
2013-09-12 04:22:13 +07:00
|
|
|
/* Movability of hugepages depends on migration support. */
|
|
|
|
static inline gfp_t htlb_alloc_mask(struct hstate *h)
|
|
|
|
{
|
|
|
|
if (hugepages_treat_as_movable || hugepage_migration_support(h))
|
|
|
|
return GFP_HIGHUSER_MOVABLE;
|
|
|
|
else
|
|
|
|
return GFP_HIGHUSER;
|
|
|
|
}
|
|
|
|
|
2008-07-24 11:27:41 +07:00
|
|
|
static struct page *dequeue_huge_page_vma(struct hstate *h,
|
|
|
|
struct vm_area_struct *vma,
|
mm, hugetlb: decrement reserve count if VM_NORESERVE alloc page cache
If a vma with VM_NORESERVE allocate a new page for page cache, we should
check whether this area is reserved or not. If this address is already
reserved by other process(in case of chg == 0), we should decrement
reserve count, because this allocated page will go into page cache and
currently, there is no way to know that this page comes from reserved pool
or not when releasing inode. This may introduce over-counting problem to
reserved count. With following example code, you can easily reproduce
this situation.
Assume 2MB, nr_hugepages = 100
size = 20 * MB;
flag = MAP_SHARED;
p = mmap(NULL, size, PROT_READ|PROT_WRITE, flag, fd, 0);
if (p == MAP_FAILED) {
fprintf(stderr, "mmap() failed: %s\n", strerror(errno));
return -1;
}
flag = MAP_SHARED | MAP_NORESERVE;
q = mmap(NULL, size, PROT_READ|PROT_WRITE, flag, fd, 0);
if (q == MAP_FAILED) {
fprintf(stderr, "mmap() failed: %s\n", strerror(errno));
}
q[0] = 'c';
After finish the program, run 'cat /proc/meminfo'. You can see below
result.
HugePages_Free: 100
HugePages_Rsvd: 1
To fix this, we should check our mapping type and tracked region. If our
mapping is VM_NORESERVE, VM_MAYSHARE and chg is 0, this imply that current
allocated page will go into page cache which is already reserved region
when mapping is created. In this case, we should decrease reserve count.
As implementing above, this patch solve the problem.
[akpm@linux-foundation.org: fix spelling in comment]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Hillf Danton <dhillf@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Davidlohr Bueso <davidlohr.bueso@hp.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 04:21:18 +07:00
|
|
|
unsigned long address, int avoid_reserve,
|
|
|
|
long chg)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
2012-04-26 06:01:46 +07:00
|
|
|
struct page *page = NULL;
|
Fix NUMA Memory Policy Reference Counting
This patch proposes fixes to the reference counting of memory policy in the
page allocation paths and in show_numa_map(). Extracted from my "Memory
Policy Cleanups and Enhancements" series as stand-alone.
Shared policy lookup [shmem] has always added a reference to the policy,
but this was never unrefed after page allocation or after formatting the
numa map data.
Default system policy should not require additional ref counting, nor
should the current task's task policy. However, show_numa_map() calls
get_vma_policy() to examine what may be [likely is] another task's policy.
The latter case needs protection against freeing of the policy.
This patch adds a reference count to a mempolicy returned by
get_vma_policy() when the policy is a vma policy or another task's
mempolicy. Again, shared policy is already reference counted on lookup. A
matching "unref" [__mpol_free()] is performed in alloc_page_vma() for
shared and vma policies, and in show_numa_map() for shared and another
task's mempolicy. We can call __mpol_free() directly, saving an admittedly
inexpensive inline NULL test, because we know we have a non-NULL policy.
Handling policy ref counts for hugepages is a bit trickier.
huge_zonelist() returns a zone list that might come from a shared or vma
'BIND policy. In this case, we should hold the reference until after the
huge page allocation in dequeue_hugepage(). The patch modifies
huge_zonelist() to return a pointer to the mempolicy if it needs to be
unref'd after allocation.
Kernel Build [16cpu, 32GB, ia64] - average of 10 runs:
w/o patch w/ refcount patch
Avg Std Devn Avg Std Devn
Real: 100.59 0.38 100.63 0.43
User: 1209.60 0.37 1209.91 0.31
System: 81.52 0.42 81.64 0.34
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Andi Kleen <ak@suse.de>
Cc: Christoph Lameter <clameter@sgi.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-09-19 12:46:47 +07:00
|
|
|
struct mempolicy *mpol;
|
2008-04-28 16:12:18 +07:00
|
|
|
nodemask_t *nodemask;
|
2010-05-25 04:32:08 +07:00
|
|
|
struct zonelist *zonelist;
|
2008-04-28 16:12:17 +07:00
|
|
|
struct zone *zone;
|
|
|
|
struct zoneref *z;
|
cpuset: mm: reduce large amounts of memory barrier related damage v3
Commit c0ff7453bb5c ("cpuset,mm: fix no node to alloc memory when
changing cpuset's mems") wins a super prize for the largest number of
memory barriers entered into fast paths for one commit.
[get|put]_mems_allowed is incredibly heavy with pairs of full memory
barriers inserted into a number of hot paths. This was detected while
investigating at large page allocator slowdown introduced some time
after 2.6.32. The largest portion of this overhead was shown by
oprofile to be at an mfence introduced by this commit into the page
allocator hot path.
For extra style points, the commit introduced the use of yield() in an
implementation of what looks like a spinning mutex.
This patch replaces the full memory barriers on both read and write
sides with a sequence counter with just read barriers on the fast path
side. This is much cheaper on some architectures, including x86. The
main bulk of the patch is the retry logic if the nodemask changes in a
manner that can cause a false failure.
While updating the nodemask, a check is made to see if a false failure
is a risk. If it is, the sequence number gets bumped and parallel
allocators will briefly stall while the nodemask update takes place.
In a page fault test microbenchmark, oprofile samples from
__alloc_pages_nodemask went from 4.53% of all samples to 1.15%. The
actual results were
3.3.0-rc3 3.3.0-rc3
rc3-vanilla nobarrier-v2r1
Clients 1 UserTime 0.07 ( 0.00%) 0.08 (-14.19%)
Clients 2 UserTime 0.07 ( 0.00%) 0.07 ( 2.72%)
Clients 4 UserTime 0.08 ( 0.00%) 0.07 ( 3.29%)
Clients 1 SysTime 0.70 ( 0.00%) 0.65 ( 6.65%)
Clients 2 SysTime 0.85 ( 0.00%) 0.82 ( 3.65%)
Clients 4 SysTime 1.41 ( 0.00%) 1.41 ( 0.32%)
Clients 1 WallTime 0.77 ( 0.00%) 0.74 ( 4.19%)
Clients 2 WallTime 0.47 ( 0.00%) 0.45 ( 3.73%)
Clients 4 WallTime 0.38 ( 0.00%) 0.37 ( 1.58%)
Clients 1 Flt/sec/cpu 497620.28 ( 0.00%) 520294.53 ( 4.56%)
Clients 2 Flt/sec/cpu 414639.05 ( 0.00%) 429882.01 ( 3.68%)
Clients 4 Flt/sec/cpu 257959.16 ( 0.00%) 258761.48 ( 0.31%)
Clients 1 Flt/sec 495161.39 ( 0.00%) 517292.87 ( 4.47%)
Clients 2 Flt/sec 820325.95 ( 0.00%) 850289.77 ( 3.65%)
Clients 4 Flt/sec 1020068.93 ( 0.00%) 1022674.06 ( 0.26%)
MMTests Statistics: duration
Sys Time Running Test (seconds) 135.68 132.17
User+Sys Time Running Test (seconds) 164.2 160.13
Total Elapsed Time (seconds) 123.46 120.87
The overall improvement is small but the System CPU time is much
improved and roughly in correlation to what oprofile reported (these
performance figures are without profiling so skew is expected). The
actual number of page faults is noticeably improved.
For benchmarks like kernel builds, the overall benefit is marginal but
the system CPU time is slightly reduced.
To test the actual bug the commit fixed I opened two terminals. The
first ran within a cpuset and continually ran a small program that
faulted 100M of anonymous data. In a second window, the nodemask of the
cpuset was continually randomised in a loop.
Without the commit, the program would fail every so often (usually
within 10 seconds) and obviously with the commit everything worked fine.
With this patch applied, it also worked fine so the fix should be
functionally equivalent.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Miao Xie <miaox@cn.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22 06:34:11 +07:00
|
|
|
unsigned int cpuset_mems_cookie;
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2008-07-24 11:27:23 +07:00
|
|
|
/*
|
|
|
|
* A child process with MAP_PRIVATE mappings created by their parent
|
|
|
|
* have no page reserves. This check ensures that reservations are
|
|
|
|
* not "stolen". The child may still get SIGKILLed
|
|
|
|
*/
|
mm, hugetlb: decrement reserve count if VM_NORESERVE alloc page cache
If a vma with VM_NORESERVE allocate a new page for page cache, we should
check whether this area is reserved or not. If this address is already
reserved by other process(in case of chg == 0), we should decrement
reserve count, because this allocated page will go into page cache and
currently, there is no way to know that this page comes from reserved pool
or not when releasing inode. This may introduce over-counting problem to
reserved count. With following example code, you can easily reproduce
this situation.
Assume 2MB, nr_hugepages = 100
size = 20 * MB;
flag = MAP_SHARED;
p = mmap(NULL, size, PROT_READ|PROT_WRITE, flag, fd, 0);
if (p == MAP_FAILED) {
fprintf(stderr, "mmap() failed: %s\n", strerror(errno));
return -1;
}
flag = MAP_SHARED | MAP_NORESERVE;
q = mmap(NULL, size, PROT_READ|PROT_WRITE, flag, fd, 0);
if (q == MAP_FAILED) {
fprintf(stderr, "mmap() failed: %s\n", strerror(errno));
}
q[0] = 'c';
After finish the program, run 'cat /proc/meminfo'. You can see below
result.
HugePages_Free: 100
HugePages_Rsvd: 1
To fix this, we should check our mapping type and tracked region. If our
mapping is VM_NORESERVE, VM_MAYSHARE and chg is 0, this imply that current
allocated page will go into page cache which is already reserved region
when mapping is created. In this case, we should decrease reserve count.
As implementing above, this patch solve the problem.
[akpm@linux-foundation.org: fix spelling in comment]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Hillf Danton <dhillf@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Davidlohr Bueso <davidlohr.bueso@hp.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 04:21:18 +07:00
|
|
|
if (!vma_has_reserves(vma, chg) &&
|
2008-07-24 11:27:41 +07:00
|
|
|
h->free_huge_pages - h->resv_huge_pages == 0)
|
2010-05-25 04:32:08 +07:00
|
|
|
goto err;
|
2008-07-24 11:27:23 +07:00
|
|
|
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 11:27:25 +07:00
|
|
|
/* If reserves cannot be used, ensure enough pages are in the pool */
|
2008-07-24 11:27:41 +07:00
|
|
|
if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
|
2011-04-09 09:49:08 +07:00
|
|
|
goto err;
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 11:27:25 +07:00
|
|
|
|
2013-09-12 04:20:50 +07:00
|
|
|
retry_cpuset:
|
|
|
|
cpuset_mems_cookie = get_mems_allowed();
|
|
|
|
zonelist = huge_zonelist(vma, address,
|
2013-09-12 04:22:13 +07:00
|
|
|
htlb_alloc_mask(h), &mpol, &nodemask);
|
2013-09-12 04:20:50 +07:00
|
|
|
|
2008-04-28 16:12:18 +07:00
|
|
|
for_each_zone_zonelist_nodemask(zone, z, zonelist,
|
|
|
|
MAX_NR_ZONES - 1, nodemask) {
|
2013-09-12 04:22:13 +07:00
|
|
|
if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
|
2010-09-08 08:19:33 +07:00
|
|
|
page = dequeue_huge_page_node(h, zone_to_nid(zone));
|
|
|
|
if (page) {
|
mm, hugetlb: decrement reserve count if VM_NORESERVE alloc page cache
If a vma with VM_NORESERVE allocate a new page for page cache, we should
check whether this area is reserved or not. If this address is already
reserved by other process(in case of chg == 0), we should decrement
reserve count, because this allocated page will go into page cache and
currently, there is no way to know that this page comes from reserved pool
or not when releasing inode. This may introduce over-counting problem to
reserved count. With following example code, you can easily reproduce
this situation.
Assume 2MB, nr_hugepages = 100
size = 20 * MB;
flag = MAP_SHARED;
p = mmap(NULL, size, PROT_READ|PROT_WRITE, flag, fd, 0);
if (p == MAP_FAILED) {
fprintf(stderr, "mmap() failed: %s\n", strerror(errno));
return -1;
}
flag = MAP_SHARED | MAP_NORESERVE;
q = mmap(NULL, size, PROT_READ|PROT_WRITE, flag, fd, 0);
if (q == MAP_FAILED) {
fprintf(stderr, "mmap() failed: %s\n", strerror(errno));
}
q[0] = 'c';
After finish the program, run 'cat /proc/meminfo'. You can see below
result.
HugePages_Free: 100
HugePages_Rsvd: 1
To fix this, we should check our mapping type and tracked region. If our
mapping is VM_NORESERVE, VM_MAYSHARE and chg is 0, this imply that current
allocated page will go into page cache which is already reserved region
when mapping is created. In this case, we should decrease reserve count.
As implementing above, this patch solve the problem.
[akpm@linux-foundation.org: fix spelling in comment]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Hillf Danton <dhillf@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Davidlohr Bueso <davidlohr.bueso@hp.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 04:21:18 +07:00
|
|
|
if (avoid_reserve)
|
|
|
|
break;
|
|
|
|
if (!vma_has_reserves(vma, chg))
|
|
|
|
break;
|
|
|
|
|
2013-09-12 04:21:58 +07:00
|
|
|
SetPagePrivate(page);
|
mm, hugetlb: decrement reserve count if VM_NORESERVE alloc page cache
If a vma with VM_NORESERVE allocate a new page for page cache, we should
check whether this area is reserved or not. If this address is already
reserved by other process(in case of chg == 0), we should decrement
reserve count, because this allocated page will go into page cache and
currently, there is no way to know that this page comes from reserved pool
or not when releasing inode. This may introduce over-counting problem to
reserved count. With following example code, you can easily reproduce
this situation.
Assume 2MB, nr_hugepages = 100
size = 20 * MB;
flag = MAP_SHARED;
p = mmap(NULL, size, PROT_READ|PROT_WRITE, flag, fd, 0);
if (p == MAP_FAILED) {
fprintf(stderr, "mmap() failed: %s\n", strerror(errno));
return -1;
}
flag = MAP_SHARED | MAP_NORESERVE;
q = mmap(NULL, size, PROT_READ|PROT_WRITE, flag, fd, 0);
if (q == MAP_FAILED) {
fprintf(stderr, "mmap() failed: %s\n", strerror(errno));
}
q[0] = 'c';
After finish the program, run 'cat /proc/meminfo'. You can see below
result.
HugePages_Free: 100
HugePages_Rsvd: 1
To fix this, we should check our mapping type and tracked region. If our
mapping is VM_NORESERVE, VM_MAYSHARE and chg is 0, this imply that current
allocated page will go into page cache which is already reserved region
when mapping is created. In this case, we should decrease reserve count.
As implementing above, this patch solve the problem.
[akpm@linux-foundation.org: fix spelling in comment]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Hillf Danton <dhillf@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Davidlohr Bueso <davidlohr.bueso@hp.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 04:21:18 +07:00
|
|
|
h->resv_huge_pages--;
|
2010-09-08 08:19:33 +07:00
|
|
|
break;
|
|
|
|
}
|
2007-07-19 15:49:08 +07:00
|
|
|
}
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
cpuset: mm: reduce large amounts of memory barrier related damage v3
Commit c0ff7453bb5c ("cpuset,mm: fix no node to alloc memory when
changing cpuset's mems") wins a super prize for the largest number of
memory barriers entered into fast paths for one commit.
[get|put]_mems_allowed is incredibly heavy with pairs of full memory
barriers inserted into a number of hot paths. This was detected while
investigating at large page allocator slowdown introduced some time
after 2.6.32. The largest portion of this overhead was shown by
oprofile to be at an mfence introduced by this commit into the page
allocator hot path.
For extra style points, the commit introduced the use of yield() in an
implementation of what looks like a spinning mutex.
This patch replaces the full memory barriers on both read and write
sides with a sequence counter with just read barriers on the fast path
side. This is much cheaper on some architectures, including x86. The
main bulk of the patch is the retry logic if the nodemask changes in a
manner that can cause a false failure.
While updating the nodemask, a check is made to see if a false failure
is a risk. If it is, the sequence number gets bumped and parallel
allocators will briefly stall while the nodemask update takes place.
In a page fault test microbenchmark, oprofile samples from
__alloc_pages_nodemask went from 4.53% of all samples to 1.15%. The
actual results were
3.3.0-rc3 3.3.0-rc3
rc3-vanilla nobarrier-v2r1
Clients 1 UserTime 0.07 ( 0.00%) 0.08 (-14.19%)
Clients 2 UserTime 0.07 ( 0.00%) 0.07 ( 2.72%)
Clients 4 UserTime 0.08 ( 0.00%) 0.07 ( 3.29%)
Clients 1 SysTime 0.70 ( 0.00%) 0.65 ( 6.65%)
Clients 2 SysTime 0.85 ( 0.00%) 0.82 ( 3.65%)
Clients 4 SysTime 1.41 ( 0.00%) 1.41 ( 0.32%)
Clients 1 WallTime 0.77 ( 0.00%) 0.74 ( 4.19%)
Clients 2 WallTime 0.47 ( 0.00%) 0.45 ( 3.73%)
Clients 4 WallTime 0.38 ( 0.00%) 0.37 ( 1.58%)
Clients 1 Flt/sec/cpu 497620.28 ( 0.00%) 520294.53 ( 4.56%)
Clients 2 Flt/sec/cpu 414639.05 ( 0.00%) 429882.01 ( 3.68%)
Clients 4 Flt/sec/cpu 257959.16 ( 0.00%) 258761.48 ( 0.31%)
Clients 1 Flt/sec 495161.39 ( 0.00%) 517292.87 ( 4.47%)
Clients 2 Flt/sec 820325.95 ( 0.00%) 850289.77 ( 3.65%)
Clients 4 Flt/sec 1020068.93 ( 0.00%) 1022674.06 ( 0.26%)
MMTests Statistics: duration
Sys Time Running Test (seconds) 135.68 132.17
User+Sys Time Running Test (seconds) 164.2 160.13
Total Elapsed Time (seconds) 123.46 120.87
The overall improvement is small but the System CPU time is much
improved and roughly in correlation to what oprofile reported (these
performance figures are without profiling so skew is expected). The
actual number of page faults is noticeably improved.
For benchmarks like kernel builds, the overall benefit is marginal but
the system CPU time is slightly reduced.
To test the actual bug the commit fixed I opened two terminals. The
first ran within a cpuset and continually ran a small program that
faulted 100M of anonymous data. In a second window, the nodemask of the
cpuset was continually randomised in a loop.
Without the commit, the program would fail every so often (usually
within 10 seconds) and obviously with the commit everything worked fine.
With this patch applied, it also worked fine so the fix should be
functionally equivalent.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Miao Xie <miaox@cn.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22 06:34:11 +07:00
|
|
|
|
mempolicy: rework mempolicy Reference Counting [yet again]
After further discussion with Christoph Lameter, it has become clear that my
earlier attempts to clean up the mempolicy reference counting were a bit of
overkill in some areas, resulting in superflous ref/unref in what are usually
fast paths. In other areas, further inspection reveals that I botched the
unref for interleave policies.
A separate patch, suitable for upstream/stable trees, fixes up the known
errors in the previous attempt to fix reference counting.
This patch reworks the memory policy referencing counting and, one hopes,
simplifies the code. Maybe I'll get it right this time.
See the update to the numa_memory_policy.txt document for a discussion of
memory policy reference counting that motivates this patch.
Summary:
Lookup of mempolicy, based on (vma, address) need only add a reference for
shared policy, and we need only unref the policy when finished for shared
policies. So, this patch backs out all of the unneeded extra reference
counting added by my previous attempt. It then unrefs only shared policies
when we're finished with them, using the mpol_cond_put() [conditional put]
helper function introduced by this patch.
Note that shmem_swapin() calls read_swap_cache_async() with a dummy vma
containing just the policy. read_swap_cache_async() can call alloc_page_vma()
multiple times, so we can't let alloc_page_vma() unref the shared policy in
this case. To avoid this, we make a copy of any non-null shared policy and
remove the MPOL_F_SHARED flag from the copy. This copy occurs before reading
a page [or multiple pages] from swap, so the overhead should not be an issue
here.
I introduced a new static inline function "mpol_cond_copy()" to copy the
shared policy to an on-stack policy and remove the flags that would require a
conditional free. The current implementation of mpol_cond_copy() assumes that
the struct mempolicy contains no pointers to dynamically allocated structures
that must be duplicated or reference counted during copy.
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 16:13:16 +07:00
|
|
|
mpol_cond_put(mpol);
|
cpuset: mm: reduce large amounts of memory barrier related damage v3
Commit c0ff7453bb5c ("cpuset,mm: fix no node to alloc memory when
changing cpuset's mems") wins a super prize for the largest number of
memory barriers entered into fast paths for one commit.
[get|put]_mems_allowed is incredibly heavy with pairs of full memory
barriers inserted into a number of hot paths. This was detected while
investigating at large page allocator slowdown introduced some time
after 2.6.32. The largest portion of this overhead was shown by
oprofile to be at an mfence introduced by this commit into the page
allocator hot path.
For extra style points, the commit introduced the use of yield() in an
implementation of what looks like a spinning mutex.
This patch replaces the full memory barriers on both read and write
sides with a sequence counter with just read barriers on the fast path
side. This is much cheaper on some architectures, including x86. The
main bulk of the patch is the retry logic if the nodemask changes in a
manner that can cause a false failure.
While updating the nodemask, a check is made to see if a false failure
is a risk. If it is, the sequence number gets bumped and parallel
allocators will briefly stall while the nodemask update takes place.
In a page fault test microbenchmark, oprofile samples from
__alloc_pages_nodemask went from 4.53% of all samples to 1.15%. The
actual results were
3.3.0-rc3 3.3.0-rc3
rc3-vanilla nobarrier-v2r1
Clients 1 UserTime 0.07 ( 0.00%) 0.08 (-14.19%)
Clients 2 UserTime 0.07 ( 0.00%) 0.07 ( 2.72%)
Clients 4 UserTime 0.08 ( 0.00%) 0.07 ( 3.29%)
Clients 1 SysTime 0.70 ( 0.00%) 0.65 ( 6.65%)
Clients 2 SysTime 0.85 ( 0.00%) 0.82 ( 3.65%)
Clients 4 SysTime 1.41 ( 0.00%) 1.41 ( 0.32%)
Clients 1 WallTime 0.77 ( 0.00%) 0.74 ( 4.19%)
Clients 2 WallTime 0.47 ( 0.00%) 0.45 ( 3.73%)
Clients 4 WallTime 0.38 ( 0.00%) 0.37 ( 1.58%)
Clients 1 Flt/sec/cpu 497620.28 ( 0.00%) 520294.53 ( 4.56%)
Clients 2 Flt/sec/cpu 414639.05 ( 0.00%) 429882.01 ( 3.68%)
Clients 4 Flt/sec/cpu 257959.16 ( 0.00%) 258761.48 ( 0.31%)
Clients 1 Flt/sec 495161.39 ( 0.00%) 517292.87 ( 4.47%)
Clients 2 Flt/sec 820325.95 ( 0.00%) 850289.77 ( 3.65%)
Clients 4 Flt/sec 1020068.93 ( 0.00%) 1022674.06 ( 0.26%)
MMTests Statistics: duration
Sys Time Running Test (seconds) 135.68 132.17
User+Sys Time Running Test (seconds) 164.2 160.13
Total Elapsed Time (seconds) 123.46 120.87
The overall improvement is small but the System CPU time is much
improved and roughly in correlation to what oprofile reported (these
performance figures are without profiling so skew is expected). The
actual number of page faults is noticeably improved.
For benchmarks like kernel builds, the overall benefit is marginal but
the system CPU time is slightly reduced.
To test the actual bug the commit fixed I opened two terminals. The
first ran within a cpuset and continually ran a small program that
faulted 100M of anonymous data. In a second window, the nodemask of the
cpuset was continually randomised in a loop.
Without the commit, the program would fail every so often (usually
within 10 seconds) and obviously with the commit everything worked fine.
With this patch applied, it also worked fine so the fix should be
functionally equivalent.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Miao Xie <miaox@cn.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22 06:34:11 +07:00
|
|
|
if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
|
|
|
|
goto retry_cpuset;
|
2005-04-17 05:20:36 +07:00
|
|
|
return page;
|
cpuset: mm: reduce large amounts of memory barrier related damage v3
Commit c0ff7453bb5c ("cpuset,mm: fix no node to alloc memory when
changing cpuset's mems") wins a super prize for the largest number of
memory barriers entered into fast paths for one commit.
[get|put]_mems_allowed is incredibly heavy with pairs of full memory
barriers inserted into a number of hot paths. This was detected while
investigating at large page allocator slowdown introduced some time
after 2.6.32. The largest portion of this overhead was shown by
oprofile to be at an mfence introduced by this commit into the page
allocator hot path.
For extra style points, the commit introduced the use of yield() in an
implementation of what looks like a spinning mutex.
This patch replaces the full memory barriers on both read and write
sides with a sequence counter with just read barriers on the fast path
side. This is much cheaper on some architectures, including x86. The
main bulk of the patch is the retry logic if the nodemask changes in a
manner that can cause a false failure.
While updating the nodemask, a check is made to see if a false failure
is a risk. If it is, the sequence number gets bumped and parallel
allocators will briefly stall while the nodemask update takes place.
In a page fault test microbenchmark, oprofile samples from
__alloc_pages_nodemask went from 4.53% of all samples to 1.15%. The
actual results were
3.3.0-rc3 3.3.0-rc3
rc3-vanilla nobarrier-v2r1
Clients 1 UserTime 0.07 ( 0.00%) 0.08 (-14.19%)
Clients 2 UserTime 0.07 ( 0.00%) 0.07 ( 2.72%)
Clients 4 UserTime 0.08 ( 0.00%) 0.07 ( 3.29%)
Clients 1 SysTime 0.70 ( 0.00%) 0.65 ( 6.65%)
Clients 2 SysTime 0.85 ( 0.00%) 0.82 ( 3.65%)
Clients 4 SysTime 1.41 ( 0.00%) 1.41 ( 0.32%)
Clients 1 WallTime 0.77 ( 0.00%) 0.74 ( 4.19%)
Clients 2 WallTime 0.47 ( 0.00%) 0.45 ( 3.73%)
Clients 4 WallTime 0.38 ( 0.00%) 0.37 ( 1.58%)
Clients 1 Flt/sec/cpu 497620.28 ( 0.00%) 520294.53 ( 4.56%)
Clients 2 Flt/sec/cpu 414639.05 ( 0.00%) 429882.01 ( 3.68%)
Clients 4 Flt/sec/cpu 257959.16 ( 0.00%) 258761.48 ( 0.31%)
Clients 1 Flt/sec 495161.39 ( 0.00%) 517292.87 ( 4.47%)
Clients 2 Flt/sec 820325.95 ( 0.00%) 850289.77 ( 3.65%)
Clients 4 Flt/sec 1020068.93 ( 0.00%) 1022674.06 ( 0.26%)
MMTests Statistics: duration
Sys Time Running Test (seconds) 135.68 132.17
User+Sys Time Running Test (seconds) 164.2 160.13
Total Elapsed Time (seconds) 123.46 120.87
The overall improvement is small but the System CPU time is much
improved and roughly in correlation to what oprofile reported (these
performance figures are without profiling so skew is expected). The
actual number of page faults is noticeably improved.
For benchmarks like kernel builds, the overall benefit is marginal but
the system CPU time is slightly reduced.
To test the actual bug the commit fixed I opened two terminals. The
first ran within a cpuset and continually ran a small program that
faulted 100M of anonymous data. In a second window, the nodemask of the
cpuset was continually randomised in a loop.
Without the commit, the program would fail every so often (usually
within 10 seconds) and obviously with the commit everything worked fine.
With this patch applied, it also worked fine so the fix should be
functionally equivalent.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Miao Xie <miaox@cn.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22 06:34:11 +07:00
|
|
|
|
|
|
|
err:
|
|
|
|
return NULL;
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
|
|
|
|
2008-07-24 11:27:41 +07:00
|
|
|
static void update_and_free_page(struct hstate *h, struct page *page)
|
hugetlb: Move update_and_free_page
Dynamic huge page pool resizing.
In most real-world scenarios, configuring the size of the hugetlb pool
correctly is a difficult task. If too few pages are allocated to the pool,
applications using MAP_SHARED may fail to mmap() a hugepage region and
applications using MAP_PRIVATE may receive SIGBUS. Isolating too much memory
in the hugetlb pool means it is not available for other uses, especially those
programs not using huge pages.
The obvious answer is to let the hugetlb pool grow and shrink in response to
the runtime demand for huge pages. The work Mel Gorman has been doing to
establish a memory zone for movable memory allocations makes dynamically
resizing the hugetlb pool reliable within the limits of that zone. This patch
series implements dynamic pool resizing for private and shared mappings while
being careful to maintain existing semantics. Please reply with your comments
and feedback; even just to say whether it would be a useful feature to you.
Thanks.
How it works
============
Upon depletion of the hugetlb pool, rather than reporting an error immediately,
first try and allocate the needed huge pages directly from the buddy allocator.
Care must be taken to avoid unbounded growth of the hugetlb pool, so the
hugetlb filesystem quota is used to limit overall pool size.
The real work begins when we decide there is a shortage of huge pages. What
happens next depends on whether the pages are for a private or shared mapping.
Private mappings are straightforward. At fault time, if alloc_huge_page()
fails, we allocate a page from the buddy allocator and increment the source
node's surplus_huge_pages counter. When free_huge_page() is called for a page
on a node with a surplus, the page is freed directly to the buddy allocator
instead of the hugetlb pool.
Because shared mappings require all of the pages to be reserved up front, some
additional work must be done at mmap() to support them. We determine the
reservation shortage and allocate the required number of pages all at once.
These pages are then added to the hugetlb pool and marked reserved. Where that
is not possible the mmap() will fail. As with private mappings, the
appropriate surplus counters are updated. Since reserved huge pages won't
necessarily be used by the process, we can't be sure that free_huge_page() will
always be called to return surplus pages to the buddy allocator. To prevent
the huge page pool from bloating, we must free unused surplus pages when their
reservation has ended.
Controlling it
==============
With the entire patch series applied, pool resizing is off by default so unless
specific action is taken, the semantics are unchanged.
To take advantage of the flexibility afforded by this patch series one must
tolerate a change in semantics. To control hugetlb pool growth, the following
techniques can be employed:
* A sysctl tunable to enable/disable the feature entirely
* The size= mount option for hugetlbfs filesystems to limit pool size
Performance
===========
When contiguous memory is readily available, it is expected that the cost of
dynamicly resizing the pool will be small. This series has been performance
tested with 'stream' to measure this cost.
Stream (http://www.cs.virginia.edu/stream/) was linked with libhugetlbfs to
enable remapping of the text and data/bss segments into huge pages.
Stream with small array
-----------------------
Baseline: nr_hugepages = 0, No libhugetlbfs segment remapping
Preallocated: nr_hugepages = 5, Text and data/bss remapping
Dynamic: nr_hugepages = 0, Text and data/bss remapping
Rate (MB/s)
Function Baseline Preallocated Dynamic
Copy: 4695.6266 5942.8371 5982.2287
Scale: 4451.5776 5017.1419 5658.7843
Add: 5815.8849 7927.7827 8119.3552
Triad: 5949.4144 8527.6492 8110.6903
Stream with large array
-----------------------
Baseline: nr_hugepages = 0, No libhugetlbfs segment remapping
Preallocated: nr_hugepages = 67, Text and data/bss remapping
Dynamic: nr_hugepages = 0, Text and data/bss remapping
Rate (MB/s)
Function Baseline Preallocated Dynamic
Copy: 2227.8281 2544.2732 2546.4947
Scale: 2136.3208 2430.7294 2421.2074
Add: 2773.1449 4004.0021 3999.4331
Triad: 2748.4502 3777.0109 3773.4970
* All numbers are averages taken from 10 consecutive runs with a maximum
standard deviation of 1.3 percent noted.
This patch:
Simply move update_and_free_page() so that it can be reused later in this
patch series. The implementation is not changed.
Signed-off-by: Adam Litke <agl@us.ibm.com>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Acked-by: Dave McCracken <dave.mccracken@oracle.com>
Acked-by: William Irwin <bill.irwin@oracle.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Ken Chen <kenchen@google.com>
Cc: Badari Pulavarty <pbadari@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 15:26:16 +07:00
|
|
|
{
|
|
|
|
int i;
|
2008-07-24 11:27:41 +07:00
|
|
|
|
2008-11-07 03:53:27 +07:00
|
|
|
VM_BUG_ON(h->order >= MAX_ORDER);
|
|
|
|
|
2008-07-24 11:27:41 +07:00
|
|
|
h->nr_huge_pages--;
|
|
|
|
h->nr_huge_pages_node[page_to_nid(page)]--;
|
|
|
|
for (i = 0; i < pages_per_huge_page(h); i++) {
|
2011-07-26 07:12:14 +07:00
|
|
|
page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
|
|
|
|
1 << PG_referenced | 1 << PG_dirty |
|
|
|
|
1 << PG_active | 1 << PG_reserved |
|
|
|
|
1 << PG_private | 1 << PG_writeback);
|
hugetlb: Move update_and_free_page
Dynamic huge page pool resizing.
In most real-world scenarios, configuring the size of the hugetlb pool
correctly is a difficult task. If too few pages are allocated to the pool,
applications using MAP_SHARED may fail to mmap() a hugepage region and
applications using MAP_PRIVATE may receive SIGBUS. Isolating too much memory
in the hugetlb pool means it is not available for other uses, especially those
programs not using huge pages.
The obvious answer is to let the hugetlb pool grow and shrink in response to
the runtime demand for huge pages. The work Mel Gorman has been doing to
establish a memory zone for movable memory allocations makes dynamically
resizing the hugetlb pool reliable within the limits of that zone. This patch
series implements dynamic pool resizing for private and shared mappings while
being careful to maintain existing semantics. Please reply with your comments
and feedback; even just to say whether it would be a useful feature to you.
Thanks.
How it works
============
Upon depletion of the hugetlb pool, rather than reporting an error immediately,
first try and allocate the needed huge pages directly from the buddy allocator.
Care must be taken to avoid unbounded growth of the hugetlb pool, so the
hugetlb filesystem quota is used to limit overall pool size.
The real work begins when we decide there is a shortage of huge pages. What
happens next depends on whether the pages are for a private or shared mapping.
Private mappings are straightforward. At fault time, if alloc_huge_page()
fails, we allocate a page from the buddy allocator and increment the source
node's surplus_huge_pages counter. When free_huge_page() is called for a page
on a node with a surplus, the page is freed directly to the buddy allocator
instead of the hugetlb pool.
Because shared mappings require all of the pages to be reserved up front, some
additional work must be done at mmap() to support them. We determine the
reservation shortage and allocate the required number of pages all at once.
These pages are then added to the hugetlb pool and marked reserved. Where that
is not possible the mmap() will fail. As with private mappings, the
appropriate surplus counters are updated. Since reserved huge pages won't
necessarily be used by the process, we can't be sure that free_huge_page() will
always be called to return surplus pages to the buddy allocator. To prevent
the huge page pool from bloating, we must free unused surplus pages when their
reservation has ended.
Controlling it
==============
With the entire patch series applied, pool resizing is off by default so unless
specific action is taken, the semantics are unchanged.
To take advantage of the flexibility afforded by this patch series one must
tolerate a change in semantics. To control hugetlb pool growth, the following
techniques can be employed:
* A sysctl tunable to enable/disable the feature entirely
* The size= mount option for hugetlbfs filesystems to limit pool size
Performance
===========
When contiguous memory is readily available, it is expected that the cost of
dynamicly resizing the pool will be small. This series has been performance
tested with 'stream' to measure this cost.
Stream (http://www.cs.virginia.edu/stream/) was linked with libhugetlbfs to
enable remapping of the text and data/bss segments into huge pages.
Stream with small array
-----------------------
Baseline: nr_hugepages = 0, No libhugetlbfs segment remapping
Preallocated: nr_hugepages = 5, Text and data/bss remapping
Dynamic: nr_hugepages = 0, Text and data/bss remapping
Rate (MB/s)
Function Baseline Preallocated Dynamic
Copy: 4695.6266 5942.8371 5982.2287
Scale: 4451.5776 5017.1419 5658.7843
Add: 5815.8849 7927.7827 8119.3552
Triad: 5949.4144 8527.6492 8110.6903
Stream with large array
-----------------------
Baseline: nr_hugepages = 0, No libhugetlbfs segment remapping
Preallocated: nr_hugepages = 67, Text and data/bss remapping
Dynamic: nr_hugepages = 0, Text and data/bss remapping
Rate (MB/s)
Function Baseline Preallocated Dynamic
Copy: 2227.8281 2544.2732 2546.4947
Scale: 2136.3208 2430.7294 2421.2074
Add: 2773.1449 4004.0021 3999.4331
Triad: 2748.4502 3777.0109 3773.4970
* All numbers are averages taken from 10 consecutive runs with a maximum
standard deviation of 1.3 percent noted.
This patch:
Simply move update_and_free_page() so that it can be reused later in this
patch series. The implementation is not changed.
Signed-off-by: Adam Litke <agl@us.ibm.com>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Acked-by: Dave McCracken <dave.mccracken@oracle.com>
Acked-by: William Irwin <bill.irwin@oracle.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Ken Chen <kenchen@google.com>
Cc: Badari Pulavarty <pbadari@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 15:26:16 +07:00
|
|
|
}
|
2012-08-01 06:42:15 +07:00
|
|
|
VM_BUG_ON(hugetlb_cgroup_from_page(page));
|
hugetlb: Move update_and_free_page
Dynamic huge page pool resizing.
In most real-world scenarios, configuring the size of the hugetlb pool
correctly is a difficult task. If too few pages are allocated to the pool,
applications using MAP_SHARED may fail to mmap() a hugepage region and
applications using MAP_PRIVATE may receive SIGBUS. Isolating too much memory
in the hugetlb pool means it is not available for other uses, especially those
programs not using huge pages.
The obvious answer is to let the hugetlb pool grow and shrink in response to
the runtime demand for huge pages. The work Mel Gorman has been doing to
establish a memory zone for movable memory allocations makes dynamically
resizing the hugetlb pool reliable within the limits of that zone. This patch
series implements dynamic pool resizing for private and shared mappings while
being careful to maintain existing semantics. Please reply with your comments
and feedback; even just to say whether it would be a useful feature to you.
Thanks.
How it works
============
Upon depletion of the hugetlb pool, rather than reporting an error immediately,
first try and allocate the needed huge pages directly from the buddy allocator.
Care must be taken to avoid unbounded growth of the hugetlb pool, so the
hugetlb filesystem quota is used to limit overall pool size.
The real work begins when we decide there is a shortage of huge pages. What
happens next depends on whether the pages are for a private or shared mapping.
Private mappings are straightforward. At fault time, if alloc_huge_page()
fails, we allocate a page from the buddy allocator and increment the source
node's surplus_huge_pages counter. When free_huge_page() is called for a page
on a node with a surplus, the page is freed directly to the buddy allocator
instead of the hugetlb pool.
Because shared mappings require all of the pages to be reserved up front, some
additional work must be done at mmap() to support them. We determine the
reservation shortage and allocate the required number of pages all at once.
These pages are then added to the hugetlb pool and marked reserved. Where that
is not possible the mmap() will fail. As with private mappings, the
appropriate surplus counters are updated. Since reserved huge pages won't
necessarily be used by the process, we can't be sure that free_huge_page() will
always be called to return surplus pages to the buddy allocator. To prevent
the huge page pool from bloating, we must free unused surplus pages when their
reservation has ended.
Controlling it
==============
With the entire patch series applied, pool resizing is off by default so unless
specific action is taken, the semantics are unchanged.
To take advantage of the flexibility afforded by this patch series one must
tolerate a change in semantics. To control hugetlb pool growth, the following
techniques can be employed:
* A sysctl tunable to enable/disable the feature entirely
* The size= mount option for hugetlbfs filesystems to limit pool size
Performance
===========
When contiguous memory is readily available, it is expected that the cost of
dynamicly resizing the pool will be small. This series has been performance
tested with 'stream' to measure this cost.
Stream (http://www.cs.virginia.edu/stream/) was linked with libhugetlbfs to
enable remapping of the text and data/bss segments into huge pages.
Stream with small array
-----------------------
Baseline: nr_hugepages = 0, No libhugetlbfs segment remapping
Preallocated: nr_hugepages = 5, Text and data/bss remapping
Dynamic: nr_hugepages = 0, Text and data/bss remapping
Rate (MB/s)
Function Baseline Preallocated Dynamic
Copy: 4695.6266 5942.8371 5982.2287
Scale: 4451.5776 5017.1419 5658.7843
Add: 5815.8849 7927.7827 8119.3552
Triad: 5949.4144 8527.6492 8110.6903
Stream with large array
-----------------------
Baseline: nr_hugepages = 0, No libhugetlbfs segment remapping
Preallocated: nr_hugepages = 67, Text and data/bss remapping
Dynamic: nr_hugepages = 0, Text and data/bss remapping
Rate (MB/s)
Function Baseline Preallocated Dynamic
Copy: 2227.8281 2544.2732 2546.4947
Scale: 2136.3208 2430.7294 2421.2074
Add: 2773.1449 4004.0021 3999.4331
Triad: 2748.4502 3777.0109 3773.4970
* All numbers are averages taken from 10 consecutive runs with a maximum
standard deviation of 1.3 percent noted.
This patch:
Simply move update_and_free_page() so that it can be reused later in this
patch series. The implementation is not changed.
Signed-off-by: Adam Litke <agl@us.ibm.com>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Acked-by: Dave McCracken <dave.mccracken@oracle.com>
Acked-by: William Irwin <bill.irwin@oracle.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Ken Chen <kenchen@google.com>
Cc: Badari Pulavarty <pbadari@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 15:26:16 +07:00
|
|
|
set_compound_page_dtor(page, NULL);
|
|
|
|
set_page_refcounted(page);
|
2008-04-28 16:13:29 +07:00
|
|
|
arch_release_hugepage(page);
|
2008-07-24 11:27:41 +07:00
|
|
|
__free_pages(page, huge_page_order(h));
|
hugetlb: Move update_and_free_page
Dynamic huge page pool resizing.
In most real-world scenarios, configuring the size of the hugetlb pool
correctly is a difficult task. If too few pages are allocated to the pool,
applications using MAP_SHARED may fail to mmap() a hugepage region and
applications using MAP_PRIVATE may receive SIGBUS. Isolating too much memory
in the hugetlb pool means it is not available for other uses, especially those
programs not using huge pages.
The obvious answer is to let the hugetlb pool grow and shrink in response to
the runtime demand for huge pages. The work Mel Gorman has been doing to
establish a memory zone for movable memory allocations makes dynamically
resizing the hugetlb pool reliable within the limits of that zone. This patch
series implements dynamic pool resizing for private and shared mappings while
being careful to maintain existing semantics. Please reply with your comments
and feedback; even just to say whether it would be a useful feature to you.
Thanks.
How it works
============
Upon depletion of the hugetlb pool, rather than reporting an error immediately,
first try and allocate the needed huge pages directly from the buddy allocator.
Care must be taken to avoid unbounded growth of the hugetlb pool, so the
hugetlb filesystem quota is used to limit overall pool size.
The real work begins when we decide there is a shortage of huge pages. What
happens next depends on whether the pages are for a private or shared mapping.
Private mappings are straightforward. At fault time, if alloc_huge_page()
fails, we allocate a page from the buddy allocator and increment the source
node's surplus_huge_pages counter. When free_huge_page() is called for a page
on a node with a surplus, the page is freed directly to the buddy allocator
instead of the hugetlb pool.
Because shared mappings require all of the pages to be reserved up front, some
additional work must be done at mmap() to support them. We determine the
reservation shortage and allocate the required number of pages all at once.
These pages are then added to the hugetlb pool and marked reserved. Where that
is not possible the mmap() will fail. As with private mappings, the
appropriate surplus counters are updated. Since reserved huge pages won't
necessarily be used by the process, we can't be sure that free_huge_page() will
always be called to return surplus pages to the buddy allocator. To prevent
the huge page pool from bloating, we must free unused surplus pages when their
reservation has ended.
Controlling it
==============
With the entire patch series applied, pool resizing is off by default so unless
specific action is taken, the semantics are unchanged.
To take advantage of the flexibility afforded by this patch series one must
tolerate a change in semantics. To control hugetlb pool growth, the following
techniques can be employed:
* A sysctl tunable to enable/disable the feature entirely
* The size= mount option for hugetlbfs filesystems to limit pool size
Performance
===========
When contiguous memory is readily available, it is expected that the cost of
dynamicly resizing the pool will be small. This series has been performance
tested with 'stream' to measure this cost.
Stream (http://www.cs.virginia.edu/stream/) was linked with libhugetlbfs to
enable remapping of the text and data/bss segments into huge pages.
Stream with small array
-----------------------
Baseline: nr_hugepages = 0, No libhugetlbfs segment remapping
Preallocated: nr_hugepages = 5, Text and data/bss remapping
Dynamic: nr_hugepages = 0, Text and data/bss remapping
Rate (MB/s)
Function Baseline Preallocated Dynamic
Copy: 4695.6266 5942.8371 5982.2287
Scale: 4451.5776 5017.1419 5658.7843
Add: 5815.8849 7927.7827 8119.3552
Triad: 5949.4144 8527.6492 8110.6903
Stream with large array
-----------------------
Baseline: nr_hugepages = 0, No libhugetlbfs segment remapping
Preallocated: nr_hugepages = 67, Text and data/bss remapping
Dynamic: nr_hugepages = 0, Text and data/bss remapping
Rate (MB/s)
Function Baseline Preallocated Dynamic
Copy: 2227.8281 2544.2732 2546.4947
Scale: 2136.3208 2430.7294 2421.2074
Add: 2773.1449 4004.0021 3999.4331
Triad: 2748.4502 3777.0109 3773.4970
* All numbers are averages taken from 10 consecutive runs with a maximum
standard deviation of 1.3 percent noted.
This patch:
Simply move update_and_free_page() so that it can be reused later in this
patch series. The implementation is not changed.
Signed-off-by: Adam Litke <agl@us.ibm.com>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Acked-by: Dave McCracken <dave.mccracken@oracle.com>
Acked-by: William Irwin <bill.irwin@oracle.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Ken Chen <kenchen@google.com>
Cc: Badari Pulavarty <pbadari@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 15:26:16 +07:00
|
|
|
}
|
|
|
|
|
2008-07-24 11:27:42 +07:00
|
|
|
struct hstate *size_to_hstate(unsigned long size)
|
|
|
|
{
|
|
|
|
struct hstate *h;
|
|
|
|
|
|
|
|
for_each_hstate(h) {
|
|
|
|
if (huge_page_size(h) == size)
|
|
|
|
return h;
|
|
|
|
}
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
2006-03-22 15:08:56 +07:00
|
|
|
static void free_huge_page(struct page *page)
|
|
|
|
{
|
2008-07-24 11:27:41 +07:00
|
|
|
/*
|
|
|
|
* Can't pass hstate in here because it is called from the
|
|
|
|
* compound page destructor.
|
|
|
|
*/
|
2008-07-24 11:27:42 +07:00
|
|
|
struct hstate *h = page_hstate(page);
|
2007-10-16 15:26:18 +07:00
|
|
|
int nid = page_to_nid(page);
|
hugepages: fix use after free bug in "quota" handling
hugetlbfs_{get,put}_quota() are badly named. They don't interact with the
general quota handling code, and they don't much resemble its behaviour.
Rather than being about maintaining limits on on-disk block usage by
particular users, they are instead about maintaining limits on in-memory
page usage (including anonymous MAP_PRIVATE copied-on-write pages)
associated with a particular hugetlbfs filesystem instance.
Worse, they work by having callbacks to the hugetlbfs filesystem code from
the low-level page handling code, in particular from free_huge_page().
This is a layering violation of itself, but more importantly, if the
kernel does a get_user_pages() on hugepages (which can happen from KVM
amongst others), then the free_huge_page() can be delayed until after the
associated inode has already been freed. If an unmount occurs at the
wrong time, even the hugetlbfs superblock where the "quota" limits are
stored may have been freed.
Andrew Barry proposed a patch to fix this by having hugepages, instead of
storing a pointer to their address_space and reaching the superblock from
there, had the hugepages store pointers directly to the superblock,
bumping the reference count as appropriate to avoid it being freed.
Andrew Morton rejected that version, however, on the grounds that it made
the existing layering violation worse.
This is a reworked version of Andrew's patch, which removes the extra, and
some of the existing, layering violation. It works by introducing the
concept of a hugepage "subpool" at the lower hugepage mm layer - that is a
finite logical pool of hugepages to allocate from. hugetlbfs now creates
a subpool for each filesystem instance with a page limit set, and a
pointer to the subpool gets added to each allocated hugepage, instead of
the address_space pointer used now. The subpool has its own lifetime and
is only freed once all pages in it _and_ all other references to it (i.e.
superblocks) are gone.
subpools are optional - a NULL subpool pointer is taken by the code to
mean that no subpool limits are in effect.
Previous discussion of this bug found in: "Fix refcounting in hugetlbfs
quota handling.". See: https://lkml.org/lkml/2011/8/11/28 or
http://marc.info/?l=linux-mm&m=126928970510627&w=1
v2: Fixed a bug spotted by Hillf Danton, and removed the extra parameter to
alloc_huge_page() - since it already takes the vma, it is not necessary.
Signed-off-by: Andrew Barry <abarry@cray.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22 06:34:12 +07:00
|
|
|
struct hugepage_subpool *spool =
|
|
|
|
(struct hugepage_subpool *)page_private(page);
|
2013-09-12 04:21:58 +07:00
|
|
|
bool restore_reserve;
|
2006-03-22 15:08:56 +07:00
|
|
|
|
2008-02-24 06:23:32 +07:00
|
|
|
set_page_private(page, 0);
|
2010-04-24 00:17:56 +07:00
|
|
|
page->mapping = NULL;
|
2007-10-16 15:26:18 +07:00
|
|
|
BUG_ON(page_count(page));
|
2010-05-28 07:29:16 +07:00
|
|
|
BUG_ON(page_mapcount(page));
|
2013-09-12 04:21:58 +07:00
|
|
|
restore_reserve = PagePrivate(page);
|
2013-10-17 03:46:48 +07:00
|
|
|
ClearPagePrivate(page);
|
2006-03-22 15:08:56 +07:00
|
|
|
|
|
|
|
spin_lock(&hugetlb_lock);
|
2012-08-01 06:42:18 +07:00
|
|
|
hugetlb_cgroup_uncharge_page(hstate_index(h),
|
|
|
|
pages_per_huge_page(h), page);
|
2013-09-12 04:21:58 +07:00
|
|
|
if (restore_reserve)
|
|
|
|
h->resv_huge_pages++;
|
|
|
|
|
2008-07-24 11:27:47 +07:00
|
|
|
if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
|
2012-08-01 06:42:07 +07:00
|
|
|
/* remove the page from active list */
|
|
|
|
list_del(&page->lru);
|
2008-07-24 11:27:41 +07:00
|
|
|
update_and_free_page(h, page);
|
|
|
|
h->surplus_huge_pages--;
|
|
|
|
h->surplus_huge_pages_node[nid]--;
|
2007-10-16 15:26:18 +07:00
|
|
|
} else {
|
2012-10-09 06:29:32 +07:00
|
|
|
arch_clear_hugepage_flags(page);
|
2008-07-24 11:27:41 +07:00
|
|
|
enqueue_huge_page(h, page);
|
2007-10-16 15:26:18 +07:00
|
|
|
}
|
2006-03-22 15:08:56 +07:00
|
|
|
spin_unlock(&hugetlb_lock);
|
hugepages: fix use after free bug in "quota" handling
hugetlbfs_{get,put}_quota() are badly named. They don't interact with the
general quota handling code, and they don't much resemble its behaviour.
Rather than being about maintaining limits on on-disk block usage by
particular users, they are instead about maintaining limits on in-memory
page usage (including anonymous MAP_PRIVATE copied-on-write pages)
associated with a particular hugetlbfs filesystem instance.
Worse, they work by having callbacks to the hugetlbfs filesystem code from
the low-level page handling code, in particular from free_huge_page().
This is a layering violation of itself, but more importantly, if the
kernel does a get_user_pages() on hugepages (which can happen from KVM
amongst others), then the free_huge_page() can be delayed until after the
associated inode has already been freed. If an unmount occurs at the
wrong time, even the hugetlbfs superblock where the "quota" limits are
stored may have been freed.
Andrew Barry proposed a patch to fix this by having hugepages, instead of
storing a pointer to their address_space and reaching the superblock from
there, had the hugepages store pointers directly to the superblock,
bumping the reference count as appropriate to avoid it being freed.
Andrew Morton rejected that version, however, on the grounds that it made
the existing layering violation worse.
This is a reworked version of Andrew's patch, which removes the extra, and
some of the existing, layering violation. It works by introducing the
concept of a hugepage "subpool" at the lower hugepage mm layer - that is a
finite logical pool of hugepages to allocate from. hugetlbfs now creates
a subpool for each filesystem instance with a page limit set, and a
pointer to the subpool gets added to each allocated hugepage, instead of
the address_space pointer used now. The subpool has its own lifetime and
is only freed once all pages in it _and_ all other references to it (i.e.
superblocks) are gone.
subpools are optional - a NULL subpool pointer is taken by the code to
mean that no subpool limits are in effect.
Previous discussion of this bug found in: "Fix refcounting in hugetlbfs
quota handling.". See: https://lkml.org/lkml/2011/8/11/28 or
http://marc.info/?l=linux-mm&m=126928970510627&w=1
v2: Fixed a bug spotted by Hillf Danton, and removed the extra parameter to
alloc_huge_page() - since it already takes the vma, it is not necessary.
Signed-off-by: Andrew Barry <abarry@cray.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22 06:34:12 +07:00
|
|
|
hugepage_subpool_put_pages(spool, 1);
|
2006-03-22 15:08:56 +07:00
|
|
|
}
|
|
|
|
|
2008-07-24 11:27:41 +07:00
|
|
|
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
|
2008-07-24 11:27:40 +07:00
|
|
|
{
|
2012-08-01 06:42:07 +07:00
|
|
|
INIT_LIST_HEAD(&page->lru);
|
2008-07-24 11:27:40 +07:00
|
|
|
set_compound_page_dtor(page, free_huge_page);
|
|
|
|
spin_lock(&hugetlb_lock);
|
2012-08-01 06:42:15 +07:00
|
|
|
set_hugetlb_cgroup(page, NULL);
|
2008-07-24 11:27:41 +07:00
|
|
|
h->nr_huge_pages++;
|
|
|
|
h->nr_huge_pages_node[nid]++;
|
2008-07-24 11:27:40 +07:00
|
|
|
spin_unlock(&hugetlb_lock);
|
|
|
|
put_page(page); /* free it into the hugepage allocator */
|
|
|
|
}
|
|
|
|
|
mm: introduce PageHuge() for testing huge/gigantic pages
A series of patches to enhance the /proc/pagemap interface and to add a
userspace executable which can be used to present the pagemap data.
Export 10 more flags to end users (and more for kernel developers):
11. KPF_MMAP (pseudo flag) memory mapped page
12. KPF_ANON (pseudo flag) memory mapped page (anonymous)
13. KPF_SWAPCACHE page is in swap cache
14. KPF_SWAPBACKED page is swap/RAM backed
15. KPF_COMPOUND_HEAD (*)
16. KPF_COMPOUND_TAIL (*)
17. KPF_HUGE hugeTLB pages
18. KPF_UNEVICTABLE page is in the unevictable LRU list
19. KPF_HWPOISON hardware detected corruption
20. KPF_NOPAGE (pseudo flag) no page frame at the address
(*) For compound pages, exporting _both_ head/tail info enables
users to tell where a compound page starts/ends, and its order.
a simple demo of the page-types tool
# ./page-types -h
page-types [options]
-r|--raw Raw mode, for kernel developers
-a|--addr addr-spec Walk a range of pages
-b|--bits bits-spec Walk pages with specified bits
-l|--list Show page details in ranges
-L|--list-each Show page details one by one
-N|--no-summary Don't show summay info
-h|--help Show this usage message
addr-spec:
N one page at offset N (unit: pages)
N+M pages range from N to N+M-1
N,M pages range from N to M-1
N, pages range from N to end
,M pages range from 0 to M
bits-spec:
bit1,bit2 (flags & (bit1|bit2)) != 0
bit1,bit2=bit1 (flags & (bit1|bit2)) == bit1
bit1,~bit2 (flags & (bit1|bit2)) == bit1
=bit1,bit2 flags == (bit1|bit2)
bit-names:
locked error referenced uptodate
dirty lru active slab
writeback reclaim buddy mmap
anonymous swapcache swapbacked compound_head
compound_tail huge unevictable hwpoison
nopage reserved(r) mlocked(r) mappedtodisk(r)
private(r) private_2(r) owner_private(r) arch(r)
uncached(r) readahead(o) slob_free(o) slub_frozen(o)
slub_debug(o)
(r) raw mode bits (o) overloaded bits
# ./page-types
flags page-count MB symbolic-flags long-symbolic-flags
0x0000000000000000 487369 1903 _________________________________
0x0000000000000014 5 0 __R_D____________________________ referenced,dirty
0x0000000000000020 1 0 _____l___________________________ lru
0x0000000000000024 34 0 __R__l___________________________ referenced,lru
0x0000000000000028 3838 14 ___U_l___________________________ uptodate,lru
0x0001000000000028 48 0 ___U_l_______________________I___ uptodate,lru,readahead
0x000000000000002c 6478 25 __RU_l___________________________ referenced,uptodate,lru
0x000100000000002c 47 0 __RU_l_______________________I___ referenced,uptodate,lru,readahead
0x0000000000000040 8344 32 ______A__________________________ active
0x0000000000000060 1 0 _____lA__________________________ lru,active
0x0000000000000068 348 1 ___U_lA__________________________ uptodate,lru,active
0x0001000000000068 12 0 ___U_lA______________________I___ uptodate,lru,active,readahead
0x000000000000006c 988 3 __RU_lA__________________________ referenced,uptodate,lru,active
0x000100000000006c 48 0 __RU_lA______________________I___ referenced,uptodate,lru,active,readahead
0x0000000000004078 1 0 ___UDlA_______b__________________ uptodate,dirty,lru,active,swapbacked
0x000000000000407c 34 0 __RUDlA_______b__________________ referenced,uptodate,dirty,lru,active,swapbacked
0x0000000000000400 503 1 __________B______________________ buddy
0x0000000000000804 1 0 __R________M_____________________ referenced,mmap
0x0000000000000828 1029 4 ___U_l_____M_____________________ uptodate,lru,mmap
0x0001000000000828 43 0 ___U_l_____M_________________I___ uptodate,lru,mmap,readahead
0x000000000000082c 382 1 __RU_l_____M_____________________ referenced,uptodate,lru,mmap
0x000100000000082c 12 0 __RU_l_____M_________________I___ referenced,uptodate,lru,mmap,readahead
0x0000000000000868 192 0 ___U_lA____M_____________________ uptodate,lru,active,mmap
0x0001000000000868 12 0 ___U_lA____M_________________I___ uptodate,lru,active,mmap,readahead
0x000000000000086c 800 3 __RU_lA____M_____________________ referenced,uptodate,lru,active,mmap
0x000100000000086c 31 0 __RU_lA____M_________________I___ referenced,uptodate,lru,active,mmap,readahead
0x0000000000004878 2 0 ___UDlA____M__b__________________ uptodate,dirty,lru,active,mmap,swapbacked
0x0000000000001000 492 1 ____________a____________________ anonymous
0x0000000000005808 4 0 ___U_______Ma_b__________________ uptodate,mmap,anonymous,swapbacked
0x0000000000005868 2839 11 ___U_lA____Ma_b__________________ uptodate,lru,active,mmap,anonymous,swapbacked
0x000000000000586c 30 0 __RU_lA____Ma_b__________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked
total 513968 2007
# ./page-types -r
flags page-count MB symbolic-flags long-symbolic-flags
0x0000000000000000 468002 1828 _________________________________
0x0000000100000000 19102 74 _____________________r___________ reserved
0x0000000000008000 41 0 _______________H_________________ compound_head
0x0000000000010000 188 0 ________________T________________ compound_tail
0x0000000000008014 1 0 __R_D__________H_________________ referenced,dirty,compound_head
0x0000000000010014 4 0 __R_D___________T________________ referenced,dirty,compound_tail
0x0000000000000020 1 0 _____l___________________________ lru
0x0000000800000024 34 0 __R__l__________________P________ referenced,lru,private
0x0000000000000028 3794 14 ___U_l___________________________ uptodate,lru
0x0001000000000028 46 0 ___U_l_______________________I___ uptodate,lru,readahead
0x0000000400000028 44 0 ___U_l_________________d_________ uptodate,lru,mappedtodisk
0x0001000400000028 2 0 ___U_l_________________d_____I___ uptodate,lru,mappedtodisk,readahead
0x000000000000002c 6434 25 __RU_l___________________________ referenced,uptodate,lru
0x000100000000002c 47 0 __RU_l_______________________I___ referenced,uptodate,lru,readahead
0x000000040000002c 14 0 __RU_l_________________d_________ referenced,uptodate,lru,mappedtodisk
0x000000080000002c 30 0 __RU_l__________________P________ referenced,uptodate,lru,private
0x0000000800000040 8124 31 ______A_________________P________ active,private
0x0000000000000040 219 0 ______A__________________________ active
0x0000000800000060 1 0 _____lA_________________P________ lru,active,private
0x0000000000000068 322 1 ___U_lA__________________________ uptodate,lru,active
0x0001000000000068 12 0 ___U_lA______________________I___ uptodate,lru,active,readahead
0x0000000400000068 13 0 ___U_lA________________d_________ uptodate,lru,active,mappedtodisk
0x0000000800000068 12 0 ___U_lA_________________P________ uptodate,lru,active,private
0x000000000000006c 977 3 __RU_lA__________________________ referenced,uptodate,lru,active
0x000100000000006c 48 0 __RU_lA______________________I___ referenced,uptodate,lru,active,readahead
0x000000040000006c 5 0 __RU_lA________________d_________ referenced,uptodate,lru,active,mappedtodisk
0x000000080000006c 3 0 __RU_lA_________________P________ referenced,uptodate,lru,active,private
0x0000000c0000006c 3 0 __RU_lA________________dP________ referenced,uptodate,lru,active,mappedtodisk,private
0x0000000c00000068 1 0 ___U_lA________________dP________ uptodate,lru,active,mappedtodisk,private
0x0000000000004078 1 0 ___UDlA_______b__________________ uptodate,dirty,lru,active,swapbacked
0x000000000000407c 34 0 __RUDlA_______b__________________ referenced,uptodate,dirty,lru,active,swapbacked
0x0000000000000400 538 2 __________B______________________ buddy
0x0000000000000804 1 0 __R________M_____________________ referenced,mmap
0x0000000000000828 1029 4 ___U_l_____M_____________________ uptodate,lru,mmap
0x0001000000000828 43 0 ___U_l_____M_________________I___ uptodate,lru,mmap,readahead
0x000000000000082c 382 1 __RU_l_____M_____________________ referenced,uptodate,lru,mmap
0x000100000000082c 12 0 __RU_l_____M_________________I___ referenced,uptodate,lru,mmap,readahead
0x0000000000000868 192 0 ___U_lA____M_____________________ uptodate,lru,active,mmap
0x0001000000000868 12 0 ___U_lA____M_________________I___ uptodate,lru,active,mmap,readahead
0x000000000000086c 800 3 __RU_lA____M_____________________ referenced,uptodate,lru,active,mmap
0x000100000000086c 31 0 __RU_lA____M_________________I___ referenced,uptodate,lru,active,mmap,readahead
0x0000000000004878 2 0 ___UDlA____M__b__________________ uptodate,dirty,lru,active,mmap,swapbacked
0x0000000000001000 492 1 ____________a____________________ anonymous
0x0000000000005008 2 0 ___U________a_b__________________ uptodate,anonymous,swapbacked
0x0000000000005808 4 0 ___U_______Ma_b__________________ uptodate,mmap,anonymous,swapbacked
0x000000000000580c 1 0 __RU_______Ma_b__________________ referenced,uptodate,mmap,anonymous,swapbacked
0x0000000000005868 2839 11 ___U_lA____Ma_b__________________ uptodate,lru,active,mmap,anonymous,swapbacked
0x000000000000586c 29 0 __RU_lA____Ma_b__________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked
total 513968 2007
# ./page-types --raw --list --no-summary --bits reserved
offset count flags
0 15 _____________________r___________
31 4 _____________________r___________
159 97 _____________________r___________
4096 2067 _____________________r___________
6752 2390 _____________________r___________
9355 3 _____________________r___________
9728 14526 _____________________r___________
This patch:
Introduce PageHuge(), which identifies huge/gigantic pages by their
dedicated compound destructor functions.
Also move prep_compound_gigantic_page() to hugetlb.c and make
__free_pages_ok() non-static.
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-17 05:32:22 +07:00
|
|
|
static void prep_compound_gigantic_page(struct page *page, unsigned long order)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
int nr_pages = 1 << order;
|
|
|
|
struct page *p = page + 1;
|
|
|
|
|
|
|
|
/* we rely on prep_new_huge_page to set the destructor */
|
|
|
|
set_compound_order(page, order);
|
|
|
|
__SetPageHead(page);
|
2013-10-17 03:46:56 +07:00
|
|
|
__ClearPageReserved(page);
|
mm: introduce PageHuge() for testing huge/gigantic pages
A series of patches to enhance the /proc/pagemap interface and to add a
userspace executable which can be used to present the pagemap data.
Export 10 more flags to end users (and more for kernel developers):
11. KPF_MMAP (pseudo flag) memory mapped page
12. KPF_ANON (pseudo flag) memory mapped page (anonymous)
13. KPF_SWAPCACHE page is in swap cache
14. KPF_SWAPBACKED page is swap/RAM backed
15. KPF_COMPOUND_HEAD (*)
16. KPF_COMPOUND_TAIL (*)
17. KPF_HUGE hugeTLB pages
18. KPF_UNEVICTABLE page is in the unevictable LRU list
19. KPF_HWPOISON hardware detected corruption
20. KPF_NOPAGE (pseudo flag) no page frame at the address
(*) For compound pages, exporting _both_ head/tail info enables
users to tell where a compound page starts/ends, and its order.
a simple demo of the page-types tool
# ./page-types -h
page-types [options]
-r|--raw Raw mode, for kernel developers
-a|--addr addr-spec Walk a range of pages
-b|--bits bits-spec Walk pages with specified bits
-l|--list Show page details in ranges
-L|--list-each Show page details one by one
-N|--no-summary Don't show summay info
-h|--help Show this usage message
addr-spec:
N one page at offset N (unit: pages)
N+M pages range from N to N+M-1
N,M pages range from N to M-1
N, pages range from N to end
,M pages range from 0 to M
bits-spec:
bit1,bit2 (flags & (bit1|bit2)) != 0
bit1,bit2=bit1 (flags & (bit1|bit2)) == bit1
bit1,~bit2 (flags & (bit1|bit2)) == bit1
=bit1,bit2 flags == (bit1|bit2)
bit-names:
locked error referenced uptodate
dirty lru active slab
writeback reclaim buddy mmap
anonymous swapcache swapbacked compound_head
compound_tail huge unevictable hwpoison
nopage reserved(r) mlocked(r) mappedtodisk(r)
private(r) private_2(r) owner_private(r) arch(r)
uncached(r) readahead(o) slob_free(o) slub_frozen(o)
slub_debug(o)
(r) raw mode bits (o) overloaded bits
# ./page-types
flags page-count MB symbolic-flags long-symbolic-flags
0x0000000000000000 487369 1903 _________________________________
0x0000000000000014 5 0 __R_D____________________________ referenced,dirty
0x0000000000000020 1 0 _____l___________________________ lru
0x0000000000000024 34 0 __R__l___________________________ referenced,lru
0x0000000000000028 3838 14 ___U_l___________________________ uptodate,lru
0x0001000000000028 48 0 ___U_l_______________________I___ uptodate,lru,readahead
0x000000000000002c 6478 25 __RU_l___________________________ referenced,uptodate,lru
0x000100000000002c 47 0 __RU_l_______________________I___ referenced,uptodate,lru,readahead
0x0000000000000040 8344 32 ______A__________________________ active
0x0000000000000060 1 0 _____lA__________________________ lru,active
0x0000000000000068 348 1 ___U_lA__________________________ uptodate,lru,active
0x0001000000000068 12 0 ___U_lA______________________I___ uptodate,lru,active,readahead
0x000000000000006c 988 3 __RU_lA__________________________ referenced,uptodate,lru,active
0x000100000000006c 48 0 __RU_lA______________________I___ referenced,uptodate,lru,active,readahead
0x0000000000004078 1 0 ___UDlA_______b__________________ uptodate,dirty,lru,active,swapbacked
0x000000000000407c 34 0 __RUDlA_______b__________________ referenced,uptodate,dirty,lru,active,swapbacked
0x0000000000000400 503 1 __________B______________________ buddy
0x0000000000000804 1 0 __R________M_____________________ referenced,mmap
0x0000000000000828 1029 4 ___U_l_____M_____________________ uptodate,lru,mmap
0x0001000000000828 43 0 ___U_l_____M_________________I___ uptodate,lru,mmap,readahead
0x000000000000082c 382 1 __RU_l_____M_____________________ referenced,uptodate,lru,mmap
0x000100000000082c 12 0 __RU_l_____M_________________I___ referenced,uptodate,lru,mmap,readahead
0x0000000000000868 192 0 ___U_lA____M_____________________ uptodate,lru,active,mmap
0x0001000000000868 12 0 ___U_lA____M_________________I___ uptodate,lru,active,mmap,readahead
0x000000000000086c 800 3 __RU_lA____M_____________________ referenced,uptodate,lru,active,mmap
0x000100000000086c 31 0 __RU_lA____M_________________I___ referenced,uptodate,lru,active,mmap,readahead
0x0000000000004878 2 0 ___UDlA____M__b__________________ uptodate,dirty,lru,active,mmap,swapbacked
0x0000000000001000 492 1 ____________a____________________ anonymous
0x0000000000005808 4 0 ___U_______Ma_b__________________ uptodate,mmap,anonymous,swapbacked
0x0000000000005868 2839 11 ___U_lA____Ma_b__________________ uptodate,lru,active,mmap,anonymous,swapbacked
0x000000000000586c 30 0 __RU_lA____Ma_b__________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked
total 513968 2007
# ./page-types -r
flags page-count MB symbolic-flags long-symbolic-flags
0x0000000000000000 468002 1828 _________________________________
0x0000000100000000 19102 74 _____________________r___________ reserved
0x0000000000008000 41 0 _______________H_________________ compound_head
0x0000000000010000 188 0 ________________T________________ compound_tail
0x0000000000008014 1 0 __R_D__________H_________________ referenced,dirty,compound_head
0x0000000000010014 4 0 __R_D___________T________________ referenced,dirty,compound_tail
0x0000000000000020 1 0 _____l___________________________ lru
0x0000000800000024 34 0 __R__l__________________P________ referenced,lru,private
0x0000000000000028 3794 14 ___U_l___________________________ uptodate,lru
0x0001000000000028 46 0 ___U_l_______________________I___ uptodate,lru,readahead
0x0000000400000028 44 0 ___U_l_________________d_________ uptodate,lru,mappedtodisk
0x0001000400000028 2 0 ___U_l_________________d_____I___ uptodate,lru,mappedtodisk,readahead
0x000000000000002c 6434 25 __RU_l___________________________ referenced,uptodate,lru
0x000100000000002c 47 0 __RU_l_______________________I___ referenced,uptodate,lru,readahead
0x000000040000002c 14 0 __RU_l_________________d_________ referenced,uptodate,lru,mappedtodisk
0x000000080000002c 30 0 __RU_l__________________P________ referenced,uptodate,lru,private
0x0000000800000040 8124 31 ______A_________________P________ active,private
0x0000000000000040 219 0 ______A__________________________ active
0x0000000800000060 1 0 _____lA_________________P________ lru,active,private
0x0000000000000068 322 1 ___U_lA__________________________ uptodate,lru,active
0x0001000000000068 12 0 ___U_lA______________________I___ uptodate,lru,active,readahead
0x0000000400000068 13 0 ___U_lA________________d_________ uptodate,lru,active,mappedtodisk
0x0000000800000068 12 0 ___U_lA_________________P________ uptodate,lru,active,private
0x000000000000006c 977 3 __RU_lA__________________________ referenced,uptodate,lru,active
0x000100000000006c 48 0 __RU_lA______________________I___ referenced,uptodate,lru,active,readahead
0x000000040000006c 5 0 __RU_lA________________d_________ referenced,uptodate,lru,active,mappedtodisk
0x000000080000006c 3 0 __RU_lA_________________P________ referenced,uptodate,lru,active,private
0x0000000c0000006c 3 0 __RU_lA________________dP________ referenced,uptodate,lru,active,mappedtodisk,private
0x0000000c00000068 1 0 ___U_lA________________dP________ uptodate,lru,active,mappedtodisk,private
0x0000000000004078 1 0 ___UDlA_______b__________________ uptodate,dirty,lru,active,swapbacked
0x000000000000407c 34 0 __RUDlA_______b__________________ referenced,uptodate,dirty,lru,active,swapbacked
0x0000000000000400 538 2 __________B______________________ buddy
0x0000000000000804 1 0 __R________M_____________________ referenced,mmap
0x0000000000000828 1029 4 ___U_l_____M_____________________ uptodate,lru,mmap
0x0001000000000828 43 0 ___U_l_____M_________________I___ uptodate,lru,mmap,readahead
0x000000000000082c 382 1 __RU_l_____M_____________________ referenced,uptodate,lru,mmap
0x000100000000082c 12 0 __RU_l_____M_________________I___ referenced,uptodate,lru,mmap,readahead
0x0000000000000868 192 0 ___U_lA____M_____________________ uptodate,lru,active,mmap
0x0001000000000868 12 0 ___U_lA____M_________________I___ uptodate,lru,active,mmap,readahead
0x000000000000086c 800 3 __RU_lA____M_____________________ referenced,uptodate,lru,active,mmap
0x000100000000086c 31 0 __RU_lA____M_________________I___ referenced,uptodate,lru,active,mmap,readahead
0x0000000000004878 2 0 ___UDlA____M__b__________________ uptodate,dirty,lru,active,mmap,swapbacked
0x0000000000001000 492 1 ____________a____________________ anonymous
0x0000000000005008 2 0 ___U________a_b__________________ uptodate,anonymous,swapbacked
0x0000000000005808 4 0 ___U_______Ma_b__________________ uptodate,mmap,anonymous,swapbacked
0x000000000000580c 1 0 __RU_______Ma_b__________________ referenced,uptodate,mmap,anonymous,swapbacked
0x0000000000005868 2839 11 ___U_lA____Ma_b__________________ uptodate,lru,active,mmap,anonymous,swapbacked
0x000000000000586c 29 0 __RU_lA____Ma_b__________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked
total 513968 2007
# ./page-types --raw --list --no-summary --bits reserved
offset count flags
0 15 _____________________r___________
31 4 _____________________r___________
159 97 _____________________r___________
4096 2067 _____________________r___________
6752 2390 _____________________r___________
9355 3 _____________________r___________
9728 14526 _____________________r___________
This patch:
Introduce PageHuge(), which identifies huge/gigantic pages by their
dedicated compound destructor functions.
Also move prep_compound_gigantic_page() to hugetlb.c and make
__free_pages_ok() non-static.
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-17 05:32:22 +07:00
|
|
|
for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
|
|
|
|
__SetPageTail(p);
|
2013-10-17 03:46:56 +07:00
|
|
|
/*
|
|
|
|
* For gigantic hugepages allocated through bootmem at
|
|
|
|
* boot, it's safer to be consistent with the not-gigantic
|
|
|
|
* hugepages and clear the PG_reserved bit from all tail pages
|
|
|
|
* too. Otherwse drivers using get_user_pages() to access tail
|
|
|
|
* pages may get the reference counting wrong if they see
|
|
|
|
* PG_reserved set on a tail page (despite the head page not
|
|
|
|
* having PG_reserved set). Enforcing this consistency between
|
|
|
|
* head and tail pages allows drivers to optimize away a check
|
|
|
|
* on the head page when they need know if put_page() is needed
|
|
|
|
* after get_user_pages().
|
|
|
|
*/
|
|
|
|
__ClearPageReserved(p);
|
2011-12-09 05:34:18 +07:00
|
|
|
set_page_count(p, 0);
|
mm: introduce PageHuge() for testing huge/gigantic pages
A series of patches to enhance the /proc/pagemap interface and to add a
userspace executable which can be used to present the pagemap data.
Export 10 more flags to end users (and more for kernel developers):
11. KPF_MMAP (pseudo flag) memory mapped page
12. KPF_ANON (pseudo flag) memory mapped page (anonymous)
13. KPF_SWAPCACHE page is in swap cache
14. KPF_SWAPBACKED page is swap/RAM backed
15. KPF_COMPOUND_HEAD (*)
16. KPF_COMPOUND_TAIL (*)
17. KPF_HUGE hugeTLB pages
18. KPF_UNEVICTABLE page is in the unevictable LRU list
19. KPF_HWPOISON hardware detected corruption
20. KPF_NOPAGE (pseudo flag) no page frame at the address
(*) For compound pages, exporting _both_ head/tail info enables
users to tell where a compound page starts/ends, and its order.
a simple demo of the page-types tool
# ./page-types -h
page-types [options]
-r|--raw Raw mode, for kernel developers
-a|--addr addr-spec Walk a range of pages
-b|--bits bits-spec Walk pages with specified bits
-l|--list Show page details in ranges
-L|--list-each Show page details one by one
-N|--no-summary Don't show summay info
-h|--help Show this usage message
addr-spec:
N one page at offset N (unit: pages)
N+M pages range from N to N+M-1
N,M pages range from N to M-1
N, pages range from N to end
,M pages range from 0 to M
bits-spec:
bit1,bit2 (flags & (bit1|bit2)) != 0
bit1,bit2=bit1 (flags & (bit1|bit2)) == bit1
bit1,~bit2 (flags & (bit1|bit2)) == bit1
=bit1,bit2 flags == (bit1|bit2)
bit-names:
locked error referenced uptodate
dirty lru active slab
writeback reclaim buddy mmap
anonymous swapcache swapbacked compound_head
compound_tail huge unevictable hwpoison
nopage reserved(r) mlocked(r) mappedtodisk(r)
private(r) private_2(r) owner_private(r) arch(r)
uncached(r) readahead(o) slob_free(o) slub_frozen(o)
slub_debug(o)
(r) raw mode bits (o) overloaded bits
# ./page-types
flags page-count MB symbolic-flags long-symbolic-flags
0x0000000000000000 487369 1903 _________________________________
0x0000000000000014 5 0 __R_D____________________________ referenced,dirty
0x0000000000000020 1 0 _____l___________________________ lru
0x0000000000000024 34 0 __R__l___________________________ referenced,lru
0x0000000000000028 3838 14 ___U_l___________________________ uptodate,lru
0x0001000000000028 48 0 ___U_l_______________________I___ uptodate,lru,readahead
0x000000000000002c 6478 25 __RU_l___________________________ referenced,uptodate,lru
0x000100000000002c 47 0 __RU_l_______________________I___ referenced,uptodate,lru,readahead
0x0000000000000040 8344 32 ______A__________________________ active
0x0000000000000060 1 0 _____lA__________________________ lru,active
0x0000000000000068 348 1 ___U_lA__________________________ uptodate,lru,active
0x0001000000000068 12 0 ___U_lA______________________I___ uptodate,lru,active,readahead
0x000000000000006c 988 3 __RU_lA__________________________ referenced,uptodate,lru,active
0x000100000000006c 48 0 __RU_lA______________________I___ referenced,uptodate,lru,active,readahead
0x0000000000004078 1 0 ___UDlA_______b__________________ uptodate,dirty,lru,active,swapbacked
0x000000000000407c 34 0 __RUDlA_______b__________________ referenced,uptodate,dirty,lru,active,swapbacked
0x0000000000000400 503 1 __________B______________________ buddy
0x0000000000000804 1 0 __R________M_____________________ referenced,mmap
0x0000000000000828 1029 4 ___U_l_____M_____________________ uptodate,lru,mmap
0x0001000000000828 43 0 ___U_l_____M_________________I___ uptodate,lru,mmap,readahead
0x000000000000082c 382 1 __RU_l_____M_____________________ referenced,uptodate,lru,mmap
0x000100000000082c 12 0 __RU_l_____M_________________I___ referenced,uptodate,lru,mmap,readahead
0x0000000000000868 192 0 ___U_lA____M_____________________ uptodate,lru,active,mmap
0x0001000000000868 12 0 ___U_lA____M_________________I___ uptodate,lru,active,mmap,readahead
0x000000000000086c 800 3 __RU_lA____M_____________________ referenced,uptodate,lru,active,mmap
0x000100000000086c 31 0 __RU_lA____M_________________I___ referenced,uptodate,lru,active,mmap,readahead
0x0000000000004878 2 0 ___UDlA____M__b__________________ uptodate,dirty,lru,active,mmap,swapbacked
0x0000000000001000 492 1 ____________a____________________ anonymous
0x0000000000005808 4 0 ___U_______Ma_b__________________ uptodate,mmap,anonymous,swapbacked
0x0000000000005868 2839 11 ___U_lA____Ma_b__________________ uptodate,lru,active,mmap,anonymous,swapbacked
0x000000000000586c 30 0 __RU_lA____Ma_b__________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked
total 513968 2007
# ./page-types -r
flags page-count MB symbolic-flags long-symbolic-flags
0x0000000000000000 468002 1828 _________________________________
0x0000000100000000 19102 74 _____________________r___________ reserved
0x0000000000008000 41 0 _______________H_________________ compound_head
0x0000000000010000 188 0 ________________T________________ compound_tail
0x0000000000008014 1 0 __R_D__________H_________________ referenced,dirty,compound_head
0x0000000000010014 4 0 __R_D___________T________________ referenced,dirty,compound_tail
0x0000000000000020 1 0 _____l___________________________ lru
0x0000000800000024 34 0 __R__l__________________P________ referenced,lru,private
0x0000000000000028 3794 14 ___U_l___________________________ uptodate,lru
0x0001000000000028 46 0 ___U_l_______________________I___ uptodate,lru,readahead
0x0000000400000028 44 0 ___U_l_________________d_________ uptodate,lru,mappedtodisk
0x0001000400000028 2 0 ___U_l_________________d_____I___ uptodate,lru,mappedtodisk,readahead
0x000000000000002c 6434 25 __RU_l___________________________ referenced,uptodate,lru
0x000100000000002c 47 0 __RU_l_______________________I___ referenced,uptodate,lru,readahead
0x000000040000002c 14 0 __RU_l_________________d_________ referenced,uptodate,lru,mappedtodisk
0x000000080000002c 30 0 __RU_l__________________P________ referenced,uptodate,lru,private
0x0000000800000040 8124 31 ______A_________________P________ active,private
0x0000000000000040 219 0 ______A__________________________ active
0x0000000800000060 1 0 _____lA_________________P________ lru,active,private
0x0000000000000068 322 1 ___U_lA__________________________ uptodate,lru,active
0x0001000000000068 12 0 ___U_lA______________________I___ uptodate,lru,active,readahead
0x0000000400000068 13 0 ___U_lA________________d_________ uptodate,lru,active,mappedtodisk
0x0000000800000068 12 0 ___U_lA_________________P________ uptodate,lru,active,private
0x000000000000006c 977 3 __RU_lA__________________________ referenced,uptodate,lru,active
0x000100000000006c 48 0 __RU_lA______________________I___ referenced,uptodate,lru,active,readahead
0x000000040000006c 5 0 __RU_lA________________d_________ referenced,uptodate,lru,active,mappedtodisk
0x000000080000006c 3 0 __RU_lA_________________P________ referenced,uptodate,lru,active,private
0x0000000c0000006c 3 0 __RU_lA________________dP________ referenced,uptodate,lru,active,mappedtodisk,private
0x0000000c00000068 1 0 ___U_lA________________dP________ uptodate,lru,active,mappedtodisk,private
0x0000000000004078 1 0 ___UDlA_______b__________________ uptodate,dirty,lru,active,swapbacked
0x000000000000407c 34 0 __RUDlA_______b__________________ referenced,uptodate,dirty,lru,active,swapbacked
0x0000000000000400 538 2 __________B______________________ buddy
0x0000000000000804 1 0 __R________M_____________________ referenced,mmap
0x0000000000000828 1029 4 ___U_l_____M_____________________ uptodate,lru,mmap
0x0001000000000828 43 0 ___U_l_____M_________________I___ uptodate,lru,mmap,readahead
0x000000000000082c 382 1 __RU_l_____M_____________________ referenced,uptodate,lru,mmap
0x000100000000082c 12 0 __RU_l_____M_________________I___ referenced,uptodate,lru,mmap,readahead
0x0000000000000868 192 0 ___U_lA____M_____________________ uptodate,lru,active,mmap
0x0001000000000868 12 0 ___U_lA____M_________________I___ uptodate,lru,active,mmap,readahead
0x000000000000086c 800 3 __RU_lA____M_____________________ referenced,uptodate,lru,active,mmap
0x000100000000086c 31 0 __RU_lA____M_________________I___ referenced,uptodate,lru,active,mmap,readahead
0x0000000000004878 2 0 ___UDlA____M__b__________________ uptodate,dirty,lru,active,mmap,swapbacked
0x0000000000001000 492 1 ____________a____________________ anonymous
0x0000000000005008 2 0 ___U________a_b__________________ uptodate,anonymous,swapbacked
0x0000000000005808 4 0 ___U_______Ma_b__________________ uptodate,mmap,anonymous,swapbacked
0x000000000000580c 1 0 __RU_______Ma_b__________________ referenced,uptodate,mmap,anonymous,swapbacked
0x0000000000005868 2839 11 ___U_lA____Ma_b__________________ uptodate,lru,active,mmap,anonymous,swapbacked
0x000000000000586c 29 0 __RU_lA____Ma_b__________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked
total 513968 2007
# ./page-types --raw --list --no-summary --bits reserved
offset count flags
0 15 _____________________r___________
31 4 _____________________r___________
159 97 _____________________r___________
4096 2067 _____________________r___________
6752 2390 _____________________r___________
9355 3 _____________________r___________
9728 14526 _____________________r___________
This patch:
Introduce PageHuge(), which identifies huge/gigantic pages by their
dedicated compound destructor functions.
Also move prep_compound_gigantic_page() to hugetlb.c and make
__free_pages_ok() non-static.
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-17 05:32:22 +07:00
|
|
|
p->first_page = page;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2012-10-09 06:34:11 +07:00
|
|
|
/*
|
|
|
|
* PageHuge() only returns true for hugetlbfs pages, but not for normal or
|
|
|
|
* transparent huge pages. See the PageTransHuge() documentation for more
|
|
|
|
* details.
|
|
|
|
*/
|
mm: introduce PageHuge() for testing huge/gigantic pages
A series of patches to enhance the /proc/pagemap interface and to add a
userspace executable which can be used to present the pagemap data.
Export 10 more flags to end users (and more for kernel developers):
11. KPF_MMAP (pseudo flag) memory mapped page
12. KPF_ANON (pseudo flag) memory mapped page (anonymous)
13. KPF_SWAPCACHE page is in swap cache
14. KPF_SWAPBACKED page is swap/RAM backed
15. KPF_COMPOUND_HEAD (*)
16. KPF_COMPOUND_TAIL (*)
17. KPF_HUGE hugeTLB pages
18. KPF_UNEVICTABLE page is in the unevictable LRU list
19. KPF_HWPOISON hardware detected corruption
20. KPF_NOPAGE (pseudo flag) no page frame at the address
(*) For compound pages, exporting _both_ head/tail info enables
users to tell where a compound page starts/ends, and its order.
a simple demo of the page-types tool
# ./page-types -h
page-types [options]
-r|--raw Raw mode, for kernel developers
-a|--addr addr-spec Walk a range of pages
-b|--bits bits-spec Walk pages with specified bits
-l|--list Show page details in ranges
-L|--list-each Show page details one by one
-N|--no-summary Don't show summay info
-h|--help Show this usage message
addr-spec:
N one page at offset N (unit: pages)
N+M pages range from N to N+M-1
N,M pages range from N to M-1
N, pages range from N to end
,M pages range from 0 to M
bits-spec:
bit1,bit2 (flags & (bit1|bit2)) != 0
bit1,bit2=bit1 (flags & (bit1|bit2)) == bit1
bit1,~bit2 (flags & (bit1|bit2)) == bit1
=bit1,bit2 flags == (bit1|bit2)
bit-names:
locked error referenced uptodate
dirty lru active slab
writeback reclaim buddy mmap
anonymous swapcache swapbacked compound_head
compound_tail huge unevictable hwpoison
nopage reserved(r) mlocked(r) mappedtodisk(r)
private(r) private_2(r) owner_private(r) arch(r)
uncached(r) readahead(o) slob_free(o) slub_frozen(o)
slub_debug(o)
(r) raw mode bits (o) overloaded bits
# ./page-types
flags page-count MB symbolic-flags long-symbolic-flags
0x0000000000000000 487369 1903 _________________________________
0x0000000000000014 5 0 __R_D____________________________ referenced,dirty
0x0000000000000020 1 0 _____l___________________________ lru
0x0000000000000024 34 0 __R__l___________________________ referenced,lru
0x0000000000000028 3838 14 ___U_l___________________________ uptodate,lru
0x0001000000000028 48 0 ___U_l_______________________I___ uptodate,lru,readahead
0x000000000000002c 6478 25 __RU_l___________________________ referenced,uptodate,lru
0x000100000000002c 47 0 __RU_l_______________________I___ referenced,uptodate,lru,readahead
0x0000000000000040 8344 32 ______A__________________________ active
0x0000000000000060 1 0 _____lA__________________________ lru,active
0x0000000000000068 348 1 ___U_lA__________________________ uptodate,lru,active
0x0001000000000068 12 0 ___U_lA______________________I___ uptodate,lru,active,readahead
0x000000000000006c 988 3 __RU_lA__________________________ referenced,uptodate,lru,active
0x000100000000006c 48 0 __RU_lA______________________I___ referenced,uptodate,lru,active,readahead
0x0000000000004078 1 0 ___UDlA_______b__________________ uptodate,dirty,lru,active,swapbacked
0x000000000000407c 34 0 __RUDlA_______b__________________ referenced,uptodate,dirty,lru,active,swapbacked
0x0000000000000400 503 1 __________B______________________ buddy
0x0000000000000804 1 0 __R________M_____________________ referenced,mmap
0x0000000000000828 1029 4 ___U_l_____M_____________________ uptodate,lru,mmap
0x0001000000000828 43 0 ___U_l_____M_________________I___ uptodate,lru,mmap,readahead
0x000000000000082c 382 1 __RU_l_____M_____________________ referenced,uptodate,lru,mmap
0x000100000000082c 12 0 __RU_l_____M_________________I___ referenced,uptodate,lru,mmap,readahead
0x0000000000000868 192 0 ___U_lA____M_____________________ uptodate,lru,active,mmap
0x0001000000000868 12 0 ___U_lA____M_________________I___ uptodate,lru,active,mmap,readahead
0x000000000000086c 800 3 __RU_lA____M_____________________ referenced,uptodate,lru,active,mmap
0x000100000000086c 31 0 __RU_lA____M_________________I___ referenced,uptodate,lru,active,mmap,readahead
0x0000000000004878 2 0 ___UDlA____M__b__________________ uptodate,dirty,lru,active,mmap,swapbacked
0x0000000000001000 492 1 ____________a____________________ anonymous
0x0000000000005808 4 0 ___U_______Ma_b__________________ uptodate,mmap,anonymous,swapbacked
0x0000000000005868 2839 11 ___U_lA____Ma_b__________________ uptodate,lru,active,mmap,anonymous,swapbacked
0x000000000000586c 30 0 __RU_lA____Ma_b__________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked
total 513968 2007
# ./page-types -r
flags page-count MB symbolic-flags long-symbolic-flags
0x0000000000000000 468002 1828 _________________________________
0x0000000100000000 19102 74 _____________________r___________ reserved
0x0000000000008000 41 0 _______________H_________________ compound_head
0x0000000000010000 188 0 ________________T________________ compound_tail
0x0000000000008014 1 0 __R_D__________H_________________ referenced,dirty,compound_head
0x0000000000010014 4 0 __R_D___________T________________ referenced,dirty,compound_tail
0x0000000000000020 1 0 _____l___________________________ lru
0x0000000800000024 34 0 __R__l__________________P________ referenced,lru,private
0x0000000000000028 3794 14 ___U_l___________________________ uptodate,lru
0x0001000000000028 46 0 ___U_l_______________________I___ uptodate,lru,readahead
0x0000000400000028 44 0 ___U_l_________________d_________ uptodate,lru,mappedtodisk
0x0001000400000028 2 0 ___U_l_________________d_____I___ uptodate,lru,mappedtodisk,readahead
0x000000000000002c 6434 25 __RU_l___________________________ referenced,uptodate,lru
0x000100000000002c 47 0 __RU_l_______________________I___ referenced,uptodate,lru,readahead
0x000000040000002c 14 0 __RU_l_________________d_________ referenced,uptodate,lru,mappedtodisk
0x000000080000002c 30 0 __RU_l__________________P________ referenced,uptodate,lru,private
0x0000000800000040 8124 31 ______A_________________P________ active,private
0x0000000000000040 219 0 ______A__________________________ active
0x0000000800000060 1 0 _____lA_________________P________ lru,active,private
0x0000000000000068 322 1 ___U_lA__________________________ uptodate,lru,active
0x0001000000000068 12 0 ___U_lA______________________I___ uptodate,lru,active,readahead
0x0000000400000068 13 0 ___U_lA________________d_________ uptodate,lru,active,mappedtodisk
0x0000000800000068 12 0 ___U_lA_________________P________ uptodate,lru,active,private
0x000000000000006c 977 3 __RU_lA__________________________ referenced,uptodate,lru,active
0x000100000000006c 48 0 __RU_lA______________________I___ referenced,uptodate,lru,active,readahead
0x000000040000006c 5 0 __RU_lA________________d_________ referenced,uptodate,lru,active,mappedtodisk
0x000000080000006c 3 0 __RU_lA_________________P________ referenced,uptodate,lru,active,private
0x0000000c0000006c 3 0 __RU_lA________________dP________ referenced,uptodate,lru,active,mappedtodisk,private
0x0000000c00000068 1 0 ___U_lA________________dP________ uptodate,lru,active,mappedtodisk,private
0x0000000000004078 1 0 ___UDlA_______b__________________ uptodate,dirty,lru,active,swapbacked
0x000000000000407c 34 0 __RUDlA_______b__________________ referenced,uptodate,dirty,lru,active,swapbacked
0x0000000000000400 538 2 __________B______________________ buddy
0x0000000000000804 1 0 __R________M_____________________ referenced,mmap
0x0000000000000828 1029 4 ___U_l_____M_____________________ uptodate,lru,mmap
0x0001000000000828 43 0 ___U_l_____M_________________I___ uptodate,lru,mmap,readahead
0x000000000000082c 382 1 __RU_l_____M_____________________ referenced,uptodate,lru,mmap
0x000100000000082c 12 0 __RU_l_____M_________________I___ referenced,uptodate,lru,mmap,readahead
0x0000000000000868 192 0 ___U_lA____M_____________________ uptodate,lru,active,mmap
0x0001000000000868 12 0 ___U_lA____M_________________I___ uptodate,lru,active,mmap,readahead
0x000000000000086c 800 3 __RU_lA____M_____________________ referenced,uptodate,lru,active,mmap
0x000100000000086c 31 0 __RU_lA____M_________________I___ referenced,uptodate,lru,active,mmap,readahead
0x0000000000004878 2 0 ___UDlA____M__b__________________ uptodate,dirty,lru,active,mmap,swapbacked
0x0000000000001000 492 1 ____________a____________________ anonymous
0x0000000000005008 2 0 ___U________a_b__________________ uptodate,anonymous,swapbacked
0x0000000000005808 4 0 ___U_______Ma_b__________________ uptodate,mmap,anonymous,swapbacked
0x000000000000580c 1 0 __RU_______Ma_b__________________ referenced,uptodate,mmap,anonymous,swapbacked
0x0000000000005868 2839 11 ___U_lA____Ma_b__________________ uptodate,lru,active,mmap,anonymous,swapbacked
0x000000000000586c 29 0 __RU_lA____Ma_b__________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked
total 513968 2007
# ./page-types --raw --list --no-summary --bits reserved
offset count flags
0 15 _____________________r___________
31 4 _____________________r___________
159 97 _____________________r___________
4096 2067 _____________________r___________
6752 2390 _____________________r___________
9355 3 _____________________r___________
9728 14526 _____________________r___________
This patch:
Introduce PageHuge(), which identifies huge/gigantic pages by their
dedicated compound destructor functions.
Also move prep_compound_gigantic_page() to hugetlb.c and make
__free_pages_ok() non-static.
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-17 05:32:22 +07:00
|
|
|
int PageHuge(struct page *page)
|
|
|
|
{
|
|
|
|
compound_page_dtor *dtor;
|
|
|
|
|
|
|
|
if (!PageCompound(page))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
page = compound_head(page);
|
|
|
|
dtor = get_compound_page_dtor(page);
|
|
|
|
|
|
|
|
return dtor == free_huge_page;
|
|
|
|
}
|
2010-05-28 07:29:22 +07:00
|
|
|
EXPORT_SYMBOL_GPL(PageHuge);
|
|
|
|
|
2013-06-25 20:19:31 +07:00
|
|
|
pgoff_t __basepage_index(struct page *page)
|
|
|
|
{
|
|
|
|
struct page *page_head = compound_head(page);
|
|
|
|
pgoff_t index = page_index(page_head);
|
|
|
|
unsigned long compound_idx;
|
|
|
|
|
|
|
|
if (!PageHuge(page_head))
|
|
|
|
return page_index(page);
|
|
|
|
|
|
|
|
if (compound_order(page_head) >= MAX_ORDER)
|
|
|
|
compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
|
|
|
|
else
|
|
|
|
compound_idx = page - page_head;
|
|
|
|
|
|
|
|
return (index << compound_order(page_head)) + compound_idx;
|
|
|
|
}
|
|
|
|
|
2008-07-24 11:27:41 +07:00
|
|
|
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
struct page *page;
|
2007-07-16 13:38:12 +07:00
|
|
|
|
2008-07-24 11:27:47 +07:00
|
|
|
if (h->order >= MAX_ORDER)
|
|
|
|
return NULL;
|
|
|
|
|
2009-06-17 05:31:54 +07:00
|
|
|
page = alloc_pages_exact_node(nid,
|
2013-09-12 04:22:13 +07:00
|
|
|
htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
|
2008-04-29 14:58:26 +07:00
|
|
|
__GFP_REPEAT|__GFP_NOWARN,
|
2008-07-24 11:27:41 +07:00
|
|
|
huge_page_order(h));
|
2005-04-17 05:20:36 +07:00
|
|
|
if (page) {
|
2008-04-28 16:13:29 +07:00
|
|
|
if (arch_prepare_hugepage(page)) {
|
2008-08-13 05:08:38 +07:00
|
|
|
__free_pages(page, huge_page_order(h));
|
2008-04-29 04:13:19 +07:00
|
|
|
return NULL;
|
2008-04-28 16:13:29 +07:00
|
|
|
}
|
2008-07-24 11:27:41 +07:00
|
|
|
prep_new_huge_page(h, page, nid);
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
hugetlb: fix hugepage allocation with memoryless nodes
Anton found a problem with the hugetlb pool allocation when some nodes have
no memory (http://marc.info/?l=linux-mm&m=118133042025995&w=2). Lee worked
on versions that tried to fix it, but none were accepted. Christoph has
created a set of patches which allow for GFP_THISNODE allocations to fail
if the node has no memory.
Currently, alloc_fresh_huge_page() returns NULL when it is not able to
allocate a huge page on the current node, as specified by its custom
interleave variable. The callers of this function, though, assume that a
failure in alloc_fresh_huge_page() indicates no hugepages can be allocated
on the system period. This might not be the case, for instance, if we have
an uneven NUMA system, and we happen to try to allocate a hugepage on a
node with less memory and fail, while there is still plenty of free memory
on the other nodes.
To correct this, make alloc_fresh_huge_page() search through all online
nodes before deciding no hugepages can be allocated. Add a helper function
for actually allocating the hugepage. Use a new global nid iterator to
control which nid to allocate on.
Note: we expect particular semantics for __GFP_THISNODE, which are now
enforced even for memoryless nodes. That is, there is should be no
fallback to other nodes. Therefore, we rely on the nid passed into
alloc_pages_node() to be the nid the page comes from. If this is
incorrect, accounting will break.
Tested on x86 !NUMA, x86 NUMA, x86_64 NUMA and ppc64 NUMA (with 2
memoryless nodes).
Before on the ppc64 box:
Trying to clear the hugetlb pool
Done. 0 free
Trying to resize the pool to 100
Node 0 HugePages_Free: 25
Node 1 HugePages_Free: 75
Node 2 HugePages_Free: 0
Node 3 HugePages_Free: 0
Done. Initially 100 free
Trying to resize the pool to 200
Node 0 HugePages_Free: 50
Node 1 HugePages_Free: 150
Node 2 HugePages_Free: 0
Node 3 HugePages_Free: 0
Done. 200 free
After:
Trying to clear the hugetlb pool
Done. 0 free
Trying to resize the pool to 100
Node 0 HugePages_Free: 50
Node 1 HugePages_Free: 50
Node 2 HugePages_Free: 0
Node 3 HugePages_Free: 0
Done. Initially 100 free
Trying to resize the pool to 200
Node 0 HugePages_Free: 100
Node 1 HugePages_Free: 100
Node 2 HugePages_Free: 0
Node 3 HugePages_Free: 0
Done. 200 free
Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Acked-by: Christoph Lameter <clameter@sgi.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: David Gibson <hermes@gibson.dropbear.id.au>
Cc: Badari Pulavarty <pbadari@us.ibm.com>
Cc: Ken Chen <kenchen@google.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 15:26:24 +07:00
|
|
|
|
|
|
|
return page;
|
|
|
|
}
|
|
|
|
|
2009-12-15 08:58:15 +07:00
|
|
|
/*
|
2009-12-15 08:58:16 +07:00
|
|
|
* common helper functions for hstate_next_node_to_{alloc|free}.
|
|
|
|
* We may have allocated or freed a huge page based on a different
|
|
|
|
* nodes_allowed previously, so h->next_node_to_{alloc|free} might
|
|
|
|
* be outside of *nodes_allowed. Ensure that we use an allowed
|
|
|
|
* node for alloc or free.
|
2009-12-15 08:58:15 +07:00
|
|
|
*/
|
2009-12-15 08:58:16 +07:00
|
|
|
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
|
2009-12-15 08:58:15 +07:00
|
|
|
{
|
2009-12-15 08:58:16 +07:00
|
|
|
nid = next_node(nid, *nodes_allowed);
|
2009-12-15 08:58:15 +07:00
|
|
|
if (nid == MAX_NUMNODES)
|
2009-12-15 08:58:16 +07:00
|
|
|
nid = first_node(*nodes_allowed);
|
2009-12-15 08:58:15 +07:00
|
|
|
VM_BUG_ON(nid >= MAX_NUMNODES);
|
|
|
|
|
|
|
|
return nid;
|
|
|
|
}
|
|
|
|
|
2009-12-15 08:58:16 +07:00
|
|
|
static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
|
|
|
|
{
|
|
|
|
if (!node_isset(nid, *nodes_allowed))
|
|
|
|
nid = next_node_allowed(nid, nodes_allowed);
|
|
|
|
return nid;
|
|
|
|
}
|
|
|
|
|
2008-07-24 11:27:45 +07:00
|
|
|
/*
|
2009-12-15 08:58:16 +07:00
|
|
|
* returns the previously saved node ["this node"] from which to
|
|
|
|
* allocate a persistent huge page for the pool and advance the
|
|
|
|
* next node from which to allocate, handling wrap at end of node
|
|
|
|
* mask.
|
2008-07-24 11:27:45 +07:00
|
|
|
*/
|
2009-12-15 08:58:16 +07:00
|
|
|
static int hstate_next_node_to_alloc(struct hstate *h,
|
|
|
|
nodemask_t *nodes_allowed)
|
2008-07-24 11:27:45 +07:00
|
|
|
{
|
2009-12-15 08:58:16 +07:00
|
|
|
int nid;
|
|
|
|
|
|
|
|
VM_BUG_ON(!nodes_allowed);
|
|
|
|
|
|
|
|
nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
|
|
|
|
h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
|
2009-12-15 08:58:15 +07:00
|
|
|
|
|
|
|
return nid;
|
2008-07-24 11:27:45 +07:00
|
|
|
}
|
|
|
|
|
2009-09-22 07:01:22 +07:00
|
|
|
/*
|
2009-12-15 08:58:16 +07:00
|
|
|
* helper for free_pool_huge_page() - return the previously saved
|
|
|
|
* node ["this node"] from which to free a huge page. Advance the
|
|
|
|
* next node id whether or not we find a free huge page to free so
|
|
|
|
* that the next attempt to free addresses the next node.
|
2009-09-22 07:01:22 +07:00
|
|
|
*/
|
2009-12-15 08:58:16 +07:00
|
|
|
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
|
2009-09-22 07:01:22 +07:00
|
|
|
{
|
2009-12-15 08:58:16 +07:00
|
|
|
int nid;
|
|
|
|
|
|
|
|
VM_BUG_ON(!nodes_allowed);
|
|
|
|
|
|
|
|
nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
|
|
|
|
h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
|
2009-12-15 08:58:15 +07:00
|
|
|
|
|
|
|
return nid;
|
2009-09-22 07:01:22 +07:00
|
|
|
}
|
|
|
|
|
2013-09-12 04:21:00 +07:00
|
|
|
#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
|
|
|
|
for (nr_nodes = nodes_weight(*mask); \
|
|
|
|
nr_nodes > 0 && \
|
|
|
|
((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
|
|
|
|
nr_nodes--)
|
|
|
|
|
|
|
|
#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
|
|
|
|
for (nr_nodes = nodes_weight(*mask); \
|
|
|
|
nr_nodes > 0 && \
|
|
|
|
((node = hstate_next_node_to_free(hs, mask)) || 1); \
|
|
|
|
nr_nodes--)
|
|
|
|
|
|
|
|
static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
|
|
|
|
{
|
|
|
|
struct page *page;
|
|
|
|
int nr_nodes, node;
|
|
|
|
int ret = 0;
|
|
|
|
|
|
|
|
for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
|
|
|
|
page = alloc_fresh_huge_page_node(h, node);
|
|
|
|
if (page) {
|
|
|
|
ret = 1;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (ret)
|
|
|
|
count_vm_event(HTLB_BUDDY_PGALLOC);
|
|
|
|
else
|
|
|
|
count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2009-09-22 07:01:22 +07:00
|
|
|
/*
|
|
|
|
* Free huge page from pool from next node to free.
|
|
|
|
* Attempt to keep persistent huge pages more or less
|
|
|
|
* balanced over allowed nodes.
|
|
|
|
* Called with hugetlb_lock locked.
|
|
|
|
*/
|
2009-12-15 08:58:16 +07:00
|
|
|
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
|
|
|
|
bool acct_surplus)
|
2009-09-22 07:01:22 +07:00
|
|
|
{
|
2013-09-12 04:21:00 +07:00
|
|
|
int nr_nodes, node;
|
2009-09-22 07:01:22 +07:00
|
|
|
int ret = 0;
|
|
|
|
|
2013-09-12 04:21:00 +07:00
|
|
|
for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
|
2009-09-22 07:01:23 +07:00
|
|
|
/*
|
|
|
|
* If we're returning unused surplus pages, only examine
|
|
|
|
* nodes with surplus pages.
|
|
|
|
*/
|
2013-09-12 04:21:00 +07:00
|
|
|
if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
|
|
|
|
!list_empty(&h->hugepage_freelists[node])) {
|
2009-09-22 07:01:22 +07:00
|
|
|
struct page *page =
|
2013-09-12 04:21:00 +07:00
|
|
|
list_entry(h->hugepage_freelists[node].next,
|
2009-09-22 07:01:22 +07:00
|
|
|
struct page, lru);
|
|
|
|
list_del(&page->lru);
|
|
|
|
h->free_huge_pages--;
|
2013-09-12 04:21:00 +07:00
|
|
|
h->free_huge_pages_node[node]--;
|
2009-09-22 07:01:23 +07:00
|
|
|
if (acct_surplus) {
|
|
|
|
h->surplus_huge_pages--;
|
2013-09-12 04:21:00 +07:00
|
|
|
h->surplus_huge_pages_node[node]--;
|
2009-09-22 07:01:23 +07:00
|
|
|
}
|
2009-09-22 07:01:22 +07:00
|
|
|
update_and_free_page(h, page);
|
|
|
|
ret = 1;
|
2009-12-15 08:58:15 +07:00
|
|
|
break;
|
2009-09-22 07:01:22 +07:00
|
|
|
}
|
2013-09-12 04:21:00 +07:00
|
|
|
}
|
2009-09-22 07:01:22 +07:00
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2013-09-12 04:22:09 +07:00
|
|
|
/*
|
|
|
|
* Dissolve a given free hugepage into free buddy pages. This function does
|
|
|
|
* nothing for in-use (including surplus) hugepages.
|
|
|
|
*/
|
|
|
|
static void dissolve_free_huge_page(struct page *page)
|
|
|
|
{
|
|
|
|
spin_lock(&hugetlb_lock);
|
|
|
|
if (PageHuge(page) && !page_count(page)) {
|
|
|
|
struct hstate *h = page_hstate(page);
|
|
|
|
int nid = page_to_nid(page);
|
|
|
|
list_del(&page->lru);
|
|
|
|
h->free_huge_pages--;
|
|
|
|
h->free_huge_pages_node[nid]--;
|
|
|
|
update_and_free_page(h, page);
|
|
|
|
}
|
|
|
|
spin_unlock(&hugetlb_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Dissolve free hugepages in a given pfn range. Used by memory hotplug to
|
|
|
|
* make specified memory blocks removable from the system.
|
|
|
|
* Note that start_pfn should aligned with (minimum) hugepage size.
|
|
|
|
*/
|
|
|
|
void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
|
|
|
|
{
|
|
|
|
unsigned int order = 8 * sizeof(void *);
|
|
|
|
unsigned long pfn;
|
|
|
|
struct hstate *h;
|
|
|
|
|
|
|
|
/* Set scan step to minimum hugepage size */
|
|
|
|
for_each_hstate(h)
|
|
|
|
if (order > huge_page_order(h))
|
|
|
|
order = huge_page_order(h);
|
|
|
|
VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
|
|
|
|
for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
|
|
|
|
dissolve_free_huge_page(pfn_to_page(pfn));
|
|
|
|
}
|
|
|
|
|
2010-09-08 08:19:33 +07:00
|
|
|
static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
|
2007-10-16 15:26:18 +07:00
|
|
|
{
|
|
|
|
struct page *page;
|
2010-09-08 08:19:33 +07:00
|
|
|
unsigned int r_nid;
|
2007-10-16 15:26:18 +07:00
|
|
|
|
2008-07-24 11:27:47 +07:00
|
|
|
if (h->order >= MAX_ORDER)
|
|
|
|
return NULL;
|
|
|
|
|
hugetlb: introduce nr_overcommit_hugepages sysctl
hugetlb: introduce nr_overcommit_hugepages sysctl
While examining the code to support /proc/sys/vm/hugetlb_dynamic_pool, I
became convinced that having a boolean sysctl was insufficient:
1) To support per-node control of hugepages, I have previously submitted
patches to add a sysfs attribute related to nr_hugepages. However, with
a boolean global value and per-mount quota enforcement constraining the
dynamic pool, adding corresponding control of the dynamic pool on a
per-node basis seems inconsistent to me.
2) Administration of the hugetlb dynamic pool with multiple hugetlbfs
mount points is, arguably, more arduous than it needs to be. Each quota
would need to be set separately, and the sum would need to be monitored.
To ease the administration, and to help make the way for per-node
control of the static & dynamic hugepage pool, I added a separate
sysctl, nr_overcommit_hugepages. This value serves as a high watermark
for the overall hugepage pool, while nr_hugepages serves as a low
watermark. The boolean sysctl can then be removed, as the condition
nr_overcommit_hugepages > 0
indicates the same administrative setting as
hugetlb_dynamic_pool == 1
Quotas still serve as local enforcement of the size of the pool on a
per-mount basis.
A few caveats:
1) There is a race whereby the global surplus huge page counter is
incremented before a hugepage has allocated. Another process could then
try grow the pool, and fail to convert a surplus huge page to a normal
huge page and instead allocate a fresh huge page. I believe this is
benign, as no memory is leaked (the actual pages are still tracked
correctly) and the counters won't go out of sync.
2) Shrinking the static pool while a surplus is in effect will allow the
number of surplus huge pages to exceed the overcommit value. As long as
this condition holds, however, no more surplus huge pages will be
allowed on the system until one of the two sysctls are increased
sufficiently, or the surplus huge pages go out of use and are freed.
Successfully tested on x86_64 with the current libhugetlbfs snapshot,
modified to use the new sysctl.
Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-12-18 07:20:12 +07:00
|
|
|
/*
|
|
|
|
* Assume we will successfully allocate the surplus page to
|
|
|
|
* prevent racing processes from causing the surplus to exceed
|
|
|
|
* overcommit
|
|
|
|
*
|
|
|
|
* This however introduces a different race, where a process B
|
|
|
|
* tries to grow the static hugepage pool while alloc_pages() is
|
|
|
|
* called by process A. B will only examine the per-node
|
|
|
|
* counters in determining if surplus huge pages can be
|
|
|
|
* converted to normal huge pages in adjust_pool_surplus(). A
|
|
|
|
* won't be able to increment the per-node counter, until the
|
|
|
|
* lock is dropped by B, but B doesn't drop hugetlb_lock until
|
|
|
|
* no more huge pages can be converted from surplus to normal
|
|
|
|
* state (and doesn't try to convert again). Thus, we have a
|
|
|
|
* case where a surplus huge page exists, the pool is grown, and
|
|
|
|
* the surplus huge page still exists after, even though it
|
|
|
|
* should just have been converted to a normal huge page. This
|
|
|
|
* does not leak memory, though, as the hugepage will be freed
|
|
|
|
* once it is out of use. It also does not allow the counters to
|
|
|
|
* go out of whack in adjust_pool_surplus() as we don't modify
|
|
|
|
* the node values until we've gotten the hugepage and only the
|
|
|
|
* per-node value is checked there.
|
|
|
|
*/
|
|
|
|
spin_lock(&hugetlb_lock);
|
2008-07-24 11:27:41 +07:00
|
|
|
if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
|
hugetlb: introduce nr_overcommit_hugepages sysctl
hugetlb: introduce nr_overcommit_hugepages sysctl
While examining the code to support /proc/sys/vm/hugetlb_dynamic_pool, I
became convinced that having a boolean sysctl was insufficient:
1) To support per-node control of hugepages, I have previously submitted
patches to add a sysfs attribute related to nr_hugepages. However, with
a boolean global value and per-mount quota enforcement constraining the
dynamic pool, adding corresponding control of the dynamic pool on a
per-node basis seems inconsistent to me.
2) Administration of the hugetlb dynamic pool with multiple hugetlbfs
mount points is, arguably, more arduous than it needs to be. Each quota
would need to be set separately, and the sum would need to be monitored.
To ease the administration, and to help make the way for per-node
control of the static & dynamic hugepage pool, I added a separate
sysctl, nr_overcommit_hugepages. This value serves as a high watermark
for the overall hugepage pool, while nr_hugepages serves as a low
watermark. The boolean sysctl can then be removed, as the condition
nr_overcommit_hugepages > 0
indicates the same administrative setting as
hugetlb_dynamic_pool == 1
Quotas still serve as local enforcement of the size of the pool on a
per-mount basis.
A few caveats:
1) There is a race whereby the global surplus huge page counter is
incremented before a hugepage has allocated. Another process could then
try grow the pool, and fail to convert a surplus huge page to a normal
huge page and instead allocate a fresh huge page. I believe this is
benign, as no memory is leaked (the actual pages are still tracked
correctly) and the counters won't go out of sync.
2) Shrinking the static pool while a surplus is in effect will allow the
number of surplus huge pages to exceed the overcommit value. As long as
this condition holds, however, no more surplus huge pages will be
allowed on the system until one of the two sysctls are increased
sufficiently, or the surplus huge pages go out of use and are freed.
Successfully tested on x86_64 with the current libhugetlbfs snapshot,
modified to use the new sysctl.
Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-12-18 07:20:12 +07:00
|
|
|
spin_unlock(&hugetlb_lock);
|
|
|
|
return NULL;
|
|
|
|
} else {
|
2008-07-24 11:27:41 +07:00
|
|
|
h->nr_huge_pages++;
|
|
|
|
h->surplus_huge_pages++;
|
hugetlb: introduce nr_overcommit_hugepages sysctl
hugetlb: introduce nr_overcommit_hugepages sysctl
While examining the code to support /proc/sys/vm/hugetlb_dynamic_pool, I
became convinced that having a boolean sysctl was insufficient:
1) To support per-node control of hugepages, I have previously submitted
patches to add a sysfs attribute related to nr_hugepages. However, with
a boolean global value and per-mount quota enforcement constraining the
dynamic pool, adding corresponding control of the dynamic pool on a
per-node basis seems inconsistent to me.
2) Administration of the hugetlb dynamic pool with multiple hugetlbfs
mount points is, arguably, more arduous than it needs to be. Each quota
would need to be set separately, and the sum would need to be monitored.
To ease the administration, and to help make the way for per-node
control of the static & dynamic hugepage pool, I added a separate
sysctl, nr_overcommit_hugepages. This value serves as a high watermark
for the overall hugepage pool, while nr_hugepages serves as a low
watermark. The boolean sysctl can then be removed, as the condition
nr_overcommit_hugepages > 0
indicates the same administrative setting as
hugetlb_dynamic_pool == 1
Quotas still serve as local enforcement of the size of the pool on a
per-mount basis.
A few caveats:
1) There is a race whereby the global surplus huge page counter is
incremented before a hugepage has allocated. Another process could then
try grow the pool, and fail to convert a surplus huge page to a normal
huge page and instead allocate a fresh huge page. I believe this is
benign, as no memory is leaked (the actual pages are still tracked
correctly) and the counters won't go out of sync.
2) Shrinking the static pool while a surplus is in effect will allow the
number of surplus huge pages to exceed the overcommit value. As long as
this condition holds, however, no more surplus huge pages will be
allowed on the system until one of the two sysctls are increased
sufficiently, or the surplus huge pages go out of use and are freed.
Successfully tested on x86_64 with the current libhugetlbfs snapshot,
modified to use the new sysctl.
Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-12-18 07:20:12 +07:00
|
|
|
}
|
|
|
|
spin_unlock(&hugetlb_lock);
|
|
|
|
|
2010-09-08 08:19:33 +07:00
|
|
|
if (nid == NUMA_NO_NODE)
|
2013-09-12 04:22:13 +07:00
|
|
|
page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
|
2010-09-08 08:19:33 +07:00
|
|
|
__GFP_REPEAT|__GFP_NOWARN,
|
|
|
|
huge_page_order(h));
|
|
|
|
else
|
|
|
|
page = alloc_pages_exact_node(nid,
|
2013-09-12 04:22:13 +07:00
|
|
|
htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
|
2010-09-08 08:19:33 +07:00
|
|
|
__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
|
hugetlb: introduce nr_overcommit_hugepages sysctl
hugetlb: introduce nr_overcommit_hugepages sysctl
While examining the code to support /proc/sys/vm/hugetlb_dynamic_pool, I
became convinced that having a boolean sysctl was insufficient:
1) To support per-node control of hugepages, I have previously submitted
patches to add a sysfs attribute related to nr_hugepages. However, with
a boolean global value and per-mount quota enforcement constraining the
dynamic pool, adding corresponding control of the dynamic pool on a
per-node basis seems inconsistent to me.
2) Administration of the hugetlb dynamic pool with multiple hugetlbfs
mount points is, arguably, more arduous than it needs to be. Each quota
would need to be set separately, and the sum would need to be monitored.
To ease the administration, and to help make the way for per-node
control of the static & dynamic hugepage pool, I added a separate
sysctl, nr_overcommit_hugepages. This value serves as a high watermark
for the overall hugepage pool, while nr_hugepages serves as a low
watermark. The boolean sysctl can then be removed, as the condition
nr_overcommit_hugepages > 0
indicates the same administrative setting as
hugetlb_dynamic_pool == 1
Quotas still serve as local enforcement of the size of the pool on a
per-mount basis.
A few caveats:
1) There is a race whereby the global surplus huge page counter is
incremented before a hugepage has allocated. Another process could then
try grow the pool, and fail to convert a surplus huge page to a normal
huge page and instead allocate a fresh huge page. I believe this is
benign, as no memory is leaked (the actual pages are still tracked
correctly) and the counters won't go out of sync.
2) Shrinking the static pool while a surplus is in effect will allow the
number of surplus huge pages to exceed the overcommit value. As long as
this condition holds, however, no more surplus huge pages will be
allowed on the system until one of the two sysctls are increased
sufficiently, or the surplus huge pages go out of use and are freed.
Successfully tested on x86_64 with the current libhugetlbfs snapshot,
modified to use the new sysctl.
Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-12-18 07:20:12 +07:00
|
|
|
|
2008-08-13 05:08:38 +07:00
|
|
|
if (page && arch_prepare_hugepage(page)) {
|
|
|
|
__free_pages(page, huge_page_order(h));
|
2012-01-11 06:08:30 +07:00
|
|
|
page = NULL;
|
2008-08-13 05:08:38 +07:00
|
|
|
}
|
|
|
|
|
hugetlb: introduce nr_overcommit_hugepages sysctl
hugetlb: introduce nr_overcommit_hugepages sysctl
While examining the code to support /proc/sys/vm/hugetlb_dynamic_pool, I
became convinced that having a boolean sysctl was insufficient:
1) To support per-node control of hugepages, I have previously submitted
patches to add a sysfs attribute related to nr_hugepages. However, with
a boolean global value and per-mount quota enforcement constraining the
dynamic pool, adding corresponding control of the dynamic pool on a
per-node basis seems inconsistent to me.
2) Administration of the hugetlb dynamic pool with multiple hugetlbfs
mount points is, arguably, more arduous than it needs to be. Each quota
would need to be set separately, and the sum would need to be monitored.
To ease the administration, and to help make the way for per-node
control of the static & dynamic hugepage pool, I added a separate
sysctl, nr_overcommit_hugepages. This value serves as a high watermark
for the overall hugepage pool, while nr_hugepages serves as a low
watermark. The boolean sysctl can then be removed, as the condition
nr_overcommit_hugepages > 0
indicates the same administrative setting as
hugetlb_dynamic_pool == 1
Quotas still serve as local enforcement of the size of the pool on a
per-mount basis.
A few caveats:
1) There is a race whereby the global surplus huge page counter is
incremented before a hugepage has allocated. Another process could then
try grow the pool, and fail to convert a surplus huge page to a normal
huge page and instead allocate a fresh huge page. I believe this is
benign, as no memory is leaked (the actual pages are still tracked
correctly) and the counters won't go out of sync.
2) Shrinking the static pool while a surplus is in effect will allow the
number of surplus huge pages to exceed the overcommit value. As long as
this condition holds, however, no more surplus huge pages will be
allowed on the system until one of the two sysctls are increased
sufficiently, or the surplus huge pages go out of use and are freed.
Successfully tested on x86_64 with the current libhugetlbfs snapshot,
modified to use the new sysctl.
Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-12-18 07:20:12 +07:00
|
|
|
spin_lock(&hugetlb_lock);
|
2007-10-16 15:26:18 +07:00
|
|
|
if (page) {
|
2012-08-01 06:42:07 +07:00
|
|
|
INIT_LIST_HEAD(&page->lru);
|
2010-09-08 08:19:33 +07:00
|
|
|
r_nid = page_to_nid(page);
|
2007-10-16 15:26:18 +07:00
|
|
|
set_compound_page_dtor(page, free_huge_page);
|
2012-08-01 06:42:15 +07:00
|
|
|
set_hugetlb_cgroup(page, NULL);
|
hugetlb: introduce nr_overcommit_hugepages sysctl
hugetlb: introduce nr_overcommit_hugepages sysctl
While examining the code to support /proc/sys/vm/hugetlb_dynamic_pool, I
became convinced that having a boolean sysctl was insufficient:
1) To support per-node control of hugepages, I have previously submitted
patches to add a sysfs attribute related to nr_hugepages. However, with
a boolean global value and per-mount quota enforcement constraining the
dynamic pool, adding corresponding control of the dynamic pool on a
per-node basis seems inconsistent to me.
2) Administration of the hugetlb dynamic pool with multiple hugetlbfs
mount points is, arguably, more arduous than it needs to be. Each quota
would need to be set separately, and the sum would need to be monitored.
To ease the administration, and to help make the way for per-node
control of the static & dynamic hugepage pool, I added a separate
sysctl, nr_overcommit_hugepages. This value serves as a high watermark
for the overall hugepage pool, while nr_hugepages serves as a low
watermark. The boolean sysctl can then be removed, as the condition
nr_overcommit_hugepages > 0
indicates the same administrative setting as
hugetlb_dynamic_pool == 1
Quotas still serve as local enforcement of the size of the pool on a
per-mount basis.
A few caveats:
1) There is a race whereby the global surplus huge page counter is
incremented before a hugepage has allocated. Another process could then
try grow the pool, and fail to convert a surplus huge page to a normal
huge page and instead allocate a fresh huge page. I believe this is
benign, as no memory is leaked (the actual pages are still tracked
correctly) and the counters won't go out of sync.
2) Shrinking the static pool while a surplus is in effect will allow the
number of surplus huge pages to exceed the overcommit value. As long as
this condition holds, however, no more surplus huge pages will be
allowed on the system until one of the two sysctls are increased
sufficiently, or the surplus huge pages go out of use and are freed.
Successfully tested on x86_64 with the current libhugetlbfs snapshot,
modified to use the new sysctl.
Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-12-18 07:20:12 +07:00
|
|
|
/*
|
|
|
|
* We incremented the global counters already
|
|
|
|
*/
|
2010-09-08 08:19:33 +07:00
|
|
|
h->nr_huge_pages_node[r_nid]++;
|
|
|
|
h->surplus_huge_pages_node[r_nid]++;
|
2008-04-28 16:13:06 +07:00
|
|
|
__count_vm_event(HTLB_BUDDY_PGALLOC);
|
hugetlb: introduce nr_overcommit_hugepages sysctl
hugetlb: introduce nr_overcommit_hugepages sysctl
While examining the code to support /proc/sys/vm/hugetlb_dynamic_pool, I
became convinced that having a boolean sysctl was insufficient:
1) To support per-node control of hugepages, I have previously submitted
patches to add a sysfs attribute related to nr_hugepages. However, with
a boolean global value and per-mount quota enforcement constraining the
dynamic pool, adding corresponding control of the dynamic pool on a
per-node basis seems inconsistent to me.
2) Administration of the hugetlb dynamic pool with multiple hugetlbfs
mount points is, arguably, more arduous than it needs to be. Each quota
would need to be set separately, and the sum would need to be monitored.
To ease the administration, and to help make the way for per-node
control of the static & dynamic hugepage pool, I added a separate
sysctl, nr_overcommit_hugepages. This value serves as a high watermark
for the overall hugepage pool, while nr_hugepages serves as a low
watermark. The boolean sysctl can then be removed, as the condition
nr_overcommit_hugepages > 0
indicates the same administrative setting as
hugetlb_dynamic_pool == 1
Quotas still serve as local enforcement of the size of the pool on a
per-mount basis.
A few caveats:
1) There is a race whereby the global surplus huge page counter is
incremented before a hugepage has allocated. Another process could then
try grow the pool, and fail to convert a surplus huge page to a normal
huge page and instead allocate a fresh huge page. I believe this is
benign, as no memory is leaked (the actual pages are still tracked
correctly) and the counters won't go out of sync.
2) Shrinking the static pool while a surplus is in effect will allow the
number of surplus huge pages to exceed the overcommit value. As long as
this condition holds, however, no more surplus huge pages will be
allowed on the system until one of the two sysctls are increased
sufficiently, or the surplus huge pages go out of use and are freed.
Successfully tested on x86_64 with the current libhugetlbfs snapshot,
modified to use the new sysctl.
Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-12-18 07:20:12 +07:00
|
|
|
} else {
|
2008-07-24 11:27:41 +07:00
|
|
|
h->nr_huge_pages--;
|
|
|
|
h->surplus_huge_pages--;
|
2008-04-28 16:13:06 +07:00
|
|
|
__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
|
2007-10-16 15:26:18 +07:00
|
|
|
}
|
hugetlb: introduce nr_overcommit_hugepages sysctl
hugetlb: introduce nr_overcommit_hugepages sysctl
While examining the code to support /proc/sys/vm/hugetlb_dynamic_pool, I
became convinced that having a boolean sysctl was insufficient:
1) To support per-node control of hugepages, I have previously submitted
patches to add a sysfs attribute related to nr_hugepages. However, with
a boolean global value and per-mount quota enforcement constraining the
dynamic pool, adding corresponding control of the dynamic pool on a
per-node basis seems inconsistent to me.
2) Administration of the hugetlb dynamic pool with multiple hugetlbfs
mount points is, arguably, more arduous than it needs to be. Each quota
would need to be set separately, and the sum would need to be monitored.
To ease the administration, and to help make the way for per-node
control of the static & dynamic hugepage pool, I added a separate
sysctl, nr_overcommit_hugepages. This value serves as a high watermark
for the overall hugepage pool, while nr_hugepages serves as a low
watermark. The boolean sysctl can then be removed, as the condition
nr_overcommit_hugepages > 0
indicates the same administrative setting as
hugetlb_dynamic_pool == 1
Quotas still serve as local enforcement of the size of the pool on a
per-mount basis.
A few caveats:
1) There is a race whereby the global surplus huge page counter is
incremented before a hugepage has allocated. Another process could then
try grow the pool, and fail to convert a surplus huge page to a normal
huge page and instead allocate a fresh huge page. I believe this is
benign, as no memory is leaked (the actual pages are still tracked
correctly) and the counters won't go out of sync.
2) Shrinking the static pool while a surplus is in effect will allow the
number of surplus huge pages to exceed the overcommit value. As long as
this condition holds, however, no more surplus huge pages will be
allowed on the system until one of the two sysctls are increased
sufficiently, or the surplus huge pages go out of use and are freed.
Successfully tested on x86_64 with the current libhugetlbfs snapshot,
modified to use the new sysctl.
Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-12-18 07:20:12 +07:00
|
|
|
spin_unlock(&hugetlb_lock);
|
2007-10-16 15:26:18 +07:00
|
|
|
|
|
|
|
return page;
|
|
|
|
}
|
|
|
|
|
2010-09-08 08:19:33 +07:00
|
|
|
/*
|
|
|
|
* This allocation function is useful in the context where vma is irrelevant.
|
|
|
|
* E.g. soft-offlining uses this function because it only cares physical
|
|
|
|
* address of error page.
|
|
|
|
*/
|
|
|
|
struct page *alloc_huge_page_node(struct hstate *h, int nid)
|
|
|
|
{
|
2013-09-12 04:21:51 +07:00
|
|
|
struct page *page = NULL;
|
2010-09-08 08:19:33 +07:00
|
|
|
|
|
|
|
spin_lock(&hugetlb_lock);
|
2013-09-12 04:21:51 +07:00
|
|
|
if (h->free_huge_pages - h->resv_huge_pages > 0)
|
|
|
|
page = dequeue_huge_page_node(h, nid);
|
2010-09-08 08:19:33 +07:00
|
|
|
spin_unlock(&hugetlb_lock);
|
|
|
|
|
2012-08-01 06:42:35 +07:00
|
|
|
if (!page)
|
2010-09-08 08:19:33 +07:00
|
|
|
page = alloc_buddy_huge_page(h, nid);
|
|
|
|
|
|
|
|
return page;
|
|
|
|
}
|
|
|
|
|
2007-10-16 15:26:19 +07:00
|
|
|
/*
|
2011-03-31 08:57:33 +07:00
|
|
|
* Increase the hugetlb pool such that it can accommodate a reservation
|
2007-10-16 15:26:19 +07:00
|
|
|
* of size 'delta'.
|
|
|
|
*/
|
2008-07-24 11:27:41 +07:00
|
|
|
static int gather_surplus_pages(struct hstate *h, int delta)
|
2007-10-16 15:26:19 +07:00
|
|
|
{
|
|
|
|
struct list_head surplus_list;
|
|
|
|
struct page *page, *tmp;
|
|
|
|
int ret, i;
|
|
|
|
int needed, allocated;
|
2012-03-22 06:34:00 +07:00
|
|
|
bool alloc_ok = true;
|
2007-10-16 15:26:19 +07:00
|
|
|
|
2008-07-24 11:27:41 +07:00
|
|
|
needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
|
2008-03-05 05:29:38 +07:00
|
|
|
if (needed <= 0) {
|
2008-07-24 11:27:41 +07:00
|
|
|
h->resv_huge_pages += delta;
|
2007-10-16 15:26:19 +07:00
|
|
|
return 0;
|
2008-03-05 05:29:38 +07:00
|
|
|
}
|
2007-10-16 15:26:19 +07:00
|
|
|
|
|
|
|
allocated = 0;
|
|
|
|
INIT_LIST_HEAD(&surplus_list);
|
|
|
|
|
|
|
|
ret = -ENOMEM;
|
|
|
|
retry:
|
|
|
|
spin_unlock(&hugetlb_lock);
|
|
|
|
for (i = 0; i < needed; i++) {
|
2010-09-08 08:19:33 +07:00
|
|
|
page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
|
2012-03-22 06:34:00 +07:00
|
|
|
if (!page) {
|
|
|
|
alloc_ok = false;
|
|
|
|
break;
|
|
|
|
}
|
2007-10-16 15:26:19 +07:00
|
|
|
list_add(&page->lru, &surplus_list);
|
|
|
|
}
|
2012-03-22 06:34:00 +07:00
|
|
|
allocated += i;
|
2007-10-16 15:26:19 +07:00
|
|
|
|
|
|
|
/*
|
|
|
|
* After retaking hugetlb_lock, we need to recalculate 'needed'
|
|
|
|
* because either resv_huge_pages or free_huge_pages may have changed.
|
|
|
|
*/
|
|
|
|
spin_lock(&hugetlb_lock);
|
2008-07-24 11:27:41 +07:00
|
|
|
needed = (h->resv_huge_pages + delta) -
|
|
|
|
(h->free_huge_pages + allocated);
|
2012-03-22 06:34:00 +07:00
|
|
|
if (needed > 0) {
|
|
|
|
if (alloc_ok)
|
|
|
|
goto retry;
|
|
|
|
/*
|
|
|
|
* We were not able to allocate enough pages to
|
|
|
|
* satisfy the entire reservation so we free what
|
|
|
|
* we've allocated so far.
|
|
|
|
*/
|
|
|
|
goto free;
|
|
|
|
}
|
2007-10-16 15:26:19 +07:00
|
|
|
/*
|
|
|
|
* The surplus_list now contains _at_least_ the number of extra pages
|
2011-03-31 08:57:33 +07:00
|
|
|
* needed to accommodate the reservation. Add the appropriate number
|
2007-10-16 15:26:19 +07:00
|
|
|
* of pages to the hugetlb pool and free the extras back to the buddy
|
2008-03-05 05:29:38 +07:00
|
|
|
* allocator. Commit the entire reservation here to prevent another
|
|
|
|
* process from stealing the pages as they are added to the pool but
|
|
|
|
* before they are reserved.
|
2007-10-16 15:26:19 +07:00
|
|
|
*/
|
|
|
|
needed += allocated;
|
2008-07-24 11:27:41 +07:00
|
|
|
h->resv_huge_pages += delta;
|
2007-10-16 15:26:19 +07:00
|
|
|
ret = 0;
|
2010-09-08 08:19:37 +07:00
|
|
|
|
2008-04-28 16:12:20 +07:00
|
|
|
/* Free the needed pages to the hugetlb pool */
|
2007-10-16 15:26:19 +07:00
|
|
|
list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
|
2008-04-28 16:12:20 +07:00
|
|
|
if ((--needed) < 0)
|
|
|
|
break;
|
2010-09-08 08:19:37 +07:00
|
|
|
/*
|
|
|
|
* This page is now managed by the hugetlb allocator and has
|
|
|
|
* no users -- drop the buddy allocator's reference.
|
|
|
|
*/
|
|
|
|
put_page_testzero(page);
|
|
|
|
VM_BUG_ON(page_count(page));
|
2008-07-24 11:27:41 +07:00
|
|
|
enqueue_huge_page(h, page);
|
2008-04-28 16:12:20 +07:00
|
|
|
}
|
2012-03-22 06:34:00 +07:00
|
|
|
free:
|
2011-12-29 06:57:16 +07:00
|
|
|
spin_unlock(&hugetlb_lock);
|
2008-04-28 16:12:20 +07:00
|
|
|
|
|
|
|
/* Free unnecessary surplus pages to the buddy allocator */
|
2013-09-12 04:21:02 +07:00
|
|
|
list_for_each_entry_safe(page, tmp, &surplus_list, lru)
|
|
|
|
put_page(page);
|
2010-09-08 08:19:37 +07:00
|
|
|
spin_lock(&hugetlb_lock);
|
2007-10-16 15:26:19 +07:00
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* When releasing a hugetlb pool reservation, any surplus pages that were
|
|
|
|
* allocated to satisfy the reservation must be explicitly freed if they were
|
|
|
|
* never used.
|
2009-09-22 07:01:23 +07:00
|
|
|
* Called with hugetlb_lock held.
|
2007-10-16 15:26:19 +07:00
|
|
|
*/
|
2008-07-24 11:27:41 +07:00
|
|
|
static void return_unused_surplus_pages(struct hstate *h,
|
|
|
|
unsigned long unused_resv_pages)
|
2007-10-16 15:26:19 +07:00
|
|
|
{
|
|
|
|
unsigned long nr_pages;
|
|
|
|
|
2008-03-05 05:29:38 +07:00
|
|
|
/* Uncommit the reservation */
|
2008-07-24 11:27:41 +07:00
|
|
|
h->resv_huge_pages -= unused_resv_pages;
|
2008-03-05 05:29:38 +07:00
|
|
|
|
2008-07-24 11:27:47 +07:00
|
|
|
/* Cannot return gigantic pages currently */
|
|
|
|
if (h->order >= MAX_ORDER)
|
|
|
|
return;
|
|
|
|
|
2008-07-24 11:27:41 +07:00
|
|
|
nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
|
2007-10-16 15:26:19 +07:00
|
|
|
|
2009-09-22 07:01:23 +07:00
|
|
|
/*
|
|
|
|
* We want to release as many surplus pages as possible, spread
|
2009-12-15 08:58:32 +07:00
|
|
|
* evenly across all nodes with memory. Iterate across these nodes
|
|
|
|
* until we can no longer free unreserved surplus pages. This occurs
|
|
|
|
* when the nodes with surplus pages have no free pages.
|
|
|
|
* free_pool_huge_page() will balance the the freed pages across the
|
|
|
|
* on-line nodes with memory and will handle the hstate accounting.
|
2009-09-22 07:01:23 +07:00
|
|
|
*/
|
|
|
|
while (nr_pages--) {
|
2012-12-13 04:51:36 +07:00
|
|
|
if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
|
2009-09-22 07:01:23 +07:00
|
|
|
break;
|
2007-10-16 15:26:19 +07:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2008-07-24 11:27:30 +07:00
|
|
|
/*
|
|
|
|
* Determine if the huge page at addr within the vma has an associated
|
|
|
|
* reservation. Where it does not we will need to logically increase
|
hugepages: fix use after free bug in "quota" handling
hugetlbfs_{get,put}_quota() are badly named. They don't interact with the
general quota handling code, and they don't much resemble its behaviour.
Rather than being about maintaining limits on on-disk block usage by
particular users, they are instead about maintaining limits on in-memory
page usage (including anonymous MAP_PRIVATE copied-on-write pages)
associated with a particular hugetlbfs filesystem instance.
Worse, they work by having callbacks to the hugetlbfs filesystem code from
the low-level page handling code, in particular from free_huge_page().
This is a layering violation of itself, but more importantly, if the
kernel does a get_user_pages() on hugepages (which can happen from KVM
amongst others), then the free_huge_page() can be delayed until after the
associated inode has already been freed. If an unmount occurs at the
wrong time, even the hugetlbfs superblock where the "quota" limits are
stored may have been freed.
Andrew Barry proposed a patch to fix this by having hugepages, instead of
storing a pointer to their address_space and reaching the superblock from
there, had the hugepages store pointers directly to the superblock,
bumping the reference count as appropriate to avoid it being freed.
Andrew Morton rejected that version, however, on the grounds that it made
the existing layering violation worse.
This is a reworked version of Andrew's patch, which removes the extra, and
some of the existing, layering violation. It works by introducing the
concept of a hugepage "subpool" at the lower hugepage mm layer - that is a
finite logical pool of hugepages to allocate from. hugetlbfs now creates
a subpool for each filesystem instance with a page limit set, and a
pointer to the subpool gets added to each allocated hugepage, instead of
the address_space pointer used now. The subpool has its own lifetime and
is only freed once all pages in it _and_ all other references to it (i.e.
superblocks) are gone.
subpools are optional - a NULL subpool pointer is taken by the code to
mean that no subpool limits are in effect.
Previous discussion of this bug found in: "Fix refcounting in hugetlbfs
quota handling.". See: https://lkml.org/lkml/2011/8/11/28 or
http://marc.info/?l=linux-mm&m=126928970510627&w=1
v2: Fixed a bug spotted by Hillf Danton, and removed the extra parameter to
alloc_huge_page() - since it already takes the vma, it is not necessary.
Signed-off-by: Andrew Barry <abarry@cray.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22 06:34:12 +07:00
|
|
|
* reservation and actually increase subpool usage before an allocation
|
|
|
|
* can occur. Where any new reservation would be required the
|
|
|
|
* reservation change is prepared, but not committed. Once the page
|
|
|
|
* has been allocated from the subpool and instantiated the change should
|
|
|
|
* be committed via vma_commit_reservation. No action is required on
|
|
|
|
* failure.
|
2008-07-24 11:27:30 +07:00
|
|
|
*/
|
2009-04-01 05:23:15 +07:00
|
|
|
static long vma_needs_reservation(struct hstate *h,
|
2008-07-24 11:27:41 +07:00
|
|
|
struct vm_area_struct *vma, unsigned long addr)
|
2008-07-24 11:27:30 +07:00
|
|
|
{
|
|
|
|
struct address_space *mapping = vma->vm_file->f_mapping;
|
|
|
|
struct inode *inode = mapping->host;
|
|
|
|
|
2009-05-29 04:34:40 +07:00
|
|
|
if (vma->vm_flags & VM_MAYSHARE) {
|
2008-07-24 11:27:41 +07:00
|
|
|
pgoff_t idx = vma_hugecache_offset(h, vma, addr);
|
2008-07-24 11:27:30 +07:00
|
|
|
return region_chg(&inode->i_mapping->private_list,
|
|
|
|
idx, idx + 1);
|
|
|
|
|
2008-07-24 11:27:32 +07:00
|
|
|
} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
|
|
|
|
return 1;
|
2008-07-24 11:27:30 +07:00
|
|
|
|
2008-07-24 11:27:32 +07:00
|
|
|
} else {
|
2009-04-01 05:23:15 +07:00
|
|
|
long err;
|
2008-07-24 11:27:41 +07:00
|
|
|
pgoff_t idx = vma_hugecache_offset(h, vma, addr);
|
2013-09-12 04:21:53 +07:00
|
|
|
struct resv_map *resv = vma_resv_map(vma);
|
2008-07-24 11:27:32 +07:00
|
|
|
|
2013-09-12 04:21:53 +07:00
|
|
|
err = region_chg(&resv->regions, idx, idx + 1);
|
2008-07-24 11:27:32 +07:00
|
|
|
if (err < 0)
|
|
|
|
return err;
|
|
|
|
return 0;
|
|
|
|
}
|
2008-07-24 11:27:30 +07:00
|
|
|
}
|
2008-07-24 11:27:41 +07:00
|
|
|
static void vma_commit_reservation(struct hstate *h,
|
|
|
|
struct vm_area_struct *vma, unsigned long addr)
|
2008-07-24 11:27:30 +07:00
|
|
|
{
|
|
|
|
struct address_space *mapping = vma->vm_file->f_mapping;
|
|
|
|
struct inode *inode = mapping->host;
|
|
|
|
|
2009-05-29 04:34:40 +07:00
|
|
|
if (vma->vm_flags & VM_MAYSHARE) {
|
2008-07-24 11:27:41 +07:00
|
|
|
pgoff_t idx = vma_hugecache_offset(h, vma, addr);
|
2008-07-24 11:27:30 +07:00
|
|
|
region_add(&inode->i_mapping->private_list, idx, idx + 1);
|
2008-07-24 11:27:32 +07:00
|
|
|
|
|
|
|
} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
|
2008-07-24 11:27:41 +07:00
|
|
|
pgoff_t idx = vma_hugecache_offset(h, vma, addr);
|
2013-09-12 04:21:53 +07:00
|
|
|
struct resv_map *resv = vma_resv_map(vma);
|
2008-07-24 11:27:32 +07:00
|
|
|
|
|
|
|
/* Mark this page used in the map. */
|
2013-09-12 04:21:53 +07:00
|
|
|
region_add(&resv->regions, idx, idx + 1);
|
2008-07-24 11:27:30 +07:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2008-07-24 11:27:23 +07:00
|
|
|
static struct page *alloc_huge_page(struct vm_area_struct *vma,
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 11:27:25 +07:00
|
|
|
unsigned long addr, int avoid_reserve)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
hugepages: fix use after free bug in "quota" handling
hugetlbfs_{get,put}_quota() are badly named. They don't interact with the
general quota handling code, and they don't much resemble its behaviour.
Rather than being about maintaining limits on on-disk block usage by
particular users, they are instead about maintaining limits on in-memory
page usage (including anonymous MAP_PRIVATE copied-on-write pages)
associated with a particular hugetlbfs filesystem instance.
Worse, they work by having callbacks to the hugetlbfs filesystem code from
the low-level page handling code, in particular from free_huge_page().
This is a layering violation of itself, but more importantly, if the
kernel does a get_user_pages() on hugepages (which can happen from KVM
amongst others), then the free_huge_page() can be delayed until after the
associated inode has already been freed. If an unmount occurs at the
wrong time, even the hugetlbfs superblock where the "quota" limits are
stored may have been freed.
Andrew Barry proposed a patch to fix this by having hugepages, instead of
storing a pointer to their address_space and reaching the superblock from
there, had the hugepages store pointers directly to the superblock,
bumping the reference count as appropriate to avoid it being freed.
Andrew Morton rejected that version, however, on the grounds that it made
the existing layering violation worse.
This is a reworked version of Andrew's patch, which removes the extra, and
some of the existing, layering violation. It works by introducing the
concept of a hugepage "subpool" at the lower hugepage mm layer - that is a
finite logical pool of hugepages to allocate from. hugetlbfs now creates
a subpool for each filesystem instance with a page limit set, and a
pointer to the subpool gets added to each allocated hugepage, instead of
the address_space pointer used now. The subpool has its own lifetime and
is only freed once all pages in it _and_ all other references to it (i.e.
superblocks) are gone.
subpools are optional - a NULL subpool pointer is taken by the code to
mean that no subpool limits are in effect.
Previous discussion of this bug found in: "Fix refcounting in hugetlbfs
quota handling.". See: https://lkml.org/lkml/2011/8/11/28 or
http://marc.info/?l=linux-mm&m=126928970510627&w=1
v2: Fixed a bug spotted by Hillf Danton, and removed the extra parameter to
alloc_huge_page() - since it already takes the vma, it is not necessary.
Signed-off-by: Andrew Barry <abarry@cray.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22 06:34:12 +07:00
|
|
|
struct hugepage_subpool *spool = subpool_vma(vma);
|
2008-07-24 11:27:41 +07:00
|
|
|
struct hstate *h = hstate_vma(vma);
|
2007-11-15 07:59:37 +07:00
|
|
|
struct page *page;
|
2009-04-01 05:23:15 +07:00
|
|
|
long chg;
|
2012-08-01 06:42:18 +07:00
|
|
|
int ret, idx;
|
|
|
|
struct hugetlb_cgroup *h_cg;
|
2008-07-24 11:27:23 +07:00
|
|
|
|
2012-08-01 06:42:18 +07:00
|
|
|
idx = hstate_index(h);
|
2008-07-24 11:27:23 +07:00
|
|
|
/*
|
hugepages: fix use after free bug in "quota" handling
hugetlbfs_{get,put}_quota() are badly named. They don't interact with the
general quota handling code, and they don't much resemble its behaviour.
Rather than being about maintaining limits on on-disk block usage by
particular users, they are instead about maintaining limits on in-memory
page usage (including anonymous MAP_PRIVATE copied-on-write pages)
associated with a particular hugetlbfs filesystem instance.
Worse, they work by having callbacks to the hugetlbfs filesystem code from
the low-level page handling code, in particular from free_huge_page().
This is a layering violation of itself, but more importantly, if the
kernel does a get_user_pages() on hugepages (which can happen from KVM
amongst others), then the free_huge_page() can be delayed until after the
associated inode has already been freed. If an unmount occurs at the
wrong time, even the hugetlbfs superblock where the "quota" limits are
stored may have been freed.
Andrew Barry proposed a patch to fix this by having hugepages, instead of
storing a pointer to their address_space and reaching the superblock from
there, had the hugepages store pointers directly to the superblock,
bumping the reference count as appropriate to avoid it being freed.
Andrew Morton rejected that version, however, on the grounds that it made
the existing layering violation worse.
This is a reworked version of Andrew's patch, which removes the extra, and
some of the existing, layering violation. It works by introducing the
concept of a hugepage "subpool" at the lower hugepage mm layer - that is a
finite logical pool of hugepages to allocate from. hugetlbfs now creates
a subpool for each filesystem instance with a page limit set, and a
pointer to the subpool gets added to each allocated hugepage, instead of
the address_space pointer used now. The subpool has its own lifetime and
is only freed once all pages in it _and_ all other references to it (i.e.
superblocks) are gone.
subpools are optional - a NULL subpool pointer is taken by the code to
mean that no subpool limits are in effect.
Previous discussion of this bug found in: "Fix refcounting in hugetlbfs
quota handling.". See: https://lkml.org/lkml/2011/8/11/28 or
http://marc.info/?l=linux-mm&m=126928970510627&w=1
v2: Fixed a bug spotted by Hillf Danton, and removed the extra parameter to
alloc_huge_page() - since it already takes the vma, it is not necessary.
Signed-off-by: Andrew Barry <abarry@cray.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22 06:34:12 +07:00
|
|
|
* Processes that did not create the mapping will have no
|
|
|
|
* reserves and will not have accounted against subpool
|
|
|
|
* limit. Check that the subpool limit can be made before
|
|
|
|
* satisfying the allocation MAP_NORESERVE mappings may also
|
|
|
|
* need pages and subpool limit allocated allocated if no reserve
|
|
|
|
* mapping overlaps.
|
2008-07-24 11:27:23 +07:00
|
|
|
*/
|
2008-07-24 11:27:41 +07:00
|
|
|
chg = vma_needs_reservation(h, vma, addr);
|
2008-07-24 11:27:30 +07:00
|
|
|
if (chg < 0)
|
2012-08-01 06:41:57 +07:00
|
|
|
return ERR_PTR(-ENOMEM);
|
2013-09-12 04:21:54 +07:00
|
|
|
if (chg || avoid_reserve)
|
|
|
|
if (hugepage_subpool_get_pages(spool, 1))
|
2012-08-01 06:41:57 +07:00
|
|
|
return ERR_PTR(-ENOSPC);
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2012-08-01 06:42:18 +07:00
|
|
|
ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
|
|
|
|
if (ret) {
|
2013-09-12 04:21:54 +07:00
|
|
|
if (chg || avoid_reserve)
|
|
|
|
hugepage_subpool_put_pages(spool, 1);
|
2012-08-01 06:42:18 +07:00
|
|
|
return ERR_PTR(-ENOSPC);
|
|
|
|
}
|
2005-04-17 05:20:36 +07:00
|
|
|
spin_lock(&hugetlb_lock);
|
mm, hugetlb: decrement reserve count if VM_NORESERVE alloc page cache
If a vma with VM_NORESERVE allocate a new page for page cache, we should
check whether this area is reserved or not. If this address is already
reserved by other process(in case of chg == 0), we should decrement
reserve count, because this allocated page will go into page cache and
currently, there is no way to know that this page comes from reserved pool
or not when releasing inode. This may introduce over-counting problem to
reserved count. With following example code, you can easily reproduce
this situation.
Assume 2MB, nr_hugepages = 100
size = 20 * MB;
flag = MAP_SHARED;
p = mmap(NULL, size, PROT_READ|PROT_WRITE, flag, fd, 0);
if (p == MAP_FAILED) {
fprintf(stderr, "mmap() failed: %s\n", strerror(errno));
return -1;
}
flag = MAP_SHARED | MAP_NORESERVE;
q = mmap(NULL, size, PROT_READ|PROT_WRITE, flag, fd, 0);
if (q == MAP_FAILED) {
fprintf(stderr, "mmap() failed: %s\n", strerror(errno));
}
q[0] = 'c';
After finish the program, run 'cat /proc/meminfo'. You can see below
result.
HugePages_Free: 100
HugePages_Rsvd: 1
To fix this, we should check our mapping type and tracked region. If our
mapping is VM_NORESERVE, VM_MAYSHARE and chg is 0, this imply that current
allocated page will go into page cache which is already reserved region
when mapping is created. In this case, we should decrease reserve count.
As implementing above, this patch solve the problem.
[akpm@linux-foundation.org: fix spelling in comment]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Hillf Danton <dhillf@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Davidlohr Bueso <davidlohr.bueso@hp.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 04:21:18 +07:00
|
|
|
page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
|
2013-09-12 04:20:58 +07:00
|
|
|
if (!page) {
|
2012-08-01 06:42:35 +07:00
|
|
|
spin_unlock(&hugetlb_lock);
|
2010-09-08 08:19:33 +07:00
|
|
|
page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
|
2008-01-14 15:55:19 +07:00
|
|
|
if (!page) {
|
2012-08-01 06:42:18 +07:00
|
|
|
hugetlb_cgroup_uncharge_cgroup(idx,
|
|
|
|
pages_per_huge_page(h),
|
|
|
|
h_cg);
|
2013-09-12 04:21:54 +07:00
|
|
|
if (chg || avoid_reserve)
|
|
|
|
hugepage_subpool_put_pages(spool, 1);
|
2012-08-01 06:41:57 +07:00
|
|
|
return ERR_PTR(-ENOSPC);
|
2008-01-14 15:55:19 +07:00
|
|
|
}
|
2012-08-01 06:42:32 +07:00
|
|
|
spin_lock(&hugetlb_lock);
|
|
|
|
list_move(&page->lru, &h->hugepage_activelist);
|
2013-09-12 04:20:58 +07:00
|
|
|
/* Fall through */
|
2008-01-14 15:55:19 +07:00
|
|
|
}
|
2013-09-12 04:20:58 +07:00
|
|
|
hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
|
|
|
|
spin_unlock(&hugetlb_lock);
|
2007-11-15 07:59:37 +07:00
|
|
|
|
hugepages: fix use after free bug in "quota" handling
hugetlbfs_{get,put}_quota() are badly named. They don't interact with the
general quota handling code, and they don't much resemble its behaviour.
Rather than being about maintaining limits on on-disk block usage by
particular users, they are instead about maintaining limits on in-memory
page usage (including anonymous MAP_PRIVATE copied-on-write pages)
associated with a particular hugetlbfs filesystem instance.
Worse, they work by having callbacks to the hugetlbfs filesystem code from
the low-level page handling code, in particular from free_huge_page().
This is a layering violation of itself, but more importantly, if the
kernel does a get_user_pages() on hugepages (which can happen from KVM
amongst others), then the free_huge_page() can be delayed until after the
associated inode has already been freed. If an unmount occurs at the
wrong time, even the hugetlbfs superblock where the "quota" limits are
stored may have been freed.
Andrew Barry proposed a patch to fix this by having hugepages, instead of
storing a pointer to their address_space and reaching the superblock from
there, had the hugepages store pointers directly to the superblock,
bumping the reference count as appropriate to avoid it being freed.
Andrew Morton rejected that version, however, on the grounds that it made
the existing layering violation worse.
This is a reworked version of Andrew's patch, which removes the extra, and
some of the existing, layering violation. It works by introducing the
concept of a hugepage "subpool" at the lower hugepage mm layer - that is a
finite logical pool of hugepages to allocate from. hugetlbfs now creates
a subpool for each filesystem instance with a page limit set, and a
pointer to the subpool gets added to each allocated hugepage, instead of
the address_space pointer used now. The subpool has its own lifetime and
is only freed once all pages in it _and_ all other references to it (i.e.
superblocks) are gone.
subpools are optional - a NULL subpool pointer is taken by the code to
mean that no subpool limits are in effect.
Previous discussion of this bug found in: "Fix refcounting in hugetlbfs
quota handling.". See: https://lkml.org/lkml/2011/8/11/28 or
http://marc.info/?l=linux-mm&m=126928970510627&w=1
v2: Fixed a bug spotted by Hillf Danton, and removed the extra parameter to
alloc_huge_page() - since it already takes the vma, it is not necessary.
Signed-off-by: Andrew Barry <abarry@cray.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22 06:34:12 +07:00
|
|
|
set_page_private(page, (unsigned long)spool);
|
2007-11-15 07:59:42 +07:00
|
|
|
|
2008-07-24 11:27:41 +07:00
|
|
|
vma_commit_reservation(h, vma, addr);
|
2007-11-15 07:59:42 +07:00
|
|
|
return page;
|
[PATCH] hugepage: Strict page reservation for hugepage inodes
These days, hugepages are demand-allocated at first fault time. There's a
somewhat dubious (and racy) heuristic when making a new mmap() to check if
there are enough available hugepages to fully satisfy that mapping.
A particularly obvious case where the heuristic breaks down is where a
process maps its hugepages not as a single chunk, but as a bunch of
individually mmap()ed (or shmat()ed) blocks without touching and
instantiating the pages in between allocations. In this case the size of
each block is compared against the total number of available hugepages.
It's thus easy for the process to become overcommitted, because each block
mapping will succeed, although the total number of hugepages required by
all blocks exceeds the number available. In particular, this defeats such
a program which will detect a mapping failure and adjust its hugepage usage
downward accordingly.
The patch below addresses this problem, by strictly reserving a number of
physical hugepages for hugepage inodes which have been mapped, but not
instatiated. MAP_SHARED mappings are thus "safe" - they will fail on
mmap(), not later with an OOM SIGKILL. MAP_PRIVATE mappings can still
trigger an OOM. (Actually SHARED mappings can technically still OOM, but
only if the sysadmin explicitly reduces the hugepage pool between mapping
and instantiation)
This patch appears to address the problem at hand - it allows DB2 to start
correctly, for instance, which previously suffered the failure described
above.
This patch causes no regressions on the libhugetblfs testsuite, and makes a
test (designed to catch this problem) pass which previously failed (ppc64,
POWER5).
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-22 15:08:55 +07:00
|
|
|
}
|
|
|
|
|
2013-09-12 04:22:06 +07:00
|
|
|
/*
|
|
|
|
* alloc_huge_page()'s wrapper which simply returns the page if allocation
|
|
|
|
* succeeds, otherwise NULL. This function is called from new_vma_page(),
|
|
|
|
* where no ERR_VALUE is expected to be returned.
|
|
|
|
*/
|
|
|
|
struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
|
|
|
|
unsigned long addr, int avoid_reserve)
|
|
|
|
{
|
|
|
|
struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
|
|
|
|
if (IS_ERR(page))
|
|
|
|
page = NULL;
|
|
|
|
return page;
|
|
|
|
}
|
|
|
|
|
2009-01-07 05:40:33 +07:00
|
|
|
int __weak alloc_bootmem_huge_page(struct hstate *h)
|
2008-07-24 11:27:47 +07:00
|
|
|
{
|
|
|
|
struct huge_bootmem_page *m;
|
2013-09-12 04:21:00 +07:00
|
|
|
int nr_nodes, node;
|
2008-07-24 11:27:47 +07:00
|
|
|
|
2013-09-12 04:21:00 +07:00
|
|
|
for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
|
2008-07-24 11:27:47 +07:00
|
|
|
void *addr;
|
|
|
|
|
2013-09-12 04:21:00 +07:00
|
|
|
addr = __alloc_bootmem_node_nopanic(NODE_DATA(node),
|
2008-07-24 11:27:47 +07:00
|
|
|
huge_page_size(h), huge_page_size(h), 0);
|
|
|
|
|
|
|
|
if (addr) {
|
|
|
|
/*
|
|
|
|
* Use the beginning of the huge page to store the
|
|
|
|
* huge_bootmem_page struct (until gather_bootmem
|
|
|
|
* puts them into the mem_map).
|
|
|
|
*/
|
|
|
|
m = addr;
|
2009-01-07 05:40:33 +07:00
|
|
|
goto found;
|
2008-07-24 11:27:47 +07:00
|
|
|
}
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
found:
|
|
|
|
BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
|
|
|
|
/* Put them into a private list first because mem_map is not up yet */
|
|
|
|
list_add(&m->list, &huge_boot_pages);
|
|
|
|
m->hstate = h;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
2008-11-07 03:53:27 +07:00
|
|
|
static void prep_compound_huge_page(struct page *page, int order)
|
|
|
|
{
|
|
|
|
if (unlikely(order > (MAX_ORDER - 1)))
|
|
|
|
prep_compound_gigantic_page(page, order);
|
|
|
|
else
|
|
|
|
prep_compound_page(page, order);
|
|
|
|
}
|
|
|
|
|
2008-07-24 11:27:47 +07:00
|
|
|
/* Put bootmem huge pages into the standard lists after mem_map is up */
|
|
|
|
static void __init gather_bootmem_prealloc(void)
|
|
|
|
{
|
|
|
|
struct huge_bootmem_page *m;
|
|
|
|
|
|
|
|
list_for_each_entry(m, &huge_boot_pages, list) {
|
|
|
|
struct hstate *h = m->hstate;
|
2011-07-26 07:11:50 +07:00
|
|
|
struct page *page;
|
|
|
|
|
|
|
|
#ifdef CONFIG_HIGHMEM
|
|
|
|
page = pfn_to_page(m->phys >> PAGE_SHIFT);
|
|
|
|
free_bootmem_late((unsigned long)m,
|
|
|
|
sizeof(struct huge_bootmem_page));
|
|
|
|
#else
|
|
|
|
page = virt_to_page(m);
|
|
|
|
#endif
|
2008-07-24 11:27:47 +07:00
|
|
|
WARN_ON(page_count(page) != 1);
|
2008-11-07 03:53:27 +07:00
|
|
|
prep_compound_huge_page(page, h->order);
|
2013-10-17 03:46:56 +07:00
|
|
|
WARN_ON(PageReserved(page));
|
2008-07-24 11:27:47 +07:00
|
|
|
prep_new_huge_page(h, page, page_to_nid(page));
|
mm: fix negative commitlimit when gigantic hugepages are allocated
When 1GB hugepages are allocated on a system, free(1) reports less
available memory than what really is installed in the box. Also, if the
total size of hugepages allocated on a system is over half of the total
memory size, CommitLimit becomes a negative number.
The problem is that gigantic hugepages (order > MAX_ORDER) can only be
allocated at boot with bootmem, thus its frames are not accounted to
'totalram_pages'. However, they are accounted to hugetlb_total_pages()
What happens to turn CommitLimit into a negative number is this
calculation, in fs/proc/meminfo.c:
allowed = ((totalram_pages - hugetlb_total_pages())
* sysctl_overcommit_ratio / 100) + total_swap_pages;
A similar calculation occurs in __vm_enough_memory() in mm/mmap.c.
Also, every vm statistic which depends on 'totalram_pages' will render
confusing values, as if system were 'missing' some part of its memory.
Impact of this bug:
When gigantic hugepages are allocated and sysctl_overcommit_memory ==
OVERCOMMIT_NEVER. In a such situation, __vm_enough_memory() goes through
the mentioned 'allowed' calculation and might end up mistakenly returning
-ENOMEM, thus forcing the system to start reclaiming pages earlier than it
would be ususal, and this could cause detrimental impact to overall
system's performance, depending on the workload.
Besides the aforementioned scenario, I can only think of this causing
annoyances with memory reports from /proc/meminfo and free(1).
[akpm@linux-foundation.org: standardize comment layout]
Reported-by: Russ Anderson <rja@sgi.com>
Signed-off-by: Rafael Aquini <aquini@linux.com>
Acked-by: Russ Anderson <rja@sgi.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-06-16 05:08:39 +07:00
|
|
|
/*
|
|
|
|
* If we had gigantic hugepages allocated at boot time, we need
|
|
|
|
* to restore the 'stolen' pages to totalram_pages in order to
|
|
|
|
* fix confusing memory reports from free(1) and another
|
|
|
|
* side-effects, like CommitLimit going negative.
|
|
|
|
*/
|
|
|
|
if (h->order > (MAX_ORDER - 1))
|
2013-07-04 05:03:21 +07:00
|
|
|
adjust_managed_page_count(page, 1 << h->order);
|
2008-07-24 11:27:47 +07:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2008-07-24 11:27:48 +07:00
|
|
|
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
unsigned long i;
|
2008-07-24 11:27:41 +07:00
|
|
|
|
2008-07-24 11:27:42 +07:00
|
|
|
for (i = 0; i < h->max_huge_pages; ++i) {
|
2008-07-24 11:27:47 +07:00
|
|
|
if (h->order >= MAX_ORDER) {
|
|
|
|
if (!alloc_bootmem_huge_page(h))
|
|
|
|
break;
|
2009-12-15 08:58:32 +07:00
|
|
|
} else if (!alloc_fresh_huge_page(h,
|
2012-12-13 04:51:36 +07:00
|
|
|
&node_states[N_MEMORY]))
|
2005-04-17 05:20:36 +07:00
|
|
|
break;
|
|
|
|
}
|
2008-07-24 11:27:48 +07:00
|
|
|
h->max_huge_pages = i;
|
2008-07-24 11:27:42 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
static void __init hugetlb_init_hstates(void)
|
|
|
|
{
|
|
|
|
struct hstate *h;
|
|
|
|
|
|
|
|
for_each_hstate(h) {
|
2008-07-24 11:27:48 +07:00
|
|
|
/* oversize hugepages were init'ed in early boot */
|
|
|
|
if (h->order < MAX_ORDER)
|
|
|
|
hugetlb_hstate_alloc_pages(h);
|
2008-07-24 11:27:42 +07:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2008-07-24 11:27:49 +07:00
|
|
|
static char * __init memfmt(char *buf, unsigned long n)
|
|
|
|
{
|
|
|
|
if (n >= (1UL << 30))
|
|
|
|
sprintf(buf, "%lu GB", n >> 30);
|
|
|
|
else if (n >= (1UL << 20))
|
|
|
|
sprintf(buf, "%lu MB", n >> 20);
|
|
|
|
else
|
|
|
|
sprintf(buf, "%lu KB", n >> 10);
|
|
|
|
return buf;
|
|
|
|
}
|
|
|
|
|
2008-07-24 11:27:42 +07:00
|
|
|
static void __init report_hugepages(void)
|
|
|
|
{
|
|
|
|
struct hstate *h;
|
|
|
|
|
|
|
|
for_each_hstate(h) {
|
2008-07-24 11:27:49 +07:00
|
|
|
char buf[32];
|
2013-02-23 07:32:08 +07:00
|
|
|
pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
|
2008-07-24 11:27:49 +07:00
|
|
|
memfmt(buf, huge_page_size(h)),
|
|
|
|
h->free_huge_pages);
|
2008-07-24 11:27:42 +07:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2005-04-17 05:20:36 +07:00
|
|
|
#ifdef CONFIG_HIGHMEM
|
2009-12-15 08:58:16 +07:00
|
|
|
static void try_to_free_low(struct hstate *h, unsigned long count,
|
|
|
|
nodemask_t *nodes_allowed)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
2006-09-26 13:31:55 +07:00
|
|
|
int i;
|
|
|
|
|
2008-07-24 11:27:47 +07:00
|
|
|
if (h->order >= MAX_ORDER)
|
|
|
|
return;
|
|
|
|
|
2009-12-15 08:58:16 +07:00
|
|
|
for_each_node_mask(i, *nodes_allowed) {
|
2005-04-17 05:20:36 +07:00
|
|
|
struct page *page, *next;
|
2008-07-24 11:27:41 +07:00
|
|
|
struct list_head *freel = &h->hugepage_freelists[i];
|
|
|
|
list_for_each_entry_safe(page, next, freel, lru) {
|
|
|
|
if (count >= h->nr_huge_pages)
|
2007-10-16 15:26:23 +07:00
|
|
|
return;
|
2005-04-17 05:20:36 +07:00
|
|
|
if (PageHighMem(page))
|
|
|
|
continue;
|
|
|
|
list_del(&page->lru);
|
2008-07-24 11:27:42 +07:00
|
|
|
update_and_free_page(h, page);
|
2008-07-24 11:27:41 +07:00
|
|
|
h->free_huge_pages--;
|
|
|
|
h->free_huge_pages_node[page_to_nid(page)]--;
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#else
|
2009-12-15 08:58:16 +07:00
|
|
|
static inline void try_to_free_low(struct hstate *h, unsigned long count,
|
|
|
|
nodemask_t *nodes_allowed)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
mm: introduce PageHuge() for testing huge/gigantic pages
A series of patches to enhance the /proc/pagemap interface and to add a
userspace executable which can be used to present the pagemap data.
Export 10 more flags to end users (and more for kernel developers):
11. KPF_MMAP (pseudo flag) memory mapped page
12. KPF_ANON (pseudo flag) memory mapped page (anonymous)
13. KPF_SWAPCACHE page is in swap cache
14. KPF_SWAPBACKED page is swap/RAM backed
15. KPF_COMPOUND_HEAD (*)
16. KPF_COMPOUND_TAIL (*)
17. KPF_HUGE hugeTLB pages
18. KPF_UNEVICTABLE page is in the unevictable LRU list
19. KPF_HWPOISON hardware detected corruption
20. KPF_NOPAGE (pseudo flag) no page frame at the address
(*) For compound pages, exporting _both_ head/tail info enables
users to tell where a compound page starts/ends, and its order.
a simple demo of the page-types tool
# ./page-types -h
page-types [options]
-r|--raw Raw mode, for kernel developers
-a|--addr addr-spec Walk a range of pages
-b|--bits bits-spec Walk pages with specified bits
-l|--list Show page details in ranges
-L|--list-each Show page details one by one
-N|--no-summary Don't show summay info
-h|--help Show this usage message
addr-spec:
N one page at offset N (unit: pages)
N+M pages range from N to N+M-1
N,M pages range from N to M-1
N, pages range from N to end
,M pages range from 0 to M
bits-spec:
bit1,bit2 (flags & (bit1|bit2)) != 0
bit1,bit2=bit1 (flags & (bit1|bit2)) == bit1
bit1,~bit2 (flags & (bit1|bit2)) == bit1
=bit1,bit2 flags == (bit1|bit2)
bit-names:
locked error referenced uptodate
dirty lru active slab
writeback reclaim buddy mmap
anonymous swapcache swapbacked compound_head
compound_tail huge unevictable hwpoison
nopage reserved(r) mlocked(r) mappedtodisk(r)
private(r) private_2(r) owner_private(r) arch(r)
uncached(r) readahead(o) slob_free(o) slub_frozen(o)
slub_debug(o)
(r) raw mode bits (o) overloaded bits
# ./page-types
flags page-count MB symbolic-flags long-symbolic-flags
0x0000000000000000 487369 1903 _________________________________
0x0000000000000014 5 0 __R_D____________________________ referenced,dirty
0x0000000000000020 1 0 _____l___________________________ lru
0x0000000000000024 34 0 __R__l___________________________ referenced,lru
0x0000000000000028 3838 14 ___U_l___________________________ uptodate,lru
0x0001000000000028 48 0 ___U_l_______________________I___ uptodate,lru,readahead
0x000000000000002c 6478 25 __RU_l___________________________ referenced,uptodate,lru
0x000100000000002c 47 0 __RU_l_______________________I___ referenced,uptodate,lru,readahead
0x0000000000000040 8344 32 ______A__________________________ active
0x0000000000000060 1 0 _____lA__________________________ lru,active
0x0000000000000068 348 1 ___U_lA__________________________ uptodate,lru,active
0x0001000000000068 12 0 ___U_lA______________________I___ uptodate,lru,active,readahead
0x000000000000006c 988 3 __RU_lA__________________________ referenced,uptodate,lru,active
0x000100000000006c 48 0 __RU_lA______________________I___ referenced,uptodate,lru,active,readahead
0x0000000000004078 1 0 ___UDlA_______b__________________ uptodate,dirty,lru,active,swapbacked
0x000000000000407c 34 0 __RUDlA_______b__________________ referenced,uptodate,dirty,lru,active,swapbacked
0x0000000000000400 503 1 __________B______________________ buddy
0x0000000000000804 1 0 __R________M_____________________ referenced,mmap
0x0000000000000828 1029 4 ___U_l_____M_____________________ uptodate,lru,mmap
0x0001000000000828 43 0 ___U_l_____M_________________I___ uptodate,lru,mmap,readahead
0x000000000000082c 382 1 __RU_l_____M_____________________ referenced,uptodate,lru,mmap
0x000100000000082c 12 0 __RU_l_____M_________________I___ referenced,uptodate,lru,mmap,readahead
0x0000000000000868 192 0 ___U_lA____M_____________________ uptodate,lru,active,mmap
0x0001000000000868 12 0 ___U_lA____M_________________I___ uptodate,lru,active,mmap,readahead
0x000000000000086c 800 3 __RU_lA____M_____________________ referenced,uptodate,lru,active,mmap
0x000100000000086c 31 0 __RU_lA____M_________________I___ referenced,uptodate,lru,active,mmap,readahead
0x0000000000004878 2 0 ___UDlA____M__b__________________ uptodate,dirty,lru,active,mmap,swapbacked
0x0000000000001000 492 1 ____________a____________________ anonymous
0x0000000000005808 4 0 ___U_______Ma_b__________________ uptodate,mmap,anonymous,swapbacked
0x0000000000005868 2839 11 ___U_lA____Ma_b__________________ uptodate,lru,active,mmap,anonymous,swapbacked
0x000000000000586c 30 0 __RU_lA____Ma_b__________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked
total 513968 2007
# ./page-types -r
flags page-count MB symbolic-flags long-symbolic-flags
0x0000000000000000 468002 1828 _________________________________
0x0000000100000000 19102 74 _____________________r___________ reserved
0x0000000000008000 41 0 _______________H_________________ compound_head
0x0000000000010000 188 0 ________________T________________ compound_tail
0x0000000000008014 1 0 __R_D__________H_________________ referenced,dirty,compound_head
0x0000000000010014 4 0 __R_D___________T________________ referenced,dirty,compound_tail
0x0000000000000020 1 0 _____l___________________________ lru
0x0000000800000024 34 0 __R__l__________________P________ referenced,lru,private
0x0000000000000028 3794 14 ___U_l___________________________ uptodate,lru
0x0001000000000028 46 0 ___U_l_______________________I___ uptodate,lru,readahead
0x0000000400000028 44 0 ___U_l_________________d_________ uptodate,lru,mappedtodisk
0x0001000400000028 2 0 ___U_l_________________d_____I___ uptodate,lru,mappedtodisk,readahead
0x000000000000002c 6434 25 __RU_l___________________________ referenced,uptodate,lru
0x000100000000002c 47 0 __RU_l_______________________I___ referenced,uptodate,lru,readahead
0x000000040000002c 14 0 __RU_l_________________d_________ referenced,uptodate,lru,mappedtodisk
0x000000080000002c 30 0 __RU_l__________________P________ referenced,uptodate,lru,private
0x0000000800000040 8124 31 ______A_________________P________ active,private
0x0000000000000040 219 0 ______A__________________________ active
0x0000000800000060 1 0 _____lA_________________P________ lru,active,private
0x0000000000000068 322 1 ___U_lA__________________________ uptodate,lru,active
0x0001000000000068 12 0 ___U_lA______________________I___ uptodate,lru,active,readahead
0x0000000400000068 13 0 ___U_lA________________d_________ uptodate,lru,active,mappedtodisk
0x0000000800000068 12 0 ___U_lA_________________P________ uptodate,lru,active,private
0x000000000000006c 977 3 __RU_lA__________________________ referenced,uptodate,lru,active
0x000100000000006c 48 0 __RU_lA______________________I___ referenced,uptodate,lru,active,readahead
0x000000040000006c 5 0 __RU_lA________________d_________ referenced,uptodate,lru,active,mappedtodisk
0x000000080000006c 3 0 __RU_lA_________________P________ referenced,uptodate,lru,active,private
0x0000000c0000006c 3 0 __RU_lA________________dP________ referenced,uptodate,lru,active,mappedtodisk,private
0x0000000c00000068 1 0 ___U_lA________________dP________ uptodate,lru,active,mappedtodisk,private
0x0000000000004078 1 0 ___UDlA_______b__________________ uptodate,dirty,lru,active,swapbacked
0x000000000000407c 34 0 __RUDlA_______b__________________ referenced,uptodate,dirty,lru,active,swapbacked
0x0000000000000400 538 2 __________B______________________ buddy
0x0000000000000804 1 0 __R________M_____________________ referenced,mmap
0x0000000000000828 1029 4 ___U_l_____M_____________________ uptodate,lru,mmap
0x0001000000000828 43 0 ___U_l_____M_________________I___ uptodate,lru,mmap,readahead
0x000000000000082c 382 1 __RU_l_____M_____________________ referenced,uptodate,lru,mmap
0x000100000000082c 12 0 __RU_l_____M_________________I___ referenced,uptodate,lru,mmap,readahead
0x0000000000000868 192 0 ___U_lA____M_____________________ uptodate,lru,active,mmap
0x0001000000000868 12 0 ___U_lA____M_________________I___ uptodate,lru,active,mmap,readahead
0x000000000000086c 800 3 __RU_lA____M_____________________ referenced,uptodate,lru,active,mmap
0x000100000000086c 31 0 __RU_lA____M_________________I___ referenced,uptodate,lru,active,mmap,readahead
0x0000000000004878 2 0 ___UDlA____M__b__________________ uptodate,dirty,lru,active,mmap,swapbacked
0x0000000000001000 492 1 ____________a____________________ anonymous
0x0000000000005008 2 0 ___U________a_b__________________ uptodate,anonymous,swapbacked
0x0000000000005808 4 0 ___U_______Ma_b__________________ uptodate,mmap,anonymous,swapbacked
0x000000000000580c 1 0 __RU_______Ma_b__________________ referenced,uptodate,mmap,anonymous,swapbacked
0x0000000000005868 2839 11 ___U_lA____Ma_b__________________ uptodate,lru,active,mmap,anonymous,swapbacked
0x000000000000586c 29 0 __RU_lA____Ma_b__________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked
total 513968 2007
# ./page-types --raw --list --no-summary --bits reserved
offset count flags
0 15 _____________________r___________
31 4 _____________________r___________
159 97 _____________________r___________
4096 2067 _____________________r___________
6752 2390 _____________________r___________
9355 3 _____________________r___________
9728 14526 _____________________r___________
This patch:
Introduce PageHuge(), which identifies huge/gigantic pages by their
dedicated compound destructor functions.
Also move prep_compound_gigantic_page() to hugetlb.c and make
__free_pages_ok() non-static.
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-17 05:32:22 +07:00
|
|
|
/*
|
|
|
|
* Increment or decrement surplus_huge_pages. Keep node-specific counters
|
|
|
|
* balanced by operating on them in a round-robin fashion.
|
|
|
|
* Returns 1 if an adjustment was made.
|
|
|
|
*/
|
2009-12-15 08:58:16 +07:00
|
|
|
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
|
|
|
|
int delta)
|
mm: introduce PageHuge() for testing huge/gigantic pages
A series of patches to enhance the /proc/pagemap interface and to add a
userspace executable which can be used to present the pagemap data.
Export 10 more flags to end users (and more for kernel developers):
11. KPF_MMAP (pseudo flag) memory mapped page
12. KPF_ANON (pseudo flag) memory mapped page (anonymous)
13. KPF_SWAPCACHE page is in swap cache
14. KPF_SWAPBACKED page is swap/RAM backed
15. KPF_COMPOUND_HEAD (*)
16. KPF_COMPOUND_TAIL (*)
17. KPF_HUGE hugeTLB pages
18. KPF_UNEVICTABLE page is in the unevictable LRU list
19. KPF_HWPOISON hardware detected corruption
20. KPF_NOPAGE (pseudo flag) no page frame at the address
(*) For compound pages, exporting _both_ head/tail info enables
users to tell where a compound page starts/ends, and its order.
a simple demo of the page-types tool
# ./page-types -h
page-types [options]
-r|--raw Raw mode, for kernel developers
-a|--addr addr-spec Walk a range of pages
-b|--bits bits-spec Walk pages with specified bits
-l|--list Show page details in ranges
-L|--list-each Show page details one by one
-N|--no-summary Don't show summay info
-h|--help Show this usage message
addr-spec:
N one page at offset N (unit: pages)
N+M pages range from N to N+M-1
N,M pages range from N to M-1
N, pages range from N to end
,M pages range from 0 to M
bits-spec:
bit1,bit2 (flags & (bit1|bit2)) != 0
bit1,bit2=bit1 (flags & (bit1|bit2)) == bit1
bit1,~bit2 (flags & (bit1|bit2)) == bit1
=bit1,bit2 flags == (bit1|bit2)
bit-names:
locked error referenced uptodate
dirty lru active slab
writeback reclaim buddy mmap
anonymous swapcache swapbacked compound_head
compound_tail huge unevictable hwpoison
nopage reserved(r) mlocked(r) mappedtodisk(r)
private(r) private_2(r) owner_private(r) arch(r)
uncached(r) readahead(o) slob_free(o) slub_frozen(o)
slub_debug(o)
(r) raw mode bits (o) overloaded bits
# ./page-types
flags page-count MB symbolic-flags long-symbolic-flags
0x0000000000000000 487369 1903 _________________________________
0x0000000000000014 5 0 __R_D____________________________ referenced,dirty
0x0000000000000020 1 0 _____l___________________________ lru
0x0000000000000024 34 0 __R__l___________________________ referenced,lru
0x0000000000000028 3838 14 ___U_l___________________________ uptodate,lru
0x0001000000000028 48 0 ___U_l_______________________I___ uptodate,lru,readahead
0x000000000000002c 6478 25 __RU_l___________________________ referenced,uptodate,lru
0x000100000000002c 47 0 __RU_l_______________________I___ referenced,uptodate,lru,readahead
0x0000000000000040 8344 32 ______A__________________________ active
0x0000000000000060 1 0 _____lA__________________________ lru,active
0x0000000000000068 348 1 ___U_lA__________________________ uptodate,lru,active
0x0001000000000068 12 0 ___U_lA______________________I___ uptodate,lru,active,readahead
0x000000000000006c 988 3 __RU_lA__________________________ referenced,uptodate,lru,active
0x000100000000006c 48 0 __RU_lA______________________I___ referenced,uptodate,lru,active,readahead
0x0000000000004078 1 0 ___UDlA_______b__________________ uptodate,dirty,lru,active,swapbacked
0x000000000000407c 34 0 __RUDlA_______b__________________ referenced,uptodate,dirty,lru,active,swapbacked
0x0000000000000400 503 1 __________B______________________ buddy
0x0000000000000804 1 0 __R________M_____________________ referenced,mmap
0x0000000000000828 1029 4 ___U_l_____M_____________________ uptodate,lru,mmap
0x0001000000000828 43 0 ___U_l_____M_________________I___ uptodate,lru,mmap,readahead
0x000000000000082c 382 1 __RU_l_____M_____________________ referenced,uptodate,lru,mmap
0x000100000000082c 12 0 __RU_l_____M_________________I___ referenced,uptodate,lru,mmap,readahead
0x0000000000000868 192 0 ___U_lA____M_____________________ uptodate,lru,active,mmap
0x0001000000000868 12 0 ___U_lA____M_________________I___ uptodate,lru,active,mmap,readahead
0x000000000000086c 800 3 __RU_lA____M_____________________ referenced,uptodate,lru,active,mmap
0x000100000000086c 31 0 __RU_lA____M_________________I___ referenced,uptodate,lru,active,mmap,readahead
0x0000000000004878 2 0 ___UDlA____M__b__________________ uptodate,dirty,lru,active,mmap,swapbacked
0x0000000000001000 492 1 ____________a____________________ anonymous
0x0000000000005808 4 0 ___U_______Ma_b__________________ uptodate,mmap,anonymous,swapbacked
0x0000000000005868 2839 11 ___U_lA____Ma_b__________________ uptodate,lru,active,mmap,anonymous,swapbacked
0x000000000000586c 30 0 __RU_lA____Ma_b__________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked
total 513968 2007
# ./page-types -r
flags page-count MB symbolic-flags long-symbolic-flags
0x0000000000000000 468002 1828 _________________________________
0x0000000100000000 19102 74 _____________________r___________ reserved
0x0000000000008000 41 0 _______________H_________________ compound_head
0x0000000000010000 188 0 ________________T________________ compound_tail
0x0000000000008014 1 0 __R_D__________H_________________ referenced,dirty,compound_head
0x0000000000010014 4 0 __R_D___________T________________ referenced,dirty,compound_tail
0x0000000000000020 1 0 _____l___________________________ lru
0x0000000800000024 34 0 __R__l__________________P________ referenced,lru,private
0x0000000000000028 3794 14 ___U_l___________________________ uptodate,lru
0x0001000000000028 46 0 ___U_l_______________________I___ uptodate,lru,readahead
0x0000000400000028 44 0 ___U_l_________________d_________ uptodate,lru,mappedtodisk
0x0001000400000028 2 0 ___U_l_________________d_____I___ uptodate,lru,mappedtodisk,readahead
0x000000000000002c 6434 25 __RU_l___________________________ referenced,uptodate,lru
0x000100000000002c 47 0 __RU_l_______________________I___ referenced,uptodate,lru,readahead
0x000000040000002c 14 0 __RU_l_________________d_________ referenced,uptodate,lru,mappedtodisk
0x000000080000002c 30 0 __RU_l__________________P________ referenced,uptodate,lru,private
0x0000000800000040 8124 31 ______A_________________P________ active,private
0x0000000000000040 219 0 ______A__________________________ active
0x0000000800000060 1 0 _____lA_________________P________ lru,active,private
0x0000000000000068 322 1 ___U_lA__________________________ uptodate,lru,active
0x0001000000000068 12 0 ___U_lA______________________I___ uptodate,lru,active,readahead
0x0000000400000068 13 0 ___U_lA________________d_________ uptodate,lru,active,mappedtodisk
0x0000000800000068 12 0 ___U_lA_________________P________ uptodate,lru,active,private
0x000000000000006c 977 3 __RU_lA__________________________ referenced,uptodate,lru,active
0x000100000000006c 48 0 __RU_lA______________________I___ referenced,uptodate,lru,active,readahead
0x000000040000006c 5 0 __RU_lA________________d_________ referenced,uptodate,lru,active,mappedtodisk
0x000000080000006c 3 0 __RU_lA_________________P________ referenced,uptodate,lru,active,private
0x0000000c0000006c 3 0 __RU_lA________________dP________ referenced,uptodate,lru,active,mappedtodisk,private
0x0000000c00000068 1 0 ___U_lA________________dP________ uptodate,lru,active,mappedtodisk,private
0x0000000000004078 1 0 ___UDlA_______b__________________ uptodate,dirty,lru,active,swapbacked
0x000000000000407c 34 0 __RUDlA_______b__________________ referenced,uptodate,dirty,lru,active,swapbacked
0x0000000000000400 538 2 __________B______________________ buddy
0x0000000000000804 1 0 __R________M_____________________ referenced,mmap
0x0000000000000828 1029 4 ___U_l_____M_____________________ uptodate,lru,mmap
0x0001000000000828 43 0 ___U_l_____M_________________I___ uptodate,lru,mmap,readahead
0x000000000000082c 382 1 __RU_l_____M_____________________ referenced,uptodate,lru,mmap
0x000100000000082c 12 0 __RU_l_____M_________________I___ referenced,uptodate,lru,mmap,readahead
0x0000000000000868 192 0 ___U_lA____M_____________________ uptodate,lru,active,mmap
0x0001000000000868 12 0 ___U_lA____M_________________I___ uptodate,lru,active,mmap,readahead
0x000000000000086c 800 3 __RU_lA____M_____________________ referenced,uptodate,lru,active,mmap
0x000100000000086c 31 0 __RU_lA____M_________________I___ referenced,uptodate,lru,active,mmap,readahead
0x0000000000004878 2 0 ___UDlA____M__b__________________ uptodate,dirty,lru,active,mmap,swapbacked
0x0000000000001000 492 1 ____________a____________________ anonymous
0x0000000000005008 2 0 ___U________a_b__________________ uptodate,anonymous,swapbacked
0x0000000000005808 4 0 ___U_______Ma_b__________________ uptodate,mmap,anonymous,swapbacked
0x000000000000580c 1 0 __RU_______Ma_b__________________ referenced,uptodate,mmap,anonymous,swapbacked
0x0000000000005868 2839 11 ___U_lA____Ma_b__________________ uptodate,lru,active,mmap,anonymous,swapbacked
0x000000000000586c 29 0 __RU_lA____Ma_b__________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked
total 513968 2007
# ./page-types --raw --list --no-summary --bits reserved
offset count flags
0 15 _____________________r___________
31 4 _____________________r___________
159 97 _____________________r___________
4096 2067 _____________________r___________
6752 2390 _____________________r___________
9355 3 _____________________r___________
9728 14526 _____________________r___________
This patch:
Introduce PageHuge(), which identifies huge/gigantic pages by their
dedicated compound destructor functions.
Also move prep_compound_gigantic_page() to hugetlb.c and make
__free_pages_ok() non-static.
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-17 05:32:22 +07:00
|
|
|
{
|
2013-09-12 04:21:00 +07:00
|
|
|
int nr_nodes, node;
|
mm: introduce PageHuge() for testing huge/gigantic pages
A series of patches to enhance the /proc/pagemap interface and to add a
userspace executable which can be used to present the pagemap data.
Export 10 more flags to end users (and more for kernel developers):
11. KPF_MMAP (pseudo flag) memory mapped page
12. KPF_ANON (pseudo flag) memory mapped page (anonymous)
13. KPF_SWAPCACHE page is in swap cache
14. KPF_SWAPBACKED page is swap/RAM backed
15. KPF_COMPOUND_HEAD (*)
16. KPF_COMPOUND_TAIL (*)
17. KPF_HUGE hugeTLB pages
18. KPF_UNEVICTABLE page is in the unevictable LRU list
19. KPF_HWPOISON hardware detected corruption
20. KPF_NOPAGE (pseudo flag) no page frame at the address
(*) For compound pages, exporting _both_ head/tail info enables
users to tell where a compound page starts/ends, and its order.
a simple demo of the page-types tool
# ./page-types -h
page-types [options]
-r|--raw Raw mode, for kernel developers
-a|--addr addr-spec Walk a range of pages
-b|--bits bits-spec Walk pages with specified bits
-l|--list Show page details in ranges
-L|--list-each Show page details one by one
-N|--no-summary Don't show summay info
-h|--help Show this usage message
addr-spec:
N one page at offset N (unit: pages)
N+M pages range from N to N+M-1
N,M pages range from N to M-1
N, pages range from N to end
,M pages range from 0 to M
bits-spec:
bit1,bit2 (flags & (bit1|bit2)) != 0
bit1,bit2=bit1 (flags & (bit1|bit2)) == bit1
bit1,~bit2 (flags & (bit1|bit2)) == bit1
=bit1,bit2 flags == (bit1|bit2)
bit-names:
locked error referenced uptodate
dirty lru active slab
writeback reclaim buddy mmap
anonymous swapcache swapbacked compound_head
compound_tail huge unevictable hwpoison
nopage reserved(r) mlocked(r) mappedtodisk(r)
private(r) private_2(r) owner_private(r) arch(r)
uncached(r) readahead(o) slob_free(o) slub_frozen(o)
slub_debug(o)
(r) raw mode bits (o) overloaded bits
# ./page-types
flags page-count MB symbolic-flags long-symbolic-flags
0x0000000000000000 487369 1903 _________________________________
0x0000000000000014 5 0 __R_D____________________________ referenced,dirty
0x0000000000000020 1 0 _____l___________________________ lru
0x0000000000000024 34 0 __R__l___________________________ referenced,lru
0x0000000000000028 3838 14 ___U_l___________________________ uptodate,lru
0x0001000000000028 48 0 ___U_l_______________________I___ uptodate,lru,readahead
0x000000000000002c 6478 25 __RU_l___________________________ referenced,uptodate,lru
0x000100000000002c 47 0 __RU_l_______________________I___ referenced,uptodate,lru,readahead
0x0000000000000040 8344 32 ______A__________________________ active
0x0000000000000060 1 0 _____lA__________________________ lru,active
0x0000000000000068 348 1 ___U_lA__________________________ uptodate,lru,active
0x0001000000000068 12 0 ___U_lA______________________I___ uptodate,lru,active,readahead
0x000000000000006c 988 3 __RU_lA__________________________ referenced,uptodate,lru,active
0x000100000000006c 48 0 __RU_lA______________________I___ referenced,uptodate,lru,active,readahead
0x0000000000004078 1 0 ___UDlA_______b__________________ uptodate,dirty,lru,active,swapbacked
0x000000000000407c 34 0 __RUDlA_______b__________________ referenced,uptodate,dirty,lru,active,swapbacked
0x0000000000000400 503 1 __________B______________________ buddy
0x0000000000000804 1 0 __R________M_____________________ referenced,mmap
0x0000000000000828 1029 4 ___U_l_____M_____________________ uptodate,lru,mmap
0x0001000000000828 43 0 ___U_l_____M_________________I___ uptodate,lru,mmap,readahead
0x000000000000082c 382 1 __RU_l_____M_____________________ referenced,uptodate,lru,mmap
0x000100000000082c 12 0 __RU_l_____M_________________I___ referenced,uptodate,lru,mmap,readahead
0x0000000000000868 192 0 ___U_lA____M_____________________ uptodate,lru,active,mmap
0x0001000000000868 12 0 ___U_lA____M_________________I___ uptodate,lru,active,mmap,readahead
0x000000000000086c 800 3 __RU_lA____M_____________________ referenced,uptodate,lru,active,mmap
0x000100000000086c 31 0 __RU_lA____M_________________I___ referenced,uptodate,lru,active,mmap,readahead
0x0000000000004878 2 0 ___UDlA____M__b__________________ uptodate,dirty,lru,active,mmap,swapbacked
0x0000000000001000 492 1 ____________a____________________ anonymous
0x0000000000005808 4 0 ___U_______Ma_b__________________ uptodate,mmap,anonymous,swapbacked
0x0000000000005868 2839 11 ___U_lA____Ma_b__________________ uptodate,lru,active,mmap,anonymous,swapbacked
0x000000000000586c 30 0 __RU_lA____Ma_b__________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked
total 513968 2007
# ./page-types -r
flags page-count MB symbolic-flags long-symbolic-flags
0x0000000000000000 468002 1828 _________________________________
0x0000000100000000 19102 74 _____________________r___________ reserved
0x0000000000008000 41 0 _______________H_________________ compound_head
0x0000000000010000 188 0 ________________T________________ compound_tail
0x0000000000008014 1 0 __R_D__________H_________________ referenced,dirty,compound_head
0x0000000000010014 4 0 __R_D___________T________________ referenced,dirty,compound_tail
0x0000000000000020 1 0 _____l___________________________ lru
0x0000000800000024 34 0 __R__l__________________P________ referenced,lru,private
0x0000000000000028 3794 14 ___U_l___________________________ uptodate,lru
0x0001000000000028 46 0 ___U_l_______________________I___ uptodate,lru,readahead
0x0000000400000028 44 0 ___U_l_________________d_________ uptodate,lru,mappedtodisk
0x0001000400000028 2 0 ___U_l_________________d_____I___ uptodate,lru,mappedtodisk,readahead
0x000000000000002c 6434 25 __RU_l___________________________ referenced,uptodate,lru
0x000100000000002c 47 0 __RU_l_______________________I___ referenced,uptodate,lru,readahead
0x000000040000002c 14 0 __RU_l_________________d_________ referenced,uptodate,lru,mappedtodisk
0x000000080000002c 30 0 __RU_l__________________P________ referenced,uptodate,lru,private
0x0000000800000040 8124 31 ______A_________________P________ active,private
0x0000000000000040 219 0 ______A__________________________ active
0x0000000800000060 1 0 _____lA_________________P________ lru,active,private
0x0000000000000068 322 1 ___U_lA__________________________ uptodate,lru,active
0x0001000000000068 12 0 ___U_lA______________________I___ uptodate,lru,active,readahead
0x0000000400000068 13 0 ___U_lA________________d_________ uptodate,lru,active,mappedtodisk
0x0000000800000068 12 0 ___U_lA_________________P________ uptodate,lru,active,private
0x000000000000006c 977 3 __RU_lA__________________________ referenced,uptodate,lru,active
0x000100000000006c 48 0 __RU_lA______________________I___ referenced,uptodate,lru,active,readahead
0x000000040000006c 5 0 __RU_lA________________d_________ referenced,uptodate,lru,active,mappedtodisk
0x000000080000006c 3 0 __RU_lA_________________P________ referenced,uptodate,lru,active,private
0x0000000c0000006c 3 0 __RU_lA________________dP________ referenced,uptodate,lru,active,mappedtodisk,private
0x0000000c00000068 1 0 ___U_lA________________dP________ uptodate,lru,active,mappedtodisk,private
0x0000000000004078 1 0 ___UDlA_______b__________________ uptodate,dirty,lru,active,swapbacked
0x000000000000407c 34 0 __RUDlA_______b__________________ referenced,uptodate,dirty,lru,active,swapbacked
0x0000000000000400 538 2 __________B______________________ buddy
0x0000000000000804 1 0 __R________M_____________________ referenced,mmap
0x0000000000000828 1029 4 ___U_l_____M_____________________ uptodate,lru,mmap
0x0001000000000828 43 0 ___U_l_____M_________________I___ uptodate,lru,mmap,readahead
0x000000000000082c 382 1 __RU_l_____M_____________________ referenced,uptodate,lru,mmap
0x000100000000082c 12 0 __RU_l_____M_________________I___ referenced,uptodate,lru,mmap,readahead
0x0000000000000868 192 0 ___U_lA____M_____________________ uptodate,lru,active,mmap
0x0001000000000868 12 0 ___U_lA____M_________________I___ uptodate,lru,active,mmap,readahead
0x000000000000086c 800 3 __RU_lA____M_____________________ referenced,uptodate,lru,active,mmap
0x000100000000086c 31 0 __RU_lA____M_________________I___ referenced,uptodate,lru,active,mmap,readahead
0x0000000000004878 2 0 ___UDlA____M__b__________________ uptodate,dirty,lru,active,mmap,swapbacked
0x0000000000001000 492 1 ____________a____________________ anonymous
0x0000000000005008 2 0 ___U________a_b__________________ uptodate,anonymous,swapbacked
0x0000000000005808 4 0 ___U_______Ma_b__________________ uptodate,mmap,anonymous,swapbacked
0x000000000000580c 1 0 __RU_______Ma_b__________________ referenced,uptodate,mmap,anonymous,swapbacked
0x0000000000005868 2839 11 ___U_lA____Ma_b__________________ uptodate,lru,active,mmap,anonymous,swapbacked
0x000000000000586c 29 0 __RU_lA____Ma_b__________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked
total 513968 2007
# ./page-types --raw --list --no-summary --bits reserved
offset count flags
0 15 _____________________r___________
31 4 _____________________r___________
159 97 _____________________r___________
4096 2067 _____________________r___________
6752 2390 _____________________r___________
9355 3 _____________________r___________
9728 14526 _____________________r___________
This patch:
Introduce PageHuge(), which identifies huge/gigantic pages by their
dedicated compound destructor functions.
Also move prep_compound_gigantic_page() to hugetlb.c and make
__free_pages_ok() non-static.
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-17 05:32:22 +07:00
|
|
|
|
|
|
|
VM_BUG_ON(delta != -1 && delta != 1);
|
|
|
|
|
2013-09-12 04:21:00 +07:00
|
|
|
if (delta < 0) {
|
|
|
|
for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
|
|
|
|
if (h->surplus_huge_pages_node[node])
|
|
|
|
goto found;
|
2009-09-22 07:01:22 +07:00
|
|
|
}
|
2013-09-12 04:21:00 +07:00
|
|
|
} else {
|
|
|
|
for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
|
|
|
|
if (h->surplus_huge_pages_node[node] <
|
|
|
|
h->nr_huge_pages_node[node])
|
|
|
|
goto found;
|
2009-09-22 07:01:22 +07:00
|
|
|
}
|
2013-09-12 04:21:00 +07:00
|
|
|
}
|
|
|
|
return 0;
|
mm: introduce PageHuge() for testing huge/gigantic pages
A series of patches to enhance the /proc/pagemap interface and to add a
userspace executable which can be used to present the pagemap data.
Export 10 more flags to end users (and more for kernel developers):
11. KPF_MMAP (pseudo flag) memory mapped page
12. KPF_ANON (pseudo flag) memory mapped page (anonymous)
13. KPF_SWAPCACHE page is in swap cache
14. KPF_SWAPBACKED page is swap/RAM backed
15. KPF_COMPOUND_HEAD (*)
16. KPF_COMPOUND_TAIL (*)
17. KPF_HUGE hugeTLB pages
18. KPF_UNEVICTABLE page is in the unevictable LRU list
19. KPF_HWPOISON hardware detected corruption
20. KPF_NOPAGE (pseudo flag) no page frame at the address
(*) For compound pages, exporting _both_ head/tail info enables
users to tell where a compound page starts/ends, and its order.
a simple demo of the page-types tool
# ./page-types -h
page-types [options]
-r|--raw Raw mode, for kernel developers
-a|--addr addr-spec Walk a range of pages
-b|--bits bits-spec Walk pages with specified bits
-l|--list Show page details in ranges
-L|--list-each Show page details one by one
-N|--no-summary Don't show summay info
-h|--help Show this usage message
addr-spec:
N one page at offset N (unit: pages)
N+M pages range from N to N+M-1
N,M pages range from N to M-1
N, pages range from N to end
,M pages range from 0 to M
bits-spec:
bit1,bit2 (flags & (bit1|bit2)) != 0
bit1,bit2=bit1 (flags & (bit1|bit2)) == bit1
bit1,~bit2 (flags & (bit1|bit2)) == bit1
=bit1,bit2 flags == (bit1|bit2)
bit-names:
locked error referenced uptodate
dirty lru active slab
writeback reclaim buddy mmap
anonymous swapcache swapbacked compound_head
compound_tail huge unevictable hwpoison
nopage reserved(r) mlocked(r) mappedtodisk(r)
private(r) private_2(r) owner_private(r) arch(r)
uncached(r) readahead(o) slob_free(o) slub_frozen(o)
slub_debug(o)
(r) raw mode bits (o) overloaded bits
# ./page-types
flags page-count MB symbolic-flags long-symbolic-flags
0x0000000000000000 487369 1903 _________________________________
0x0000000000000014 5 0 __R_D____________________________ referenced,dirty
0x0000000000000020 1 0 _____l___________________________ lru
0x0000000000000024 34 0 __R__l___________________________ referenced,lru
0x0000000000000028 3838 14 ___U_l___________________________ uptodate,lru
0x0001000000000028 48 0 ___U_l_______________________I___ uptodate,lru,readahead
0x000000000000002c 6478 25 __RU_l___________________________ referenced,uptodate,lru
0x000100000000002c 47 0 __RU_l_______________________I___ referenced,uptodate,lru,readahead
0x0000000000000040 8344 32 ______A__________________________ active
0x0000000000000060 1 0 _____lA__________________________ lru,active
0x0000000000000068 348 1 ___U_lA__________________________ uptodate,lru,active
0x0001000000000068 12 0 ___U_lA______________________I___ uptodate,lru,active,readahead
0x000000000000006c 988 3 __RU_lA__________________________ referenced,uptodate,lru,active
0x000100000000006c 48 0 __RU_lA______________________I___ referenced,uptodate,lru,active,readahead
0x0000000000004078 1 0 ___UDlA_______b__________________ uptodate,dirty,lru,active,swapbacked
0x000000000000407c 34 0 __RUDlA_______b__________________ referenced,uptodate,dirty,lru,active,swapbacked
0x0000000000000400 503 1 __________B______________________ buddy
0x0000000000000804 1 0 __R________M_____________________ referenced,mmap
0x0000000000000828 1029 4 ___U_l_____M_____________________ uptodate,lru,mmap
0x0001000000000828 43 0 ___U_l_____M_________________I___ uptodate,lru,mmap,readahead
0x000000000000082c 382 1 __RU_l_____M_____________________ referenced,uptodate,lru,mmap
0x000100000000082c 12 0 __RU_l_____M_________________I___ referenced,uptodate,lru,mmap,readahead
0x0000000000000868 192 0 ___U_lA____M_____________________ uptodate,lru,active,mmap
0x0001000000000868 12 0 ___U_lA____M_________________I___ uptodate,lru,active,mmap,readahead
0x000000000000086c 800 3 __RU_lA____M_____________________ referenced,uptodate,lru,active,mmap
0x000100000000086c 31 0 __RU_lA____M_________________I___ referenced,uptodate,lru,active,mmap,readahead
0x0000000000004878 2 0 ___UDlA____M__b__________________ uptodate,dirty,lru,active,mmap,swapbacked
0x0000000000001000 492 1 ____________a____________________ anonymous
0x0000000000005808 4 0 ___U_______Ma_b__________________ uptodate,mmap,anonymous,swapbacked
0x0000000000005868 2839 11 ___U_lA____Ma_b__________________ uptodate,lru,active,mmap,anonymous,swapbacked
0x000000000000586c 30 0 __RU_lA____Ma_b__________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked
total 513968 2007
# ./page-types -r
flags page-count MB symbolic-flags long-symbolic-flags
0x0000000000000000 468002 1828 _________________________________
0x0000000100000000 19102 74 _____________________r___________ reserved
0x0000000000008000 41 0 _______________H_________________ compound_head
0x0000000000010000 188 0 ________________T________________ compound_tail
0x0000000000008014 1 0 __R_D__________H_________________ referenced,dirty,compound_head
0x0000000000010014 4 0 __R_D___________T________________ referenced,dirty,compound_tail
0x0000000000000020 1 0 _____l___________________________ lru
0x0000000800000024 34 0 __R__l__________________P________ referenced,lru,private
0x0000000000000028 3794 14 ___U_l___________________________ uptodate,lru
0x0001000000000028 46 0 ___U_l_______________________I___ uptodate,lru,readahead
0x0000000400000028 44 0 ___U_l_________________d_________ uptodate,lru,mappedtodisk
0x0001000400000028 2 0 ___U_l_________________d_____I___ uptodate,lru,mappedtodisk,readahead
0x000000000000002c 6434 25 __RU_l___________________________ referenced,uptodate,lru
0x000100000000002c 47 0 __RU_l_______________________I___ referenced,uptodate,lru,readahead
0x000000040000002c 14 0 __RU_l_________________d_________ referenced,uptodate,lru,mappedtodisk
0x000000080000002c 30 0 __RU_l__________________P________ referenced,uptodate,lru,private
0x0000000800000040 8124 31 ______A_________________P________ active,private
0x0000000000000040 219 0 ______A__________________________ active
0x0000000800000060 1 0 _____lA_________________P________ lru,active,private
0x0000000000000068 322 1 ___U_lA__________________________ uptodate,lru,active
0x0001000000000068 12 0 ___U_lA______________________I___ uptodate,lru,active,readahead
0x0000000400000068 13 0 ___U_lA________________d_________ uptodate,lru,active,mappedtodisk
0x0000000800000068 12 0 ___U_lA_________________P________ uptodate,lru,active,private
0x000000000000006c 977 3 __RU_lA__________________________ referenced,uptodate,lru,active
0x000100000000006c 48 0 __RU_lA______________________I___ referenced,uptodate,lru,active,readahead
0x000000040000006c 5 0 __RU_lA________________d_________ referenced,uptodate,lru,active,mappedtodisk
0x000000080000006c 3 0 __RU_lA_________________P________ referenced,uptodate,lru,active,private
0x0000000c0000006c 3 0 __RU_lA________________dP________ referenced,uptodate,lru,active,mappedtodisk,private
0x0000000c00000068 1 0 ___U_lA________________dP________ uptodate,lru,active,mappedtodisk,private
0x0000000000004078 1 0 ___UDlA_______b__________________ uptodate,dirty,lru,active,swapbacked
0x000000000000407c 34 0 __RUDlA_______b__________________ referenced,uptodate,dirty,lru,active,swapbacked
0x0000000000000400 538 2 __________B______________________ buddy
0x0000000000000804 1 0 __R________M_____________________ referenced,mmap
0x0000000000000828 1029 4 ___U_l_____M_____________________ uptodate,lru,mmap
0x0001000000000828 43 0 ___U_l_____M_________________I___ uptodate,lru,mmap,readahead
0x000000000000082c 382 1 __RU_l_____M_____________________ referenced,uptodate,lru,mmap
0x000100000000082c 12 0 __RU_l_____M_________________I___ referenced,uptodate,lru,mmap,readahead
0x0000000000000868 192 0 ___U_lA____M_____________________ uptodate,lru,active,mmap
0x0001000000000868 12 0 ___U_lA____M_________________I___ uptodate,lru,active,mmap,readahead
0x000000000000086c 800 3 __RU_lA____M_____________________ referenced,uptodate,lru,active,mmap
0x000100000000086c 31 0 __RU_lA____M_________________I___ referenced,uptodate,lru,active,mmap,readahead
0x0000000000004878 2 0 ___UDlA____M__b__________________ uptodate,dirty,lru,active,mmap,swapbacked
0x0000000000001000 492 1 ____________a____________________ anonymous
0x0000000000005008 2 0 ___U________a_b__________________ uptodate,anonymous,swapbacked
0x0000000000005808 4 0 ___U_______Ma_b__________________ uptodate,mmap,anonymous,swapbacked
0x000000000000580c 1 0 __RU_______Ma_b__________________ referenced,uptodate,mmap,anonymous,swapbacked
0x0000000000005868 2839 11 ___U_lA____Ma_b__________________ uptodate,lru,active,mmap,anonymous,swapbacked
0x000000000000586c 29 0 __RU_lA____Ma_b__________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked
total 513968 2007
# ./page-types --raw --list --no-summary --bits reserved
offset count flags
0 15 _____________________r___________
31 4 _____________________r___________
159 97 _____________________r___________
4096 2067 _____________________r___________
6752 2390 _____________________r___________
9355 3 _____________________r___________
9728 14526 _____________________r___________
This patch:
Introduce PageHuge(), which identifies huge/gigantic pages by their
dedicated compound destructor functions.
Also move prep_compound_gigantic_page() to hugetlb.c and make
__free_pages_ok() non-static.
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-17 05:32:22 +07:00
|
|
|
|
2013-09-12 04:21:00 +07:00
|
|
|
found:
|
|
|
|
h->surplus_huge_pages += delta;
|
|
|
|
h->surplus_huge_pages_node[node] += delta;
|
|
|
|
return 1;
|
mm: introduce PageHuge() for testing huge/gigantic pages
A series of patches to enhance the /proc/pagemap interface and to add a
userspace executable which can be used to present the pagemap data.
Export 10 more flags to end users (and more for kernel developers):
11. KPF_MMAP (pseudo flag) memory mapped page
12. KPF_ANON (pseudo flag) memory mapped page (anonymous)
13. KPF_SWAPCACHE page is in swap cache
14. KPF_SWAPBACKED page is swap/RAM backed
15. KPF_COMPOUND_HEAD (*)
16. KPF_COMPOUND_TAIL (*)
17. KPF_HUGE hugeTLB pages
18. KPF_UNEVICTABLE page is in the unevictable LRU list
19. KPF_HWPOISON hardware detected corruption
20. KPF_NOPAGE (pseudo flag) no page frame at the address
(*) For compound pages, exporting _both_ head/tail info enables
users to tell where a compound page starts/ends, and its order.
a simple demo of the page-types tool
# ./page-types -h
page-types [options]
-r|--raw Raw mode, for kernel developers
-a|--addr addr-spec Walk a range of pages
-b|--bits bits-spec Walk pages with specified bits
-l|--list Show page details in ranges
-L|--list-each Show page details one by one
-N|--no-summary Don't show summay info
-h|--help Show this usage message
addr-spec:
N one page at offset N (unit: pages)
N+M pages range from N to N+M-1
N,M pages range from N to M-1
N, pages range from N to end
,M pages range from 0 to M
bits-spec:
bit1,bit2 (flags & (bit1|bit2)) != 0
bit1,bit2=bit1 (flags & (bit1|bit2)) == bit1
bit1,~bit2 (flags & (bit1|bit2)) == bit1
=bit1,bit2 flags == (bit1|bit2)
bit-names:
locked error referenced uptodate
dirty lru active slab
writeback reclaim buddy mmap
anonymous swapcache swapbacked compound_head
compound_tail huge unevictable hwpoison
nopage reserved(r) mlocked(r) mappedtodisk(r)
private(r) private_2(r) owner_private(r) arch(r)
uncached(r) readahead(o) slob_free(o) slub_frozen(o)
slub_debug(o)
(r) raw mode bits (o) overloaded bits
# ./page-types
flags page-count MB symbolic-flags long-symbolic-flags
0x0000000000000000 487369 1903 _________________________________
0x0000000000000014 5 0 __R_D____________________________ referenced,dirty
0x0000000000000020 1 0 _____l___________________________ lru
0x0000000000000024 34 0 __R__l___________________________ referenced,lru
0x0000000000000028 3838 14 ___U_l___________________________ uptodate,lru
0x0001000000000028 48 0 ___U_l_______________________I___ uptodate,lru,readahead
0x000000000000002c 6478 25 __RU_l___________________________ referenced,uptodate,lru
0x000100000000002c 47 0 __RU_l_______________________I___ referenced,uptodate,lru,readahead
0x0000000000000040 8344 32 ______A__________________________ active
0x0000000000000060 1 0 _____lA__________________________ lru,active
0x0000000000000068 348 1 ___U_lA__________________________ uptodate,lru,active
0x0001000000000068 12 0 ___U_lA______________________I___ uptodate,lru,active,readahead
0x000000000000006c 988 3 __RU_lA__________________________ referenced,uptodate,lru,active
0x000100000000006c 48 0 __RU_lA______________________I___ referenced,uptodate,lru,active,readahead
0x0000000000004078 1 0 ___UDlA_______b__________________ uptodate,dirty,lru,active,swapbacked
0x000000000000407c 34 0 __RUDlA_______b__________________ referenced,uptodate,dirty,lru,active,swapbacked
0x0000000000000400 503 1 __________B______________________ buddy
0x0000000000000804 1 0 __R________M_____________________ referenced,mmap
0x0000000000000828 1029 4 ___U_l_____M_____________________ uptodate,lru,mmap
0x0001000000000828 43 0 ___U_l_____M_________________I___ uptodate,lru,mmap,readahead
0x000000000000082c 382 1 __RU_l_____M_____________________ referenced,uptodate,lru,mmap
0x000100000000082c 12 0 __RU_l_____M_________________I___ referenced,uptodate,lru,mmap,readahead
0x0000000000000868 192 0 ___U_lA____M_____________________ uptodate,lru,active,mmap
0x0001000000000868 12 0 ___U_lA____M_________________I___ uptodate,lru,active,mmap,readahead
0x000000000000086c 800 3 __RU_lA____M_____________________ referenced,uptodate,lru,active,mmap
0x000100000000086c 31 0 __RU_lA____M_________________I___ referenced,uptodate,lru,active,mmap,readahead
0x0000000000004878 2 0 ___UDlA____M__b__________________ uptodate,dirty,lru,active,mmap,swapbacked
0x0000000000001000 492 1 ____________a____________________ anonymous
0x0000000000005808 4 0 ___U_______Ma_b__________________ uptodate,mmap,anonymous,swapbacked
0x0000000000005868 2839 11 ___U_lA____Ma_b__________________ uptodate,lru,active,mmap,anonymous,swapbacked
0x000000000000586c 30 0 __RU_lA____Ma_b__________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked
total 513968 2007
# ./page-types -r
flags page-count MB symbolic-flags long-symbolic-flags
0x0000000000000000 468002 1828 _________________________________
0x0000000100000000 19102 74 _____________________r___________ reserved
0x0000000000008000 41 0 _______________H_________________ compound_head
0x0000000000010000 188 0 ________________T________________ compound_tail
0x0000000000008014 1 0 __R_D__________H_________________ referenced,dirty,compound_head
0x0000000000010014 4 0 __R_D___________T________________ referenced,dirty,compound_tail
0x0000000000000020 1 0 _____l___________________________ lru
0x0000000800000024 34 0 __R__l__________________P________ referenced,lru,private
0x0000000000000028 3794 14 ___U_l___________________________ uptodate,lru
0x0001000000000028 46 0 ___U_l_______________________I___ uptodate,lru,readahead
0x0000000400000028 44 0 ___U_l_________________d_________ uptodate,lru,mappedtodisk
0x0001000400000028 2 0 ___U_l_________________d_____I___ uptodate,lru,mappedtodisk,readahead
0x000000000000002c 6434 25 __RU_l___________________________ referenced,uptodate,lru
0x000100000000002c 47 0 __RU_l_______________________I___ referenced,uptodate,lru,readahead
0x000000040000002c 14 0 __RU_l_________________d_________ referenced,uptodate,lru,mappedtodisk
0x000000080000002c 30 0 __RU_l__________________P________ referenced,uptodate,lru,private
0x0000000800000040 8124 31 ______A_________________P________ active,private
0x0000000000000040 219 0 ______A__________________________ active
0x0000000800000060 1 0 _____lA_________________P________ lru,active,private
0x0000000000000068 322 1 ___U_lA__________________________ uptodate,lru,active
0x0001000000000068 12 0 ___U_lA______________________I___ uptodate,lru,active,readahead
0x0000000400000068 13 0 ___U_lA________________d_________ uptodate,lru,active,mappedtodisk
0x0000000800000068 12 0 ___U_lA_________________P________ uptodate,lru,active,private
0x000000000000006c 977 3 __RU_lA__________________________ referenced,uptodate,lru,active
0x000100000000006c 48 0 __RU_lA______________________I___ referenced,uptodate,lru,active,readahead
0x000000040000006c 5 0 __RU_lA________________d_________ referenced,uptodate,lru,active,mappedtodisk
0x000000080000006c 3 0 __RU_lA_________________P________ referenced,uptodate,lru,active,private
0x0000000c0000006c 3 0 __RU_lA________________dP________ referenced,uptodate,lru,active,mappedtodisk,private
0x0000000c00000068 1 0 ___U_lA________________dP________ uptodate,lru,active,mappedtodisk,private
0x0000000000004078 1 0 ___UDlA_______b__________________ uptodate,dirty,lru,active,swapbacked
0x000000000000407c 34 0 __RUDlA_______b__________________ referenced,uptodate,dirty,lru,active,swapbacked
0x0000000000000400 538 2 __________B______________________ buddy
0x0000000000000804 1 0 __R________M_____________________ referenced,mmap
0x0000000000000828 1029 4 ___U_l_____M_____________________ uptodate,lru,mmap
0x0001000000000828 43 0 ___U_l_____M_________________I___ uptodate,lru,mmap,readahead
0x000000000000082c 382 1 __RU_l_____M_____________________ referenced,uptodate,lru,mmap
0x000100000000082c 12 0 __RU_l_____M_________________I___ referenced,uptodate,lru,mmap,readahead
0x0000000000000868 192 0 ___U_lA____M_____________________ uptodate,lru,active,mmap
0x0001000000000868 12 0 ___U_lA____M_________________I___ uptodate,lru,active,mmap,readahead
0x000000000000086c 800 3 __RU_lA____M_____________________ referenced,uptodate,lru,active,mmap
0x000100000000086c 31 0 __RU_lA____M_________________I___ referenced,uptodate,lru,active,mmap,readahead
0x0000000000004878 2 0 ___UDlA____M__b__________________ uptodate,dirty,lru,active,mmap,swapbacked
0x0000000000001000 492 1 ____________a____________________ anonymous
0x0000000000005008 2 0 ___U________a_b__________________ uptodate,anonymous,swapbacked
0x0000000000005808 4 0 ___U_______Ma_b__________________ uptodate,mmap,anonymous,swapbacked
0x000000000000580c 1 0 __RU_______Ma_b__________________ referenced,uptodate,mmap,anonymous,swapbacked
0x0000000000005868 2839 11 ___U_lA____Ma_b__________________ uptodate,lru,active,mmap,anonymous,swapbacked
0x000000000000586c 29 0 __RU_lA____Ma_b__________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked
total 513968 2007
# ./page-types --raw --list --no-summary --bits reserved
offset count flags
0 15 _____________________r___________
31 4 _____________________r___________
159 97 _____________________r___________
4096 2067 _____________________r___________
6752 2390 _____________________r___________
9355 3 _____________________r___________
9728 14526 _____________________r___________
This patch:
Introduce PageHuge(), which identifies huge/gigantic pages by their
dedicated compound destructor functions.
Also move prep_compound_gigantic_page() to hugetlb.c and make
__free_pages_ok() non-static.
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-17 05:32:22 +07:00
|
|
|
}
|
|
|
|
|
2008-07-24 11:27:41 +07:00
|
|
|
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
|
2009-12-15 08:58:16 +07:00
|
|
|
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
|
|
|
|
nodemask_t *nodes_allowed)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
2007-10-16 15:26:18 +07:00
|
|
|
unsigned long min_count, ret;
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2008-07-24 11:27:47 +07:00
|
|
|
if (h->order >= MAX_ORDER)
|
|
|
|
return h->max_huge_pages;
|
|
|
|
|
2007-10-16 15:26:18 +07:00
|
|
|
/*
|
|
|
|
* Increase the pool size
|
|
|
|
* First take pages out of surplus state. Then make up the
|
|
|
|
* remaining difference by allocating fresh huge pages.
|
hugetlb: introduce nr_overcommit_hugepages sysctl
hugetlb: introduce nr_overcommit_hugepages sysctl
While examining the code to support /proc/sys/vm/hugetlb_dynamic_pool, I
became convinced that having a boolean sysctl was insufficient:
1) To support per-node control of hugepages, I have previously submitted
patches to add a sysfs attribute related to nr_hugepages. However, with
a boolean global value and per-mount quota enforcement constraining the
dynamic pool, adding corresponding control of the dynamic pool on a
per-node basis seems inconsistent to me.
2) Administration of the hugetlb dynamic pool with multiple hugetlbfs
mount points is, arguably, more arduous than it needs to be. Each quota
would need to be set separately, and the sum would need to be monitored.
To ease the administration, and to help make the way for per-node
control of the static & dynamic hugepage pool, I added a separate
sysctl, nr_overcommit_hugepages. This value serves as a high watermark
for the overall hugepage pool, while nr_hugepages serves as a low
watermark. The boolean sysctl can then be removed, as the condition
nr_overcommit_hugepages > 0
indicates the same administrative setting as
hugetlb_dynamic_pool == 1
Quotas still serve as local enforcement of the size of the pool on a
per-mount basis.
A few caveats:
1) There is a race whereby the global surplus huge page counter is
incremented before a hugepage has allocated. Another process could then
try grow the pool, and fail to convert a surplus huge page to a normal
huge page and instead allocate a fresh huge page. I believe this is
benign, as no memory is leaked (the actual pages are still tracked
correctly) and the counters won't go out of sync.
2) Shrinking the static pool while a surplus is in effect will allow the
number of surplus huge pages to exceed the overcommit value. As long as
this condition holds, however, no more surplus huge pages will be
allowed on the system until one of the two sysctls are increased
sufficiently, or the surplus huge pages go out of use and are freed.
Successfully tested on x86_64 with the current libhugetlbfs snapshot,
modified to use the new sysctl.
Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-12-18 07:20:12 +07:00
|
|
|
*
|
|
|
|
* We might race with alloc_buddy_huge_page() here and be unable
|
|
|
|
* to convert a surplus huge page to a normal huge page. That is
|
|
|
|
* not critical, though, it just means the overall size of the
|
|
|
|
* pool might be one hugepage larger than it needs to be, but
|
|
|
|
* within all the constraints specified by the sysctls.
|
2007-10-16 15:26:18 +07:00
|
|
|
*/
|
2005-04-17 05:20:36 +07:00
|
|
|
spin_lock(&hugetlb_lock);
|
2008-07-24 11:27:41 +07:00
|
|
|
while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
|
2009-12-15 08:58:16 +07:00
|
|
|
if (!adjust_pool_surplus(h, nodes_allowed, -1))
|
2007-10-16 15:26:18 +07:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2008-07-24 11:27:41 +07:00
|
|
|
while (count > persistent_huge_pages(h)) {
|
2007-10-16 15:26:18 +07:00
|
|
|
/*
|
|
|
|
* If this allocation races such that we no longer need the
|
|
|
|
* page, free_huge_page will handle it by freeing the page
|
|
|
|
* and reducing the surplus.
|
|
|
|
*/
|
|
|
|
spin_unlock(&hugetlb_lock);
|
2009-12-15 08:58:16 +07:00
|
|
|
ret = alloc_fresh_huge_page(h, nodes_allowed);
|
2007-10-16 15:26:18 +07:00
|
|
|
spin_lock(&hugetlb_lock);
|
|
|
|
if (!ret)
|
|
|
|
goto out;
|
|
|
|
|
2009-12-15 08:59:56 +07:00
|
|
|
/* Bail for signals. Probably ctrl-c from user */
|
|
|
|
if (signal_pending(current))
|
|
|
|
goto out;
|
2007-10-16 15:26:18 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Decrease the pool size
|
|
|
|
* First return free pages to the buddy allocator (being careful
|
|
|
|
* to keep enough around to satisfy reservations). Then place
|
|
|
|
* pages into surplus state as needed so the pool will shrink
|
|
|
|
* to the desired size as pages become free.
|
hugetlb: introduce nr_overcommit_hugepages sysctl
hugetlb: introduce nr_overcommit_hugepages sysctl
While examining the code to support /proc/sys/vm/hugetlb_dynamic_pool, I
became convinced that having a boolean sysctl was insufficient:
1) To support per-node control of hugepages, I have previously submitted
patches to add a sysfs attribute related to nr_hugepages. However, with
a boolean global value and per-mount quota enforcement constraining the
dynamic pool, adding corresponding control of the dynamic pool on a
per-node basis seems inconsistent to me.
2) Administration of the hugetlb dynamic pool with multiple hugetlbfs
mount points is, arguably, more arduous than it needs to be. Each quota
would need to be set separately, and the sum would need to be monitored.
To ease the administration, and to help make the way for per-node
control of the static & dynamic hugepage pool, I added a separate
sysctl, nr_overcommit_hugepages. This value serves as a high watermark
for the overall hugepage pool, while nr_hugepages serves as a low
watermark. The boolean sysctl can then be removed, as the condition
nr_overcommit_hugepages > 0
indicates the same administrative setting as
hugetlb_dynamic_pool == 1
Quotas still serve as local enforcement of the size of the pool on a
per-mount basis.
A few caveats:
1) There is a race whereby the global surplus huge page counter is
incremented before a hugepage has allocated. Another process could then
try grow the pool, and fail to convert a surplus huge page to a normal
huge page and instead allocate a fresh huge page. I believe this is
benign, as no memory is leaked (the actual pages are still tracked
correctly) and the counters won't go out of sync.
2) Shrinking the static pool while a surplus is in effect will allow the
number of surplus huge pages to exceed the overcommit value. As long as
this condition holds, however, no more surplus huge pages will be
allowed on the system until one of the two sysctls are increased
sufficiently, or the surplus huge pages go out of use and are freed.
Successfully tested on x86_64 with the current libhugetlbfs snapshot,
modified to use the new sysctl.
Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-12-18 07:20:12 +07:00
|
|
|
*
|
|
|
|
* By placing pages into the surplus state independent of the
|
|
|
|
* overcommit value, we are allowing the surplus pool size to
|
|
|
|
* exceed overcommit. There are few sane options here. Since
|
|
|
|
* alloc_buddy_huge_page() is checking the global counter,
|
|
|
|
* though, we'll note that we're not allowed to exceed surplus
|
|
|
|
* and won't grow the pool anywhere else. Not until one of the
|
|
|
|
* sysctls are changed, or the surplus pages go out of use.
|
2007-10-16 15:26:18 +07:00
|
|
|
*/
|
2008-07-24 11:27:41 +07:00
|
|
|
min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
|
2007-10-16 15:26:23 +07:00
|
|
|
min_count = max(count, min_count);
|
2009-12-15 08:58:16 +07:00
|
|
|
try_to_free_low(h, min_count, nodes_allowed);
|
2008-07-24 11:27:41 +07:00
|
|
|
while (min_count < persistent_huge_pages(h)) {
|
2009-12-15 08:58:16 +07:00
|
|
|
if (!free_pool_huge_page(h, nodes_allowed, 0))
|
2005-04-17 05:20:36 +07:00
|
|
|
break;
|
|
|
|
}
|
2008-07-24 11:27:41 +07:00
|
|
|
while (count < persistent_huge_pages(h)) {
|
2009-12-15 08:58:16 +07:00
|
|
|
if (!adjust_pool_surplus(h, nodes_allowed, 1))
|
2007-10-16 15:26:18 +07:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
out:
|
2008-07-24 11:27:41 +07:00
|
|
|
ret = persistent_huge_pages(h);
|
2005-04-17 05:20:36 +07:00
|
|
|
spin_unlock(&hugetlb_lock);
|
2007-10-16 15:26:18 +07:00
|
|
|
return ret;
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
|
|
|
|
2008-07-24 11:27:44 +07:00
|
|
|
#define HSTATE_ATTR_RO(_name) \
|
|
|
|
static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
|
|
|
|
|
|
|
|
#define HSTATE_ATTR(_name) \
|
|
|
|
static struct kobj_attribute _name##_attr = \
|
|
|
|
__ATTR(_name, 0644, _name##_show, _name##_store)
|
|
|
|
|
|
|
|
static struct kobject *hugepages_kobj;
|
|
|
|
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
|
|
|
|
|
2009-12-15 08:58:25 +07:00
|
|
|
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
|
|
|
|
|
|
|
|
static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
|
2008-07-24 11:27:44 +07:00
|
|
|
{
|
|
|
|
int i;
|
2009-12-15 08:58:25 +07:00
|
|
|
|
2008-07-24 11:27:44 +07:00
|
|
|
for (i = 0; i < HUGE_MAX_HSTATE; i++)
|
2009-12-15 08:58:25 +07:00
|
|
|
if (hstate_kobjs[i] == kobj) {
|
|
|
|
if (nidp)
|
|
|
|
*nidp = NUMA_NO_NODE;
|
2008-07-24 11:27:44 +07:00
|
|
|
return &hstates[i];
|
2009-12-15 08:58:25 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
return kobj_to_node_hstate(kobj, nidp);
|
2008-07-24 11:27:44 +07:00
|
|
|
}
|
|
|
|
|
hugetlb: derive huge pages nodes allowed from task mempolicy
This patch derives a "nodes_allowed" node mask from the numa mempolicy of
the task modifying the number of persistent huge pages to control the
allocation, freeing and adjusting of surplus huge pages when the pool page
count is modified via the new sysctl or sysfs attribute
"nr_hugepages_mempolicy". The nodes_allowed mask is derived as follows:
* For "default" [NULL] task mempolicy, a NULL nodemask_t pointer
is produced. This will cause the hugetlb subsystem to use
node_online_map as the "nodes_allowed". This preserves the
behavior before this patch.
* For "preferred" mempolicy, including explicit local allocation,
a nodemask with the single preferred node will be produced.
"local" policy will NOT track any internode migrations of the
task adjusting nr_hugepages.
* For "bind" and "interleave" policy, the mempolicy's nodemask
will be used.
* Other than to inform the construction of the nodes_allowed node
mask, the actual mempolicy mode is ignored. That is, all modes
behave like interleave over the resulting nodes_allowed mask
with no "fallback".
See the updated documentation [next patch] for more information
about the implications of this patch.
Examples:
Starting with:
Node 0 HugePages_Total: 0
Node 1 HugePages_Total: 0
Node 2 HugePages_Total: 0
Node 3 HugePages_Total: 0
Default behavior [with or without this patch] balances persistent
hugepage allocation across nodes [with sufficient contiguous memory]:
sysctl vm.nr_hugepages[_mempolicy]=32
yields:
Node 0 HugePages_Total: 8
Node 1 HugePages_Total: 8
Node 2 HugePages_Total: 8
Node 3 HugePages_Total: 8
Of course, we only have nr_hugepages_mempolicy with the patch,
but with default mempolicy, nr_hugepages_mempolicy behaves the
same as nr_hugepages.
Applying mempolicy--e.g., with numactl [using '-m' a.k.a.
'--membind' because it allows multiple nodes to be specified
and it's easy to type]--we can allocate huge pages on
individual nodes or sets of nodes. So, starting from the
condition above, with 8 huge pages per node, add 8 more to
node 2 using:
numactl -m 2 sysctl vm.nr_hugepages_mempolicy=40
This yields:
Node 0 HugePages_Total: 8
Node 1 HugePages_Total: 8
Node 2 HugePages_Total: 16
Node 3 HugePages_Total: 8
The incremental 8 huge pages were restricted to node 2 by the
specified mempolicy.
Similarly, we can use mempolicy to free persistent huge pages
from specified nodes:
numactl -m 0,1 sysctl vm.nr_hugepages_mempolicy=32
yields:
Node 0 HugePages_Total: 4
Node 1 HugePages_Total: 4
Node 2 HugePages_Total: 16
Node 3 HugePages_Total: 8
The 8 huge pages freed were balanced over nodes 0 and 1.
[rientjes@google.com: accomodate reworked NODEMASK_ALLOC]
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 08:58:21 +07:00
|
|
|
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
|
2008-07-24 11:27:44 +07:00
|
|
|
struct kobj_attribute *attr, char *buf)
|
|
|
|
{
|
2009-12-15 08:58:25 +07:00
|
|
|
struct hstate *h;
|
|
|
|
unsigned long nr_huge_pages;
|
|
|
|
int nid;
|
|
|
|
|
|
|
|
h = kobj_to_hstate(kobj, &nid);
|
|
|
|
if (nid == NUMA_NO_NODE)
|
|
|
|
nr_huge_pages = h->nr_huge_pages;
|
|
|
|
else
|
|
|
|
nr_huge_pages = h->nr_huge_pages_node[nid];
|
|
|
|
|
|
|
|
return sprintf(buf, "%lu\n", nr_huge_pages);
|
2008-07-24 11:27:44 +07:00
|
|
|
}
|
2011-01-14 06:47:27 +07:00
|
|
|
|
hugetlb: derive huge pages nodes allowed from task mempolicy
This patch derives a "nodes_allowed" node mask from the numa mempolicy of
the task modifying the number of persistent huge pages to control the
allocation, freeing and adjusting of surplus huge pages when the pool page
count is modified via the new sysctl or sysfs attribute
"nr_hugepages_mempolicy". The nodes_allowed mask is derived as follows:
* For "default" [NULL] task mempolicy, a NULL nodemask_t pointer
is produced. This will cause the hugetlb subsystem to use
node_online_map as the "nodes_allowed". This preserves the
behavior before this patch.
* For "preferred" mempolicy, including explicit local allocation,
a nodemask with the single preferred node will be produced.
"local" policy will NOT track any internode migrations of the
task adjusting nr_hugepages.
* For "bind" and "interleave" policy, the mempolicy's nodemask
will be used.
* Other than to inform the construction of the nodes_allowed node
mask, the actual mempolicy mode is ignored. That is, all modes
behave like interleave over the resulting nodes_allowed mask
with no "fallback".
See the updated documentation [next patch] for more information
about the implications of this patch.
Examples:
Starting with:
Node 0 HugePages_Total: 0
Node 1 HugePages_Total: 0
Node 2 HugePages_Total: 0
Node 3 HugePages_Total: 0
Default behavior [with or without this patch] balances persistent
hugepage allocation across nodes [with sufficient contiguous memory]:
sysctl vm.nr_hugepages[_mempolicy]=32
yields:
Node 0 HugePages_Total: 8
Node 1 HugePages_Total: 8
Node 2 HugePages_Total: 8
Node 3 HugePages_Total: 8
Of course, we only have nr_hugepages_mempolicy with the patch,
but with default mempolicy, nr_hugepages_mempolicy behaves the
same as nr_hugepages.
Applying mempolicy--e.g., with numactl [using '-m' a.k.a.
'--membind' because it allows multiple nodes to be specified
and it's easy to type]--we can allocate huge pages on
individual nodes or sets of nodes. So, starting from the
condition above, with 8 huge pages per node, add 8 more to
node 2 using:
numactl -m 2 sysctl vm.nr_hugepages_mempolicy=40
This yields:
Node 0 HugePages_Total: 8
Node 1 HugePages_Total: 8
Node 2 HugePages_Total: 16
Node 3 HugePages_Total: 8
The incremental 8 huge pages were restricted to node 2 by the
specified mempolicy.
Similarly, we can use mempolicy to free persistent huge pages
from specified nodes:
numactl -m 0,1 sysctl vm.nr_hugepages_mempolicy=32
yields:
Node 0 HugePages_Total: 4
Node 1 HugePages_Total: 4
Node 2 HugePages_Total: 16
Node 3 HugePages_Total: 8
The 8 huge pages freed were balanced over nodes 0 and 1.
[rientjes@google.com: accomodate reworked NODEMASK_ALLOC]
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 08:58:21 +07:00
|
|
|
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
|
|
|
|
struct kobject *kobj, struct kobj_attribute *attr,
|
|
|
|
const char *buf, size_t len)
|
2008-07-24 11:27:44 +07:00
|
|
|
{
|
|
|
|
int err;
|
2009-12-15 08:58:25 +07:00
|
|
|
int nid;
|
hugetlb: derive huge pages nodes allowed from task mempolicy
This patch derives a "nodes_allowed" node mask from the numa mempolicy of
the task modifying the number of persistent huge pages to control the
allocation, freeing and adjusting of surplus huge pages when the pool page
count is modified via the new sysctl or sysfs attribute
"nr_hugepages_mempolicy". The nodes_allowed mask is derived as follows:
* For "default" [NULL] task mempolicy, a NULL nodemask_t pointer
is produced. This will cause the hugetlb subsystem to use
node_online_map as the "nodes_allowed". This preserves the
behavior before this patch.
* For "preferred" mempolicy, including explicit local allocation,
a nodemask with the single preferred node will be produced.
"local" policy will NOT track any internode migrations of the
task adjusting nr_hugepages.
* For "bind" and "interleave" policy, the mempolicy's nodemask
will be used.
* Other than to inform the construction of the nodes_allowed node
mask, the actual mempolicy mode is ignored. That is, all modes
behave like interleave over the resulting nodes_allowed mask
with no "fallback".
See the updated documentation [next patch] for more information
about the implications of this patch.
Examples:
Starting with:
Node 0 HugePages_Total: 0
Node 1 HugePages_Total: 0
Node 2 HugePages_Total: 0
Node 3 HugePages_Total: 0
Default behavior [with or without this patch] balances persistent
hugepage allocation across nodes [with sufficient contiguous memory]:
sysctl vm.nr_hugepages[_mempolicy]=32
yields:
Node 0 HugePages_Total: 8
Node 1 HugePages_Total: 8
Node 2 HugePages_Total: 8
Node 3 HugePages_Total: 8
Of course, we only have nr_hugepages_mempolicy with the patch,
but with default mempolicy, nr_hugepages_mempolicy behaves the
same as nr_hugepages.
Applying mempolicy--e.g., with numactl [using '-m' a.k.a.
'--membind' because it allows multiple nodes to be specified
and it's easy to type]--we can allocate huge pages on
individual nodes or sets of nodes. So, starting from the
condition above, with 8 huge pages per node, add 8 more to
node 2 using:
numactl -m 2 sysctl vm.nr_hugepages_mempolicy=40
This yields:
Node 0 HugePages_Total: 8
Node 1 HugePages_Total: 8
Node 2 HugePages_Total: 16
Node 3 HugePages_Total: 8
The incremental 8 huge pages were restricted to node 2 by the
specified mempolicy.
Similarly, we can use mempolicy to free persistent huge pages
from specified nodes:
numactl -m 0,1 sysctl vm.nr_hugepages_mempolicy=32
yields:
Node 0 HugePages_Total: 4
Node 1 HugePages_Total: 4
Node 2 HugePages_Total: 16
Node 3 HugePages_Total: 8
The 8 huge pages freed were balanced over nodes 0 and 1.
[rientjes@google.com: accomodate reworked NODEMASK_ALLOC]
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 08:58:21 +07:00
|
|
|
unsigned long count;
|
2009-12-15 08:58:25 +07:00
|
|
|
struct hstate *h;
|
2009-12-15 08:58:38 +07:00
|
|
|
NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
|
2008-07-24 11:27:44 +07:00
|
|
|
|
2013-09-12 04:20:25 +07:00
|
|
|
err = kstrtoul(buf, 10, &count);
|
2011-01-14 06:47:28 +07:00
|
|
|
if (err)
|
2011-01-14 06:47:27 +07:00
|
|
|
goto out;
|
2008-07-24 11:27:44 +07:00
|
|
|
|
2009-12-15 08:58:25 +07:00
|
|
|
h = kobj_to_hstate(kobj, &nid);
|
2011-01-14 06:47:27 +07:00
|
|
|
if (h->order >= MAX_ORDER) {
|
|
|
|
err = -EINVAL;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
2009-12-15 08:58:25 +07:00
|
|
|
if (nid == NUMA_NO_NODE) {
|
|
|
|
/*
|
|
|
|
* global hstate attribute
|
|
|
|
*/
|
|
|
|
if (!(obey_mempolicy &&
|
|
|
|
init_nodemask_of_mempolicy(nodes_allowed))) {
|
|
|
|
NODEMASK_FREE(nodes_allowed);
|
2012-12-13 04:51:36 +07:00
|
|
|
nodes_allowed = &node_states[N_MEMORY];
|
2009-12-15 08:58:25 +07:00
|
|
|
}
|
|
|
|
} else if (nodes_allowed) {
|
|
|
|
/*
|
|
|
|
* per node hstate attribute: adjust count to global,
|
|
|
|
* but restrict alloc/free to the specified node.
|
|
|
|
*/
|
|
|
|
count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
|
|
|
|
init_nodemask_of_node(nodes_allowed, nid);
|
|
|
|
} else
|
2012-12-13 04:51:36 +07:00
|
|
|
nodes_allowed = &node_states[N_MEMORY];
|
2009-12-15 08:58:25 +07:00
|
|
|
|
hugetlb: derive huge pages nodes allowed from task mempolicy
This patch derives a "nodes_allowed" node mask from the numa mempolicy of
the task modifying the number of persistent huge pages to control the
allocation, freeing and adjusting of surplus huge pages when the pool page
count is modified via the new sysctl or sysfs attribute
"nr_hugepages_mempolicy". The nodes_allowed mask is derived as follows:
* For "default" [NULL] task mempolicy, a NULL nodemask_t pointer
is produced. This will cause the hugetlb subsystem to use
node_online_map as the "nodes_allowed". This preserves the
behavior before this patch.
* For "preferred" mempolicy, including explicit local allocation,
a nodemask with the single preferred node will be produced.
"local" policy will NOT track any internode migrations of the
task adjusting nr_hugepages.
* For "bind" and "interleave" policy, the mempolicy's nodemask
will be used.
* Other than to inform the construction of the nodes_allowed node
mask, the actual mempolicy mode is ignored. That is, all modes
behave like interleave over the resulting nodes_allowed mask
with no "fallback".
See the updated documentation [next patch] for more information
about the implications of this patch.
Examples:
Starting with:
Node 0 HugePages_Total: 0
Node 1 HugePages_Total: 0
Node 2 HugePages_Total: 0
Node 3 HugePages_Total: 0
Default behavior [with or without this patch] balances persistent
hugepage allocation across nodes [with sufficient contiguous memory]:
sysctl vm.nr_hugepages[_mempolicy]=32
yields:
Node 0 HugePages_Total: 8
Node 1 HugePages_Total: 8
Node 2 HugePages_Total: 8
Node 3 HugePages_Total: 8
Of course, we only have nr_hugepages_mempolicy with the patch,
but with default mempolicy, nr_hugepages_mempolicy behaves the
same as nr_hugepages.
Applying mempolicy--e.g., with numactl [using '-m' a.k.a.
'--membind' because it allows multiple nodes to be specified
and it's easy to type]--we can allocate huge pages on
individual nodes or sets of nodes. So, starting from the
condition above, with 8 huge pages per node, add 8 more to
node 2 using:
numactl -m 2 sysctl vm.nr_hugepages_mempolicy=40
This yields:
Node 0 HugePages_Total: 8
Node 1 HugePages_Total: 8
Node 2 HugePages_Total: 16
Node 3 HugePages_Total: 8
The incremental 8 huge pages were restricted to node 2 by the
specified mempolicy.
Similarly, we can use mempolicy to free persistent huge pages
from specified nodes:
numactl -m 0,1 sysctl vm.nr_hugepages_mempolicy=32
yields:
Node 0 HugePages_Total: 4
Node 1 HugePages_Total: 4
Node 2 HugePages_Total: 16
Node 3 HugePages_Total: 8
The 8 huge pages freed were balanced over nodes 0 and 1.
[rientjes@google.com: accomodate reworked NODEMASK_ALLOC]
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 08:58:21 +07:00
|
|
|
h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
|
2008-07-24 11:27:44 +07:00
|
|
|
|
2012-12-13 04:51:36 +07:00
|
|
|
if (nodes_allowed != &node_states[N_MEMORY])
|
hugetlb: derive huge pages nodes allowed from task mempolicy
This patch derives a "nodes_allowed" node mask from the numa mempolicy of
the task modifying the number of persistent huge pages to control the
allocation, freeing and adjusting of surplus huge pages when the pool page
count is modified via the new sysctl or sysfs attribute
"nr_hugepages_mempolicy". The nodes_allowed mask is derived as follows:
* For "default" [NULL] task mempolicy, a NULL nodemask_t pointer
is produced. This will cause the hugetlb subsystem to use
node_online_map as the "nodes_allowed". This preserves the
behavior before this patch.
* For "preferred" mempolicy, including explicit local allocation,
a nodemask with the single preferred node will be produced.
"local" policy will NOT track any internode migrations of the
task adjusting nr_hugepages.
* For "bind" and "interleave" policy, the mempolicy's nodemask
will be used.
* Other than to inform the construction of the nodes_allowed node
mask, the actual mempolicy mode is ignored. That is, all modes
behave like interleave over the resulting nodes_allowed mask
with no "fallback".
See the updated documentation [next patch] for more information
about the implications of this patch.
Examples:
Starting with:
Node 0 HugePages_Total: 0
Node 1 HugePages_Total: 0
Node 2 HugePages_Total: 0
Node 3 HugePages_Total: 0
Default behavior [with or without this patch] balances persistent
hugepage allocation across nodes [with sufficient contiguous memory]:
sysctl vm.nr_hugepages[_mempolicy]=32
yields:
Node 0 HugePages_Total: 8
Node 1 HugePages_Total: 8
Node 2 HugePages_Total: 8
Node 3 HugePages_Total: 8
Of course, we only have nr_hugepages_mempolicy with the patch,
but with default mempolicy, nr_hugepages_mempolicy behaves the
same as nr_hugepages.
Applying mempolicy--e.g., with numactl [using '-m' a.k.a.
'--membind' because it allows multiple nodes to be specified
and it's easy to type]--we can allocate huge pages on
individual nodes or sets of nodes. So, starting from the
condition above, with 8 huge pages per node, add 8 more to
node 2 using:
numactl -m 2 sysctl vm.nr_hugepages_mempolicy=40
This yields:
Node 0 HugePages_Total: 8
Node 1 HugePages_Total: 8
Node 2 HugePages_Total: 16
Node 3 HugePages_Total: 8
The incremental 8 huge pages were restricted to node 2 by the
specified mempolicy.
Similarly, we can use mempolicy to free persistent huge pages
from specified nodes:
numactl -m 0,1 sysctl vm.nr_hugepages_mempolicy=32
yields:
Node 0 HugePages_Total: 4
Node 1 HugePages_Total: 4
Node 2 HugePages_Total: 16
Node 3 HugePages_Total: 8
The 8 huge pages freed were balanced over nodes 0 and 1.
[rientjes@google.com: accomodate reworked NODEMASK_ALLOC]
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 08:58:21 +07:00
|
|
|
NODEMASK_FREE(nodes_allowed);
|
|
|
|
|
|
|
|
return len;
|
2011-01-14 06:47:27 +07:00
|
|
|
out:
|
|
|
|
NODEMASK_FREE(nodes_allowed);
|
|
|
|
return err;
|
hugetlb: derive huge pages nodes allowed from task mempolicy
This patch derives a "nodes_allowed" node mask from the numa mempolicy of
the task modifying the number of persistent huge pages to control the
allocation, freeing and adjusting of surplus huge pages when the pool page
count is modified via the new sysctl or sysfs attribute
"nr_hugepages_mempolicy". The nodes_allowed mask is derived as follows:
* For "default" [NULL] task mempolicy, a NULL nodemask_t pointer
is produced. This will cause the hugetlb subsystem to use
node_online_map as the "nodes_allowed". This preserves the
behavior before this patch.
* For "preferred" mempolicy, including explicit local allocation,
a nodemask with the single preferred node will be produced.
"local" policy will NOT track any internode migrations of the
task adjusting nr_hugepages.
* For "bind" and "interleave" policy, the mempolicy's nodemask
will be used.
* Other than to inform the construction of the nodes_allowed node
mask, the actual mempolicy mode is ignored. That is, all modes
behave like interleave over the resulting nodes_allowed mask
with no "fallback".
See the updated documentation [next patch] for more information
about the implications of this patch.
Examples:
Starting with:
Node 0 HugePages_Total: 0
Node 1 HugePages_Total: 0
Node 2 HugePages_Total: 0
Node 3 HugePages_Total: 0
Default behavior [with or without this patch] balances persistent
hugepage allocation across nodes [with sufficient contiguous memory]:
sysctl vm.nr_hugepages[_mempolicy]=32
yields:
Node 0 HugePages_Total: 8
Node 1 HugePages_Total: 8
Node 2 HugePages_Total: 8
Node 3 HugePages_Total: 8
Of course, we only have nr_hugepages_mempolicy with the patch,
but with default mempolicy, nr_hugepages_mempolicy behaves the
same as nr_hugepages.
Applying mempolicy--e.g., with numactl [using '-m' a.k.a.
'--membind' because it allows multiple nodes to be specified
and it's easy to type]--we can allocate huge pages on
individual nodes or sets of nodes. So, starting from the
condition above, with 8 huge pages per node, add 8 more to
node 2 using:
numactl -m 2 sysctl vm.nr_hugepages_mempolicy=40
This yields:
Node 0 HugePages_Total: 8
Node 1 HugePages_Total: 8
Node 2 HugePages_Total: 16
Node 3 HugePages_Total: 8
The incremental 8 huge pages were restricted to node 2 by the
specified mempolicy.
Similarly, we can use mempolicy to free persistent huge pages
from specified nodes:
numactl -m 0,1 sysctl vm.nr_hugepages_mempolicy=32
yields:
Node 0 HugePages_Total: 4
Node 1 HugePages_Total: 4
Node 2 HugePages_Total: 16
Node 3 HugePages_Total: 8
The 8 huge pages freed were balanced over nodes 0 and 1.
[rientjes@google.com: accomodate reworked NODEMASK_ALLOC]
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 08:58:21 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
static ssize_t nr_hugepages_show(struct kobject *kobj,
|
|
|
|
struct kobj_attribute *attr, char *buf)
|
|
|
|
{
|
|
|
|
return nr_hugepages_show_common(kobj, attr, buf);
|
|
|
|
}
|
|
|
|
|
|
|
|
static ssize_t nr_hugepages_store(struct kobject *kobj,
|
|
|
|
struct kobj_attribute *attr, const char *buf, size_t len)
|
|
|
|
{
|
|
|
|
return nr_hugepages_store_common(false, kobj, attr, buf, len);
|
2008-07-24 11:27:44 +07:00
|
|
|
}
|
|
|
|
HSTATE_ATTR(nr_hugepages);
|
|
|
|
|
hugetlb: derive huge pages nodes allowed from task mempolicy
This patch derives a "nodes_allowed" node mask from the numa mempolicy of
the task modifying the number of persistent huge pages to control the
allocation, freeing and adjusting of surplus huge pages when the pool page
count is modified via the new sysctl or sysfs attribute
"nr_hugepages_mempolicy". The nodes_allowed mask is derived as follows:
* For "default" [NULL] task mempolicy, a NULL nodemask_t pointer
is produced. This will cause the hugetlb subsystem to use
node_online_map as the "nodes_allowed". This preserves the
behavior before this patch.
* For "preferred" mempolicy, including explicit local allocation,
a nodemask with the single preferred node will be produced.
"local" policy will NOT track any internode migrations of the
task adjusting nr_hugepages.
* For "bind" and "interleave" policy, the mempolicy's nodemask
will be used.
* Other than to inform the construction of the nodes_allowed node
mask, the actual mempolicy mode is ignored. That is, all modes
behave like interleave over the resulting nodes_allowed mask
with no "fallback".
See the updated documentation [next patch] for more information
about the implications of this patch.
Examples:
Starting with:
Node 0 HugePages_Total: 0
Node 1 HugePages_Total: 0
Node 2 HugePages_Total: 0
Node 3 HugePages_Total: 0
Default behavior [with or without this patch] balances persistent
hugepage allocation across nodes [with sufficient contiguous memory]:
sysctl vm.nr_hugepages[_mempolicy]=32
yields:
Node 0 HugePages_Total: 8
Node 1 HugePages_Total: 8
Node 2 HugePages_Total: 8
Node 3 HugePages_Total: 8
Of course, we only have nr_hugepages_mempolicy with the patch,
but with default mempolicy, nr_hugepages_mempolicy behaves the
same as nr_hugepages.
Applying mempolicy--e.g., with numactl [using '-m' a.k.a.
'--membind' because it allows multiple nodes to be specified
and it's easy to type]--we can allocate huge pages on
individual nodes or sets of nodes. So, starting from the
condition above, with 8 huge pages per node, add 8 more to
node 2 using:
numactl -m 2 sysctl vm.nr_hugepages_mempolicy=40
This yields:
Node 0 HugePages_Total: 8
Node 1 HugePages_Total: 8
Node 2 HugePages_Total: 16
Node 3 HugePages_Total: 8
The incremental 8 huge pages were restricted to node 2 by the
specified mempolicy.
Similarly, we can use mempolicy to free persistent huge pages
from specified nodes:
numactl -m 0,1 sysctl vm.nr_hugepages_mempolicy=32
yields:
Node 0 HugePages_Total: 4
Node 1 HugePages_Total: 4
Node 2 HugePages_Total: 16
Node 3 HugePages_Total: 8
The 8 huge pages freed were balanced over nodes 0 and 1.
[rientjes@google.com: accomodate reworked NODEMASK_ALLOC]
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 08:58:21 +07:00
|
|
|
#ifdef CONFIG_NUMA
|
|
|
|
|
|
|
|
/*
|
|
|
|
* hstate attribute for optionally mempolicy-based constraint on persistent
|
|
|
|
* huge page alloc/free.
|
|
|
|
*/
|
|
|
|
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
|
|
|
|
struct kobj_attribute *attr, char *buf)
|
|
|
|
{
|
|
|
|
return nr_hugepages_show_common(kobj, attr, buf);
|
|
|
|
}
|
|
|
|
|
|
|
|
static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
|
|
|
|
struct kobj_attribute *attr, const char *buf, size_t len)
|
|
|
|
{
|
|
|
|
return nr_hugepages_store_common(true, kobj, attr, buf, len);
|
|
|
|
}
|
|
|
|
HSTATE_ATTR(nr_hugepages_mempolicy);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
2008-07-24 11:27:44 +07:00
|
|
|
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
|
|
|
|
struct kobj_attribute *attr, char *buf)
|
|
|
|
{
|
2009-12-15 08:58:25 +07:00
|
|
|
struct hstate *h = kobj_to_hstate(kobj, NULL);
|
2008-07-24 11:27:44 +07:00
|
|
|
return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
|
|
|
|
}
|
2011-01-14 06:47:27 +07:00
|
|
|
|
2008-07-24 11:27:44 +07:00
|
|
|
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
|
|
|
|
struct kobj_attribute *attr, const char *buf, size_t count)
|
|
|
|
{
|
|
|
|
int err;
|
|
|
|
unsigned long input;
|
2009-12-15 08:58:25 +07:00
|
|
|
struct hstate *h = kobj_to_hstate(kobj, NULL);
|
2008-07-24 11:27:44 +07:00
|
|
|
|
2011-01-14 06:47:27 +07:00
|
|
|
if (h->order >= MAX_ORDER)
|
|
|
|
return -EINVAL;
|
|
|
|
|
2013-09-12 04:20:25 +07:00
|
|
|
err = kstrtoul(buf, 10, &input);
|
2008-07-24 11:27:44 +07:00
|
|
|
if (err)
|
2011-01-14 06:47:28 +07:00
|
|
|
return err;
|
2008-07-24 11:27:44 +07:00
|
|
|
|
|
|
|
spin_lock(&hugetlb_lock);
|
|
|
|
h->nr_overcommit_huge_pages = input;
|
|
|
|
spin_unlock(&hugetlb_lock);
|
|
|
|
|
|
|
|
return count;
|
|
|
|
}
|
|
|
|
HSTATE_ATTR(nr_overcommit_hugepages);
|
|
|
|
|
|
|
|
static ssize_t free_hugepages_show(struct kobject *kobj,
|
|
|
|
struct kobj_attribute *attr, char *buf)
|
|
|
|
{
|
2009-12-15 08:58:25 +07:00
|
|
|
struct hstate *h;
|
|
|
|
unsigned long free_huge_pages;
|
|
|
|
int nid;
|
|
|
|
|
|
|
|
h = kobj_to_hstate(kobj, &nid);
|
|
|
|
if (nid == NUMA_NO_NODE)
|
|
|
|
free_huge_pages = h->free_huge_pages;
|
|
|
|
else
|
|
|
|
free_huge_pages = h->free_huge_pages_node[nid];
|
|
|
|
|
|
|
|
return sprintf(buf, "%lu\n", free_huge_pages);
|
2008-07-24 11:27:44 +07:00
|
|
|
}
|
|
|
|
HSTATE_ATTR_RO(free_hugepages);
|
|
|
|
|
|
|
|
static ssize_t resv_hugepages_show(struct kobject *kobj,
|
|
|
|
struct kobj_attribute *attr, char *buf)
|
|
|
|
{
|
2009-12-15 08:58:25 +07:00
|
|
|
struct hstate *h = kobj_to_hstate(kobj, NULL);
|
2008-07-24 11:27:44 +07:00
|
|
|
return sprintf(buf, "%lu\n", h->resv_huge_pages);
|
|
|
|
}
|
|
|
|
HSTATE_ATTR_RO(resv_hugepages);
|
|
|
|
|
|
|
|
static ssize_t surplus_hugepages_show(struct kobject *kobj,
|
|
|
|
struct kobj_attribute *attr, char *buf)
|
|
|
|
{
|
2009-12-15 08:58:25 +07:00
|
|
|
struct hstate *h;
|
|
|
|
unsigned long surplus_huge_pages;
|
|
|
|
int nid;
|
|
|
|
|
|
|
|
h = kobj_to_hstate(kobj, &nid);
|
|
|
|
if (nid == NUMA_NO_NODE)
|
|
|
|
surplus_huge_pages = h->surplus_huge_pages;
|
|
|
|
else
|
|
|
|
surplus_huge_pages = h->surplus_huge_pages_node[nid];
|
|
|
|
|
|
|
|
return sprintf(buf, "%lu\n", surplus_huge_pages);
|
2008-07-24 11:27:44 +07:00
|
|
|
}
|
|
|
|
HSTATE_ATTR_RO(surplus_hugepages);
|
|
|
|
|
|
|
|
static struct attribute *hstate_attrs[] = {
|
|
|
|
&nr_hugepages_attr.attr,
|
|
|
|
&nr_overcommit_hugepages_attr.attr,
|
|
|
|
&free_hugepages_attr.attr,
|
|
|
|
&resv_hugepages_attr.attr,
|
|
|
|
&surplus_hugepages_attr.attr,
|
hugetlb: derive huge pages nodes allowed from task mempolicy
This patch derives a "nodes_allowed" node mask from the numa mempolicy of
the task modifying the number of persistent huge pages to control the
allocation, freeing and adjusting of surplus huge pages when the pool page
count is modified via the new sysctl or sysfs attribute
"nr_hugepages_mempolicy". The nodes_allowed mask is derived as follows:
* For "default" [NULL] task mempolicy, a NULL nodemask_t pointer
is produced. This will cause the hugetlb subsystem to use
node_online_map as the "nodes_allowed". This preserves the
behavior before this patch.
* For "preferred" mempolicy, including explicit local allocation,
a nodemask with the single preferred node will be produced.
"local" policy will NOT track any internode migrations of the
task adjusting nr_hugepages.
* For "bind" and "interleave" policy, the mempolicy's nodemask
will be used.
* Other than to inform the construction of the nodes_allowed node
mask, the actual mempolicy mode is ignored. That is, all modes
behave like interleave over the resulting nodes_allowed mask
with no "fallback".
See the updated documentation [next patch] for more information
about the implications of this patch.
Examples:
Starting with:
Node 0 HugePages_Total: 0
Node 1 HugePages_Total: 0
Node 2 HugePages_Total: 0
Node 3 HugePages_Total: 0
Default behavior [with or without this patch] balances persistent
hugepage allocation across nodes [with sufficient contiguous memory]:
sysctl vm.nr_hugepages[_mempolicy]=32
yields:
Node 0 HugePages_Total: 8
Node 1 HugePages_Total: 8
Node 2 HugePages_Total: 8
Node 3 HugePages_Total: 8
Of course, we only have nr_hugepages_mempolicy with the patch,
but with default mempolicy, nr_hugepages_mempolicy behaves the
same as nr_hugepages.
Applying mempolicy--e.g., with numactl [using '-m' a.k.a.
'--membind' because it allows multiple nodes to be specified
and it's easy to type]--we can allocate huge pages on
individual nodes or sets of nodes. So, starting from the
condition above, with 8 huge pages per node, add 8 more to
node 2 using:
numactl -m 2 sysctl vm.nr_hugepages_mempolicy=40
This yields:
Node 0 HugePages_Total: 8
Node 1 HugePages_Total: 8
Node 2 HugePages_Total: 16
Node 3 HugePages_Total: 8
The incremental 8 huge pages were restricted to node 2 by the
specified mempolicy.
Similarly, we can use mempolicy to free persistent huge pages
from specified nodes:
numactl -m 0,1 sysctl vm.nr_hugepages_mempolicy=32
yields:
Node 0 HugePages_Total: 4
Node 1 HugePages_Total: 4
Node 2 HugePages_Total: 16
Node 3 HugePages_Total: 8
The 8 huge pages freed were balanced over nodes 0 and 1.
[rientjes@google.com: accomodate reworked NODEMASK_ALLOC]
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 08:58:21 +07:00
|
|
|
#ifdef CONFIG_NUMA
|
|
|
|
&nr_hugepages_mempolicy_attr.attr,
|
|
|
|
#endif
|
2008-07-24 11:27:44 +07:00
|
|
|
NULL,
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct attribute_group hstate_attr_group = {
|
|
|
|
.attrs = hstate_attrs,
|
|
|
|
};
|
|
|
|
|
2010-02-03 04:44:14 +07:00
|
|
|
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
|
|
|
|
struct kobject **hstate_kobjs,
|
|
|
|
struct attribute_group *hstate_attr_group)
|
2008-07-24 11:27:44 +07:00
|
|
|
{
|
|
|
|
int retval;
|
2012-08-01 06:42:00 +07:00
|
|
|
int hi = hstate_index(h);
|
2008-07-24 11:27:44 +07:00
|
|
|
|
2009-12-15 08:58:25 +07:00
|
|
|
hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
|
|
|
|
if (!hstate_kobjs[hi])
|
2008-07-24 11:27:44 +07:00
|
|
|
return -ENOMEM;
|
|
|
|
|
2009-12-15 08:58:25 +07:00
|
|
|
retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
|
2008-07-24 11:27:44 +07:00
|
|
|
if (retval)
|
2009-12-15 08:58:25 +07:00
|
|
|
kobject_put(hstate_kobjs[hi]);
|
2008-07-24 11:27:44 +07:00
|
|
|
|
|
|
|
return retval;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void __init hugetlb_sysfs_init(void)
|
|
|
|
{
|
|
|
|
struct hstate *h;
|
|
|
|
int err;
|
|
|
|
|
|
|
|
hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
|
|
|
|
if (!hugepages_kobj)
|
|
|
|
return;
|
|
|
|
|
|
|
|
for_each_hstate(h) {
|
2009-12-15 08:58:25 +07:00
|
|
|
err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
|
|
|
|
hstate_kobjs, &hstate_attr_group);
|
2008-07-24 11:27:44 +07:00
|
|
|
if (err)
|
2013-02-23 07:32:08 +07:00
|
|
|
pr_err("Hugetlb: Unable to add hstate %s", h->name);
|
2008-07-24 11:27:44 +07:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2009-12-15 08:58:25 +07:00
|
|
|
#ifdef CONFIG_NUMA
|
|
|
|
|
|
|
|
/*
|
|
|
|
* node_hstate/s - associate per node hstate attributes, via their kobjects,
|
2011-12-22 05:48:43 +07:00
|
|
|
* with node devices in node_devices[] using a parallel array. The array
|
|
|
|
* index of a node device or _hstate == node id.
|
|
|
|
* This is here to avoid any static dependency of the node device driver, in
|
2009-12-15 08:58:25 +07:00
|
|
|
* the base kernel, on the hugetlb module.
|
|
|
|
*/
|
|
|
|
struct node_hstate {
|
|
|
|
struct kobject *hugepages_kobj;
|
|
|
|
struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
|
|
|
|
};
|
|
|
|
struct node_hstate node_hstates[MAX_NUMNODES];
|
|
|
|
|
|
|
|
/*
|
2011-12-22 05:48:43 +07:00
|
|
|
* A subset of global hstate attributes for node devices
|
2009-12-15 08:58:25 +07:00
|
|
|
*/
|
|
|
|
static struct attribute *per_node_hstate_attrs[] = {
|
|
|
|
&nr_hugepages_attr.attr,
|
|
|
|
&free_hugepages_attr.attr,
|
|
|
|
&surplus_hugepages_attr.attr,
|
|
|
|
NULL,
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct attribute_group per_node_hstate_attr_group = {
|
|
|
|
.attrs = per_node_hstate_attrs,
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
2011-12-22 05:48:43 +07:00
|
|
|
* kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
|
2009-12-15 08:58:25 +07:00
|
|
|
* Returns node id via non-NULL nidp.
|
|
|
|
*/
|
|
|
|
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
|
|
|
|
{
|
|
|
|
int nid;
|
|
|
|
|
|
|
|
for (nid = 0; nid < nr_node_ids; nid++) {
|
|
|
|
struct node_hstate *nhs = &node_hstates[nid];
|
|
|
|
int i;
|
|
|
|
for (i = 0; i < HUGE_MAX_HSTATE; i++)
|
|
|
|
if (nhs->hstate_kobjs[i] == kobj) {
|
|
|
|
if (nidp)
|
|
|
|
*nidp = nid;
|
|
|
|
return &hstates[i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
BUG();
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2011-12-22 05:48:43 +07:00
|
|
|
* Unregister hstate attributes from a single node device.
|
2009-12-15 08:58:25 +07:00
|
|
|
* No-op if no hstate attributes attached.
|
|
|
|
*/
|
2013-03-04 17:46:15 +07:00
|
|
|
static void hugetlb_unregister_node(struct node *node)
|
2009-12-15 08:58:25 +07:00
|
|
|
{
|
|
|
|
struct hstate *h;
|
2011-12-22 05:48:43 +07:00
|
|
|
struct node_hstate *nhs = &node_hstates[node->dev.id];
|
2009-12-15 08:58:25 +07:00
|
|
|
|
|
|
|
if (!nhs->hugepages_kobj)
|
2009-12-15 08:58:32 +07:00
|
|
|
return; /* no hstate attributes */
|
2009-12-15 08:58:25 +07:00
|
|
|
|
2012-08-01 06:42:00 +07:00
|
|
|
for_each_hstate(h) {
|
|
|
|
int idx = hstate_index(h);
|
|
|
|
if (nhs->hstate_kobjs[idx]) {
|
|
|
|
kobject_put(nhs->hstate_kobjs[idx]);
|
|
|
|
nhs->hstate_kobjs[idx] = NULL;
|
2009-12-15 08:58:25 +07:00
|
|
|
}
|
2012-08-01 06:42:00 +07:00
|
|
|
}
|
2009-12-15 08:58:25 +07:00
|
|
|
|
|
|
|
kobject_put(nhs->hugepages_kobj);
|
|
|
|
nhs->hugepages_kobj = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2011-12-22 05:48:43 +07:00
|
|
|
* hugetlb module exit: unregister hstate attributes from node devices
|
2009-12-15 08:58:25 +07:00
|
|
|
* that have them.
|
|
|
|
*/
|
|
|
|
static void hugetlb_unregister_all_nodes(void)
|
|
|
|
{
|
|
|
|
int nid;
|
|
|
|
|
|
|
|
/*
|
2011-12-22 05:48:43 +07:00
|
|
|
* disable node device registrations.
|
2009-12-15 08:58:25 +07:00
|
|
|
*/
|
|
|
|
register_hugetlbfs_with_node(NULL, NULL);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* remove hstate attributes from any nodes that have them.
|
|
|
|
*/
|
|
|
|
for (nid = 0; nid < nr_node_ids; nid++)
|
2012-12-12 07:00:56 +07:00
|
|
|
hugetlb_unregister_node(node_devices[nid]);
|
2009-12-15 08:58:25 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2011-12-22 05:48:43 +07:00
|
|
|
* Register hstate attributes for a single node device.
|
2009-12-15 08:58:25 +07:00
|
|
|
* No-op if attributes already registered.
|
|
|
|
*/
|
2013-03-04 17:46:15 +07:00
|
|
|
static void hugetlb_register_node(struct node *node)
|
2009-12-15 08:58:25 +07:00
|
|
|
{
|
|
|
|
struct hstate *h;
|
2011-12-22 05:48:43 +07:00
|
|
|
struct node_hstate *nhs = &node_hstates[node->dev.id];
|
2009-12-15 08:58:25 +07:00
|
|
|
int err;
|
|
|
|
|
|
|
|
if (nhs->hugepages_kobj)
|
|
|
|
return; /* already allocated */
|
|
|
|
|
|
|
|
nhs->hugepages_kobj = kobject_create_and_add("hugepages",
|
2011-12-22 05:48:43 +07:00
|
|
|
&node->dev.kobj);
|
2009-12-15 08:58:25 +07:00
|
|
|
if (!nhs->hugepages_kobj)
|
|
|
|
return;
|
|
|
|
|
|
|
|
for_each_hstate(h) {
|
|
|
|
err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
|
|
|
|
nhs->hstate_kobjs,
|
|
|
|
&per_node_hstate_attr_group);
|
|
|
|
if (err) {
|
2013-02-23 07:32:08 +07:00
|
|
|
pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
|
|
|
|
h->name, node->dev.id);
|
2009-12-15 08:58:25 +07:00
|
|
|
hugetlb_unregister_node(node);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2009-12-15 08:58:32 +07:00
|
|
|
* hugetlb init time: register hstate attributes for all registered node
|
2011-12-22 05:48:43 +07:00
|
|
|
* devices of nodes that have memory. All on-line nodes should have
|
|
|
|
* registered their associated device by this time.
|
2009-12-15 08:58:25 +07:00
|
|
|
*/
|
|
|
|
static void hugetlb_register_all_nodes(void)
|
|
|
|
{
|
|
|
|
int nid;
|
|
|
|
|
2012-12-13 04:51:36 +07:00
|
|
|
for_each_node_state(nid, N_MEMORY) {
|
2012-12-12 07:00:56 +07:00
|
|
|
struct node *node = node_devices[nid];
|
2011-12-22 05:48:43 +07:00
|
|
|
if (node->dev.id == nid)
|
2009-12-15 08:58:25 +07:00
|
|
|
hugetlb_register_node(node);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2011-12-22 05:48:43 +07:00
|
|
|
* Let the node device driver know we're here so it can
|
2009-12-15 08:58:25 +07:00
|
|
|
* [un]register hstate attributes on node hotplug.
|
|
|
|
*/
|
|
|
|
register_hugetlbfs_with_node(hugetlb_register_node,
|
|
|
|
hugetlb_unregister_node);
|
|
|
|
}
|
|
|
|
#else /* !CONFIG_NUMA */
|
|
|
|
|
|
|
|
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
|
|
|
|
{
|
|
|
|
BUG();
|
|
|
|
if (nidp)
|
|
|
|
*nidp = -1;
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hugetlb_unregister_all_nodes(void) { }
|
|
|
|
|
|
|
|
static void hugetlb_register_all_nodes(void) { }
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
2008-07-24 11:27:44 +07:00
|
|
|
static void __exit hugetlb_exit(void)
|
|
|
|
{
|
|
|
|
struct hstate *h;
|
|
|
|
|
2009-12-15 08:58:25 +07:00
|
|
|
hugetlb_unregister_all_nodes();
|
|
|
|
|
2008-07-24 11:27:44 +07:00
|
|
|
for_each_hstate(h) {
|
2012-08-01 06:42:00 +07:00
|
|
|
kobject_put(hstate_kobjs[hstate_index(h)]);
|
2008-07-24 11:27:44 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
kobject_put(hugepages_kobj);
|
|
|
|
}
|
|
|
|
module_exit(hugetlb_exit);
|
|
|
|
|
|
|
|
static int __init hugetlb_init(void)
|
|
|
|
{
|
2008-07-31 14:07:30 +07:00
|
|
|
/* Some platform decide whether they support huge pages at boot
|
|
|
|
* time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
|
|
|
|
* there is no such support
|
|
|
|
*/
|
|
|
|
if (HPAGE_SHIFT == 0)
|
|
|
|
return 0;
|
2008-07-24 11:27:44 +07:00
|
|
|
|
2008-07-24 11:27:52 +07:00
|
|
|
if (!size_to_hstate(default_hstate_size)) {
|
|
|
|
default_hstate_size = HPAGE_SIZE;
|
|
|
|
if (!size_to_hstate(default_hstate_size))
|
|
|
|
hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
|
2008-07-24 11:27:44 +07:00
|
|
|
}
|
2012-08-01 06:42:00 +07:00
|
|
|
default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
|
2008-07-24 11:27:52 +07:00
|
|
|
if (default_hstate_max_huge_pages)
|
|
|
|
default_hstate.max_huge_pages = default_hstate_max_huge_pages;
|
2008-07-24 11:27:44 +07:00
|
|
|
|
|
|
|
hugetlb_init_hstates();
|
2008-07-24 11:27:47 +07:00
|
|
|
gather_bootmem_prealloc();
|
2008-07-24 11:27:44 +07:00
|
|
|
report_hugepages();
|
|
|
|
|
|
|
|
hugetlb_sysfs_init();
|
2009-12-15 08:58:25 +07:00
|
|
|
hugetlb_register_all_nodes();
|
2012-12-19 05:23:19 +07:00
|
|
|
hugetlb_cgroup_file_init();
|
2009-12-15 08:58:25 +07:00
|
|
|
|
2008-07-24 11:27:44 +07:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
module_init(hugetlb_init);
|
|
|
|
|
|
|
|
/* Should be called on processing a hugepagesz=... option */
|
|
|
|
void __init hugetlb_add_hstate(unsigned order)
|
|
|
|
{
|
|
|
|
struct hstate *h;
|
2008-07-24 11:27:48 +07:00
|
|
|
unsigned long i;
|
|
|
|
|
2008-07-24 11:27:44 +07:00
|
|
|
if (size_to_hstate(PAGE_SIZE << order)) {
|
2013-02-23 07:32:08 +07:00
|
|
|
pr_warning("hugepagesz= specified twice, ignoring\n");
|
2008-07-24 11:27:44 +07:00
|
|
|
return;
|
|
|
|
}
|
2012-08-01 06:41:54 +07:00
|
|
|
BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
|
2008-07-24 11:27:44 +07:00
|
|
|
BUG_ON(order == 0);
|
2012-08-01 06:41:54 +07:00
|
|
|
h = &hstates[hugetlb_max_hstate++];
|
2008-07-24 11:27:44 +07:00
|
|
|
h->order = order;
|
|
|
|
h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
|
2008-07-24 11:27:48 +07:00
|
|
|
h->nr_huge_pages = 0;
|
|
|
|
h->free_huge_pages = 0;
|
|
|
|
for (i = 0; i < MAX_NUMNODES; ++i)
|
|
|
|
INIT_LIST_HEAD(&h->hugepage_freelists[i]);
|
2012-08-01 06:42:07 +07:00
|
|
|
INIT_LIST_HEAD(&h->hugepage_activelist);
|
2012-12-13 04:51:36 +07:00
|
|
|
h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
|
|
|
|
h->next_nid_to_free = first_node(node_states[N_MEMORY]);
|
2008-07-24 11:27:44 +07:00
|
|
|
snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
|
|
|
|
huge_page_size(h)/1024);
|
2008-07-24 11:27:48 +07:00
|
|
|
|
2008-07-24 11:27:44 +07:00
|
|
|
parsed_hstate = h;
|
|
|
|
}
|
|
|
|
|
2008-07-24 11:27:52 +07:00
|
|
|
static int __init hugetlb_nrpages_setup(char *s)
|
2008-07-24 11:27:44 +07:00
|
|
|
{
|
|
|
|
unsigned long *mhp;
|
2008-07-24 11:27:48 +07:00
|
|
|
static unsigned long *last_mhp;
|
2008-07-24 11:27:44 +07:00
|
|
|
|
|
|
|
/*
|
2012-08-01 06:41:54 +07:00
|
|
|
* !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
|
2008-07-24 11:27:44 +07:00
|
|
|
* so this hugepages= parameter goes to the "default hstate".
|
|
|
|
*/
|
2012-08-01 06:41:54 +07:00
|
|
|
if (!hugetlb_max_hstate)
|
2008-07-24 11:27:44 +07:00
|
|
|
mhp = &default_hstate_max_huge_pages;
|
|
|
|
else
|
|
|
|
mhp = &parsed_hstate->max_huge_pages;
|
|
|
|
|
2008-07-24 11:27:48 +07:00
|
|
|
if (mhp == last_mhp) {
|
2013-02-23 07:32:08 +07:00
|
|
|
pr_warning("hugepages= specified twice without "
|
|
|
|
"interleaving hugepagesz=, ignoring\n");
|
2008-07-24 11:27:48 +07:00
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
2008-07-24 11:27:44 +07:00
|
|
|
if (sscanf(s, "%lu", mhp) <= 0)
|
|
|
|
*mhp = 0;
|
|
|
|
|
2008-07-24 11:27:48 +07:00
|
|
|
/*
|
|
|
|
* Global state is always initialized later in hugetlb_init.
|
|
|
|
* But we need to allocate >= MAX_ORDER hstates here early to still
|
|
|
|
* use the bootmem allocator.
|
|
|
|
*/
|
2012-08-01 06:41:54 +07:00
|
|
|
if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
|
2008-07-24 11:27:48 +07:00
|
|
|
hugetlb_hstate_alloc_pages(parsed_hstate);
|
|
|
|
|
|
|
|
last_mhp = mhp;
|
|
|
|
|
2008-07-24 11:27:44 +07:00
|
|
|
return 1;
|
|
|
|
}
|
2008-07-24 11:27:52 +07:00
|
|
|
__setup("hugepages=", hugetlb_nrpages_setup);
|
|
|
|
|
|
|
|
static int __init hugetlb_default_setup(char *s)
|
|
|
|
{
|
|
|
|
default_hstate_size = memparse(s, &s);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
__setup("default_hugepagesz=", hugetlb_default_setup);
|
2008-07-24 11:27:44 +07:00
|
|
|
|
2008-07-26 09:44:37 +07:00
|
|
|
static unsigned int cpuset_mems_nr(unsigned int *array)
|
|
|
|
{
|
|
|
|
int node;
|
|
|
|
unsigned int nr = 0;
|
|
|
|
|
|
|
|
for_each_node_mask(node, cpuset_current_mems_allowed)
|
|
|
|
nr += array[node];
|
|
|
|
|
|
|
|
return nr;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef CONFIG_SYSCTL
|
hugetlb: derive huge pages nodes allowed from task mempolicy
This patch derives a "nodes_allowed" node mask from the numa mempolicy of
the task modifying the number of persistent huge pages to control the
allocation, freeing and adjusting of surplus huge pages when the pool page
count is modified via the new sysctl or sysfs attribute
"nr_hugepages_mempolicy". The nodes_allowed mask is derived as follows:
* For "default" [NULL] task mempolicy, a NULL nodemask_t pointer
is produced. This will cause the hugetlb subsystem to use
node_online_map as the "nodes_allowed". This preserves the
behavior before this patch.
* For "preferred" mempolicy, including explicit local allocation,
a nodemask with the single preferred node will be produced.
"local" policy will NOT track any internode migrations of the
task adjusting nr_hugepages.
* For "bind" and "interleave" policy, the mempolicy's nodemask
will be used.
* Other than to inform the construction of the nodes_allowed node
mask, the actual mempolicy mode is ignored. That is, all modes
behave like interleave over the resulting nodes_allowed mask
with no "fallback".
See the updated documentation [next patch] for more information
about the implications of this patch.
Examples:
Starting with:
Node 0 HugePages_Total: 0
Node 1 HugePages_Total: 0
Node 2 HugePages_Total: 0
Node 3 HugePages_Total: 0
Default behavior [with or without this patch] balances persistent
hugepage allocation across nodes [with sufficient contiguous memory]:
sysctl vm.nr_hugepages[_mempolicy]=32
yields:
Node 0 HugePages_Total: 8
Node 1 HugePages_Total: 8
Node 2 HugePages_Total: 8
Node 3 HugePages_Total: 8
Of course, we only have nr_hugepages_mempolicy with the patch,
but with default mempolicy, nr_hugepages_mempolicy behaves the
same as nr_hugepages.
Applying mempolicy--e.g., with numactl [using '-m' a.k.a.
'--membind' because it allows multiple nodes to be specified
and it's easy to type]--we can allocate huge pages on
individual nodes or sets of nodes. So, starting from the
condition above, with 8 huge pages per node, add 8 more to
node 2 using:
numactl -m 2 sysctl vm.nr_hugepages_mempolicy=40
This yields:
Node 0 HugePages_Total: 8
Node 1 HugePages_Total: 8
Node 2 HugePages_Total: 16
Node 3 HugePages_Total: 8
The incremental 8 huge pages were restricted to node 2 by the
specified mempolicy.
Similarly, we can use mempolicy to free persistent huge pages
from specified nodes:
numactl -m 0,1 sysctl vm.nr_hugepages_mempolicy=32
yields:
Node 0 HugePages_Total: 4
Node 1 HugePages_Total: 4
Node 2 HugePages_Total: 16
Node 3 HugePages_Total: 8
The 8 huge pages freed were balanced over nodes 0 and 1.
[rientjes@google.com: accomodate reworked NODEMASK_ALLOC]
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 08:58:21 +07:00
|
|
|
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
|
|
|
|
struct ctl_table *table, int write,
|
|
|
|
void __user *buffer, size_t *length, loff_t *ppos)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
2008-07-24 11:27:42 +07:00
|
|
|
struct hstate *h = &default_hstate;
|
|
|
|
unsigned long tmp;
|
2011-01-14 06:47:26 +07:00
|
|
|
int ret;
|
2008-07-24 11:27:42 +07:00
|
|
|
|
2011-03-23 06:33:05 +07:00
|
|
|
tmp = h->max_huge_pages;
|
2008-07-24 11:27:42 +07:00
|
|
|
|
2011-01-14 06:47:27 +07:00
|
|
|
if (write && h->order >= MAX_ORDER)
|
|
|
|
return -EINVAL;
|
|
|
|
|
2008-07-24 11:27:42 +07:00
|
|
|
table->data = &tmp;
|
|
|
|
table->maxlen = sizeof(unsigned long);
|
2011-01-14 06:47:26 +07:00
|
|
|
ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
|
|
|
|
if (ret)
|
|
|
|
goto out;
|
2008-07-24 11:27:42 +07:00
|
|
|
|
hugetlb: derive huge pages nodes allowed from task mempolicy
This patch derives a "nodes_allowed" node mask from the numa mempolicy of
the task modifying the number of persistent huge pages to control the
allocation, freeing and adjusting of surplus huge pages when the pool page
count is modified via the new sysctl or sysfs attribute
"nr_hugepages_mempolicy". The nodes_allowed mask is derived as follows:
* For "default" [NULL] task mempolicy, a NULL nodemask_t pointer
is produced. This will cause the hugetlb subsystem to use
node_online_map as the "nodes_allowed". This preserves the
behavior before this patch.
* For "preferred" mempolicy, including explicit local allocation,
a nodemask with the single preferred node will be produced.
"local" policy will NOT track any internode migrations of the
task adjusting nr_hugepages.
* For "bind" and "interleave" policy, the mempolicy's nodemask
will be used.
* Other than to inform the construction of the nodes_allowed node
mask, the actual mempolicy mode is ignored. That is, all modes
behave like interleave over the resulting nodes_allowed mask
with no "fallback".
See the updated documentation [next patch] for more information
about the implications of this patch.
Examples:
Starting with:
Node 0 HugePages_Total: 0
Node 1 HugePages_Total: 0
Node 2 HugePages_Total: 0
Node 3 HugePages_Total: 0
Default behavior [with or without this patch] balances persistent
hugepage allocation across nodes [with sufficient contiguous memory]:
sysctl vm.nr_hugepages[_mempolicy]=32
yields:
Node 0 HugePages_Total: 8
Node 1 HugePages_Total: 8
Node 2 HugePages_Total: 8
Node 3 HugePages_Total: 8
Of course, we only have nr_hugepages_mempolicy with the patch,
but with default mempolicy, nr_hugepages_mempolicy behaves the
same as nr_hugepages.
Applying mempolicy--e.g., with numactl [using '-m' a.k.a.
'--membind' because it allows multiple nodes to be specified
and it's easy to type]--we can allocate huge pages on
individual nodes or sets of nodes. So, starting from the
condition above, with 8 huge pages per node, add 8 more to
node 2 using:
numactl -m 2 sysctl vm.nr_hugepages_mempolicy=40
This yields:
Node 0 HugePages_Total: 8
Node 1 HugePages_Total: 8
Node 2 HugePages_Total: 16
Node 3 HugePages_Total: 8
The incremental 8 huge pages were restricted to node 2 by the
specified mempolicy.
Similarly, we can use mempolicy to free persistent huge pages
from specified nodes:
numactl -m 0,1 sysctl vm.nr_hugepages_mempolicy=32
yields:
Node 0 HugePages_Total: 4
Node 1 HugePages_Total: 4
Node 2 HugePages_Total: 16
Node 3 HugePages_Total: 8
The 8 huge pages freed were balanced over nodes 0 and 1.
[rientjes@google.com: accomodate reworked NODEMASK_ALLOC]
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 08:58:21 +07:00
|
|
|
if (write) {
|
2009-12-15 08:58:38 +07:00
|
|
|
NODEMASK_ALLOC(nodemask_t, nodes_allowed,
|
|
|
|
GFP_KERNEL | __GFP_NORETRY);
|
hugetlb: derive huge pages nodes allowed from task mempolicy
This patch derives a "nodes_allowed" node mask from the numa mempolicy of
the task modifying the number of persistent huge pages to control the
allocation, freeing and adjusting of surplus huge pages when the pool page
count is modified via the new sysctl or sysfs attribute
"nr_hugepages_mempolicy". The nodes_allowed mask is derived as follows:
* For "default" [NULL] task mempolicy, a NULL nodemask_t pointer
is produced. This will cause the hugetlb subsystem to use
node_online_map as the "nodes_allowed". This preserves the
behavior before this patch.
* For "preferred" mempolicy, including explicit local allocation,
a nodemask with the single preferred node will be produced.
"local" policy will NOT track any internode migrations of the
task adjusting nr_hugepages.
* For "bind" and "interleave" policy, the mempolicy's nodemask
will be used.
* Other than to inform the construction of the nodes_allowed node
mask, the actual mempolicy mode is ignored. That is, all modes
behave like interleave over the resulting nodes_allowed mask
with no "fallback".
See the updated documentation [next patch] for more information
about the implications of this patch.
Examples:
Starting with:
Node 0 HugePages_Total: 0
Node 1 HugePages_Total: 0
Node 2 HugePages_Total: 0
Node 3 HugePages_Total: 0
Default behavior [with or without this patch] balances persistent
hugepage allocation across nodes [with sufficient contiguous memory]:
sysctl vm.nr_hugepages[_mempolicy]=32
yields:
Node 0 HugePages_Total: 8
Node 1 HugePages_Total: 8
Node 2 HugePages_Total: 8
Node 3 HugePages_Total: 8
Of course, we only have nr_hugepages_mempolicy with the patch,
but with default mempolicy, nr_hugepages_mempolicy behaves the
same as nr_hugepages.
Applying mempolicy--e.g., with numactl [using '-m' a.k.a.
'--membind' because it allows multiple nodes to be specified
and it's easy to type]--we can allocate huge pages on
individual nodes or sets of nodes. So, starting from the
condition above, with 8 huge pages per node, add 8 more to
node 2 using:
numactl -m 2 sysctl vm.nr_hugepages_mempolicy=40
This yields:
Node 0 HugePages_Total: 8
Node 1 HugePages_Total: 8
Node 2 HugePages_Total: 16
Node 3 HugePages_Total: 8
The incremental 8 huge pages were restricted to node 2 by the
specified mempolicy.
Similarly, we can use mempolicy to free persistent huge pages
from specified nodes:
numactl -m 0,1 sysctl vm.nr_hugepages_mempolicy=32
yields:
Node 0 HugePages_Total: 4
Node 1 HugePages_Total: 4
Node 2 HugePages_Total: 16
Node 3 HugePages_Total: 8
The 8 huge pages freed were balanced over nodes 0 and 1.
[rientjes@google.com: accomodate reworked NODEMASK_ALLOC]
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 08:58:21 +07:00
|
|
|
if (!(obey_mempolicy &&
|
|
|
|
init_nodemask_of_mempolicy(nodes_allowed))) {
|
|
|
|
NODEMASK_FREE(nodes_allowed);
|
2012-12-13 04:51:36 +07:00
|
|
|
nodes_allowed = &node_states[N_MEMORY];
|
hugetlb: derive huge pages nodes allowed from task mempolicy
This patch derives a "nodes_allowed" node mask from the numa mempolicy of
the task modifying the number of persistent huge pages to control the
allocation, freeing and adjusting of surplus huge pages when the pool page
count is modified via the new sysctl or sysfs attribute
"nr_hugepages_mempolicy". The nodes_allowed mask is derived as follows:
* For "default" [NULL] task mempolicy, a NULL nodemask_t pointer
is produced. This will cause the hugetlb subsystem to use
node_online_map as the "nodes_allowed". This preserves the
behavior before this patch.
* For "preferred" mempolicy, including explicit local allocation,
a nodemask with the single preferred node will be produced.
"local" policy will NOT track any internode migrations of the
task adjusting nr_hugepages.
* For "bind" and "interleave" policy, the mempolicy's nodemask
will be used.
* Other than to inform the construction of the nodes_allowed node
mask, the actual mempolicy mode is ignored. That is, all modes
behave like interleave over the resulting nodes_allowed mask
with no "fallback".
See the updated documentation [next patch] for more information
about the implications of this patch.
Examples:
Starting with:
Node 0 HugePages_Total: 0
Node 1 HugePages_Total: 0
Node 2 HugePages_Total: 0
Node 3 HugePages_Total: 0
Default behavior [with or without this patch] balances persistent
hugepage allocation across nodes [with sufficient contiguous memory]:
sysctl vm.nr_hugepages[_mempolicy]=32
yields:
Node 0 HugePages_Total: 8
Node 1 HugePages_Total: 8
Node 2 HugePages_Total: 8
Node 3 HugePages_Total: 8
Of course, we only have nr_hugepages_mempolicy with the patch,
but with default mempolicy, nr_hugepages_mempolicy behaves the
same as nr_hugepages.
Applying mempolicy--e.g., with numactl [using '-m' a.k.a.
'--membind' because it allows multiple nodes to be specified
and it's easy to type]--we can allocate huge pages on
individual nodes or sets of nodes. So, starting from the
condition above, with 8 huge pages per node, add 8 more to
node 2 using:
numactl -m 2 sysctl vm.nr_hugepages_mempolicy=40
This yields:
Node 0 HugePages_Total: 8
Node 1 HugePages_Total: 8
Node 2 HugePages_Total: 16
Node 3 HugePages_Total: 8
The incremental 8 huge pages were restricted to node 2 by the
specified mempolicy.
Similarly, we can use mempolicy to free persistent huge pages
from specified nodes:
numactl -m 0,1 sysctl vm.nr_hugepages_mempolicy=32
yields:
Node 0 HugePages_Total: 4
Node 1 HugePages_Total: 4
Node 2 HugePages_Total: 16
Node 3 HugePages_Total: 8
The 8 huge pages freed were balanced over nodes 0 and 1.
[rientjes@google.com: accomodate reworked NODEMASK_ALLOC]
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 08:58:21 +07:00
|
|
|
}
|
|
|
|
h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
|
|
|
|
|
2012-12-13 04:51:36 +07:00
|
|
|
if (nodes_allowed != &node_states[N_MEMORY])
|
hugetlb: derive huge pages nodes allowed from task mempolicy
This patch derives a "nodes_allowed" node mask from the numa mempolicy of
the task modifying the number of persistent huge pages to control the
allocation, freeing and adjusting of surplus huge pages when the pool page
count is modified via the new sysctl or sysfs attribute
"nr_hugepages_mempolicy". The nodes_allowed mask is derived as follows:
* For "default" [NULL] task mempolicy, a NULL nodemask_t pointer
is produced. This will cause the hugetlb subsystem to use
node_online_map as the "nodes_allowed". This preserves the
behavior before this patch.
* For "preferred" mempolicy, including explicit local allocation,
a nodemask with the single preferred node will be produced.
"local" policy will NOT track any internode migrations of the
task adjusting nr_hugepages.
* For "bind" and "interleave" policy, the mempolicy's nodemask
will be used.
* Other than to inform the construction of the nodes_allowed node
mask, the actual mempolicy mode is ignored. That is, all modes
behave like interleave over the resulting nodes_allowed mask
with no "fallback".
See the updated documentation [next patch] for more information
about the implications of this patch.
Examples:
Starting with:
Node 0 HugePages_Total: 0
Node 1 HugePages_Total: 0
Node 2 HugePages_Total: 0
Node 3 HugePages_Total: 0
Default behavior [with or without this patch] balances persistent
hugepage allocation across nodes [with sufficient contiguous memory]:
sysctl vm.nr_hugepages[_mempolicy]=32
yields:
Node 0 HugePages_Total: 8
Node 1 HugePages_Total: 8
Node 2 HugePages_Total: 8
Node 3 HugePages_Total: 8
Of course, we only have nr_hugepages_mempolicy with the patch,
but with default mempolicy, nr_hugepages_mempolicy behaves the
same as nr_hugepages.
Applying mempolicy--e.g., with numactl [using '-m' a.k.a.
'--membind' because it allows multiple nodes to be specified
and it's easy to type]--we can allocate huge pages on
individual nodes or sets of nodes. So, starting from the
condition above, with 8 huge pages per node, add 8 more to
node 2 using:
numactl -m 2 sysctl vm.nr_hugepages_mempolicy=40
This yields:
Node 0 HugePages_Total: 8
Node 1 HugePages_Total: 8
Node 2 HugePages_Total: 16
Node 3 HugePages_Total: 8
The incremental 8 huge pages were restricted to node 2 by the
specified mempolicy.
Similarly, we can use mempolicy to free persistent huge pages
from specified nodes:
numactl -m 0,1 sysctl vm.nr_hugepages_mempolicy=32
yields:
Node 0 HugePages_Total: 4
Node 1 HugePages_Total: 4
Node 2 HugePages_Total: 16
Node 3 HugePages_Total: 8
The 8 huge pages freed were balanced over nodes 0 and 1.
[rientjes@google.com: accomodate reworked NODEMASK_ALLOC]
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 08:58:21 +07:00
|
|
|
NODEMASK_FREE(nodes_allowed);
|
|
|
|
}
|
2011-01-14 06:47:26 +07:00
|
|
|
out:
|
|
|
|
return ret;
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
2007-07-17 18:03:13 +07:00
|
|
|
|
hugetlb: derive huge pages nodes allowed from task mempolicy
This patch derives a "nodes_allowed" node mask from the numa mempolicy of
the task modifying the number of persistent huge pages to control the
allocation, freeing and adjusting of surplus huge pages when the pool page
count is modified via the new sysctl or sysfs attribute
"nr_hugepages_mempolicy". The nodes_allowed mask is derived as follows:
* For "default" [NULL] task mempolicy, a NULL nodemask_t pointer
is produced. This will cause the hugetlb subsystem to use
node_online_map as the "nodes_allowed". This preserves the
behavior before this patch.
* For "preferred" mempolicy, including explicit local allocation,
a nodemask with the single preferred node will be produced.
"local" policy will NOT track any internode migrations of the
task adjusting nr_hugepages.
* For "bind" and "interleave" policy, the mempolicy's nodemask
will be used.
* Other than to inform the construction of the nodes_allowed node
mask, the actual mempolicy mode is ignored. That is, all modes
behave like interleave over the resulting nodes_allowed mask
with no "fallback".
See the updated documentation [next patch] for more information
about the implications of this patch.
Examples:
Starting with:
Node 0 HugePages_Total: 0
Node 1 HugePages_Total: 0
Node 2 HugePages_Total: 0
Node 3 HugePages_Total: 0
Default behavior [with or without this patch] balances persistent
hugepage allocation across nodes [with sufficient contiguous memory]:
sysctl vm.nr_hugepages[_mempolicy]=32
yields:
Node 0 HugePages_Total: 8
Node 1 HugePages_Total: 8
Node 2 HugePages_Total: 8
Node 3 HugePages_Total: 8
Of course, we only have nr_hugepages_mempolicy with the patch,
but with default mempolicy, nr_hugepages_mempolicy behaves the
same as nr_hugepages.
Applying mempolicy--e.g., with numactl [using '-m' a.k.a.
'--membind' because it allows multiple nodes to be specified
and it's easy to type]--we can allocate huge pages on
individual nodes or sets of nodes. So, starting from the
condition above, with 8 huge pages per node, add 8 more to
node 2 using:
numactl -m 2 sysctl vm.nr_hugepages_mempolicy=40
This yields:
Node 0 HugePages_Total: 8
Node 1 HugePages_Total: 8
Node 2 HugePages_Total: 16
Node 3 HugePages_Total: 8
The incremental 8 huge pages were restricted to node 2 by the
specified mempolicy.
Similarly, we can use mempolicy to free persistent huge pages
from specified nodes:
numactl -m 0,1 sysctl vm.nr_hugepages_mempolicy=32
yields:
Node 0 HugePages_Total: 4
Node 1 HugePages_Total: 4
Node 2 HugePages_Total: 16
Node 3 HugePages_Total: 8
The 8 huge pages freed were balanced over nodes 0 and 1.
[rientjes@google.com: accomodate reworked NODEMASK_ALLOC]
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 08:58:21 +07:00
|
|
|
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
|
|
|
|
void __user *buffer, size_t *length, loff_t *ppos)
|
|
|
|
{
|
|
|
|
|
|
|
|
return hugetlb_sysctl_handler_common(false, table, write,
|
|
|
|
buffer, length, ppos);
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef CONFIG_NUMA
|
|
|
|
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
|
|
|
|
void __user *buffer, size_t *length, loff_t *ppos)
|
|
|
|
{
|
|
|
|
return hugetlb_sysctl_handler_common(true, table, write,
|
|
|
|
buffer, length, ppos);
|
|
|
|
}
|
|
|
|
#endif /* CONFIG_NUMA */
|
|
|
|
|
2008-02-08 19:18:18 +07:00
|
|
|
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
|
2009-09-24 05:57:19 +07:00
|
|
|
void __user *buffer,
|
2008-02-08 19:18:18 +07:00
|
|
|
size_t *length, loff_t *ppos)
|
|
|
|
{
|
2008-07-24 11:27:41 +07:00
|
|
|
struct hstate *h = &default_hstate;
|
2008-07-24 11:27:42 +07:00
|
|
|
unsigned long tmp;
|
2011-01-14 06:47:26 +07:00
|
|
|
int ret;
|
2008-07-24 11:27:42 +07:00
|
|
|
|
2011-03-23 06:33:05 +07:00
|
|
|
tmp = h->nr_overcommit_huge_pages;
|
2008-07-24 11:27:42 +07:00
|
|
|
|
2011-01-14 06:47:27 +07:00
|
|
|
if (write && h->order >= MAX_ORDER)
|
|
|
|
return -EINVAL;
|
|
|
|
|
2008-07-24 11:27:42 +07:00
|
|
|
table->data = &tmp;
|
|
|
|
table->maxlen = sizeof(unsigned long);
|
2011-01-14 06:47:26 +07:00
|
|
|
ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
|
|
|
|
if (ret)
|
|
|
|
goto out;
|
2008-07-24 11:27:42 +07:00
|
|
|
|
|
|
|
if (write) {
|
|
|
|
spin_lock(&hugetlb_lock);
|
|
|
|
h->nr_overcommit_huge_pages = tmp;
|
|
|
|
spin_unlock(&hugetlb_lock);
|
|
|
|
}
|
2011-01-14 06:47:26 +07:00
|
|
|
out:
|
|
|
|
return ret;
|
2008-02-08 19:18:18 +07:00
|
|
|
}
|
|
|
|
|
2005-04-17 05:20:36 +07:00
|
|
|
#endif /* CONFIG_SYSCTL */
|
|
|
|
|
2008-10-16 02:50:22 +07:00
|
|
|
void hugetlb_report_meminfo(struct seq_file *m)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
2008-07-24 11:27:41 +07:00
|
|
|
struct hstate *h = &default_hstate;
|
2008-10-16 02:50:22 +07:00
|
|
|
seq_printf(m,
|
2008-10-19 10:26:32 +07:00
|
|
|
"HugePages_Total: %5lu\n"
|
|
|
|
"HugePages_Free: %5lu\n"
|
|
|
|
"HugePages_Rsvd: %5lu\n"
|
|
|
|
"HugePages_Surp: %5lu\n"
|
|
|
|
"Hugepagesize: %8lu kB\n",
|
2008-07-24 11:27:41 +07:00
|
|
|
h->nr_huge_pages,
|
|
|
|
h->free_huge_pages,
|
|
|
|
h->resv_huge_pages,
|
|
|
|
h->surplus_huge_pages,
|
|
|
|
1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
int hugetlb_report_node_meminfo(int nid, char *buf)
|
|
|
|
{
|
2008-07-24 11:27:41 +07:00
|
|
|
struct hstate *h = &default_hstate;
|
2005-04-17 05:20:36 +07:00
|
|
|
return sprintf(buf,
|
|
|
|
"Node %d HugePages_Total: %5u\n"
|
2008-03-27 04:37:53 +07:00
|
|
|
"Node %d HugePages_Free: %5u\n"
|
|
|
|
"Node %d HugePages_Surp: %5u\n",
|
2008-07-24 11:27:41 +07:00
|
|
|
nid, h->nr_huge_pages_node[nid],
|
|
|
|
nid, h->free_huge_pages_node[nid],
|
|
|
|
nid, h->surplus_huge_pages_node[nid]);
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
|
|
|
|
2013-04-30 05:07:48 +07:00
|
|
|
void hugetlb_show_meminfo(void)
|
|
|
|
{
|
|
|
|
struct hstate *h;
|
|
|
|
int nid;
|
|
|
|
|
|
|
|
for_each_node_state(nid, N_MEMORY)
|
|
|
|
for_each_hstate(h)
|
|
|
|
pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
|
|
|
|
nid,
|
|
|
|
h->nr_huge_pages_node[nid],
|
|
|
|
h->free_huge_pages_node[nid],
|
|
|
|
h->surplus_huge_pages_node[nid],
|
|
|
|
1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
|
|
|
|
}
|
|
|
|
|
2005-04-17 05:20:36 +07:00
|
|
|
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
|
|
|
|
unsigned long hugetlb_total_pages(void)
|
|
|
|
{
|
2013-03-23 05:04:40 +07:00
|
|
|
struct hstate *h;
|
|
|
|
unsigned long nr_total_pages = 0;
|
|
|
|
|
|
|
|
for_each_hstate(h)
|
|
|
|
nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
|
|
|
|
return nr_total_pages;
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
|
|
|
|
2008-07-24 11:27:41 +07:00
|
|
|
static int hugetlb_acct_memory(struct hstate *h, long delta)
|
2008-07-24 11:27:22 +07:00
|
|
|
{
|
|
|
|
int ret = -ENOMEM;
|
|
|
|
|
|
|
|
spin_lock(&hugetlb_lock);
|
|
|
|
/*
|
|
|
|
* When cpuset is configured, it breaks the strict hugetlb page
|
|
|
|
* reservation as the accounting is done on a global variable. Such
|
|
|
|
* reservation is completely rubbish in the presence of cpuset because
|
|
|
|
* the reservation is not checked against page availability for the
|
|
|
|
* current cpuset. Application can still potentially OOM'ed by kernel
|
|
|
|
* with lack of free htlb page in cpuset that the task is in.
|
|
|
|
* Attempt to enforce strict accounting with cpuset is almost
|
|
|
|
* impossible (or too ugly) because cpuset is too fluid that
|
|
|
|
* task or memory node can be dynamically moved between cpusets.
|
|
|
|
*
|
|
|
|
* The change of semantics for shared hugetlb mapping with cpuset is
|
|
|
|
* undesirable. However, in order to preserve some of the semantics,
|
|
|
|
* we fall back to check against current free page availability as
|
|
|
|
* a best attempt and hopefully to minimize the impact of changing
|
|
|
|
* semantics that cpuset has.
|
|
|
|
*/
|
|
|
|
if (delta > 0) {
|
2008-07-24 11:27:41 +07:00
|
|
|
if (gather_surplus_pages(h, delta) < 0)
|
2008-07-24 11:27:22 +07:00
|
|
|
goto out;
|
|
|
|
|
2008-07-24 11:27:41 +07:00
|
|
|
if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
|
|
|
|
return_unused_surplus_pages(h, delta);
|
2008-07-24 11:27:22 +07:00
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = 0;
|
|
|
|
if (delta < 0)
|
2008-07-24 11:27:41 +07:00
|
|
|
return_unused_surplus_pages(h, (unsigned long) -delta);
|
2008-07-24 11:27:22 +07:00
|
|
|
|
|
|
|
out:
|
|
|
|
spin_unlock(&hugetlb_lock);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2008-07-24 11:27:32 +07:00
|
|
|
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
|
|
|
|
{
|
2013-09-12 04:21:53 +07:00
|
|
|
struct resv_map *resv = vma_resv_map(vma);
|
2008-07-24 11:27:32 +07:00
|
|
|
|
|
|
|
/*
|
|
|
|
* This new VMA should share its siblings reservation map if present.
|
|
|
|
* The VMA will only ever have a valid reservation map pointer where
|
|
|
|
* it is being copied for another still existing VMA. As that VMA
|
2011-03-31 08:57:33 +07:00
|
|
|
* has a reference to the reservation map it cannot disappear until
|
2008-07-24 11:27:32 +07:00
|
|
|
* after this open call completes. It is therefore safe to take a
|
|
|
|
* new reference here without additional locking.
|
|
|
|
*/
|
2013-09-12 04:21:53 +07:00
|
|
|
if (resv)
|
|
|
|
kref_get(&resv->refs);
|
2008-07-24 11:27:32 +07:00
|
|
|
}
|
|
|
|
|
2012-05-30 05:06:46 +07:00
|
|
|
static void resv_map_put(struct vm_area_struct *vma)
|
|
|
|
{
|
2013-09-12 04:21:53 +07:00
|
|
|
struct resv_map *resv = vma_resv_map(vma);
|
2012-05-30 05:06:46 +07:00
|
|
|
|
2013-09-12 04:21:53 +07:00
|
|
|
if (!resv)
|
2012-05-30 05:06:46 +07:00
|
|
|
return;
|
2013-09-12 04:21:53 +07:00
|
|
|
kref_put(&resv->refs, resv_map_release);
|
2012-05-30 05:06:46 +07:00
|
|
|
}
|
|
|
|
|
2008-07-24 11:27:23 +07:00
|
|
|
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
|
|
|
|
{
|
2008-07-24 11:27:41 +07:00
|
|
|
struct hstate *h = hstate_vma(vma);
|
2013-09-12 04:21:53 +07:00
|
|
|
struct resv_map *resv = vma_resv_map(vma);
|
hugepages: fix use after free bug in "quota" handling
hugetlbfs_{get,put}_quota() are badly named. They don't interact with the
general quota handling code, and they don't much resemble its behaviour.
Rather than being about maintaining limits on on-disk block usage by
particular users, they are instead about maintaining limits on in-memory
page usage (including anonymous MAP_PRIVATE copied-on-write pages)
associated with a particular hugetlbfs filesystem instance.
Worse, they work by having callbacks to the hugetlbfs filesystem code from
the low-level page handling code, in particular from free_huge_page().
This is a layering violation of itself, but more importantly, if the
kernel does a get_user_pages() on hugepages (which can happen from KVM
amongst others), then the free_huge_page() can be delayed until after the
associated inode has already been freed. If an unmount occurs at the
wrong time, even the hugetlbfs superblock where the "quota" limits are
stored may have been freed.
Andrew Barry proposed a patch to fix this by having hugepages, instead of
storing a pointer to their address_space and reaching the superblock from
there, had the hugepages store pointers directly to the superblock,
bumping the reference count as appropriate to avoid it being freed.
Andrew Morton rejected that version, however, on the grounds that it made
the existing layering violation worse.
This is a reworked version of Andrew's patch, which removes the extra, and
some of the existing, layering violation. It works by introducing the
concept of a hugepage "subpool" at the lower hugepage mm layer - that is a
finite logical pool of hugepages to allocate from. hugetlbfs now creates
a subpool for each filesystem instance with a page limit set, and a
pointer to the subpool gets added to each allocated hugepage, instead of
the address_space pointer used now. The subpool has its own lifetime and
is only freed once all pages in it _and_ all other references to it (i.e.
superblocks) are gone.
subpools are optional - a NULL subpool pointer is taken by the code to
mean that no subpool limits are in effect.
Previous discussion of this bug found in: "Fix refcounting in hugetlbfs
quota handling.". See: https://lkml.org/lkml/2011/8/11/28 or
http://marc.info/?l=linux-mm&m=126928970510627&w=1
v2: Fixed a bug spotted by Hillf Danton, and removed the extra parameter to
alloc_huge_page() - since it already takes the vma, it is not necessary.
Signed-off-by: Andrew Barry <abarry@cray.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22 06:34:12 +07:00
|
|
|
struct hugepage_subpool *spool = subpool_vma(vma);
|
2008-07-24 11:27:32 +07:00
|
|
|
unsigned long reserve;
|
|
|
|
unsigned long start;
|
|
|
|
unsigned long end;
|
|
|
|
|
2013-09-12 04:21:53 +07:00
|
|
|
if (resv) {
|
2008-07-24 11:27:41 +07:00
|
|
|
start = vma_hugecache_offset(h, vma, vma->vm_start);
|
|
|
|
end = vma_hugecache_offset(h, vma, vma->vm_end);
|
2008-07-24 11:27:32 +07:00
|
|
|
|
|
|
|
reserve = (end - start) -
|
2013-09-12 04:21:53 +07:00
|
|
|
region_count(&resv->regions, start, end);
|
2008-07-24 11:27:32 +07:00
|
|
|
|
2012-05-30 05:06:46 +07:00
|
|
|
resv_map_put(vma);
|
2008-07-24 11:27:32 +07:00
|
|
|
|
2008-07-24 11:27:59 +07:00
|
|
|
if (reserve) {
|
2008-07-24 11:27:41 +07:00
|
|
|
hugetlb_acct_memory(h, -reserve);
|
hugepages: fix use after free bug in "quota" handling
hugetlbfs_{get,put}_quota() are badly named. They don't interact with the
general quota handling code, and they don't much resemble its behaviour.
Rather than being about maintaining limits on on-disk block usage by
particular users, they are instead about maintaining limits on in-memory
page usage (including anonymous MAP_PRIVATE copied-on-write pages)
associated with a particular hugetlbfs filesystem instance.
Worse, they work by having callbacks to the hugetlbfs filesystem code from
the low-level page handling code, in particular from free_huge_page().
This is a layering violation of itself, but more importantly, if the
kernel does a get_user_pages() on hugepages (which can happen from KVM
amongst others), then the free_huge_page() can be delayed until after the
associated inode has already been freed. If an unmount occurs at the
wrong time, even the hugetlbfs superblock where the "quota" limits are
stored may have been freed.
Andrew Barry proposed a patch to fix this by having hugepages, instead of
storing a pointer to their address_space and reaching the superblock from
there, had the hugepages store pointers directly to the superblock,
bumping the reference count as appropriate to avoid it being freed.
Andrew Morton rejected that version, however, on the grounds that it made
the existing layering violation worse.
This is a reworked version of Andrew's patch, which removes the extra, and
some of the existing, layering violation. It works by introducing the
concept of a hugepage "subpool" at the lower hugepage mm layer - that is a
finite logical pool of hugepages to allocate from. hugetlbfs now creates
a subpool for each filesystem instance with a page limit set, and a
pointer to the subpool gets added to each allocated hugepage, instead of
the address_space pointer used now. The subpool has its own lifetime and
is only freed once all pages in it _and_ all other references to it (i.e.
superblocks) are gone.
subpools are optional - a NULL subpool pointer is taken by the code to
mean that no subpool limits are in effect.
Previous discussion of this bug found in: "Fix refcounting in hugetlbfs
quota handling.". See: https://lkml.org/lkml/2011/8/11/28 or
http://marc.info/?l=linux-mm&m=126928970510627&w=1
v2: Fixed a bug spotted by Hillf Danton, and removed the extra parameter to
alloc_huge_page() - since it already takes the vma, it is not necessary.
Signed-off-by: Andrew Barry <abarry@cray.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22 06:34:12 +07:00
|
|
|
hugepage_subpool_put_pages(spool, reserve);
|
2008-07-24 11:27:59 +07:00
|
|
|
}
|
2008-07-24 11:27:32 +07:00
|
|
|
}
|
2008-07-24 11:27:23 +07:00
|
|
|
}
|
|
|
|
|
2005-04-17 05:20:36 +07:00
|
|
|
/*
|
|
|
|
* We cannot handle pagefaults against hugetlb pages at all. They cause
|
|
|
|
* handle_mm_fault() to try to instantiate regular-sized pages in the
|
|
|
|
* hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
|
|
|
|
* this far.
|
|
|
|
*/
|
2007-07-19 15:47:03 +07:00
|
|
|
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
|
2005-04-17 05:20:36 +07:00
|
|
|
{
|
|
|
|
BUG();
|
2007-07-19 15:47:03 +07:00
|
|
|
return 0;
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
|
|
|
|
2009-09-28 01:29:37 +07:00
|
|
|
const struct vm_operations_struct hugetlb_vm_ops = {
|
2007-07-19 15:47:03 +07:00
|
|
|
.fault = hugetlb_vm_op_fault,
|
2008-07-24 11:27:32 +07:00
|
|
|
.open = hugetlb_vm_op_open,
|
2008-07-24 11:27:23 +07:00
|
|
|
.close = hugetlb_vm_op_close,
|
2005-04-17 05:20:36 +07:00
|
|
|
};
|
|
|
|
|
2006-01-06 15:10:44 +07:00
|
|
|
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
|
|
|
|
int writable)
|
2005-06-22 07:14:44 +07:00
|
|
|
{
|
|
|
|
pte_t entry;
|
|
|
|
|
2006-01-06 15:10:44 +07:00
|
|
|
if (writable) {
|
2013-04-30 05:07:23 +07:00
|
|
|
entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
|
|
|
|
vma->vm_page_prot)));
|
2005-06-22 07:14:44 +07:00
|
|
|
} else {
|
2013-04-30 05:07:23 +07:00
|
|
|
entry = huge_pte_wrprotect(mk_huge_pte(page,
|
|
|
|
vma->vm_page_prot));
|
2005-06-22 07:14:44 +07:00
|
|
|
}
|
|
|
|
entry = pte_mkyoung(entry);
|
|
|
|
entry = pte_mkhuge(entry);
|
2012-04-02 01:01:34 +07:00
|
|
|
entry = arch_make_huge_pte(entry, vma, page, writable);
|
2005-06-22 07:14:44 +07:00
|
|
|
|
|
|
|
return entry;
|
|
|
|
}
|
|
|
|
|
2006-01-06 15:10:44 +07:00
|
|
|
static void set_huge_ptep_writable(struct vm_area_struct *vma,
|
|
|
|
unsigned long address, pte_t *ptep)
|
|
|
|
{
|
|
|
|
pte_t entry;
|
|
|
|
|
2013-04-30 05:07:23 +07:00
|
|
|
entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
|
2011-07-26 07:12:14 +07:00
|
|
|
if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
|
MM: Pass a PTE pointer to update_mmu_cache() rather than the PTE itself
On VIVT ARM, when we have multiple shared mappings of the same file
in the same MM, we need to ensure that we have coherency across all
copies. We do this via make_coherent() by making the pages
uncacheable.
This used to work fine, until we allowed highmem with highpte - we
now have a page table which is mapped as required, and is not available
for modification via update_mmu_cache().
Ralf Beache suggested getting rid of the PTE value passed to
update_mmu_cache():
On MIPS update_mmu_cache() calls __update_tlb() which walks pagetables
to construct a pointer to the pte again. Passing a pte_t * is much
more elegant. Maybe we might even replace the pte argument with the
pte_t?
Ben Herrenschmidt would also like the pte pointer for PowerPC:
Passing the ptep in there is exactly what I want. I want that
-instead- of the PTE value, because I have issue on some ppc cases,
for I$/D$ coherency, where set_pte_at() may decide to mask out the
_PAGE_EXEC.
So, pass in the mapped page table pointer into update_mmu_cache(), and
remove the PTE value, updating all implementations and call sites to
suit.
Includes a fix from Stephen Rothwell:
sparc: fix fallout from update_mmu_cache API change
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2009-12-18 23:40:18 +07:00
|
|
|
update_mmu_cache(vma, address, ptep);
|
2006-01-06 15:10:44 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2005-06-22 07:14:44 +07:00
|
|
|
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
|
|
|
|
struct vm_area_struct *vma)
|
|
|
|
{
|
|
|
|
pte_t *src_pte, *dst_pte, entry;
|
|
|
|
struct page *ptepage;
|
2005-10-20 11:23:43 +07:00
|
|
|
unsigned long addr;
|
2006-01-06 15:10:44 +07:00
|
|
|
int cow;
|
2008-07-24 11:27:41 +07:00
|
|
|
struct hstate *h = hstate_vma(vma);
|
|
|
|
unsigned long sz = huge_page_size(h);
|
2006-01-06 15:10:44 +07:00
|
|
|
|
|
|
|
cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
|
2005-06-22 07:14:44 +07:00
|
|
|
|
2008-07-24 11:27:41 +07:00
|
|
|
for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
|
2013-11-15 05:31:02 +07:00
|
|
|
spinlock_t *src_ptl, *dst_ptl;
|
2005-10-30 08:16:23 +07:00
|
|
|
src_pte = huge_pte_offset(src, addr);
|
|
|
|
if (!src_pte)
|
|
|
|
continue;
|
2008-07-24 11:27:41 +07:00
|
|
|
dst_pte = huge_pte_alloc(dst, addr, sz);
|
2005-06-22 07:14:44 +07:00
|
|
|
if (!dst_pte)
|
|
|
|
goto nomem;
|
2008-01-24 20:49:25 +07:00
|
|
|
|
|
|
|
/* If the pagetables are shared don't copy or take references */
|
|
|
|
if (dst_pte == src_pte)
|
|
|
|
continue;
|
|
|
|
|
2013-11-15 05:31:02 +07:00
|
|
|
dst_ptl = huge_pte_lock(h, dst, dst_pte);
|
|
|
|
src_ptl = huge_pte_lockptr(h, src, src_pte);
|
|
|
|
spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
|
2008-04-28 16:13:29 +07:00
|
|
|
if (!huge_pte_none(huge_ptep_get(src_pte))) {
|
2006-01-06 15:10:44 +07:00
|
|
|
if (cow)
|
2008-04-28 16:13:29 +07:00
|
|
|
huge_ptep_set_wrprotect(src, addr, src_pte);
|
|
|
|
entry = huge_ptep_get(src_pte);
|
2005-10-20 11:23:43 +07:00
|
|
|
ptepage = pte_page(entry);
|
|
|
|
get_page(ptepage);
|
2010-05-28 07:29:16 +07:00
|
|
|
page_dup_rmap(ptepage);
|
2005-10-20 11:23:43 +07:00
|
|
|
set_huge_pte_at(dst, addr, dst_pte, entry);
|
|
|
|
}
|
2013-11-15 05:31:02 +07:00
|
|
|
spin_unlock(src_ptl);
|
|
|
|
spin_unlock(dst_ptl);
|
2005-06-22 07:14:44 +07:00
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
nomem:
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
|
2010-09-08 08:19:35 +07:00
|
|
|
static int is_hugetlb_entry_migration(pte_t pte)
|
|
|
|
{
|
|
|
|
swp_entry_t swp;
|
|
|
|
|
|
|
|
if (huge_pte_none(pte) || pte_present(pte))
|
|
|
|
return 0;
|
|
|
|
swp = pte_to_swp_entry(pte);
|
2011-07-26 07:12:14 +07:00
|
|
|
if (non_swap_entry(swp) && is_migration_entry(swp))
|
2010-09-08 08:19:35 +07:00
|
|
|
return 1;
|
2011-07-26 07:12:14 +07:00
|
|
|
else
|
2010-09-08 08:19:35 +07:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2010-05-28 07:29:21 +07:00
|
|
|
static int is_hugetlb_entry_hwpoisoned(pte_t pte)
|
|
|
|
{
|
|
|
|
swp_entry_t swp;
|
|
|
|
|
|
|
|
if (huge_pte_none(pte) || pte_present(pte))
|
|
|
|
return 0;
|
|
|
|
swp = pte_to_swp_entry(pte);
|
2011-07-26 07:12:14 +07:00
|
|
|
if (non_swap_entry(swp) && is_hwpoison_entry(swp))
|
2010-05-28 07:29:21 +07:00
|
|
|
return 1;
|
2011-07-26 07:12:14 +07:00
|
|
|
else
|
2010-05-28 07:29:21 +07:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2012-08-01 06:42:03 +07:00
|
|
|
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
|
|
|
|
unsigned long start, unsigned long end,
|
|
|
|
struct page *ref_page)
|
2005-06-22 07:14:44 +07:00
|
|
|
{
|
2012-08-01 06:42:03 +07:00
|
|
|
int force_flush = 0;
|
2005-06-22 07:14:44 +07:00
|
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
|
|
unsigned long address;
|
2005-08-06 01:59:35 +07:00
|
|
|
pte_t *ptep;
|
2005-06-22 07:14:44 +07:00
|
|
|
pte_t pte;
|
2013-11-15 05:31:02 +07:00
|
|
|
spinlock_t *ptl;
|
2005-06-22 07:14:44 +07:00
|
|
|
struct page *page;
|
2008-07-24 11:27:41 +07:00
|
|
|
struct hstate *h = hstate_vma(vma);
|
|
|
|
unsigned long sz = huge_page_size(h);
|
mm: move all mmu notifier invocations to be done outside the PT lock
In order to allow sleeping during mmu notifier calls, we need to avoid
invoking them under the page table spinlock. This patch solves the
problem by calling invalidate_page notification after releasing the lock
(but before freeing the page itself), or by wrapping the page invalidation
with calls to invalidate_range_begin and invalidate_range_end.
To prevent accidental changes to the invalidate_range_end arguments after
the call to invalidate_range_begin, the patch introduces a convention of
saving the arguments in consistently named locals:
unsigned long mmun_start; /* For mmu_notifiers */
unsigned long mmun_end; /* For mmu_notifiers */
...
mmun_start = ...
mmun_end = ...
mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
...
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
The patch changes code to use this convention for all calls to
mmu_notifier_invalidate_range_start/end, except those where the calls are
close enough so that anyone who glances at the code can see the values
aren't changing.
This patchset is a preliminary step towards on-demand paging design to be
added to the RDMA stack.
Why do we want on-demand paging for Infiniband?
Applications register memory with an RDMA adapter using system calls,
and subsequently post IO operations that refer to the corresponding
virtual addresses directly to HW. Until now, this was achieved by
pinning the memory during the registration calls. The goal of on demand
paging is to avoid pinning the pages of registered memory regions (MRs).
This will allow users the same flexibility they get when swapping any
other part of their processes address spaces. Instead of requiring the
entire MR to fit in physical memory, we can allow the MR to be larger,
and only fit the current working set in physical memory.
Why should anyone care? What problems are users currently experiencing?
This can make programming with RDMA much simpler. Today, developers
that are working with more data than their RAM can hold need either to
deregister and reregister memory regions throughout their process's
life, or keep a single memory region and copy the data to it. On demand
paging will allow these developers to register a single MR at the
beginning of their process's life, and let the operating system manage
which pages needs to be fetched at a given time. In the future, we
might be able to provide a single memory access key for each process
that would provide the entire process's address as one large memory
region, and the developers wouldn't need to register memory regions at
all.
Is there any prospect that any other subsystems will utilise these
infrastructural changes? If so, which and how, etc?
As for other subsystems, I understand that XPMEM wanted to sleep in
MMU notifiers, as Christoph Lameter wrote at
http://lkml.indiana.edu/hypermail/linux/kernel/0802.1/0460.html and
perhaps Andrea knows about other use cases.
Scheduling in mmu notifications is required since we need to sync the
hardware with the secondary page tables change. A TLB flush of an IO
device is inherently slower than a CPU TLB flush, so our design works by
sending the invalidation request to the device, and waiting for an
interrupt before exiting the mmu notifier handler.
Avi said:
kvm may be a buyer. kvm::mmu_lock, which serializes guest page
faults, also protects long operations such as destroying large ranges.
It would be good to convert it into a spinlock, but as it is used inside
mmu notifiers, this cannot be done.
(there are alternatives, such as keeping the spinlock and using a
generation counter to do the teardown in O(1), which is what the "may"
is doing up there).
[akpm@linux-foundation.orgpossible speed tweak in hugetlb_cow(), cleanups]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Sagi Grimberg <sagig@mellanox.com>
Signed-off-by: Haggai Eran <haggaie@mellanox.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Cc: Or Gerlitz <ogerlitz@mellanox.com>
Cc: Haggai Eran <haggaie@mellanox.com>
Cc: Shachar Raindel <raindel@mellanox.com>
Cc: Liran Liss <liranl@mellanox.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Avi Kivity <avi@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 06:33:33 +07:00
|
|
|
const unsigned long mmun_start = start; /* For mmu_notifiers */
|
|
|
|
const unsigned long mmun_end = end; /* For mmu_notifiers */
|
2008-07-24 11:27:41 +07:00
|
|
|
|
2005-06-22 07:14:44 +07:00
|
|
|
WARN_ON(!is_vm_hugetlb_page(vma));
|
2008-07-24 11:27:41 +07:00
|
|
|
BUG_ON(start & ~huge_page_mask(h));
|
|
|
|
BUG_ON(end & ~huge_page_mask(h));
|
2005-06-22 07:14:44 +07:00
|
|
|
|
2012-08-01 06:42:03 +07:00
|
|
|
tlb_start_vma(tlb, vma);
|
mm: move all mmu notifier invocations to be done outside the PT lock
In order to allow sleeping during mmu notifier calls, we need to avoid
invoking them under the page table spinlock. This patch solves the
problem by calling invalidate_page notification after releasing the lock
(but before freeing the page itself), or by wrapping the page invalidation
with calls to invalidate_range_begin and invalidate_range_end.
To prevent accidental changes to the invalidate_range_end arguments after
the call to invalidate_range_begin, the patch introduces a convention of
saving the arguments in consistently named locals:
unsigned long mmun_start; /* For mmu_notifiers */
unsigned long mmun_end; /* For mmu_notifiers */
...
mmun_start = ...
mmun_end = ...
mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
...
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
The patch changes code to use this convention for all calls to
mmu_notifier_invalidate_range_start/end, except those where the calls are
close enough so that anyone who glances at the code can see the values
aren't changing.
This patchset is a preliminary step towards on-demand paging design to be
added to the RDMA stack.
Why do we want on-demand paging for Infiniband?
Applications register memory with an RDMA adapter using system calls,
and subsequently post IO operations that refer to the corresponding
virtual addresses directly to HW. Until now, this was achieved by
pinning the memory during the registration calls. The goal of on demand
paging is to avoid pinning the pages of registered memory regions (MRs).
This will allow users the same flexibility they get when swapping any
other part of their processes address spaces. Instead of requiring the
entire MR to fit in physical memory, we can allow the MR to be larger,
and only fit the current working set in physical memory.
Why should anyone care? What problems are users currently experiencing?
This can make programming with RDMA much simpler. Today, developers
that are working with more data than their RAM can hold need either to
deregister and reregister memory regions throughout their process's
life, or keep a single memory region and copy the data to it. On demand
paging will allow these developers to register a single MR at the
beginning of their process's life, and let the operating system manage
which pages needs to be fetched at a given time. In the future, we
might be able to provide a single memory access key for each process
that would provide the entire process's address as one large memory
region, and the developers wouldn't need to register memory regions at
all.
Is there any prospect that any other subsystems will utilise these
infrastructural changes? If so, which and how, etc?
As for other subsystems, I understand that XPMEM wanted to sleep in
MMU notifiers, as Christoph Lameter wrote at
http://lkml.indiana.edu/hypermail/linux/kernel/0802.1/0460.html and
perhaps Andrea knows about other use cases.
Scheduling in mmu notifications is required since we need to sync the
hardware with the secondary page tables change. A TLB flush of an IO
device is inherently slower than a CPU TLB flush, so our design works by
sending the invalidation request to the device, and waiting for an
interrupt before exiting the mmu notifier handler.
Avi said:
kvm may be a buyer. kvm::mmu_lock, which serializes guest page
faults, also protects long operations such as destroying large ranges.
It would be good to convert it into a spinlock, but as it is used inside
mmu notifiers, this cannot be done.
(there are alternatives, such as keeping the spinlock and using a
generation counter to do the teardown in O(1), which is what the "may"
is doing up there).
[akpm@linux-foundation.orgpossible speed tweak in hugetlb_cow(), cleanups]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Sagi Grimberg <sagig@mellanox.com>
Signed-off-by: Haggai Eran <haggaie@mellanox.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Cc: Or Gerlitz <ogerlitz@mellanox.com>
Cc: Haggai Eran <haggaie@mellanox.com>
Cc: Shachar Raindel <raindel@mellanox.com>
Cc: Liran Liss <liranl@mellanox.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Avi Kivity <avi@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 06:33:33 +07:00
|
|
|
mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
|
2012-08-01 06:42:03 +07:00
|
|
|
again:
|
2008-07-24 11:27:41 +07:00
|
|
|
for (address = start; address < end; address += sz) {
|
2005-08-06 01:59:35 +07:00
|
|
|
ptep = huge_pte_offset(mm, address);
|
2005-10-30 08:16:46 +07:00
|
|
|
if (!ptep)
|
2005-08-06 01:59:35 +07:00
|
|
|
continue;
|
|
|
|
|
2013-11-15 05:31:02 +07:00
|
|
|
ptl = huge_pte_lock(h, mm, ptep);
|
2006-12-07 11:32:03 +07:00
|
|
|
if (huge_pmd_unshare(mm, &address, ptep))
|
2013-11-15 05:31:02 +07:00
|
|
|
goto unlock;
|
2006-12-07 11:32:03 +07:00
|
|
|
|
2012-03-24 05:01:48 +07:00
|
|
|
pte = huge_ptep_get(ptep);
|
|
|
|
if (huge_pte_none(pte))
|
2013-11-15 05:31:02 +07:00
|
|
|
goto unlock;
|
2012-03-24 05:01:48 +07:00
|
|
|
|
|
|
|
/*
|
|
|
|
* HWPoisoned hugepage is already unmapped and dropped reference
|
|
|
|
*/
|
2012-12-13 04:52:28 +07:00
|
|
|
if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
|
2013-04-30 05:07:23 +07:00
|
|
|
huge_pte_clear(mm, address, ptep);
|
2013-11-15 05:31:02 +07:00
|
|
|
goto unlock;
|
2012-12-13 04:52:28 +07:00
|
|
|
}
|
2012-03-24 05:01:48 +07:00
|
|
|
|
|
|
|
page = pte_page(pte);
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 11:27:25 +07:00
|
|
|
/*
|
|
|
|
* If a reference page is supplied, it is because a specific
|
|
|
|
* page is being unmapped, not a range. Ensure the page we
|
|
|
|
* are about to unmap is the actual page of interest.
|
|
|
|
*/
|
|
|
|
if (ref_page) {
|
|
|
|
if (page != ref_page)
|
2013-11-15 05:31:02 +07:00
|
|
|
goto unlock;
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 11:27:25 +07:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Mark the VMA as having unmapped its page so that
|
|
|
|
* future faults in this VMA will fail rather than
|
|
|
|
* looking like data was lost
|
|
|
|
*/
|
|
|
|
set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
|
|
|
|
}
|
|
|
|
|
2005-08-06 01:59:35 +07:00
|
|
|
pte = huge_ptep_get_and_clear(mm, address, ptep);
|
2012-08-01 06:42:03 +07:00
|
|
|
tlb_remove_tlb_entry(tlb, ptep, address);
|
2013-04-30 05:07:23 +07:00
|
|
|
if (huge_pte_dirty(pte))
|
2007-02-09 05:20:27 +07:00
|
|
|
set_page_dirty(page);
|
2012-03-22 06:34:03 +07:00
|
|
|
|
2012-08-01 06:42:03 +07:00
|
|
|
page_remove_rmap(page);
|
|
|
|
force_flush = !__tlb_remove_page(tlb, page);
|
2013-11-15 05:31:02 +07:00
|
|
|
if (force_flush) {
|
|
|
|
spin_unlock(ptl);
|
2012-08-01 06:42:03 +07:00
|
|
|
break;
|
2013-11-15 05:31:02 +07:00
|
|
|
}
|
2012-03-22 06:34:03 +07:00
|
|
|
/* Bail out after unmapping reference page if supplied */
|
2013-11-15 05:31:02 +07:00
|
|
|
if (ref_page) {
|
|
|
|
spin_unlock(ptl);
|
2012-03-22 06:34:03 +07:00
|
|
|
break;
|
2013-11-15 05:31:02 +07:00
|
|
|
}
|
|
|
|
unlock:
|
|
|
|
spin_unlock(ptl);
|
2005-06-22 07:14:44 +07:00
|
|
|
}
|
2012-08-01 06:42:03 +07:00
|
|
|
/*
|
|
|
|
* mmu_gather ran out of room to batch pages, we break out of
|
|
|
|
* the PTE lock to avoid doing the potential expensive TLB invalidate
|
|
|
|
* and page-free while holding it.
|
|
|
|
*/
|
|
|
|
if (force_flush) {
|
|
|
|
force_flush = 0;
|
|
|
|
tlb_flush_mmu(tlb);
|
|
|
|
if (address < end && !ref_page)
|
|
|
|
goto again;
|
2006-10-04 16:15:24 +07:00
|
|
|
}
|
mm: move all mmu notifier invocations to be done outside the PT lock
In order to allow sleeping during mmu notifier calls, we need to avoid
invoking them under the page table spinlock. This patch solves the
problem by calling invalidate_page notification after releasing the lock
(but before freeing the page itself), or by wrapping the page invalidation
with calls to invalidate_range_begin and invalidate_range_end.
To prevent accidental changes to the invalidate_range_end arguments after
the call to invalidate_range_begin, the patch introduces a convention of
saving the arguments in consistently named locals:
unsigned long mmun_start; /* For mmu_notifiers */
unsigned long mmun_end; /* For mmu_notifiers */
...
mmun_start = ...
mmun_end = ...
mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
...
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
The patch changes code to use this convention for all calls to
mmu_notifier_invalidate_range_start/end, except those where the calls are
close enough so that anyone who glances at the code can see the values
aren't changing.
This patchset is a preliminary step towards on-demand paging design to be
added to the RDMA stack.
Why do we want on-demand paging for Infiniband?
Applications register memory with an RDMA adapter using system calls,
and subsequently post IO operations that refer to the corresponding
virtual addresses directly to HW. Until now, this was achieved by
pinning the memory during the registration calls. The goal of on demand
paging is to avoid pinning the pages of registered memory regions (MRs).
This will allow users the same flexibility they get when swapping any
other part of their processes address spaces. Instead of requiring the
entire MR to fit in physical memory, we can allow the MR to be larger,
and only fit the current working set in physical memory.
Why should anyone care? What problems are users currently experiencing?
This can make programming with RDMA much simpler. Today, developers
that are working with more data than their RAM can hold need either to
deregister and reregister memory regions throughout their process's
life, or keep a single memory region and copy the data to it. On demand
paging will allow these developers to register a single MR at the
beginning of their process's life, and let the operating system manage
which pages needs to be fetched at a given time. In the future, we
might be able to provide a single memory access key for each process
that would provide the entire process's address as one large memory
region, and the developers wouldn't need to register memory regions at
all.
Is there any prospect that any other subsystems will utilise these
infrastructural changes? If so, which and how, etc?
As for other subsystems, I understand that XPMEM wanted to sleep in
MMU notifiers, as Christoph Lameter wrote at
http://lkml.indiana.edu/hypermail/linux/kernel/0802.1/0460.html and
perhaps Andrea knows about other use cases.
Scheduling in mmu notifications is required since we need to sync the
hardware with the secondary page tables change. A TLB flush of an IO
device is inherently slower than a CPU TLB flush, so our design works by
sending the invalidation request to the device, and waiting for an
interrupt before exiting the mmu notifier handler.
Avi said:
kvm may be a buyer. kvm::mmu_lock, which serializes guest page
faults, also protects long operations such as destroying large ranges.
It would be good to convert it into a spinlock, but as it is used inside
mmu notifiers, this cannot be done.
(there are alternatives, such as keeping the spinlock and using a
generation counter to do the teardown in O(1), which is what the "may"
is doing up there).
[akpm@linux-foundation.orgpossible speed tweak in hugetlb_cow(), cleanups]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Sagi Grimberg <sagig@mellanox.com>
Signed-off-by: Haggai Eran <haggaie@mellanox.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Cc: Or Gerlitz <ogerlitz@mellanox.com>
Cc: Haggai Eran <haggaie@mellanox.com>
Cc: Shachar Raindel <raindel@mellanox.com>
Cc: Liran Liss <liranl@mellanox.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Avi Kivity <avi@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 06:33:33 +07:00
|
|
|
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
|
2012-08-01 06:42:03 +07:00
|
|
|
tlb_end_vma(tlb, vma);
|
2005-04-17 05:20:36 +07:00
|
|
|
}
|
2005-06-22 07:14:44 +07:00
|
|
|
|
mm: hugetlbfs: close race during teardown of hugetlbfs shared page tables
If a process creates a large hugetlbfs mapping that is eligible for page
table sharing and forks heavily with children some of whom fault and
others which destroy the mapping then it is possible for page tables to
get corrupted. Some teardowns of the mapping encounter a "bad pmd" and
output a message to the kernel log. The final teardown will trigger a
BUG_ON in mm/filemap.c.
This was reproduced in 3.4 but is known to have existed for a long time
and goes back at least as far as 2.6.37. It was probably was introduced
in 2.6.20 by [39dde65c: shared page table for hugetlb page]. The messages
look like this;
[ ..........] Lots of bad pmd messages followed by this
[ 127.164256] mm/memory.c:391: bad pmd ffff880412e04fe8(80000003de4000e7).
[ 127.164257] mm/memory.c:391: bad pmd ffff880412e04ff0(80000003de6000e7).
[ 127.164258] mm/memory.c:391: bad pmd ffff880412e04ff8(80000003de0000e7).
[ 127.186778] ------------[ cut here ]------------
[ 127.186781] kernel BUG at mm/filemap.c:134!
[ 127.186782] invalid opcode: 0000 [#1] SMP
[ 127.186783] CPU 7
[ 127.186784] Modules linked in: af_packet cpufreq_conservative cpufreq_userspace cpufreq_powersave acpi_cpufreq mperf ext3 jbd dm_mod coretemp crc32c_intel usb_storage ghash_clmulni_intel aesni_intel i2c_i801 r8169 mii uas sr_mod cdrom sg iTCO_wdt iTCO_vendor_support shpchp serio_raw cryptd aes_x86_64 e1000e pci_hotplug dcdbas aes_generic container microcode ext4 mbcache jbd2 crc16 sd_mod crc_t10dif i915 drm_kms_helper drm i2c_algo_bit ehci_hcd ahci libahci usbcore rtc_cmos usb_common button i2c_core intel_agp video intel_gtt fan processor thermal thermal_sys hwmon ata_generic pata_atiixp libata scsi_mod
[ 127.186801]
[ 127.186802] Pid: 9017, comm: hugetlbfs-test Not tainted 3.4.0-autobuild #53 Dell Inc. OptiPlex 990/06D7TR
[ 127.186804] RIP: 0010:[<ffffffff810ed6ce>] [<ffffffff810ed6ce>] __delete_from_page_cache+0x15e/0x160
[ 127.186809] RSP: 0000:ffff8804144b5c08 EFLAGS: 00010002
[ 127.186810] RAX: 0000000000000001 RBX: ffffea000a5c9000 RCX: 00000000ffffffc0
[ 127.186811] RDX: 0000000000000000 RSI: 0000000000000009 RDI: ffff88042dfdad00
[ 127.186812] RBP: ffff8804144b5c18 R08: 0000000000000009 R09: 0000000000000003
[ 127.186813] R10: 0000000000000000 R11: 000000000000002d R12: ffff880412ff83d8
[ 127.186814] R13: ffff880412ff83d8 R14: 0000000000000000 R15: ffff880412ff83d8
[ 127.186815] FS: 00007fe18ed2c700(0000) GS:ffff88042dce0000(0000) knlGS:0000000000000000
[ 127.186816] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b
[ 127.186817] CR2: 00007fe340000503 CR3: 0000000417a14000 CR4: 00000000000407e0
[ 127.186818] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 127.186819] DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
[ 127.186820] Process hugetlbfs-test (pid: 9017, threadinfo ffff8804144b4000, task ffff880417f803c0)
[ 127.186821] Stack:
[ 127.186822] ffffea000a5c9000 0000000000000000 ffff8804144b5c48 ffffffff810ed83b
[ 127.186824] ffff8804144b5c48 000000000000138a 0000000000001387 ffff8804144b5c98
[ 127.186825] ffff8804144b5d48 ffffffff811bc925 ffff8804144b5cb8 0000000000000000
[ 127.186827] Call Trace:
[ 127.186829] [<ffffffff810ed83b>] delete_from_page_cache+0x3b/0x80
[ 127.186832] [<ffffffff811bc925>] truncate_hugepages+0x115/0x220
[ 127.186834] [<ffffffff811bca43>] hugetlbfs_evict_inode+0x13/0x30
[ 127.186837] [<ffffffff811655c7>] evict+0xa7/0x1b0
[ 127.186839] [<ffffffff811657a3>] iput_final+0xd3/0x1f0
[ 127.186840] [<ffffffff811658f9>] iput+0x39/0x50
[ 127.186842] [<ffffffff81162708>] d_kill+0xf8/0x130
[ 127.186843] [<ffffffff81162812>] dput+0xd2/0x1a0
[ 127.186845] [<ffffffff8114e2d0>] __fput+0x170/0x230
[ 127.186848] [<ffffffff81236e0e>] ? rb_erase+0xce/0x150
[ 127.186849] [<ffffffff8114e3ad>] fput+0x1d/0x30
[ 127.186851] [<ffffffff81117db7>] remove_vma+0x37/0x80
[ 127.186853] [<ffffffff81119182>] do_munmap+0x2d2/0x360
[ 127.186855] [<ffffffff811cc639>] sys_shmdt+0xc9/0x170
[ 127.186857] [<ffffffff81410a39>] system_call_fastpath+0x16/0x1b
[ 127.186858] Code: 0f 1f 44 00 00 48 8b 43 08 48 8b 00 48 8b 40 28 8b b0 40 03 00 00 85 f6 0f 88 df fe ff ff 48 89 df e8 e7 cb 05 00 e9 d2 fe ff ff <0f> 0b 55 83 e2 fd 48 89 e5 48 83 ec 30 48 89 5d d8 4c 89 65 e0
[ 127.186868] RIP [<ffffffff810ed6ce>] __delete_from_page_cache+0x15e/0x160
[ 127.186870] RSP <ffff8804144b5c08>
[ 127.186871] ---[ end trace 7cbac5d1db69f426 ]---
The bug is a race and not always easy to reproduce. To reproduce it I was
doing the following on a single socket I7-based machine with 16G of RAM.
$ hugeadm --pool-pages-max DEFAULT:13G
$ echo $((18*1048576*1024)) > /proc/sys/kernel/shmmax
$ echo $((18*1048576*1024)) > /proc/sys/kernel/shmall
$ for i in `seq 1 9000`; do ./hugetlbfs-test; done
On my particular machine, it usually triggers within 10 minutes but
enabling debug options can change the timing such that it never hits.
Once the bug is triggered, the machine is in trouble and needs to be
rebooted. The machine will respond but processes accessing proc like "ps
aux" will hang due to the BUG_ON. shutdown will also hang and needs a
hard reset or a sysrq-b.
The basic problem is a race between page table sharing and teardown. For
the most part page table sharing depends on i_mmap_mutex. In some cases,
it is also taking the mm->page_table_lock for the PTE updates but with
shared page tables, it is the i_mmap_mutex that is more important.
Unfortunately it appears to be also insufficient. Consider the following
situation
Process A Process B
--------- ---------
hugetlb_fault shmdt
LockWrite(mmap_sem)
do_munmap
unmap_region
unmap_vmas
unmap_single_vma
unmap_hugepage_range
Lock(i_mmap_mutex)
Lock(mm->page_table_lock)
huge_pmd_unshare/unmap tables <--- (1)
Unlock(mm->page_table_lock)
Unlock(i_mmap_mutex)
huge_pte_alloc ...
Lock(i_mmap_mutex) ...
vma_prio_walk, find svma, spte ...
Lock(mm->page_table_lock) ...
share spte ...
Unlock(mm->page_table_lock) ...
Unlock(i_mmap_mutex) ...
hugetlb_no_page <--- (2)
free_pgtables
unlink_file_vma
hugetlb_free_pgd_range
remove_vma_list
In this scenario, it is possible for Process A to share page tables with
Process B that is trying to tear them down. The i_mmap_mutex on its own
does not prevent Process A walking Process B's page tables. At (1) above,
the page tables are not shared yet so it unmaps the PMDs. Process A sets
up page table sharing and at (2) faults a new entry. Process B then trips
up on it in free_pgtables.
This patch fixes the problem by adding a new function
__unmap_hugepage_range_final that is only called when the VMA is about to
be destroyed. This function clears VM_MAYSHARE during
unmap_hugepage_range() under the i_mmap_mutex. This makes the VMA
ineligible for sharing and avoids the race. Superficially this looks like
it would then be vunerable to truncate and madvise issues but hugetlbfs
has its own truncate handlers so does not use unmap_mapping_range() and
does not support madvise(DONTNEED).
This should be treated as a -stable candidate if it is merged.
Test program is as follows. The test case was mostly written by Michal
Hocko with a few minor changes to reproduce this bug.
==== CUT HERE ====
static size_t huge_page_size = (2UL << 20);
static size_t nr_huge_page_A = 512;
static size_t nr_huge_page_B = 5632;
unsigned int get_random(unsigned int max)
{
struct timeval tv;
gettimeofday(&tv, NULL);
srandom(tv.tv_usec);
return random() % max;
}
static void play(void *addr, size_t size)
{
unsigned char *start = addr,
*end = start + size,
*a;
start += get_random(size/2);
/* we could itterate on huge pages but let's give it more time. */
for (a = start; a < end; a += 4096)
*a = 0;
}
int main(int argc, char **argv)
{
key_t key = IPC_PRIVATE;
size_t sizeA = nr_huge_page_A * huge_page_size;
size_t sizeB = nr_huge_page_B * huge_page_size;
int shmidA, shmidB;
void *addrA = NULL, *addrB = NULL;
int nr_children = 300, n = 0;
if ((shmidA = shmget(key, sizeA, IPC_CREAT|SHM_HUGETLB|0660)) == -1) {
perror("shmget:");
return 1;
}
if ((addrA = shmat(shmidA, addrA, SHM_R|SHM_W)) == (void *)-1UL) {
perror("shmat");
return 1;
}
if ((shmidB = shmget(key, sizeB, IPC_CREAT|SHM_HUGETLB|0660)) == -1) {
perror("shmget:");
return 1;
}
if ((addrB = shmat(shmidB, addrB, SHM_R|SHM_W)) == (void *)-1UL) {
perror("shmat");
return 1;
}
fork_child:
switch(fork()) {
case 0:
switch (n%3) {
case 0:
play(addrA, sizeA);
break;
case 1:
play(addrB, sizeB);
break;
case 2:
break;
}
break;
case -1:
perror("fork:");
break;
default:
if (++n < nr_children)
goto fork_child;
play(addrA, sizeA);
break;
}
shmdt(addrA);
shmdt(addrB);
do {
wait(NULL);
} while (--n > 0);
shmctl(shmidA, IPC_RMID, NULL);
shmctl(shmidB, IPC_RMID, NULL);
return 0;
}
[akpm@linux-foundation.org: name the declaration's args, fix CONFIG_HUGETLBFS=n build]
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-08-01 06:46:20 +07:00
|
|
|
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
|
|
|
|
struct vm_area_struct *vma, unsigned long start,
|
|
|
|
unsigned long end, struct page *ref_page)
|
|
|
|
{
|
|
|
|
__unmap_hugepage_range(tlb, vma, start, end, ref_page);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Clear this flag so that x86's huge_pmd_share page_table_shareable
|
|
|
|
* test will fail on a vma being torn down, and not grab a page table
|
|
|
|
* on its way out. We're lucky that the flag has such an appropriate
|
|
|
|
* name, and can in fact be safely cleared here. We could clear it
|
|
|
|
* before the __unmap_hugepage_range above, but all that's necessary
|
|
|
|
* is to clear it before releasing the i_mmap_mutex. This works
|
|
|
|
* because in the context this is called, the VMA is about to be
|
|
|
|
* destroyed and the i_mmap_mutex is held.
|
|
|
|
*/
|
|
|
|
vma->vm_flags &= ~VM_MAYSHARE;
|
|
|
|
}
|
|
|
|
|
2006-10-11 15:20:46 +07:00
|
|
|
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 11:27:25 +07:00
|
|
|
unsigned long end, struct page *ref_page)
|
2006-10-11 15:20:46 +07:00
|
|
|
{
|
2012-08-01 06:42:03 +07:00
|
|
|
struct mm_struct *mm;
|
|
|
|
struct mmu_gather tlb;
|
|
|
|
|
|
|
|
mm = vma->vm_mm;
|
|
|
|
|
Fix TLB gather virtual address range invalidation corner cases
Ben Tebulin reported:
"Since v3.7.2 on two independent machines a very specific Git
repository fails in 9/10 cases on git-fsck due to an SHA1/memory
failures. This only occurs on a very specific repository and can be
reproduced stably on two independent laptops. Git mailing list ran
out of ideas and for me this looks like some very exotic kernel issue"
and bisected the failure to the backport of commit 53a59fc67f97 ("mm:
limit mmu_gather batching to fix soft lockups on !CONFIG_PREEMPT").
That commit itself is not actually buggy, but what it does is to make it
much more likely to hit the partial TLB invalidation case, since it
introduces a new case in tlb_next_batch() that previously only ever
happened when running out of memory.
The real bug is that the TLB gather virtual memory range setup is subtly
buggered. It was introduced in commit 597e1c3580b7 ("mm/mmu_gather:
enable tlb flush range in generic mmu_gather"), and the range handling
was already fixed at least once in commit e6c495a96ce0 ("mm: fix the TLB
range flushed when __tlb_remove_page() runs out of slots"), but that fix
was not complete.
The problem with the TLB gather virtual address range is that it isn't
set up by the initial tlb_gather_mmu() initialization (which didn't get
the TLB range information), but it is set up ad-hoc later by the
functions that actually flush the TLB. And so any such case that forgot
to update the TLB range entries would potentially miss TLB invalidates.
Rather than try to figure out exactly which particular ad-hoc range
setup was missing (I personally suspect it's the hugetlb case in
zap_huge_pmd(), which didn't have the same logic as zap_pte_range()
did), this patch just gets rid of the problem at the source: make the
TLB range information available to tlb_gather_mmu(), and initialize it
when initializing all the other tlb gather fields.
This makes the patch larger, but conceptually much simpler. And the end
result is much more understandable; even if you want to play games with
partial ranges when invalidating the TLB contents in chunks, now the
range information is always there, and anybody who doesn't want to
bother with it won't introduce subtle bugs.
Ben verified that this fixes his problem.
Reported-bisected-and-tested-by: Ben Tebulin <tebulin@googlemail.com>
Build-testing-by: Stephen Rothwell <sfr@canb.auug.org.au>
Build-testing-by: Richard Weinberger <richard.weinberger@gmail.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-08-16 01:42:25 +07:00
|
|
|
tlb_gather_mmu(&tlb, mm, start, end);
|
2012-08-01 06:42:03 +07:00
|
|
|
__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
|
|
|
|
tlb_finish_mmu(&tlb, start, end);
|
2006-10-11 15:20:46 +07:00
|
|
|
}
|
|
|
|
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 11:27:25 +07:00
|
|
|
/*
|
|
|
|
* This is called when the original mapper is failing to COW a MAP_PRIVATE
|
|
|
|
* mappping it owns the reserve page for. The intention is to unmap the page
|
|
|
|
* from other VMAs and let the children be SIGKILLed if they are faulting the
|
|
|
|
* same region.
|
|
|
|
*/
|
2008-10-19 10:27:06 +07:00
|
|
|
static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
|
|
|
|
struct page *page, unsigned long address)
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 11:27:25 +07:00
|
|
|
{
|
2008-11-13 04:24:56 +07:00
|
|
|
struct hstate *h = hstate_vma(vma);
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 11:27:25 +07:00
|
|
|
struct vm_area_struct *iter_vma;
|
|
|
|
struct address_space *mapping;
|
|
|
|
pgoff_t pgoff;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* vm_pgoff is in PAGE_SIZE units, hence the different calculation
|
|
|
|
* from page cache lookup which is in HPAGE_SIZE units.
|
|
|
|
*/
|
2008-11-13 04:24:56 +07:00
|
|
|
address = address & huge_page_mask(h);
|
2012-10-09 06:33:31 +07:00
|
|
|
pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
|
|
|
|
vma->vm_pgoff;
|
2013-01-24 05:07:38 +07:00
|
|
|
mapping = file_inode(vma->vm_file)->i_mapping;
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 11:27:25 +07:00
|
|
|
|
2009-12-15 08:59:53 +07:00
|
|
|
/*
|
|
|
|
* Take the mapping lock for the duration of the table walk. As
|
|
|
|
* this mapping should be shared between all the VMAs,
|
|
|
|
* __unmap_hugepage_range() is called as the lock is already held
|
|
|
|
*/
|
2011-05-25 07:12:06 +07:00
|
|
|
mutex_lock(&mapping->i_mmap_mutex);
|
2012-10-09 06:31:25 +07:00
|
|
|
vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 11:27:25 +07:00
|
|
|
/* Do not unmap the current VMA */
|
|
|
|
if (iter_vma == vma)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Unmap the page from other VMAs without their own reserves.
|
|
|
|
* They get marked to be SIGKILLed if they fault in these
|
|
|
|
* areas. This is because a future no-page fault on this VMA
|
|
|
|
* could insert a zeroed page instead of the data existing
|
|
|
|
* from the time of fork. This would look like data corruption
|
|
|
|
*/
|
|
|
|
if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
|
2012-08-01 06:42:03 +07:00
|
|
|
unmap_hugepage_range(iter_vma, address,
|
|
|
|
address + huge_page_size(h), page);
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 11:27:25 +07:00
|
|
|
}
|
2011-05-25 07:12:06 +07:00
|
|
|
mutex_unlock(&mapping->i_mmap_mutex);
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 11:27:25 +07:00
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
2010-05-28 07:29:16 +07:00
|
|
|
/*
|
|
|
|
* Hugetlb_cow() should be called with page lock of the original hugepage held.
|
2012-01-11 06:07:21 +07:00
|
|
|
* Called with hugetlb_instantiation_mutex held and pte_page locked so we
|
|
|
|
* cannot race with other handlers or page migration.
|
|
|
|
* Keep the pte_same checks anyway to make transition from the mutex easier.
|
2010-05-28 07:29:16 +07:00
|
|
|
*/
|
2006-01-06 15:10:44 +07:00
|
|
|
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 11:27:25 +07:00
|
|
|
unsigned long address, pte_t *ptep, pte_t pte,
|
2013-11-15 05:31:02 +07:00
|
|
|
struct page *pagecache_page, spinlock_t *ptl)
|
2006-01-06 15:10:44 +07:00
|
|
|
{
|
2008-07-24 11:27:41 +07:00
|
|
|
struct hstate *h = hstate_vma(vma);
|
2006-01-06 15:10:44 +07:00
|
|
|
struct page *old_page, *new_page;
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 11:27:25 +07:00
|
|
|
int outside_reserve = 0;
|
mm: move all mmu notifier invocations to be done outside the PT lock
In order to allow sleeping during mmu notifier calls, we need to avoid
invoking them under the page table spinlock. This patch solves the
problem by calling invalidate_page notification after releasing the lock
(but before freeing the page itself), or by wrapping the page invalidation
with calls to invalidate_range_begin and invalidate_range_end.
To prevent accidental changes to the invalidate_range_end arguments after
the call to invalidate_range_begin, the patch introduces a convention of
saving the arguments in consistently named locals:
unsigned long mmun_start; /* For mmu_notifiers */
unsigned long mmun_end; /* For mmu_notifiers */
...
mmun_start = ...
mmun_end = ...
mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
...
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
The patch changes code to use this convention for all calls to
mmu_notifier_invalidate_range_start/end, except those where the calls are
close enough so that anyone who glances at the code can see the values
aren't changing.
This patchset is a preliminary step towards on-demand paging design to be
added to the RDMA stack.
Why do we want on-demand paging for Infiniband?
Applications register memory with an RDMA adapter using system calls,
and subsequently post IO operations that refer to the corresponding
virtual addresses directly to HW. Until now, this was achieved by
pinning the memory during the registration calls. The goal of on demand
paging is to avoid pinning the pages of registered memory regions (MRs).
This will allow users the same flexibility they get when swapping any
other part of their processes address spaces. Instead of requiring the
entire MR to fit in physical memory, we can allow the MR to be larger,
and only fit the current working set in physical memory.
Why should anyone care? What problems are users currently experiencing?
This can make programming with RDMA much simpler. Today, developers
that are working with more data than their RAM can hold need either to
deregister and reregister memory regions throughout their process's
life, or keep a single memory region and copy the data to it. On demand
paging will allow these developers to register a single MR at the
beginning of their process's life, and let the operating system manage
which pages needs to be fetched at a given time. In the future, we
might be able to provide a single memory access key for each process
that would provide the entire process's address as one large memory
region, and the developers wouldn't need to register memory regions at
all.
Is there any prospect that any other subsystems will utilise these
infrastructural changes? If so, which and how, etc?
As for other subsystems, I understand that XPMEM wanted to sleep in
MMU notifiers, as Christoph Lameter wrote at
http://lkml.indiana.edu/hypermail/linux/kernel/0802.1/0460.html and
perhaps Andrea knows about other use cases.
Scheduling in mmu notifications is required since we need to sync the
hardware with the secondary page tables change. A TLB flush of an IO
device is inherently slower than a CPU TLB flush, so our design works by
sending the invalidation request to the device, and waiting for an
interrupt before exiting the mmu notifier handler.
Avi said:
kvm may be a buyer. kvm::mmu_lock, which serializes guest page
faults, also protects long operations such as destroying large ranges.
It would be good to convert it into a spinlock, but as it is used inside
mmu notifiers, this cannot be done.
(there are alternatives, such as keeping the spinlock and using a
generation counter to do the teardown in O(1), which is what the "may"
is doing up there).
[akpm@linux-foundation.orgpossible speed tweak in hugetlb_cow(), cleanups]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Sagi Grimberg <sagig@mellanox.com>
Signed-off-by: Haggai Eran <haggaie@mellanox.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Cc: Or Gerlitz <ogerlitz@mellanox.com>
Cc: Haggai Eran <haggaie@mellanox.com>
Cc: Shachar Raindel <raindel@mellanox.com>
Cc: Liran Liss <liranl@mellanox.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Avi Kivity <avi@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 06:33:33 +07:00
|
|
|
unsigned long mmun_start; /* For mmu_notifiers */
|
|
|
|
unsigned long mmun_end; /* For mmu_notifiers */
|
2006-01-06 15:10:44 +07:00
|
|
|
|
|
|
|
old_page = pte_page(pte);
|
|
|
|
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 11:27:25 +07:00
|
|
|
retry_avoidcopy:
|
2006-01-06 15:10:44 +07:00
|
|
|
/* If no-one else is actually using this page, avoid the copy
|
|
|
|
* and just make the page writable */
|
mm, hugetlb: do not use a page in page cache for cow optimization
Currently, we use a page with mapped count 1 in page cache for cow
optimization. If we find this condition, we don't allocate a new page and
copy contents. Instead, we map this page directly. This may introduce a
problem that writting to private mapping overwrite hugetlb file directly.
You can find this situation with following code.
size = 20 * MB;
flag = MAP_SHARED;
p = mmap(NULL, size, PROT_READ|PROT_WRITE, flag, fd, 0);
if (p == MAP_FAILED) {
fprintf(stderr, "mmap() failed: %s\n", strerror(errno));
return -1;
}
p[0] = 's';
fprintf(stdout, "BEFORE STEAL PRIVATE WRITE: %c\n", p[0]);
munmap(p, size);
flag = MAP_PRIVATE;
p = mmap(NULL, size, PROT_READ|PROT_WRITE, flag, fd, 0);
if (p == MAP_FAILED) {
fprintf(stderr, "mmap() failed: %s\n", strerror(errno));
}
p[0] = 'c';
munmap(p, size);
flag = MAP_SHARED;
p = mmap(NULL, size, PROT_READ|PROT_WRITE, flag, fd, 0);
if (p == MAP_FAILED) {
fprintf(stderr, "mmap() failed: %s\n", strerror(errno));
return -1;
}
fprintf(stdout, "AFTER STEAL PRIVATE WRITE: %c\n", p[0]);
munmap(p, size);
We can see that "AFTER STEAL PRIVATE WRITE: c", not "AFTER STEAL PRIVATE
WRITE: s". If we turn off this optimization to a page in page cache, the
problem is disappeared.
So, I change the trigger condition of optimization. If this page is not
AnonPage, we don't do optimization. This makes this optimization turning
off for a page cache.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Hillf Danton <dhillf@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Davidlohr Bueso <davidlohr.bueso@hp.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 04:21:04 +07:00
|
|
|
if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
|
|
|
|
page_move_anon_rmap(old_page, vma, address);
|
2006-01-06 15:10:44 +07:00
|
|
|
set_huge_ptep_writable(vma, address, ptep);
|
2007-07-19 15:47:05 +07:00
|
|
|
return 0;
|
2006-01-06 15:10:44 +07:00
|
|
|
}
|
|
|
|
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 11:27:25 +07:00
|
|
|
/*
|
|
|
|
* If the process that created a MAP_PRIVATE mapping is about to
|
|
|
|
* perform a COW due to a shared page count, attempt to satisfy
|
|
|
|
* the allocation without using the existing reserves. The pagecache
|
|
|
|
* page is used to determine if the reserve at this address was
|
|
|
|
* consumed or not. If reserves were used, a partial faulted mapping
|
|
|
|
* at the time of fork() could consume its reserves on COW instead
|
|
|
|
* of the full address range.
|
|
|
|
*/
|
2013-09-12 04:21:55 +07:00
|
|
|
if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 11:27:25 +07:00
|
|
|
old_page != pagecache_page)
|
|
|
|
outside_reserve = 1;
|
|
|
|
|
2006-01-06 15:10:44 +07:00
|
|
|
page_cache_get(old_page);
|
2009-12-15 08:59:37 +07:00
|
|
|
|
2013-11-15 05:31:02 +07:00
|
|
|
/* Drop page table lock as buddy allocator may be called */
|
|
|
|
spin_unlock(ptl);
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 11:27:25 +07:00
|
|
|
new_page = alloc_huge_page(vma, address, outside_reserve);
|
2006-01-06 15:10:44 +07:00
|
|
|
|
2007-11-15 07:59:39 +07:00
|
|
|
if (IS_ERR(new_page)) {
|
2012-08-01 06:41:57 +07:00
|
|
|
long err = PTR_ERR(new_page);
|
2006-01-06 15:10:44 +07:00
|
|
|
page_cache_release(old_page);
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 11:27:25 +07:00
|
|
|
|
|
|
|
/*
|
|
|
|
* If a process owning a MAP_PRIVATE mapping fails to COW,
|
|
|
|
* it is due to references held by a child and an insufficient
|
|
|
|
* huge page pool. To guarantee the original mappers
|
|
|
|
* reliability, unmap the page from child processes. The child
|
|
|
|
* may get SIGKILLed if it later faults.
|
|
|
|
*/
|
|
|
|
if (outside_reserve) {
|
|
|
|
BUG_ON(huge_pte_none(pte));
|
|
|
|
if (unmap_ref_private(mm, vma, old_page, address)) {
|
|
|
|
BUG_ON(huge_pte_none(pte));
|
2013-11-15 05:31:02 +07:00
|
|
|
spin_lock(ptl);
|
2012-01-11 06:07:20 +07:00
|
|
|
ptep = huge_pte_offset(mm, address & huge_page_mask(h));
|
|
|
|
if (likely(pte_same(huge_ptep_get(ptep), pte)))
|
|
|
|
goto retry_avoidcopy;
|
|
|
|
/*
|
2013-11-15 05:31:02 +07:00
|
|
|
* race occurs while re-acquiring page table
|
|
|
|
* lock, and our job is done.
|
2012-01-11 06:07:20 +07:00
|
|
|
*/
|
|
|
|
return 0;
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 11:27:25 +07:00
|
|
|
}
|
|
|
|
WARN_ON_ONCE(1);
|
|
|
|
}
|
|
|
|
|
2009-12-15 08:59:37 +07:00
|
|
|
/* Caller expects lock to be held */
|
2013-11-15 05:31:02 +07:00
|
|
|
spin_lock(ptl);
|
2012-08-01 06:41:57 +07:00
|
|
|
if (err == -ENOMEM)
|
|
|
|
return VM_FAULT_OOM;
|
|
|
|
else
|
|
|
|
return VM_FAULT_SIGBUS;
|
2006-01-06 15:10:44 +07:00
|
|
|
}
|
|
|
|
|
2010-05-28 07:29:16 +07:00
|
|
|
/*
|
|
|
|
* When the original hugepage is shared one, it does not have
|
|
|
|
* anon_vma prepared.
|
|
|
|
*/
|
2010-10-27 04:22:08 +07:00
|
|
|
if (unlikely(anon_vma_prepare(vma))) {
|
2011-11-16 05:36:12 +07:00
|
|
|
page_cache_release(new_page);
|
|
|
|
page_cache_release(old_page);
|
2010-10-27 04:22:08 +07:00
|
|
|
/* Caller expects lock to be held */
|
2013-11-15 05:31:02 +07:00
|
|
|
spin_lock(ptl);
|
2010-05-28 07:29:16 +07:00
|
|
|
return VM_FAULT_OOM;
|
2010-10-27 04:22:08 +07:00
|
|
|
}
|
2010-05-28 07:29:16 +07:00
|
|
|
|
2011-01-14 06:46:47 +07:00
|
|
|
copy_user_huge_page(new_page, old_page, address, vma,
|
|
|
|
pages_per_huge_page(h));
|
mm: fix PageUptodate data race
After running SetPageUptodate, preceeding stores to the page contents to
actually bring it uptodate may not be ordered with the store to set the
page uptodate.
Therefore, another CPU which checks PageUptodate is true, then reads the
page contents can get stale data.
Fix this by having an smp_wmb before SetPageUptodate, and smp_rmb after
PageUptodate.
Many places that test PageUptodate, do so with the page locked, and this
would be enough to ensure memory ordering in those places if
SetPageUptodate were only called while the page is locked. Unfortunately
that is not always the case for some filesystems, but it could be an idea
for the future.
Also bring the handling of anonymous page uptodateness in line with that of
file backed page management, by marking anon pages as uptodate when they
_are_ uptodate, rather than when our implementation requires that they be
marked as such. Doing allows us to get rid of the smp_wmb's in the page
copying functions, which were especially added for anonymous pages for an
analogous memory ordering problem. Both file and anonymous pages are
handled with the same barriers.
FAQ:
Q. Why not do this in flush_dcache_page?
A. Firstly, flush_dcache_page handles only one side (the smb side) of the
ordering protocol; we'd still need smp_rmb somewhere. Secondly, hiding away
memory barriers in a completely unrelated function is nasty; at least in the
PageUptodate macros, they are located together with (half) the operations
involved in the ordering. Thirdly, the smp_wmb is only required when first
bringing the page uptodate, wheras flush_dcache_page should be called each time
it is written to through the kernel mapping. It is logically the wrong place to
put it.
Q. Why does this increase my text size / reduce my performance / etc.
A. Because it is adding the necessary instructions to eliminate the data-race.
Q. Can it be improved?
A. Yes, eg. if you were to create a rule that all SetPageUptodate operations
run under the page lock, we could avoid the smp_rmb places where PageUptodate
is queried under the page lock. Requires audit of all filesystems and at least
some would need reworking. That's great you're interested, I'm eagerly awaiting
your patches.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:34 +07:00
|
|
|
__SetPageUptodate(new_page);
|
2006-01-06 15:10:44 +07:00
|
|
|
|
mm: move all mmu notifier invocations to be done outside the PT lock
In order to allow sleeping during mmu notifier calls, we need to avoid
invoking them under the page table spinlock. This patch solves the
problem by calling invalidate_page notification after releasing the lock
(but before freeing the page itself), or by wrapping the page invalidation
with calls to invalidate_range_begin and invalidate_range_end.
To prevent accidental changes to the invalidate_range_end arguments after
the call to invalidate_range_begin, the patch introduces a convention of
saving the arguments in consistently named locals:
unsigned long mmun_start; /* For mmu_notifiers */
unsigned long mmun_end; /* For mmu_notifiers */
...
mmun_start = ...
mmun_end = ...
mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
...
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
The patch changes code to use this convention for all calls to
mmu_notifier_invalidate_range_start/end, except those where the calls are
close enough so that anyone who glances at the code can see the values
aren't changing.
This patchset is a preliminary step towards on-demand paging design to be
added to the RDMA stack.
Why do we want on-demand paging for Infiniband?
Applications register memory with an RDMA adapter using system calls,
and subsequently post IO operations that refer to the corresponding
virtual addresses directly to HW. Until now, this was achieved by
pinning the memory during the registration calls. The goal of on demand
paging is to avoid pinning the pages of registered memory regions (MRs).
This will allow users the same flexibility they get when swapping any
other part of their processes address spaces. Instead of requiring the
entire MR to fit in physical memory, we can allow the MR to be larger,
and only fit the current working set in physical memory.
Why should anyone care? What problems are users currently experiencing?
This can make programming with RDMA much simpler. Today, developers
that are working with more data than their RAM can hold need either to
deregister and reregister memory regions throughout their process's
life, or keep a single memory region and copy the data to it. On demand
paging will allow these developers to register a single MR at the
beginning of their process's life, and let the operating system manage
which pages needs to be fetched at a given time. In the future, we
might be able to provide a single memory access key for each process
that would provide the entire process's address as one large memory
region, and the developers wouldn't need to register memory regions at
all.
Is there any prospect that any other subsystems will utilise these
infrastructural changes? If so, which and how, etc?
As for other subsystems, I understand that XPMEM wanted to sleep in
MMU notifiers, as Christoph Lameter wrote at
http://lkml.indiana.edu/hypermail/linux/kernel/0802.1/0460.html and
perhaps Andrea knows about other use cases.
Scheduling in mmu notifications is required since we need to sync the
hardware with the secondary page tables change. A TLB flush of an IO
device is inherently slower than a CPU TLB flush, so our design works by
sending the invalidation request to the device, and waiting for an
interrupt before exiting the mmu notifier handler.
Avi said:
kvm may be a buyer. kvm::mmu_lock, which serializes guest page
faults, also protects long operations such as destroying large ranges.
It would be good to convert it into a spinlock, but as it is used inside
mmu notifiers, this cannot be done.
(there are alternatives, such as keeping the spinlock and using a
generation counter to do the teardown in O(1), which is what the "may"
is doing up there).
[akpm@linux-foundation.orgpossible speed tweak in hugetlb_cow(), cleanups]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Sagi Grimberg <sagig@mellanox.com>
Signed-off-by: Haggai Eran <haggaie@mellanox.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Cc: Or Gerlitz <ogerlitz@mellanox.com>
Cc: Haggai Eran <haggaie@mellanox.com>
Cc: Shachar Raindel <raindel@mellanox.com>
Cc: Liran Liss <liranl@mellanox.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Avi Kivity <avi@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 06:33:33 +07:00
|
|
|
mmun_start = address & huge_page_mask(h);
|
|
|
|
mmun_end = mmun_start + huge_page_size(h);
|
|
|
|
mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
|
2009-12-15 08:59:37 +07:00
|
|
|
/*
|
2013-11-15 05:31:02 +07:00
|
|
|
* Retake the page table lock to check for racing updates
|
2009-12-15 08:59:37 +07:00
|
|
|
* before the page tables are altered
|
|
|
|
*/
|
2013-11-15 05:31:02 +07:00
|
|
|
spin_lock(ptl);
|
2008-07-24 11:27:41 +07:00
|
|
|
ptep = huge_pte_offset(mm, address & huge_page_mask(h));
|
2008-04-28 16:13:29 +07:00
|
|
|
if (likely(pte_same(huge_ptep_get(ptep), pte))) {
|
2013-09-12 04:21:58 +07:00
|
|
|
ClearPagePrivate(new_page);
|
|
|
|
|
2006-01-06 15:10:44 +07:00
|
|
|
/* Break COW */
|
2008-04-28 16:13:28 +07:00
|
|
|
huge_ptep_clear_flush(vma, address, ptep);
|
2006-01-06 15:10:44 +07:00
|
|
|
set_huge_pte_at(mm, address, ptep,
|
|
|
|
make_huge_pte(vma, new_page, 1));
|
2010-05-28 07:29:16 +07:00
|
|
|
page_remove_rmap(old_page);
|
2010-09-10 11:23:04 +07:00
|
|
|
hugepage_add_new_anon_rmap(new_page, vma, address);
|
2006-01-06 15:10:44 +07:00
|
|
|
/* Make the old page be freed below */
|
|
|
|
new_page = old_page;
|
|
|
|
}
|
2013-11-15 05:31:02 +07:00
|
|
|
spin_unlock(ptl);
|
mm: move all mmu notifier invocations to be done outside the PT lock
In order to allow sleeping during mmu notifier calls, we need to avoid
invoking them under the page table spinlock. This patch solves the
problem by calling invalidate_page notification after releasing the lock
(but before freeing the page itself), or by wrapping the page invalidation
with calls to invalidate_range_begin and invalidate_range_end.
To prevent accidental changes to the invalidate_range_end arguments after
the call to invalidate_range_begin, the patch introduces a convention of
saving the arguments in consistently named locals:
unsigned long mmun_start; /* For mmu_notifiers */
unsigned long mmun_end; /* For mmu_notifiers */
...
mmun_start = ...
mmun_end = ...
mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
...
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
The patch changes code to use this convention for all calls to
mmu_notifier_invalidate_range_start/end, except those where the calls are
close enough so that anyone who glances at the code can see the values
aren't changing.
This patchset is a preliminary step towards on-demand paging design to be
added to the RDMA stack.
Why do we want on-demand paging for Infiniband?
Applications register memory with an RDMA adapter using system calls,
and subsequently post IO operations that refer to the corresponding
virtual addresses directly to HW. Until now, this was achieved by
pinning the memory during the registration calls. The goal of on demand
paging is to avoid pinning the pages of registered memory regions (MRs).
This will allow users the same flexibility they get when swapping any
other part of their processes address spaces. Instead of requiring the
entire MR to fit in physical memory, we can allow the MR to be larger,
and only fit the current working set in physical memory.
Why should anyone care? What problems are users currently experiencing?
This can make programming with RDMA much simpler. Today, developers
that are working with more data than their RAM can hold need either to
deregister and reregister memory regions throughout their process's
life, or keep a single memory region and copy the data to it. On demand
paging will allow these developers to register a single MR at the
beginning of their process's life, and let the operating system manage
which pages needs to be fetched at a given time. In the future, we
might be able to provide a single memory access key for each process
that would provide the entire process's address as one large memory
region, and the developers wouldn't need to register memory regions at
all.
Is there any prospect that any other subsystems will utilise these
infrastructural changes? If so, which and how, etc?
As for other subsystems, I understand that XPMEM wanted to sleep in
MMU notifiers, as Christoph Lameter wrote at
http://lkml.indiana.edu/hypermail/linux/kernel/0802.1/0460.html and
perhaps Andrea knows about other use cases.
Scheduling in mmu notifications is required since we need to sync the
hardware with the secondary page tables change. A TLB flush of an IO
device is inherently slower than a CPU TLB flush, so our design works by
sending the invalidation request to the device, and waiting for an
interrupt before exiting the mmu notifier handler.
Avi said:
kvm may be a buyer. kvm::mmu_lock, which serializes guest page
faults, also protects long operations such as destroying large ranges.
It would be good to convert it into a spinlock, but as it is used inside
mmu notifiers, this cannot be done.
(there are alternatives, such as keeping the spinlock and using a
generation counter to do the teardown in O(1), which is what the "may"
is doing up there).
[akpm@linux-foundation.orgpossible speed tweak in hugetlb_cow(), cleanups]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Sagi Grimberg <sagig@mellanox.com>
Signed-off-by: Haggai Eran <haggaie@mellanox.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Cc: Or Gerlitz <ogerlitz@mellanox.com>
Cc: Haggai Eran <haggaie@mellanox.com>
Cc: Shachar Raindel <raindel@mellanox.com>
Cc: Liran Liss <liranl@mellanox.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Avi Kivity <avi@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 06:33:33 +07:00
|
|
|
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
|
2006-01-06 15:10:44 +07:00
|
|
|
page_cache_release(new_page);
|
|
|
|
page_cache_release(old_page);
|
2013-09-12 04:21:57 +07:00
|
|
|
|
|
|
|
/* Caller expects lock to be held */
|
2013-11-15 05:31:02 +07:00
|
|
|
spin_lock(ptl);
|
2007-07-19 15:47:05 +07:00
|
|
|
return 0;
|
2006-01-06 15:10:44 +07:00
|
|
|
}
|
|
|
|
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 11:27:25 +07:00
|
|
|
/* Return the pagecache page at a given address within a VMA */
|
2008-07-24 11:27:41 +07:00
|
|
|
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
|
|
|
|
struct vm_area_struct *vma, unsigned long address)
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 11:27:25 +07:00
|
|
|
{
|
|
|
|
struct address_space *mapping;
|
2008-07-24 11:27:26 +07:00
|
|
|
pgoff_t idx;
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 11:27:25 +07:00
|
|
|
|
|
|
|
mapping = vma->vm_file->f_mapping;
|
2008-07-24 11:27:41 +07:00
|
|
|
idx = vma_hugecache_offset(h, vma, address);
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 11:27:25 +07:00
|
|
|
|
|
|
|
return find_lock_page(mapping, idx);
|
|
|
|
}
|
|
|
|
|
2009-09-22 07:03:33 +07:00
|
|
|
/*
|
|
|
|
* Return whether there is a pagecache page to back given address within VMA.
|
|
|
|
* Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
|
|
|
|
*/
|
|
|
|
static bool hugetlbfs_pagecache_present(struct hstate *h,
|
2009-09-22 07:03:27 +07:00
|
|
|
struct vm_area_struct *vma, unsigned long address)
|
|
|
|
{
|
|
|
|
struct address_space *mapping;
|
|
|
|
pgoff_t idx;
|
|
|
|
struct page *page;
|
|
|
|
|
|
|
|
mapping = vma->vm_file->f_mapping;
|
|
|
|
idx = vma_hugecache_offset(h, vma, address);
|
|
|
|
|
|
|
|
page = find_get_page(mapping, idx);
|
|
|
|
if (page)
|
|
|
|
put_page(page);
|
|
|
|
return page != NULL;
|
|
|
|
}
|
|
|
|
|
2007-07-17 18:03:33 +07:00
|
|
|
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
|
2009-06-23 19:49:05 +07:00
|
|
|
unsigned long address, pte_t *ptep, unsigned int flags)
|
2005-10-20 22:24:28 +07:00
|
|
|
{
|
2008-07-24 11:27:41 +07:00
|
|
|
struct hstate *h = hstate_vma(vma);
|
2005-10-20 22:24:28 +07:00
|
|
|
int ret = VM_FAULT_SIGBUS;
|
2012-01-21 05:34:13 +07:00
|
|
|
int anon_rmap = 0;
|
2008-07-24 11:27:26 +07:00
|
|
|
pgoff_t idx;
|
2005-10-30 08:16:46 +07:00
|
|
|
unsigned long size;
|
|
|
|
struct page *page;
|
|
|
|
struct address_space *mapping;
|
2006-01-06 15:10:44 +07:00
|
|
|
pte_t new_pte;
|
2013-11-15 05:31:02 +07:00
|
|
|
spinlock_t *ptl;
|
2005-10-30 08:16:46 +07:00
|
|
|
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 11:27:25 +07:00
|
|
|
/*
|
|
|
|
* Currently, we are forced to kill the process in the event the
|
|
|
|
* original mapper has unmapped pages from the child due to a failed
|
2011-03-31 08:57:33 +07:00
|
|
|
* COW. Warn that such a situation has occurred as it may not be obvious
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 11:27:25 +07:00
|
|
|
*/
|
|
|
|
if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
|
2013-02-23 07:32:08 +07:00
|
|
|
pr_warning("PID %d killed due to inadequate hugepage pool\n",
|
|
|
|
current->pid);
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 11:27:25 +07:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2005-10-30 08:16:46 +07:00
|
|
|
mapping = vma->vm_file->f_mapping;
|
2008-07-24 11:27:41 +07:00
|
|
|
idx = vma_hugecache_offset(h, vma, address);
|
2005-10-30 08:16:46 +07:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Use page lock to guard against racing truncation
|
|
|
|
* before we get page_table_lock.
|
|
|
|
*/
|
2006-01-06 15:10:49 +07:00
|
|
|
retry:
|
|
|
|
page = find_lock_page(mapping, idx);
|
|
|
|
if (!page) {
|
2008-07-24 11:27:41 +07:00
|
|
|
size = i_size_read(mapping->host) >> huge_page_shift(h);
|
2006-10-29 00:38:43 +07:00
|
|
|
if (idx >= size)
|
|
|
|
goto out;
|
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 11:27:25 +07:00
|
|
|
page = alloc_huge_page(vma, address, 0);
|
2007-11-15 07:59:39 +07:00
|
|
|
if (IS_ERR(page)) {
|
2012-08-01 06:41:57 +07:00
|
|
|
ret = PTR_ERR(page);
|
|
|
|
if (ret == -ENOMEM)
|
|
|
|
ret = VM_FAULT_OOM;
|
|
|
|
else
|
|
|
|
ret = VM_FAULT_SIGBUS;
|
2006-01-06 15:10:49 +07:00
|
|
|
goto out;
|
|
|
|
}
|
2011-01-14 06:46:47 +07:00
|
|
|
clear_huge_page(page, address, pages_per_huge_page(h));
|
mm: fix PageUptodate data race
After running SetPageUptodate, preceeding stores to the page contents to
actually bring it uptodate may not be ordered with the store to set the
page uptodate.
Therefore, another CPU which checks PageUptodate is true, then reads the
page contents can get stale data.
Fix this by having an smp_wmb before SetPageUptodate, and smp_rmb after
PageUptodate.
Many places that test PageUptodate, do so with the page locked, and this
would be enough to ensure memory ordering in those places if
SetPageUptodate were only called while the page is locked. Unfortunately
that is not always the case for some filesystems, but it could be an idea
for the future.
Also bring the handling of anonymous page uptodateness in line with that of
file backed page management, by marking anon pages as uptodate when they
_are_ uptodate, rather than when our implementation requires that they be
marked as such. Doing allows us to get rid of the smp_wmb's in the page
copying functions, which were especially added for anonymous pages for an
analogous memory ordering problem. Both file and anonymous pages are
handled with the same barriers.
FAQ:
Q. Why not do this in flush_dcache_page?
A. Firstly, flush_dcache_page handles only one side (the smb side) of the
ordering protocol; we'd still need smp_rmb somewhere. Secondly, hiding away
memory barriers in a completely unrelated function is nasty; at least in the
PageUptodate macros, they are located together with (half) the operations
involved in the ordering. Thirdly, the smp_wmb is only required when first
bringing the page uptodate, wheras flush_dcache_page should be called each time
it is written to through the kernel mapping. It is logically the wrong place to
put it.
Q. Why does this increase my text size / reduce my performance / etc.
A. Because it is adding the necessary instructions to eliminate the data-race.
Q. Can it be improved?
A. Yes, eg. if you were to create a rule that all SetPageUptodate operations
run under the page lock, we could avoid the smp_rmb places where PageUptodate
is queried under the page lock. Requires audit of all filesystems and at least
some would need reworking. That's great you're interested, I'm eagerly awaiting
your patches.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 13:29:34 +07:00
|
|
|
__SetPageUptodate(page);
|
2005-10-20 22:24:28 +07:00
|
|
|
|
2009-05-29 04:34:40 +07:00
|
|
|
if (vma->vm_flags & VM_MAYSHARE) {
|
2006-01-06 15:10:49 +07:00
|
|
|
int err;
|
2007-11-15 07:59:44 +07:00
|
|
|
struct inode *inode = mapping->host;
|
2006-01-06 15:10:49 +07:00
|
|
|
|
|
|
|
err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
|
|
|
|
if (err) {
|
|
|
|
put_page(page);
|
|
|
|
if (err == -EEXIST)
|
|
|
|
goto retry;
|
|
|
|
goto out;
|
|
|
|
}
|
2013-09-12 04:21:58 +07:00
|
|
|
ClearPagePrivate(page);
|
2007-11-15 07:59:44 +07:00
|
|
|
|
|
|
|
spin_lock(&inode->i_lock);
|
2008-07-24 11:27:41 +07:00
|
|
|
inode->i_blocks += blocks_per_huge_page(h);
|
2007-11-15 07:59:44 +07:00
|
|
|
spin_unlock(&inode->i_lock);
|
2010-04-24 00:17:56 +07:00
|
|
|
} else {
|
2006-01-06 15:10:49 +07:00
|
|
|
lock_page(page);
|
2010-05-28 07:29:16 +07:00
|
|
|
if (unlikely(anon_vma_prepare(vma))) {
|
|
|
|
ret = VM_FAULT_OOM;
|
|
|
|
goto backout_unlocked;
|
|
|
|
}
|
2012-01-21 05:34:13 +07:00
|
|
|
anon_rmap = 1;
|
2010-04-24 00:17:56 +07:00
|
|
|
}
|
2010-05-28 07:29:16 +07:00
|
|
|
} else {
|
2010-09-08 08:19:32 +07:00
|
|
|
/*
|
|
|
|
* If memory error occurs between mmap() and fault, some process
|
|
|
|
* don't have hwpoisoned swap entry for errored virtual address.
|
|
|
|
* So we need to block hugepage fault by PG_hwpoison bit check.
|
|
|
|
*/
|
|
|
|
if (unlikely(PageHWPoison(page))) {
|
2011-07-26 07:12:14 +07:00
|
|
|
ret = VM_FAULT_HWPOISON |
|
2012-08-01 06:42:00 +07:00
|
|
|
VM_FAULT_SET_HINDEX(hstate_index(h));
|
2010-09-08 08:19:32 +07:00
|
|
|
goto backout_unlocked;
|
|
|
|
}
|
2006-01-06 15:10:49 +07:00
|
|
|
}
|
2006-01-06 15:10:44 +07:00
|
|
|
|
2008-08-13 05:08:47 +07:00
|
|
|
/*
|
|
|
|
* If we are going to COW a private mapping later, we examine the
|
|
|
|
* pending reservations for this page now. This will ensure that
|
|
|
|
* any allocations necessary to record that reservation occur outside
|
|
|
|
* the spinlock.
|
|
|
|
*/
|
2009-06-23 19:49:05 +07:00
|
|
|
if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
|
2008-08-13 05:08:49 +07:00
|
|
|
if (vma_needs_reservation(h, vma, address) < 0) {
|
|
|
|
ret = VM_FAULT_OOM;
|
|
|
|
goto backout_unlocked;
|
|
|
|
}
|
2008-08-13 05:08:47 +07:00
|
|
|
|
2013-11-15 05:31:02 +07:00
|
|
|
ptl = huge_pte_lockptr(h, mm, ptep);
|
|
|
|
spin_lock(ptl);
|
2008-07-24 11:27:41 +07:00
|
|
|
size = i_size_read(mapping->host) >> huge_page_shift(h);
|
2005-10-30 08:16:46 +07:00
|
|
|
if (idx >= size)
|
|
|
|
goto backout;
|
|
|
|
|
2007-07-19 15:47:05 +07:00
|
|
|
ret = 0;
|
2008-04-28 16:13:29 +07:00
|
|
|
if (!huge_pte_none(huge_ptep_get(ptep)))
|
2005-10-30 08:16:46 +07:00
|
|
|
goto backout;
|
|
|
|
|
2013-09-12 04:21:58 +07:00
|
|
|
if (anon_rmap) {
|
|
|
|
ClearPagePrivate(page);
|
2012-01-21 05:34:13 +07:00
|
|
|
hugepage_add_new_anon_rmap(page, vma, address);
|
2013-09-12 04:21:58 +07:00
|
|
|
}
|
2012-01-21 05:34:13 +07:00
|
|
|
else
|
|
|
|
page_dup_rmap(page);
|
2006-01-06 15:10:44 +07:00
|
|
|
new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
|
|
|
|
&& (vma->vm_flags & VM_SHARED)));
|
|
|
|
set_huge_pte_at(mm, address, ptep, new_pte);
|
|
|
|
|
2009-06-23 19:49:05 +07:00
|
|
|
if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
|
2006-01-06 15:10:44 +07:00
|
|
|
/* Optimization, do the COW without a second fault */
|
2013-11-15 05:31:02 +07:00
|
|
|
ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
|
2006-01-06 15:10:44 +07:00
|
|
|
}
|
|
|
|
|
2013-11-15 05:31:02 +07:00
|
|
|
spin_unlock(ptl);
|
2005-10-30 08:16:46 +07:00
|
|
|
unlock_page(page);
|
|
|
|
out:
|
2005-10-20 22:24:28 +07:00
|
|
|
return ret;
|
2005-10-30 08:16:46 +07:00
|
|
|
|
|
|
|
backout:
|
2013-11-15 05:31:02 +07:00
|
|
|
spin_unlock(ptl);
|
2008-08-13 05:08:49 +07:00
|
|
|
backout_unlocked:
|
2005-10-30 08:16:46 +07:00
|
|
|
unlock_page(page);
|
|
|
|
put_page(page);
|
|
|
|
goto out;
|
2005-10-20 22:24:28 +07:00
|
|
|
}
|
|
|
|
|
2006-01-06 15:10:43 +07:00
|
|
|
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
|
2009-06-23 19:49:05 +07:00
|
|
|
unsigned long address, unsigned int flags)
|
2006-01-06 15:10:43 +07:00
|
|
|
{
|
|
|
|
pte_t *ptep;
|
|
|
|
pte_t entry;
|
2013-11-15 05:31:02 +07:00
|
|
|
spinlock_t *ptl;
|
2006-01-06 15:10:44 +07:00
|
|
|
int ret;
|
2010-05-28 07:29:16 +07:00
|
|
|
struct page *page = NULL;
|
2008-08-13 05:08:47 +07:00
|
|
|
struct page *pagecache_page = NULL;
|
[PATCH] hugepage: serialize hugepage allocation and instantiation
Currently, no lock or mutex is held between allocating a hugepage and
inserting it into the pagetables / page cache. When we do go to insert the
page into pagetables or page cache, we recheck and may free the newly
allocated hugepage. However, since the number of hugepages in the system
is strictly limited, and it's usualy to want to use all of them, this can
still lead to spurious allocation failures.
For example, suppose two processes are both mapping (MAP_SHARED) the same
hugepage file, large enough to consume the entire available hugepage pool.
If they race instantiating the last page in the mapping, they will both
attempt to allocate the last available hugepage. One will fail, of course,
returning OOM from the fault and thus causing the process to be killed,
despite the fact that the entire mapping can, in fact, be instantiated.
The patch fixes this race by the simple method of adding a (sleeping) mutex
to serialize the hugepage fault path between allocation and insertion into
pagetables and/or page cache. It would be possible to avoid the
serialization by catching the allocation failures, waiting on some
condition, then rechecking to see if someone else has instantiated the page
for us. Given the likely frequency of hugepage instantiations, it seems
very doubtful it's worth the extra complexity.
This patch causes no regression on the libhugetlbfs testsuite, and one
test, which can trigger this race now passes where it previously failed.
Actually, the test still sometimes fails, though less often and only as a
shmat() failure, rather processes getting OOM killed by the VM. The dodgy
heuristic tests in fs/hugetlbfs/inode.c for whether there's enough hugepage
space aren't protected by the new mutex, and would be ugly to do so, so
there's still a race there. Another patch to replace those tests with
something saner for this reason as well as others coming...
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-22 15:08:53 +07:00
|
|
|
static DEFINE_MUTEX(hugetlb_instantiation_mutex);
|
2008-07-24 11:27:41 +07:00
|
|
|
struct hstate *h = hstate_vma(vma);
|
2006-01-06 15:10:43 +07:00
|
|
|
|
2012-01-11 06:07:22 +07:00
|
|
|
address &= huge_page_mask(h);
|
|
|
|
|
2010-05-28 07:29:21 +07:00
|
|
|
ptep = huge_pte_offset(mm, address);
|
|
|
|
if (ptep) {
|
|
|
|
entry = huge_ptep_get(ptep);
|
2010-09-08 08:19:35 +07:00
|
|
|
if (unlikely(is_hugetlb_entry_migration(entry))) {
|
2013-11-15 05:31:02 +07:00
|
|
|
migration_entry_wait_huge(vma, mm, ptep);
|
2010-09-08 08:19:35 +07:00
|
|
|
return 0;
|
|
|
|
} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
|
2011-07-26 07:12:14 +07:00
|
|
|
return VM_FAULT_HWPOISON_LARGE |
|
2012-08-01 06:42:00 +07:00
|
|
|
VM_FAULT_SET_HINDEX(hstate_index(h));
|
2010-05-28 07:29:21 +07:00
|
|
|
}
|
|
|
|
|
2008-07-24 11:27:41 +07:00
|
|
|
ptep = huge_pte_alloc(mm, address, huge_page_size(h));
|
2006-01-06 15:10:43 +07:00
|
|
|
if (!ptep)
|
|
|
|
return VM_FAULT_OOM;
|
|
|
|
|
[PATCH] hugepage: serialize hugepage allocation and instantiation
Currently, no lock or mutex is held between allocating a hugepage and
inserting it into the pagetables / page cache. When we do go to insert the
page into pagetables or page cache, we recheck and may free the newly
allocated hugepage. However, since the number of hugepages in the system
is strictly limited, and it's usualy to want to use all of them, this can
still lead to spurious allocation failures.
For example, suppose two processes are both mapping (MAP_SHARED) the same
hugepage file, large enough to consume the entire available hugepage pool.
If they race instantiating the last page in the mapping, they will both
attempt to allocate the last available hugepage. One will fail, of course,
returning OOM from the fault and thus causing the process to be killed,
despite the fact that the entire mapping can, in fact, be instantiated.
The patch fixes this race by the simple method of adding a (sleeping) mutex
to serialize the hugepage fault path between allocation and insertion into
pagetables and/or page cache. It would be possible to avoid the
serialization by catching the allocation failures, waiting on some
condition, then rechecking to see if someone else has instantiated the page
for us. Given the likely frequency of hugepage instantiations, it seems
very doubtful it's worth the extra complexity.
This patch causes no regression on the libhugetlbfs testsuite, and one
test, which can trigger this race now passes where it previously failed.
Actually, the test still sometimes fails, though less often and only as a
shmat() failure, rather processes getting OOM killed by the VM. The dodgy
heuristic tests in fs/hugetlbfs/inode.c for whether there's enough hugepage
space aren't protected by the new mutex, and would be ugly to do so, so
there's still a race there. Another patch to replace those tests with
something saner for this reason as well as others coming...
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-22 15:08:53 +07:00
|
|
|
/*
|
|
|
|
* Serialize hugepage allocation and instantiation, so that we don't
|
|
|
|
* get spurious allocation failures if two CPUs race to instantiate
|
|
|
|
* the same page in the page cache.
|
|
|
|
*/
|
|
|
|
mutex_lock(&hugetlb_instantiation_mutex);
|
2008-04-28 16:13:29 +07:00
|
|
|
entry = huge_ptep_get(ptep);
|
|
|
|
if (huge_pte_none(entry)) {
|
2009-06-23 19:49:05 +07:00
|
|
|
ret = hugetlb_no_page(mm, vma, address, ptep, flags);
|
2008-10-16 12:01:11 +07:00
|
|
|
goto out_mutex;
|
[PATCH] hugepage: serialize hugepage allocation and instantiation
Currently, no lock or mutex is held between allocating a hugepage and
inserting it into the pagetables / page cache. When we do go to insert the
page into pagetables or page cache, we recheck and may free the newly
allocated hugepage. However, since the number of hugepages in the system
is strictly limited, and it's usualy to want to use all of them, this can
still lead to spurious allocation failures.
For example, suppose two processes are both mapping (MAP_SHARED) the same
hugepage file, large enough to consume the entire available hugepage pool.
If they race instantiating the last page in the mapping, they will both
attempt to allocate the last available hugepage. One will fail, of course,
returning OOM from the fault and thus causing the process to be killed,
despite the fact that the entire mapping can, in fact, be instantiated.
The patch fixes this race by the simple method of adding a (sleeping) mutex
to serialize the hugepage fault path between allocation and insertion into
pagetables and/or page cache. It would be possible to avoid the
serialization by catching the allocation failures, waiting on some
condition, then rechecking to see if someone else has instantiated the page
for us. Given the likely frequency of hugepage instantiations, it seems
very doubtful it's worth the extra complexity.
This patch causes no regression on the libhugetlbfs testsuite, and one
test, which can trigger this race now passes where it previously failed.
Actually, the test still sometimes fails, though less often and only as a
shmat() failure, rather processes getting OOM killed by the VM. The dodgy
heuristic tests in fs/hugetlbfs/inode.c for whether there's enough hugepage
space aren't protected by the new mutex, and would be ugly to do so, so
there's still a race there. Another patch to replace those tests with
something saner for this reason as well as others coming...
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-22 15:08:53 +07:00
|
|
|
}
|
2006-01-06 15:10:43 +07:00
|
|
|
|
2007-07-19 15:47:05 +07:00
|
|
|
ret = 0;
|
2006-01-06 15:10:44 +07:00
|
|
|
|
2008-08-13 05:08:47 +07:00
|
|
|
/*
|
|
|
|
* If we are going to COW the mapping later, we examine the pending
|
|
|
|
* reservations for this page now. This will ensure that any
|
|
|
|
* allocations necessary to record that reservation occur outside the
|
|
|
|
* spinlock. For private mappings, we also lookup the pagecache
|
|
|
|
* page now as it is used to determine if a reservation has been
|
|
|
|
* consumed.
|
|
|
|
*/
|
2013-04-30 05:07:23 +07:00
|
|
|
if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
|
2008-08-13 05:08:49 +07:00
|
|
|
if (vma_needs_reservation(h, vma, address) < 0) {
|
|
|
|
ret = VM_FAULT_OOM;
|
2008-10-16 12:01:11 +07:00
|
|
|
goto out_mutex;
|
2008-08-13 05:08:49 +07:00
|
|
|
}
|
2008-08-13 05:08:47 +07:00
|
|
|
|
2009-05-29 04:34:40 +07:00
|
|
|
if (!(vma->vm_flags & VM_MAYSHARE))
|
2008-08-13 05:08:47 +07:00
|
|
|
pagecache_page = hugetlbfs_pagecache_page(h,
|
|
|
|
vma, address);
|
|
|
|
}
|
|
|
|
|
2010-09-10 11:23:04 +07:00
|
|
|
/*
|
|
|
|
* hugetlb_cow() requires page locks of pte_page(entry) and
|
|
|
|
* pagecache_page, so here we need take the former one
|
|
|
|
* when page != pagecache_page or !pagecache_page.
|
|
|
|
* Note that locking order is always pagecache_page -> page,
|
|
|
|
* so no worry about deadlock.
|
|
|
|
*/
|
|
|
|
page = pte_page(entry);
|
2012-04-13 02:49:15 +07:00
|
|
|
get_page(page);
|
2010-09-10 11:23:04 +07:00
|
|
|
if (page != pagecache_page)
|
2010-05-28 07:29:16 +07:00
|
|
|
lock_page(page);
|
|
|
|
|
2013-11-15 05:31:02 +07:00
|
|
|
ptl = huge_pte_lockptr(h, mm, ptep);
|
|
|
|
spin_lock(ptl);
|
2006-01-06 15:10:44 +07:00
|
|
|
/* Check for a racing update before calling hugetlb_cow */
|
2008-10-16 12:01:11 +07:00
|
|
|
if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
|
2013-11-15 05:31:02 +07:00
|
|
|
goto out_ptl;
|
2008-10-16 12:01:11 +07:00
|
|
|
|
|
|
|
|
2009-06-23 19:49:05 +07:00
|
|
|
if (flags & FAULT_FLAG_WRITE) {
|
2013-04-30 05:07:23 +07:00
|
|
|
if (!huge_pte_write(entry)) {
|
2008-08-13 05:08:47 +07:00
|
|
|
ret = hugetlb_cow(mm, vma, address, ptep, entry,
|
2013-11-15 05:31:02 +07:00
|
|
|
pagecache_page, ptl);
|
|
|
|
goto out_ptl;
|
2008-10-16 12:01:11 +07:00
|
|
|
}
|
2013-04-30 05:07:23 +07:00
|
|
|
entry = huge_pte_mkdirty(entry);
|
2008-10-16 12:01:11 +07:00
|
|
|
}
|
|
|
|
entry = pte_mkyoung(entry);
|
2009-06-23 19:49:05 +07:00
|
|
|
if (huge_ptep_set_access_flags(vma, address, ptep, entry,
|
|
|
|
flags & FAULT_FLAG_WRITE))
|
MM: Pass a PTE pointer to update_mmu_cache() rather than the PTE itself
On VIVT ARM, when we have multiple shared mappings of the same file
in the same MM, we need to ensure that we have coherency across all
copies. We do this via make_coherent() by making the pages
uncacheable.
This used to work fine, until we allowed highmem with highpte - we
now have a page table which is mapped as required, and is not available
for modification via update_mmu_cache().
Ralf Beache suggested getting rid of the PTE value passed to
update_mmu_cache():
On MIPS update_mmu_cache() calls __update_tlb() which walks pagetables
to construct a pointer to the pte again. Passing a pte_t * is much
more elegant. Maybe we might even replace the pte argument with the
pte_t?
Ben Herrenschmidt would also like the pte pointer for PowerPC:
Passing the ptep in there is exactly what I want. I want that
-instead- of the PTE value, because I have issue on some ppc cases,
for I$/D$ coherency, where set_pte_at() may decide to mask out the
_PAGE_EXEC.
So, pass in the mapped page table pointer into update_mmu_cache(), and
remove the PTE value, updating all implementations and call sites to
suit.
Includes a fix from Stephen Rothwell:
sparc: fix fallout from update_mmu_cache API change
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2009-12-18 23:40:18 +07:00
|
|
|
update_mmu_cache(vma, address, ptep);
|
2008-10-16 12:01:11 +07:00
|
|
|
|
2013-11-15 05:31:02 +07:00
|
|
|
out_ptl:
|
|
|
|
spin_unlock(ptl);
|
2008-08-13 05:08:47 +07:00
|
|
|
|
|
|
|
if (pagecache_page) {
|
|
|
|
unlock_page(pagecache_page);
|
|
|
|
put_page(pagecache_page);
|
|
|
|
}
|
2010-12-03 05:31:12 +07:00
|
|
|
if (page != pagecache_page)
|
|
|
|
unlock_page(page);
|
2012-04-13 02:49:15 +07:00
|
|
|
put_page(page);
|
2008-08-13 05:08:47 +07:00
|
|
|
|
2008-10-16 12:01:11 +07:00
|
|
|
out_mutex:
|
[PATCH] hugepage: serialize hugepage allocation and instantiation
Currently, no lock or mutex is held between allocating a hugepage and
inserting it into the pagetables / page cache. When we do go to insert the
page into pagetables or page cache, we recheck and may free the newly
allocated hugepage. However, since the number of hugepages in the system
is strictly limited, and it's usualy to want to use all of them, this can
still lead to spurious allocation failures.
For example, suppose two processes are both mapping (MAP_SHARED) the same
hugepage file, large enough to consume the entire available hugepage pool.
If they race instantiating the last page in the mapping, they will both
attempt to allocate the last available hugepage. One will fail, of course,
returning OOM from the fault and thus causing the process to be killed,
despite the fact that the entire mapping can, in fact, be instantiated.
The patch fixes this race by the simple method of adding a (sleeping) mutex
to serialize the hugepage fault path between allocation and insertion into
pagetables and/or page cache. It would be possible to avoid the
serialization by catching the allocation failures, waiting on some
condition, then rechecking to see if someone else has instantiated the page
for us. Given the likely frequency of hugepage instantiations, it seems
very doubtful it's worth the extra complexity.
This patch causes no regression on the libhugetlbfs testsuite, and one
test, which can trigger this race now passes where it previously failed.
Actually, the test still sometimes fails, though less often and only as a
shmat() failure, rather processes getting OOM killed by the VM. The dodgy
heuristic tests in fs/hugetlbfs/inode.c for whether there's enough hugepage
space aren't protected by the new mutex, and would be ugly to do so, so
there's still a race there. Another patch to replace those tests with
something saner for this reason as well as others coming...
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-22 15:08:53 +07:00
|
|
|
mutex_unlock(&hugetlb_instantiation_mutex);
|
2006-01-06 15:10:44 +07:00
|
|
|
|
|
|
|
return ret;
|
2006-01-06 15:10:43 +07:00
|
|
|
}
|
|
|
|
|
2013-02-23 07:35:55 +07:00
|
|
|
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
|
|
|
|
struct page **pages, struct vm_area_struct **vmas,
|
|
|
|
unsigned long *position, unsigned long *nr_pages,
|
|
|
|
long i, unsigned int flags)
|
2005-06-22 07:14:44 +07:00
|
|
|
{
|
2006-03-22 15:09:03 +07:00
|
|
|
unsigned long pfn_offset;
|
|
|
|
unsigned long vaddr = *position;
|
2013-02-23 07:35:55 +07:00
|
|
|
unsigned long remainder = *nr_pages;
|
2008-07-24 11:27:41 +07:00
|
|
|
struct hstate *h = hstate_vma(vma);
|
2005-06-22 07:14:44 +07:00
|
|
|
|
|
|
|
while (vaddr < vma->vm_end && remainder) {
|
2005-10-30 08:16:46 +07:00
|
|
|
pte_t *pte;
|
2013-11-15 05:31:02 +07:00
|
|
|
spinlock_t *ptl = NULL;
|
2009-09-22 07:03:27 +07:00
|
|
|
int absent;
|
2005-10-30 08:16:46 +07:00
|
|
|
struct page *page;
|
2005-06-22 07:14:44 +07:00
|
|
|
|
2005-10-30 08:16:46 +07:00
|
|
|
/*
|
|
|
|
* Some archs (sparc64, sh*) have multiple pte_ts to
|
2009-09-22 07:03:27 +07:00
|
|
|
* each hugepage. We have to make sure we get the
|
2005-10-30 08:16:46 +07:00
|
|
|
* first, for the page indexing below to work.
|
2013-11-15 05:31:02 +07:00
|
|
|
*
|
|
|
|
* Note that page table lock is not held when pte is null.
|
2005-10-30 08:16:46 +07:00
|
|
|
*/
|
2008-07-24 11:27:41 +07:00
|
|
|
pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
|
2013-11-15 05:31:02 +07:00
|
|
|
if (pte)
|
|
|
|
ptl = huge_pte_lock(h, mm, pte);
|
2009-09-22 07:03:27 +07:00
|
|
|
absent = !pte || huge_pte_none(huge_ptep_get(pte));
|
|
|
|
|
|
|
|
/*
|
|
|
|
* When coredumping, it suits get_dump_page if we just return
|
2009-09-22 07:03:33 +07:00
|
|
|
* an error where there's an empty slot with no huge pagecache
|
|
|
|
* to back it. This way, we avoid allocating a hugepage, and
|
|
|
|
* the sparse dumpfile avoids allocating disk blocks, but its
|
|
|
|
* huge holes still show up with zeroes where they need to be.
|
2009-09-22 07:03:27 +07:00
|
|
|
*/
|
2009-09-22 07:03:33 +07:00
|
|
|
if (absent && (flags & FOLL_DUMP) &&
|
|
|
|
!hugetlbfs_pagecache_present(h, vma, vaddr)) {
|
2013-11-15 05:31:02 +07:00
|
|
|
if (pte)
|
|
|
|
spin_unlock(ptl);
|
2009-09-22 07:03:27 +07:00
|
|
|
remainder = 0;
|
|
|
|
break;
|
|
|
|
}
|
2005-06-22 07:14:44 +07:00
|
|
|
|
2013-04-18 05:58:30 +07:00
|
|
|
/*
|
|
|
|
* We need call hugetlb_fault for both hugepages under migration
|
|
|
|
* (in which case hugetlb_fault waits for the migration,) and
|
|
|
|
* hwpoisoned hugepages (in which case we need to prevent the
|
|
|
|
* caller from accessing to them.) In order to do this, we use
|
|
|
|
* here is_swap_pte instead of is_hugetlb_entry_migration and
|
|
|
|
* is_hugetlb_entry_hwpoisoned. This is because it simply covers
|
|
|
|
* both cases, and because we can't follow correct pages
|
|
|
|
* directly from any kind of swap entries.
|
|
|
|
*/
|
|
|
|
if (absent || is_swap_pte(huge_ptep_get(pte)) ||
|
2013-04-30 05:07:23 +07:00
|
|
|
((flags & FOLL_WRITE) &&
|
|
|
|
!huge_pte_write(huge_ptep_get(pte)))) {
|
2005-10-30 08:16:46 +07:00
|
|
|
int ret;
|
2005-06-22 07:14:44 +07:00
|
|
|
|
2013-11-15 05:31:02 +07:00
|
|
|
if (pte)
|
|
|
|
spin_unlock(ptl);
|
2009-09-22 07:03:27 +07:00
|
|
|
ret = hugetlb_fault(mm, vma, vaddr,
|
|
|
|
(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
|
2007-08-23 04:01:51 +07:00
|
|
|
if (!(ret & VM_FAULT_ERROR))
|
2005-10-30 08:16:46 +07:00
|
|
|
continue;
|
2005-06-22 07:14:44 +07:00
|
|
|
|
2005-10-30 08:16:46 +07:00
|
|
|
remainder = 0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2008-07-24 11:27:41 +07:00
|
|
|
pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
|
2008-04-28 16:13:29 +07:00
|
|
|
page = pte_page(huge_ptep_get(pte));
|
2006-03-22 15:09:03 +07:00
|
|
|
same_page:
|
2006-03-31 17:29:57 +07:00
|
|
|
if (pages) {
|
2009-09-22 07:03:27 +07:00
|
|
|
pages[i] = mem_map_offset(page, pfn_offset);
|
2008-10-19 10:27:10 +07:00
|
|
|
get_page(pages[i]);
|
2006-03-31 17:29:57 +07:00
|
|
|
}
|
2005-06-22 07:14:44 +07:00
|
|
|
|
|
|
|
if (vmas)
|
|
|
|
vmas[i] = vma;
|
|
|
|
|
|
|
|
vaddr += PAGE_SIZE;
|
2006-03-22 15:09:03 +07:00
|
|
|
++pfn_offset;
|
2005-06-22 07:14:44 +07:00
|
|
|
--remainder;
|
|
|
|
++i;
|
2006-03-22 15:09:03 +07:00
|
|
|
if (vaddr < vma->vm_end && remainder &&
|
2008-07-24 11:27:41 +07:00
|
|
|
pfn_offset < pages_per_huge_page(h)) {
|
2006-03-22 15:09:03 +07:00
|
|
|
/*
|
|
|
|
* We use pfn_offset to avoid touching the pageframes
|
|
|
|
* of this compound page.
|
|
|
|
*/
|
|
|
|
goto same_page;
|
|
|
|
}
|
2013-11-15 05:31:02 +07:00
|
|
|
spin_unlock(ptl);
|
2005-06-22 07:14:44 +07:00
|
|
|
}
|
2013-02-23 07:35:55 +07:00
|
|
|
*nr_pages = remainder;
|
2005-06-22 07:14:44 +07:00
|
|
|
*position = vaddr;
|
|
|
|
|
2009-09-22 07:03:27 +07:00
|
|
|
return i ? i : -EFAULT;
|
2005-06-22 07:14:44 +07:00
|
|
|
}
|
2006-03-22 15:08:50 +07:00
|
|
|
|
2012-11-19 09:14:23 +07:00
|
|
|
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
|
2006-03-22 15:08:50 +07:00
|
|
|
unsigned long address, unsigned long end, pgprot_t newprot)
|
|
|
|
{
|
|
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
|
|
unsigned long start = address;
|
|
|
|
pte_t *ptep;
|
|
|
|
pte_t pte;
|
2008-07-24 11:27:41 +07:00
|
|
|
struct hstate *h = hstate_vma(vma);
|
2012-11-19 09:14:23 +07:00
|
|
|
unsigned long pages = 0;
|
2006-03-22 15:08:50 +07:00
|
|
|
|
|
|
|
BUG_ON(address >= end);
|
|
|
|
flush_cache_range(vma, address, end);
|
|
|
|
|
2011-05-25 07:12:06 +07:00
|
|
|
mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
|
2008-07-24 11:27:41 +07:00
|
|
|
for (; address < end; address += huge_page_size(h)) {
|
2013-11-15 05:31:02 +07:00
|
|
|
spinlock_t *ptl;
|
2006-03-22 15:08:50 +07:00
|
|
|
ptep = huge_pte_offset(mm, address);
|
|
|
|
if (!ptep)
|
|
|
|
continue;
|
2013-11-15 05:31:02 +07:00
|
|
|
ptl = huge_pte_lock(h, mm, ptep);
|
2012-11-19 09:14:23 +07:00
|
|
|
if (huge_pmd_unshare(mm, &address, ptep)) {
|
|
|
|
pages++;
|
2013-11-15 05:31:02 +07:00
|
|
|
spin_unlock(ptl);
|
2006-12-07 11:32:03 +07:00
|
|
|
continue;
|
2012-11-19 09:14:23 +07:00
|
|
|
}
|
2008-04-28 16:13:29 +07:00
|
|
|
if (!huge_pte_none(huge_ptep_get(ptep))) {
|
2006-03-22 15:08:50 +07:00
|
|
|
pte = huge_ptep_get_and_clear(mm, address, ptep);
|
2013-04-30 05:07:23 +07:00
|
|
|
pte = pte_mkhuge(huge_pte_modify(pte, newprot));
|
2013-02-05 05:28:46 +07:00
|
|
|
pte = arch_make_huge_pte(pte, vma, NULL, 0);
|
2006-03-22 15:08:50 +07:00
|
|
|
set_huge_pte_at(mm, address, ptep, pte);
|
2012-11-19 09:14:23 +07:00
|
|
|
pages++;
|
2006-03-22 15:08:50 +07:00
|
|
|
}
|
2013-11-15 05:31:02 +07:00
|
|
|
spin_unlock(ptl);
|
2006-03-22 15:08:50 +07:00
|
|
|
}
|
mm: hugetlbfs: close race during teardown of hugetlbfs shared page tables
If a process creates a large hugetlbfs mapping that is eligible for page
table sharing and forks heavily with children some of whom fault and
others which destroy the mapping then it is possible for page tables to
get corrupted. Some teardowns of the mapping encounter a "bad pmd" and
output a message to the kernel log. The final teardown will trigger a
BUG_ON in mm/filemap.c.
This was reproduced in 3.4 but is known to have existed for a long time
and goes back at least as far as 2.6.37. It was probably was introduced
in 2.6.20 by [39dde65c: shared page table for hugetlb page]. The messages
look like this;
[ ..........] Lots of bad pmd messages followed by this
[ 127.164256] mm/memory.c:391: bad pmd ffff880412e04fe8(80000003de4000e7).
[ 127.164257] mm/memory.c:391: bad pmd ffff880412e04ff0(80000003de6000e7).
[ 127.164258] mm/memory.c:391: bad pmd ffff880412e04ff8(80000003de0000e7).
[ 127.186778] ------------[ cut here ]------------
[ 127.186781] kernel BUG at mm/filemap.c:134!
[ 127.186782] invalid opcode: 0000 [#1] SMP
[ 127.186783] CPU 7
[ 127.186784] Modules linked in: af_packet cpufreq_conservative cpufreq_userspace cpufreq_powersave acpi_cpufreq mperf ext3 jbd dm_mod coretemp crc32c_intel usb_storage ghash_clmulni_intel aesni_intel i2c_i801 r8169 mii uas sr_mod cdrom sg iTCO_wdt iTCO_vendor_support shpchp serio_raw cryptd aes_x86_64 e1000e pci_hotplug dcdbas aes_generic container microcode ext4 mbcache jbd2 crc16 sd_mod crc_t10dif i915 drm_kms_helper drm i2c_algo_bit ehci_hcd ahci libahci usbcore rtc_cmos usb_common button i2c_core intel_agp video intel_gtt fan processor thermal thermal_sys hwmon ata_generic pata_atiixp libata scsi_mod
[ 127.186801]
[ 127.186802] Pid: 9017, comm: hugetlbfs-test Not tainted 3.4.0-autobuild #53 Dell Inc. OptiPlex 990/06D7TR
[ 127.186804] RIP: 0010:[<ffffffff810ed6ce>] [<ffffffff810ed6ce>] __delete_from_page_cache+0x15e/0x160
[ 127.186809] RSP: 0000:ffff8804144b5c08 EFLAGS: 00010002
[ 127.186810] RAX: 0000000000000001 RBX: ffffea000a5c9000 RCX: 00000000ffffffc0
[ 127.186811] RDX: 0000000000000000 RSI: 0000000000000009 RDI: ffff88042dfdad00
[ 127.186812] RBP: ffff8804144b5c18 R08: 0000000000000009 R09: 0000000000000003
[ 127.186813] R10: 0000000000000000 R11: 000000000000002d R12: ffff880412ff83d8
[ 127.186814] R13: ffff880412ff83d8 R14: 0000000000000000 R15: ffff880412ff83d8
[ 127.186815] FS: 00007fe18ed2c700(0000) GS:ffff88042dce0000(0000) knlGS:0000000000000000
[ 127.186816] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b
[ 127.186817] CR2: 00007fe340000503 CR3: 0000000417a14000 CR4: 00000000000407e0
[ 127.186818] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 127.186819] DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
[ 127.186820] Process hugetlbfs-test (pid: 9017, threadinfo ffff8804144b4000, task ffff880417f803c0)
[ 127.186821] Stack:
[ 127.186822] ffffea000a5c9000 0000000000000000 ffff8804144b5c48 ffffffff810ed83b
[ 127.186824] ffff8804144b5c48 000000000000138a 0000000000001387 ffff8804144b5c98
[ 127.186825] ffff8804144b5d48 ffffffff811bc925 ffff8804144b5cb8 0000000000000000
[ 127.186827] Call Trace:
[ 127.186829] [<ffffffff810ed83b>] delete_from_page_cache+0x3b/0x80
[ 127.186832] [<ffffffff811bc925>] truncate_hugepages+0x115/0x220
[ 127.186834] [<ffffffff811bca43>] hugetlbfs_evict_inode+0x13/0x30
[ 127.186837] [<ffffffff811655c7>] evict+0xa7/0x1b0
[ 127.186839] [<ffffffff811657a3>] iput_final+0xd3/0x1f0
[ 127.186840] [<ffffffff811658f9>] iput+0x39/0x50
[ 127.186842] [<ffffffff81162708>] d_kill+0xf8/0x130
[ 127.186843] [<ffffffff81162812>] dput+0xd2/0x1a0
[ 127.186845] [<ffffffff8114e2d0>] __fput+0x170/0x230
[ 127.186848] [<ffffffff81236e0e>] ? rb_erase+0xce/0x150
[ 127.186849] [<ffffffff8114e3ad>] fput+0x1d/0x30
[ 127.186851] [<ffffffff81117db7>] remove_vma+0x37/0x80
[ 127.186853] [<ffffffff81119182>] do_munmap+0x2d2/0x360
[ 127.186855] [<ffffffff811cc639>] sys_shmdt+0xc9/0x170
[ 127.186857] [<ffffffff81410a39>] system_call_fastpath+0x16/0x1b
[ 127.186858] Code: 0f 1f 44 00 00 48 8b 43 08 48 8b 00 48 8b 40 28 8b b0 40 03 00 00 85 f6 0f 88 df fe ff ff 48 89 df e8 e7 cb 05 00 e9 d2 fe ff ff <0f> 0b 55 83 e2 fd 48 89 e5 48 83 ec 30 48 89 5d d8 4c 89 65 e0
[ 127.186868] RIP [<ffffffff810ed6ce>] __delete_from_page_cache+0x15e/0x160
[ 127.186870] RSP <ffff8804144b5c08>
[ 127.186871] ---[ end trace 7cbac5d1db69f426 ]---
The bug is a race and not always easy to reproduce. To reproduce it I was
doing the following on a single socket I7-based machine with 16G of RAM.
$ hugeadm --pool-pages-max DEFAULT:13G
$ echo $((18*1048576*1024)) > /proc/sys/kernel/shmmax
$ echo $((18*1048576*1024)) > /proc/sys/kernel/shmall
$ for i in `seq 1 9000`; do ./hugetlbfs-test; done
On my particular machine, it usually triggers within 10 minutes but
enabling debug options can change the timing such that it never hits.
Once the bug is triggered, the machine is in trouble and needs to be
rebooted. The machine will respond but processes accessing proc like "ps
aux" will hang due to the BUG_ON. shutdown will also hang and needs a
hard reset or a sysrq-b.
The basic problem is a race between page table sharing and teardown. For
the most part page table sharing depends on i_mmap_mutex. In some cases,
it is also taking the mm->page_table_lock for the PTE updates but with
shared page tables, it is the i_mmap_mutex that is more important.
Unfortunately it appears to be also insufficient. Consider the following
situation
Process A Process B
--------- ---------
hugetlb_fault shmdt
LockWrite(mmap_sem)
do_munmap
unmap_region
unmap_vmas
unmap_single_vma
unmap_hugepage_range
Lock(i_mmap_mutex)
Lock(mm->page_table_lock)
huge_pmd_unshare/unmap tables <--- (1)
Unlock(mm->page_table_lock)
Unlock(i_mmap_mutex)
huge_pte_alloc ...
Lock(i_mmap_mutex) ...
vma_prio_walk, find svma, spte ...
Lock(mm->page_table_lock) ...
share spte ...
Unlock(mm->page_table_lock) ...
Unlock(i_mmap_mutex) ...
hugetlb_no_page <--- (2)
free_pgtables
unlink_file_vma
hugetlb_free_pgd_range
remove_vma_list
In this scenario, it is possible for Process A to share page tables with
Process B that is trying to tear them down. The i_mmap_mutex on its own
does not prevent Process A walking Process B's page tables. At (1) above,
the page tables are not shared yet so it unmaps the PMDs. Process A sets
up page table sharing and at (2) faults a new entry. Process B then trips
up on it in free_pgtables.
This patch fixes the problem by adding a new function
__unmap_hugepage_range_final that is only called when the VMA is about to
be destroyed. This function clears VM_MAYSHARE during
unmap_hugepage_range() under the i_mmap_mutex. This makes the VMA
ineligible for sharing and avoids the race. Superficially this looks like
it would then be vunerable to truncate and madvise issues but hugetlbfs
has its own truncate handlers so does not use unmap_mapping_range() and
does not support madvise(DONTNEED).
This should be treated as a -stable candidate if it is merged.
Test program is as follows. The test case was mostly written by Michal
Hocko with a few minor changes to reproduce this bug.
==== CUT HERE ====
static size_t huge_page_size = (2UL << 20);
static size_t nr_huge_page_A = 512;
static size_t nr_huge_page_B = 5632;
unsigned int get_random(unsigned int max)
{
struct timeval tv;
gettimeofday(&tv, NULL);
srandom(tv.tv_usec);
return random() % max;
}
static void play(void *addr, size_t size)
{
unsigned char *start = addr,
*end = start + size,
*a;
start += get_random(size/2);
/* we could itterate on huge pages but let's give it more time. */
for (a = start; a < end; a += 4096)
*a = 0;
}
int main(int argc, char **argv)
{
key_t key = IPC_PRIVATE;
size_t sizeA = nr_huge_page_A * huge_page_size;
size_t sizeB = nr_huge_page_B * huge_page_size;
int shmidA, shmidB;
void *addrA = NULL, *addrB = NULL;
int nr_children = 300, n = 0;
if ((shmidA = shmget(key, sizeA, IPC_CREAT|SHM_HUGETLB|0660)) == -1) {
perror("shmget:");
return 1;
}
if ((addrA = shmat(shmidA, addrA, SHM_R|SHM_W)) == (void *)-1UL) {
perror("shmat");
return 1;
}
if ((shmidB = shmget(key, sizeB, IPC_CREAT|SHM_HUGETLB|0660)) == -1) {
perror("shmget:");
return 1;
}
if ((addrB = shmat(shmidB, addrB, SHM_R|SHM_W)) == (void *)-1UL) {
perror("shmat");
return 1;
}
fork_child:
switch(fork()) {
case 0:
switch (n%3) {
case 0:
play(addrA, sizeA);
break;
case 1:
play(addrB, sizeB);
break;
case 2:
break;
}
break;
case -1:
perror("fork:");
break;
default:
if (++n < nr_children)
goto fork_child;
play(addrA, sizeA);
break;
}
shmdt(addrA);
shmdt(addrB);
do {
wait(NULL);
} while (--n > 0);
shmctl(shmidA, IPC_RMID, NULL);
shmctl(shmidB, IPC_RMID, NULL);
return 0;
}
[akpm@linux-foundation.org: name the declaration's args, fix CONFIG_HUGETLBFS=n build]
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-08-01 06:46:20 +07:00
|
|
|
/*
|
|
|
|
* Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
|
|
|
|
* may have cleared our pud entry and done put_page on the page table:
|
|
|
|
* once we release i_mmap_mutex, another task can do the final put_page
|
|
|
|
* and that page table be reused and filled with junk.
|
|
|
|
*/
|
2006-03-22 15:08:50 +07:00
|
|
|
flush_tlb_range(vma, start, end);
|
mm: hugetlbfs: close race during teardown of hugetlbfs shared page tables
If a process creates a large hugetlbfs mapping that is eligible for page
table sharing and forks heavily with children some of whom fault and
others which destroy the mapping then it is possible for page tables to
get corrupted. Some teardowns of the mapping encounter a "bad pmd" and
output a message to the kernel log. The final teardown will trigger a
BUG_ON in mm/filemap.c.
This was reproduced in 3.4 but is known to have existed for a long time
and goes back at least as far as 2.6.37. It was probably was introduced
in 2.6.20 by [39dde65c: shared page table for hugetlb page]. The messages
look like this;
[ ..........] Lots of bad pmd messages followed by this
[ 127.164256] mm/memory.c:391: bad pmd ffff880412e04fe8(80000003de4000e7).
[ 127.164257] mm/memory.c:391: bad pmd ffff880412e04ff0(80000003de6000e7).
[ 127.164258] mm/memory.c:391: bad pmd ffff880412e04ff8(80000003de0000e7).
[ 127.186778] ------------[ cut here ]------------
[ 127.186781] kernel BUG at mm/filemap.c:134!
[ 127.186782] invalid opcode: 0000 [#1] SMP
[ 127.186783] CPU 7
[ 127.186784] Modules linked in: af_packet cpufreq_conservative cpufreq_userspace cpufreq_powersave acpi_cpufreq mperf ext3 jbd dm_mod coretemp crc32c_intel usb_storage ghash_clmulni_intel aesni_intel i2c_i801 r8169 mii uas sr_mod cdrom sg iTCO_wdt iTCO_vendor_support shpchp serio_raw cryptd aes_x86_64 e1000e pci_hotplug dcdbas aes_generic container microcode ext4 mbcache jbd2 crc16 sd_mod crc_t10dif i915 drm_kms_helper drm i2c_algo_bit ehci_hcd ahci libahci usbcore rtc_cmos usb_common button i2c_core intel_agp video intel_gtt fan processor thermal thermal_sys hwmon ata_generic pata_atiixp libata scsi_mod
[ 127.186801]
[ 127.186802] Pid: 9017, comm: hugetlbfs-test Not tainted 3.4.0-autobuild #53 Dell Inc. OptiPlex 990/06D7TR
[ 127.186804] RIP: 0010:[<ffffffff810ed6ce>] [<ffffffff810ed6ce>] __delete_from_page_cache+0x15e/0x160
[ 127.186809] RSP: 0000:ffff8804144b5c08 EFLAGS: 00010002
[ 127.186810] RAX: 0000000000000001 RBX: ffffea000a5c9000 RCX: 00000000ffffffc0
[ 127.186811] RDX: 0000000000000000 RSI: 0000000000000009 RDI: ffff88042dfdad00
[ 127.186812] RBP: ffff8804144b5c18 R08: 0000000000000009 R09: 0000000000000003
[ 127.186813] R10: 0000000000000000 R11: 000000000000002d R12: ffff880412ff83d8
[ 127.186814] R13: ffff880412ff83d8 R14: 0000000000000000 R15: ffff880412ff83d8
[ 127.186815] FS: 00007fe18ed2c700(0000) GS:ffff88042dce0000(0000) knlGS:0000000000000000
[ 127.186816] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b
[ 127.186817] CR2: 00007fe340000503 CR3: 0000000417a14000 CR4: 00000000000407e0
[ 127.186818] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 127.186819] DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
[ 127.186820] Process hugetlbfs-test (pid: 9017, threadinfo ffff8804144b4000, task ffff880417f803c0)
[ 127.186821] Stack:
[ 127.186822] ffffea000a5c9000 0000000000000000 ffff8804144b5c48 ffffffff810ed83b
[ 127.186824] ffff8804144b5c48 000000000000138a 0000000000001387 ffff8804144b5c98
[ 127.186825] ffff8804144b5d48 ffffffff811bc925 ffff8804144b5cb8 0000000000000000
[ 127.186827] Call Trace:
[ 127.186829] [<ffffffff810ed83b>] delete_from_page_cache+0x3b/0x80
[ 127.186832] [<ffffffff811bc925>] truncate_hugepages+0x115/0x220
[ 127.186834] [<ffffffff811bca43>] hugetlbfs_evict_inode+0x13/0x30
[ 127.186837] [<ffffffff811655c7>] evict+0xa7/0x1b0
[ 127.186839] [<ffffffff811657a3>] iput_final+0xd3/0x1f0
[ 127.186840] [<ffffffff811658f9>] iput+0x39/0x50
[ 127.186842] [<ffffffff81162708>] d_kill+0xf8/0x130
[ 127.186843] [<ffffffff81162812>] dput+0xd2/0x1a0
[ 127.186845] [<ffffffff8114e2d0>] __fput+0x170/0x230
[ 127.186848] [<ffffffff81236e0e>] ? rb_erase+0xce/0x150
[ 127.186849] [<ffffffff8114e3ad>] fput+0x1d/0x30
[ 127.186851] [<ffffffff81117db7>] remove_vma+0x37/0x80
[ 127.186853] [<ffffffff81119182>] do_munmap+0x2d2/0x360
[ 127.186855] [<ffffffff811cc639>] sys_shmdt+0xc9/0x170
[ 127.186857] [<ffffffff81410a39>] system_call_fastpath+0x16/0x1b
[ 127.186858] Code: 0f 1f 44 00 00 48 8b 43 08 48 8b 00 48 8b 40 28 8b b0 40 03 00 00 85 f6 0f 88 df fe ff ff 48 89 df e8 e7 cb 05 00 e9 d2 fe ff ff <0f> 0b 55 83 e2 fd 48 89 e5 48 83 ec 30 48 89 5d d8 4c 89 65 e0
[ 127.186868] RIP [<ffffffff810ed6ce>] __delete_from_page_cache+0x15e/0x160
[ 127.186870] RSP <ffff8804144b5c08>
[ 127.186871] ---[ end trace 7cbac5d1db69f426 ]---
The bug is a race and not always easy to reproduce. To reproduce it I was
doing the following on a single socket I7-based machine with 16G of RAM.
$ hugeadm --pool-pages-max DEFAULT:13G
$ echo $((18*1048576*1024)) > /proc/sys/kernel/shmmax
$ echo $((18*1048576*1024)) > /proc/sys/kernel/shmall
$ for i in `seq 1 9000`; do ./hugetlbfs-test; done
On my particular machine, it usually triggers within 10 minutes but
enabling debug options can change the timing such that it never hits.
Once the bug is triggered, the machine is in trouble and needs to be
rebooted. The machine will respond but processes accessing proc like "ps
aux" will hang due to the BUG_ON. shutdown will also hang and needs a
hard reset or a sysrq-b.
The basic problem is a race between page table sharing and teardown. For
the most part page table sharing depends on i_mmap_mutex. In some cases,
it is also taking the mm->page_table_lock for the PTE updates but with
shared page tables, it is the i_mmap_mutex that is more important.
Unfortunately it appears to be also insufficient. Consider the following
situation
Process A Process B
--------- ---------
hugetlb_fault shmdt
LockWrite(mmap_sem)
do_munmap
unmap_region
unmap_vmas
unmap_single_vma
unmap_hugepage_range
Lock(i_mmap_mutex)
Lock(mm->page_table_lock)
huge_pmd_unshare/unmap tables <--- (1)
Unlock(mm->page_table_lock)
Unlock(i_mmap_mutex)
huge_pte_alloc ...
Lock(i_mmap_mutex) ...
vma_prio_walk, find svma, spte ...
Lock(mm->page_table_lock) ...
share spte ...
Unlock(mm->page_table_lock) ...
Unlock(i_mmap_mutex) ...
hugetlb_no_page <--- (2)
free_pgtables
unlink_file_vma
hugetlb_free_pgd_range
remove_vma_list
In this scenario, it is possible for Process A to share page tables with
Process B that is trying to tear them down. The i_mmap_mutex on its own
does not prevent Process A walking Process B's page tables. At (1) above,
the page tables are not shared yet so it unmaps the PMDs. Process A sets
up page table sharing and at (2) faults a new entry. Process B then trips
up on it in free_pgtables.
This patch fixes the problem by adding a new function
__unmap_hugepage_range_final that is only called when the VMA is about to
be destroyed. This function clears VM_MAYSHARE during
unmap_hugepage_range() under the i_mmap_mutex. This makes the VMA
ineligible for sharing and avoids the race. Superficially this looks like
it would then be vunerable to truncate and madvise issues but hugetlbfs
has its own truncate handlers so does not use unmap_mapping_range() and
does not support madvise(DONTNEED).
This should be treated as a -stable candidate if it is merged.
Test program is as follows. The test case was mostly written by Michal
Hocko with a few minor changes to reproduce this bug.
==== CUT HERE ====
static size_t huge_page_size = (2UL << 20);
static size_t nr_huge_page_A = 512;
static size_t nr_huge_page_B = 5632;
unsigned int get_random(unsigned int max)
{
struct timeval tv;
gettimeofday(&tv, NULL);
srandom(tv.tv_usec);
return random() % max;
}
static void play(void *addr, size_t size)
{
unsigned char *start = addr,
*end = start + size,
*a;
start += get_random(size/2);
/* we could itterate on huge pages but let's give it more time. */
for (a = start; a < end; a += 4096)
*a = 0;
}
int main(int argc, char **argv)
{
key_t key = IPC_PRIVATE;
size_t sizeA = nr_huge_page_A * huge_page_size;
size_t sizeB = nr_huge_page_B * huge_page_size;
int shmidA, shmidB;
void *addrA = NULL, *addrB = NULL;
int nr_children = 300, n = 0;
if ((shmidA = shmget(key, sizeA, IPC_CREAT|SHM_HUGETLB|0660)) == -1) {
perror("shmget:");
return 1;
}
if ((addrA = shmat(shmidA, addrA, SHM_R|SHM_W)) == (void *)-1UL) {
perror("shmat");
return 1;
}
if ((shmidB = shmget(key, sizeB, IPC_CREAT|SHM_HUGETLB|0660)) == -1) {
perror("shmget:");
return 1;
}
if ((addrB = shmat(shmidB, addrB, SHM_R|SHM_W)) == (void *)-1UL) {
perror("shmat");
return 1;
}
fork_child:
switch(fork()) {
case 0:
switch (n%3) {
case 0:
play(addrA, sizeA);
break;
case 1:
play(addrB, sizeB);
break;
case 2:
break;
}
break;
case -1:
perror("fork:");
break;
default:
if (++n < nr_children)
goto fork_child;
play(addrA, sizeA);
break;
}
shmdt(addrA);
shmdt(addrB);
do {
wait(NULL);
} while (--n > 0);
shmctl(shmidA, IPC_RMID, NULL);
shmctl(shmidB, IPC_RMID, NULL);
return 0;
}
[akpm@linux-foundation.org: name the declaration's args, fix CONFIG_HUGETLBFS=n build]
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-08-01 06:46:20 +07:00
|
|
|
mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
|
2012-11-19 09:14:23 +07:00
|
|
|
|
|
|
|
return pages << h->order;
|
2006-03-22 15:08:50 +07:00
|
|
|
}
|
|
|
|
|
2008-07-24 11:27:23 +07:00
|
|
|
int hugetlb_reserve_pages(struct inode *inode,
|
|
|
|
long from, long to,
|
2009-02-10 21:02:27 +07:00
|
|
|
struct vm_area_struct *vma,
|
2011-05-26 17:16:19 +07:00
|
|
|
vm_flags_t vm_flags)
|
2007-10-16 15:26:19 +07:00
|
|
|
{
|
2009-02-11 23:34:16 +07:00
|
|
|
long ret, chg;
|
2008-07-24 11:27:41 +07:00
|
|
|
struct hstate *h = hstate_inode(inode);
|
hugepages: fix use after free bug in "quota" handling
hugetlbfs_{get,put}_quota() are badly named. They don't interact with the
general quota handling code, and they don't much resemble its behaviour.
Rather than being about maintaining limits on on-disk block usage by
particular users, they are instead about maintaining limits on in-memory
page usage (including anonymous MAP_PRIVATE copied-on-write pages)
associated with a particular hugetlbfs filesystem instance.
Worse, they work by having callbacks to the hugetlbfs filesystem code from
the low-level page handling code, in particular from free_huge_page().
This is a layering violation of itself, but more importantly, if the
kernel does a get_user_pages() on hugepages (which can happen from KVM
amongst others), then the free_huge_page() can be delayed until after the
associated inode has already been freed. If an unmount occurs at the
wrong time, even the hugetlbfs superblock where the "quota" limits are
stored may have been freed.
Andrew Barry proposed a patch to fix this by having hugepages, instead of
storing a pointer to their address_space and reaching the superblock from
there, had the hugepages store pointers directly to the superblock,
bumping the reference count as appropriate to avoid it being freed.
Andrew Morton rejected that version, however, on the grounds that it made
the existing layering violation worse.
This is a reworked version of Andrew's patch, which removes the extra, and
some of the existing, layering violation. It works by introducing the
concept of a hugepage "subpool" at the lower hugepage mm layer - that is a
finite logical pool of hugepages to allocate from. hugetlbfs now creates
a subpool for each filesystem instance with a page limit set, and a
pointer to the subpool gets added to each allocated hugepage, instead of
the address_space pointer used now. The subpool has its own lifetime and
is only freed once all pages in it _and_ all other references to it (i.e.
superblocks) are gone.
subpools are optional - a NULL subpool pointer is taken by the code to
mean that no subpool limits are in effect.
Previous discussion of this bug found in: "Fix refcounting in hugetlbfs
quota handling.". See: https://lkml.org/lkml/2011/8/11/28 or
http://marc.info/?l=linux-mm&m=126928970510627&w=1
v2: Fixed a bug spotted by Hillf Danton, and removed the extra parameter to
alloc_huge_page() - since it already takes the vma, it is not necessary.
Signed-off-by: Andrew Barry <abarry@cray.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22 06:34:12 +07:00
|
|
|
struct hugepage_subpool *spool = subpool_inode(inode);
|
2007-10-16 15:26:19 +07:00
|
|
|
|
2009-02-11 23:34:16 +07:00
|
|
|
/*
|
|
|
|
* Only apply hugepage reservation if asked. At fault time, an
|
|
|
|
* attempt will be made for VM_NORESERVE to allocate a page
|
hugepages: fix use after free bug in "quota" handling
hugetlbfs_{get,put}_quota() are badly named. They don't interact with the
general quota handling code, and they don't much resemble its behaviour.
Rather than being about maintaining limits on on-disk block usage by
particular users, they are instead about maintaining limits on in-memory
page usage (including anonymous MAP_PRIVATE copied-on-write pages)
associated with a particular hugetlbfs filesystem instance.
Worse, they work by having callbacks to the hugetlbfs filesystem code from
the low-level page handling code, in particular from free_huge_page().
This is a layering violation of itself, but more importantly, if the
kernel does a get_user_pages() on hugepages (which can happen from KVM
amongst others), then the free_huge_page() can be delayed until after the
associated inode has already been freed. If an unmount occurs at the
wrong time, even the hugetlbfs superblock where the "quota" limits are
stored may have been freed.
Andrew Barry proposed a patch to fix this by having hugepages, instead of
storing a pointer to their address_space and reaching the superblock from
there, had the hugepages store pointers directly to the superblock,
bumping the reference count as appropriate to avoid it being freed.
Andrew Morton rejected that version, however, on the grounds that it made
the existing layering violation worse.
This is a reworked version of Andrew's patch, which removes the extra, and
some of the existing, layering violation. It works by introducing the
concept of a hugepage "subpool" at the lower hugepage mm layer - that is a
finite logical pool of hugepages to allocate from. hugetlbfs now creates
a subpool for each filesystem instance with a page limit set, and a
pointer to the subpool gets added to each allocated hugepage, instead of
the address_space pointer used now. The subpool has its own lifetime and
is only freed once all pages in it _and_ all other references to it (i.e.
superblocks) are gone.
subpools are optional - a NULL subpool pointer is taken by the code to
mean that no subpool limits are in effect.
Previous discussion of this bug found in: "Fix refcounting in hugetlbfs
quota handling.". See: https://lkml.org/lkml/2011/8/11/28 or
http://marc.info/?l=linux-mm&m=126928970510627&w=1
v2: Fixed a bug spotted by Hillf Danton, and removed the extra parameter to
alloc_huge_page() - since it already takes the vma, it is not necessary.
Signed-off-by: Andrew Barry <abarry@cray.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22 06:34:12 +07:00
|
|
|
* without using reserves
|
2009-02-11 23:34:16 +07:00
|
|
|
*/
|
2011-05-26 17:16:19 +07:00
|
|
|
if (vm_flags & VM_NORESERVE)
|
2009-02-11 23:34:16 +07:00
|
|
|
return 0;
|
|
|
|
|
2008-07-24 11:27:23 +07:00
|
|
|
/*
|
|
|
|
* Shared mappings base their reservation on the number of pages that
|
|
|
|
* are already allocated on behalf of the file. Private mappings need
|
|
|
|
* to reserve the full area even if read-only as mprotect() may be
|
|
|
|
* called to make the mapping read-write. Assume !vma is a shm mapping
|
|
|
|
*/
|
2009-05-29 04:34:40 +07:00
|
|
|
if (!vma || vma->vm_flags & VM_MAYSHARE)
|
2008-07-24 11:27:23 +07:00
|
|
|
chg = region_chg(&inode->i_mapping->private_list, from, to);
|
2009-02-11 23:34:16 +07:00
|
|
|
else {
|
|
|
|
struct resv_map *resv_map = resv_map_alloc();
|
|
|
|
if (!resv_map)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
2008-07-24 11:27:23 +07:00
|
|
|
chg = to - from;
|
2008-07-24 11:27:32 +07:00
|
|
|
|
2009-02-11 23:34:16 +07:00
|
|
|
set_vma_resv_map(vma, resv_map);
|
|
|
|
set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
|
|
|
|
}
|
|
|
|
|
2012-05-30 05:06:46 +07:00
|
|
|
if (chg < 0) {
|
|
|
|
ret = chg;
|
|
|
|
goto out_err;
|
|
|
|
}
|
2007-05-09 16:33:34 +07:00
|
|
|
|
hugepages: fix use after free bug in "quota" handling
hugetlbfs_{get,put}_quota() are badly named. They don't interact with the
general quota handling code, and they don't much resemble its behaviour.
Rather than being about maintaining limits on on-disk block usage by
particular users, they are instead about maintaining limits on in-memory
page usage (including anonymous MAP_PRIVATE copied-on-write pages)
associated with a particular hugetlbfs filesystem instance.
Worse, they work by having callbacks to the hugetlbfs filesystem code from
the low-level page handling code, in particular from free_huge_page().
This is a layering violation of itself, but more importantly, if the
kernel does a get_user_pages() on hugepages (which can happen from KVM
amongst others), then the free_huge_page() can be delayed until after the
associated inode has already been freed. If an unmount occurs at the
wrong time, even the hugetlbfs superblock where the "quota" limits are
stored may have been freed.
Andrew Barry proposed a patch to fix this by having hugepages, instead of
storing a pointer to their address_space and reaching the superblock from
there, had the hugepages store pointers directly to the superblock,
bumping the reference count as appropriate to avoid it being freed.
Andrew Morton rejected that version, however, on the grounds that it made
the existing layering violation worse.
This is a reworked version of Andrew's patch, which removes the extra, and
some of the existing, layering violation. It works by introducing the
concept of a hugepage "subpool" at the lower hugepage mm layer - that is a
finite logical pool of hugepages to allocate from. hugetlbfs now creates
a subpool for each filesystem instance with a page limit set, and a
pointer to the subpool gets added to each allocated hugepage, instead of
the address_space pointer used now. The subpool has its own lifetime and
is only freed once all pages in it _and_ all other references to it (i.e.
superblocks) are gone.
subpools are optional - a NULL subpool pointer is taken by the code to
mean that no subpool limits are in effect.
Previous discussion of this bug found in: "Fix refcounting in hugetlbfs
quota handling.". See: https://lkml.org/lkml/2011/8/11/28 or
http://marc.info/?l=linux-mm&m=126928970510627&w=1
v2: Fixed a bug spotted by Hillf Danton, and removed the extra parameter to
alloc_huge_page() - since it already takes the vma, it is not necessary.
Signed-off-by: Andrew Barry <abarry@cray.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22 06:34:12 +07:00
|
|
|
/* There must be enough pages in the subpool for the mapping */
|
2012-05-30 05:06:46 +07:00
|
|
|
if (hugepage_subpool_get_pages(spool, chg)) {
|
|
|
|
ret = -ENOSPC;
|
|
|
|
goto out_err;
|
|
|
|
}
|
2009-02-10 21:02:27 +07:00
|
|
|
|
|
|
|
/*
|
2009-02-11 23:34:16 +07:00
|
|
|
* Check enough hugepages are available for the reservation.
|
hugepages: fix use after free bug in "quota" handling
hugetlbfs_{get,put}_quota() are badly named. They don't interact with the
general quota handling code, and they don't much resemble its behaviour.
Rather than being about maintaining limits on on-disk block usage by
particular users, they are instead about maintaining limits on in-memory
page usage (including anonymous MAP_PRIVATE copied-on-write pages)
associated with a particular hugetlbfs filesystem instance.
Worse, they work by having callbacks to the hugetlbfs filesystem code from
the low-level page handling code, in particular from free_huge_page().
This is a layering violation of itself, but more importantly, if the
kernel does a get_user_pages() on hugepages (which can happen from KVM
amongst others), then the free_huge_page() can be delayed until after the
associated inode has already been freed. If an unmount occurs at the
wrong time, even the hugetlbfs superblock where the "quota" limits are
stored may have been freed.
Andrew Barry proposed a patch to fix this by having hugepages, instead of
storing a pointer to their address_space and reaching the superblock from
there, had the hugepages store pointers directly to the superblock,
bumping the reference count as appropriate to avoid it being freed.
Andrew Morton rejected that version, however, on the grounds that it made
the existing layering violation worse.
This is a reworked version of Andrew's patch, which removes the extra, and
some of the existing, layering violation. It works by introducing the
concept of a hugepage "subpool" at the lower hugepage mm layer - that is a
finite logical pool of hugepages to allocate from. hugetlbfs now creates
a subpool for each filesystem instance with a page limit set, and a
pointer to the subpool gets added to each allocated hugepage, instead of
the address_space pointer used now. The subpool has its own lifetime and
is only freed once all pages in it _and_ all other references to it (i.e.
superblocks) are gone.
subpools are optional - a NULL subpool pointer is taken by the code to
mean that no subpool limits are in effect.
Previous discussion of this bug found in: "Fix refcounting in hugetlbfs
quota handling.". See: https://lkml.org/lkml/2011/8/11/28 or
http://marc.info/?l=linux-mm&m=126928970510627&w=1
v2: Fixed a bug spotted by Hillf Danton, and removed the extra parameter to
alloc_huge_page() - since it already takes the vma, it is not necessary.
Signed-off-by: Andrew Barry <abarry@cray.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22 06:34:12 +07:00
|
|
|
* Hand the pages back to the subpool if there are not
|
2009-02-10 21:02:27 +07:00
|
|
|
*/
|
2008-07-24 11:27:41 +07:00
|
|
|
ret = hugetlb_acct_memory(h, chg);
|
2008-01-14 15:55:19 +07:00
|
|
|
if (ret < 0) {
|
hugepages: fix use after free bug in "quota" handling
hugetlbfs_{get,put}_quota() are badly named. They don't interact with the
general quota handling code, and they don't much resemble its behaviour.
Rather than being about maintaining limits on on-disk block usage by
particular users, they are instead about maintaining limits on in-memory
page usage (including anonymous MAP_PRIVATE copied-on-write pages)
associated with a particular hugetlbfs filesystem instance.
Worse, they work by having callbacks to the hugetlbfs filesystem code from
the low-level page handling code, in particular from free_huge_page().
This is a layering violation of itself, but more importantly, if the
kernel does a get_user_pages() on hugepages (which can happen from KVM
amongst others), then the free_huge_page() can be delayed until after the
associated inode has already been freed. If an unmount occurs at the
wrong time, even the hugetlbfs superblock where the "quota" limits are
stored may have been freed.
Andrew Barry proposed a patch to fix this by having hugepages, instead of
storing a pointer to their address_space and reaching the superblock from
there, had the hugepages store pointers directly to the superblock,
bumping the reference count as appropriate to avoid it being freed.
Andrew Morton rejected that version, however, on the grounds that it made
the existing layering violation worse.
This is a reworked version of Andrew's patch, which removes the extra, and
some of the existing, layering violation. It works by introducing the
concept of a hugepage "subpool" at the lower hugepage mm layer - that is a
finite logical pool of hugepages to allocate from. hugetlbfs now creates
a subpool for each filesystem instance with a page limit set, and a
pointer to the subpool gets added to each allocated hugepage, instead of
the address_space pointer used now. The subpool has its own lifetime and
is only freed once all pages in it _and_ all other references to it (i.e.
superblocks) are gone.
subpools are optional - a NULL subpool pointer is taken by the code to
mean that no subpool limits are in effect.
Previous discussion of this bug found in: "Fix refcounting in hugetlbfs
quota handling.". See: https://lkml.org/lkml/2011/8/11/28 or
http://marc.info/?l=linux-mm&m=126928970510627&w=1
v2: Fixed a bug spotted by Hillf Danton, and removed the extra parameter to
alloc_huge_page() - since it already takes the vma, it is not necessary.
Signed-off-by: Andrew Barry <abarry@cray.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22 06:34:12 +07:00
|
|
|
hugepage_subpool_put_pages(spool, chg);
|
2012-05-30 05:06:46 +07:00
|
|
|
goto out_err;
|
2008-01-14 15:55:19 +07:00
|
|
|
}
|
2009-02-11 23:34:16 +07:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Account for the reservations made. Shared mappings record regions
|
|
|
|
* that have reservations as they are shared by multiple VMAs.
|
|
|
|
* When the last VMA disappears, the region map says how much
|
|
|
|
* the reservation was and the page cache tells how much of
|
|
|
|
* the reservation was consumed. Private mappings are per-VMA and
|
|
|
|
* only the consumed reservations are tracked. When the VMA
|
|
|
|
* disappears, the original reservation is the VMA size and the
|
|
|
|
* consumed reservations are stored in the map. Hence, nothing
|
|
|
|
* else has to be done for private mappings here
|
|
|
|
*/
|
2009-05-29 04:34:40 +07:00
|
|
|
if (!vma || vma->vm_flags & VM_MAYSHARE)
|
2008-07-24 11:27:23 +07:00
|
|
|
region_add(&inode->i_mapping->private_list, from, to);
|
2006-06-23 16:03:15 +07:00
|
|
|
return 0;
|
2012-05-30 05:06:46 +07:00
|
|
|
out_err:
|
mm: fix vma_resv_map() NULL pointer
hugetlb_reserve_pages() can be used for either normal file-backed
hugetlbfs mappings, or MAP_HUGETLB. In the MAP_HUGETLB, semi-anonymous
mode, there is not a VMA around. The new call to resv_map_put() assumed
that there was, and resulted in a NULL pointer dereference:
BUG: unable to handle kernel NULL pointer dereference at 0000000000000030
IP: vma_resv_map+0x9/0x30
PGD 141453067 PUD 1421e1067 PMD 0
Oops: 0000 [#1] PREEMPT SMP
...
Pid: 14006, comm: trinity-child6 Not tainted 3.4.0+ #36
RIP: vma_resv_map+0x9/0x30
...
Process trinity-child6 (pid: 14006, threadinfo ffff8801414e0000, task ffff8801414f26b0)
Call Trace:
resv_map_put+0xe/0x40
hugetlb_reserve_pages+0xa6/0x1d0
hugetlb_file_setup+0x102/0x2c0
newseg+0x115/0x360
ipcget+0x1ce/0x310
sys_shmget+0x5a/0x60
system_call_fastpath+0x16/0x1b
This was reported by Dave Jones, but was reproducible with the
libhugetlbfs test cases, so shame on me for not running them in the
first place.
With this, the oops is gone, and the output of libhugetlbfs's
run_tests.py is identical to plain 3.4 again.
[ Marked for stable, since this was introduced by commit c50ac050811d
("hugetlb: fix resv_map leak in error path") which was also marked for
stable ]
Reported-by: Dave Jones <davej@redhat.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: <stable@vger.kernel.org> [2.6.32+]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-30 21:51:07 +07:00
|
|
|
if (vma)
|
|
|
|
resv_map_put(vma);
|
2012-05-30 05:06:46 +07:00
|
|
|
return ret;
|
2006-06-23 16:03:15 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
|
|
|
|
{
|
2008-07-24 11:27:41 +07:00
|
|
|
struct hstate *h = hstate_inode(inode);
|
2006-06-23 16:03:15 +07:00
|
|
|
long chg = region_truncate(&inode->i_mapping->private_list, offset);
|
hugepages: fix use after free bug in "quota" handling
hugetlbfs_{get,put}_quota() are badly named. They don't interact with the
general quota handling code, and they don't much resemble its behaviour.
Rather than being about maintaining limits on on-disk block usage by
particular users, they are instead about maintaining limits on in-memory
page usage (including anonymous MAP_PRIVATE copied-on-write pages)
associated with a particular hugetlbfs filesystem instance.
Worse, they work by having callbacks to the hugetlbfs filesystem code from
the low-level page handling code, in particular from free_huge_page().
This is a layering violation of itself, but more importantly, if the
kernel does a get_user_pages() on hugepages (which can happen from KVM
amongst others), then the free_huge_page() can be delayed until after the
associated inode has already been freed. If an unmount occurs at the
wrong time, even the hugetlbfs superblock where the "quota" limits are
stored may have been freed.
Andrew Barry proposed a patch to fix this by having hugepages, instead of
storing a pointer to their address_space and reaching the superblock from
there, had the hugepages store pointers directly to the superblock,
bumping the reference count as appropriate to avoid it being freed.
Andrew Morton rejected that version, however, on the grounds that it made
the existing layering violation worse.
This is a reworked version of Andrew's patch, which removes the extra, and
some of the existing, layering violation. It works by introducing the
concept of a hugepage "subpool" at the lower hugepage mm layer - that is a
finite logical pool of hugepages to allocate from. hugetlbfs now creates
a subpool for each filesystem instance with a page limit set, and a
pointer to the subpool gets added to each allocated hugepage, instead of
the address_space pointer used now. The subpool has its own lifetime and
is only freed once all pages in it _and_ all other references to it (i.e.
superblocks) are gone.
subpools are optional - a NULL subpool pointer is taken by the code to
mean that no subpool limits are in effect.
Previous discussion of this bug found in: "Fix refcounting in hugetlbfs
quota handling.". See: https://lkml.org/lkml/2011/8/11/28 or
http://marc.info/?l=linux-mm&m=126928970510627&w=1
v2: Fixed a bug spotted by Hillf Danton, and removed the extra parameter to
alloc_huge_page() - since it already takes the vma, it is not necessary.
Signed-off-by: Andrew Barry <abarry@cray.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22 06:34:12 +07:00
|
|
|
struct hugepage_subpool *spool = subpool_inode(inode);
|
2007-11-15 07:59:44 +07:00
|
|
|
|
|
|
|
spin_lock(&inode->i_lock);
|
2009-07-30 05:02:16 +07:00
|
|
|
inode->i_blocks -= (blocks_per_huge_page(h) * freed);
|
2007-11-15 07:59:44 +07:00
|
|
|
spin_unlock(&inode->i_lock);
|
|
|
|
|
hugepages: fix use after free bug in "quota" handling
hugetlbfs_{get,put}_quota() are badly named. They don't interact with the
general quota handling code, and they don't much resemble its behaviour.
Rather than being about maintaining limits on on-disk block usage by
particular users, they are instead about maintaining limits on in-memory
page usage (including anonymous MAP_PRIVATE copied-on-write pages)
associated with a particular hugetlbfs filesystem instance.
Worse, they work by having callbacks to the hugetlbfs filesystem code from
the low-level page handling code, in particular from free_huge_page().
This is a layering violation of itself, but more importantly, if the
kernel does a get_user_pages() on hugepages (which can happen from KVM
amongst others), then the free_huge_page() can be delayed until after the
associated inode has already been freed. If an unmount occurs at the
wrong time, even the hugetlbfs superblock where the "quota" limits are
stored may have been freed.
Andrew Barry proposed a patch to fix this by having hugepages, instead of
storing a pointer to their address_space and reaching the superblock from
there, had the hugepages store pointers directly to the superblock,
bumping the reference count as appropriate to avoid it being freed.
Andrew Morton rejected that version, however, on the grounds that it made
the existing layering violation worse.
This is a reworked version of Andrew's patch, which removes the extra, and
some of the existing, layering violation. It works by introducing the
concept of a hugepage "subpool" at the lower hugepage mm layer - that is a
finite logical pool of hugepages to allocate from. hugetlbfs now creates
a subpool for each filesystem instance with a page limit set, and a
pointer to the subpool gets added to each allocated hugepage, instead of
the address_space pointer used now. The subpool has its own lifetime and
is only freed once all pages in it _and_ all other references to it (i.e.
superblocks) are gone.
subpools are optional - a NULL subpool pointer is taken by the code to
mean that no subpool limits are in effect.
Previous discussion of this bug found in: "Fix refcounting in hugetlbfs
quota handling.". See: https://lkml.org/lkml/2011/8/11/28 or
http://marc.info/?l=linux-mm&m=126928970510627&w=1
v2: Fixed a bug spotted by Hillf Danton, and removed the extra parameter to
alloc_huge_page() - since it already takes the vma, it is not necessary.
Signed-off-by: Andrew Barry <abarry@cray.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22 06:34:12 +07:00
|
|
|
hugepage_subpool_put_pages(spool, (chg - freed));
|
2008-07-24 11:27:41 +07:00
|
|
|
hugetlb_acct_memory(h, -(chg - freed));
|
2006-06-23 16:03:15 +07:00
|
|
|
}
|
2010-05-28 07:29:20 +07:00
|
|
|
|
2013-04-23 18:35:02 +07:00
|
|
|
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
|
|
|
|
static unsigned long page_table_shareable(struct vm_area_struct *svma,
|
|
|
|
struct vm_area_struct *vma,
|
|
|
|
unsigned long addr, pgoff_t idx)
|
|
|
|
{
|
|
|
|
unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
|
|
|
|
svma->vm_start;
|
|
|
|
unsigned long sbase = saddr & PUD_MASK;
|
|
|
|
unsigned long s_end = sbase + PUD_SIZE;
|
|
|
|
|
|
|
|
/* Allow segments to share if only one is marked locked */
|
|
|
|
unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
|
|
|
|
unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* match the virtual addresses, permission and the alignment of the
|
|
|
|
* page table page.
|
|
|
|
*/
|
|
|
|
if (pmd_index(addr) != pmd_index(saddr) ||
|
|
|
|
vm_flags != svm_flags ||
|
|
|
|
sbase < svma->vm_start || svma->vm_end < s_end)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
return saddr;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
|
|
|
|
{
|
|
|
|
unsigned long base = addr & PUD_MASK;
|
|
|
|
unsigned long end = base + PUD_SIZE;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* check on proper vm_flags and page table alignment
|
|
|
|
*/
|
|
|
|
if (vma->vm_flags & VM_MAYSHARE &&
|
|
|
|
vma->vm_start <= base && end <= vma->vm_end)
|
|
|
|
return 1;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
|
|
|
|
* and returns the corresponding pte. While this is not necessary for the
|
|
|
|
* !shared pmd case because we can allocate the pmd later as well, it makes the
|
|
|
|
* code much cleaner. pmd allocation is essential for the shared case because
|
|
|
|
* pud has to be populated inside the same i_mmap_mutex section - otherwise
|
|
|
|
* racing tasks could either miss the sharing (see huge_pte_offset) or select a
|
|
|
|
* bad pmd for sharing.
|
|
|
|
*/
|
|
|
|
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
|
|
|
|
{
|
|
|
|
struct vm_area_struct *vma = find_vma(mm, addr);
|
|
|
|
struct address_space *mapping = vma->vm_file->f_mapping;
|
|
|
|
pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
|
|
|
|
vma->vm_pgoff;
|
|
|
|
struct vm_area_struct *svma;
|
|
|
|
unsigned long saddr;
|
|
|
|
pte_t *spte = NULL;
|
|
|
|
pte_t *pte;
|
2013-11-15 05:31:02 +07:00
|
|
|
spinlock_t *ptl;
|
2013-04-23 18:35:02 +07:00
|
|
|
|
|
|
|
if (!vma_shareable(vma, addr))
|
|
|
|
return (pte_t *)pmd_alloc(mm, pud, addr);
|
|
|
|
|
|
|
|
mutex_lock(&mapping->i_mmap_mutex);
|
|
|
|
vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
|
|
|
|
if (svma == vma)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
saddr = page_table_shareable(svma, vma, addr, idx);
|
|
|
|
if (saddr) {
|
|
|
|
spte = huge_pte_offset(svma->vm_mm, saddr);
|
|
|
|
if (spte) {
|
|
|
|
get_page(virt_to_page(spte));
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!spte)
|
|
|
|
goto out;
|
|
|
|
|
2013-11-15 05:31:02 +07:00
|
|
|
ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
|
|
|
|
spin_lock(ptl);
|
2013-04-23 18:35:02 +07:00
|
|
|
if (pud_none(*pud))
|
|
|
|
pud_populate(mm, pud,
|
|
|
|
(pmd_t *)((unsigned long)spte & PAGE_MASK));
|
|
|
|
else
|
|
|
|
put_page(virt_to_page(spte));
|
2013-11-15 05:31:02 +07:00
|
|
|
spin_unlock(ptl);
|
2013-04-23 18:35:02 +07:00
|
|
|
out:
|
|
|
|
pte = (pte_t *)pmd_alloc(mm, pud, addr);
|
|
|
|
mutex_unlock(&mapping->i_mmap_mutex);
|
|
|
|
return pte;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* unmap huge page backed by shared pte.
|
|
|
|
*
|
|
|
|
* Hugetlb pte page is ref counted at the time of mapping. If pte is shared
|
|
|
|
* indicated by page_count > 1, unmap is achieved by clearing pud and
|
|
|
|
* decrementing the ref count. If count == 1, the pte page is not shared.
|
|
|
|
*
|
2013-11-15 05:31:02 +07:00
|
|
|
* called with page table lock held.
|
2013-04-23 18:35:02 +07:00
|
|
|
*
|
|
|
|
* returns: 1 successfully unmapped a shared pte page
|
|
|
|
* 0 the underlying pte page is not shared, or it is the last user
|
|
|
|
*/
|
|
|
|
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
|
|
|
|
{
|
|
|
|
pgd_t *pgd = pgd_offset(mm, *addr);
|
|
|
|
pud_t *pud = pud_offset(pgd, *addr);
|
|
|
|
|
|
|
|
BUG_ON(page_count(virt_to_page(ptep)) == 0);
|
|
|
|
if (page_count(virt_to_page(ptep)) == 1)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
pud_clear(pud);
|
|
|
|
put_page(virt_to_page(ptep));
|
|
|
|
*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
|
|
|
|
return 1;
|
|
|
|
}
|
2013-04-30 14:02:03 +07:00
|
|
|
#define want_pmd_share() (1)
|
|
|
|
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
|
|
|
|
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
|
|
|
|
{
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
#define want_pmd_share() (0)
|
2013-04-23 18:35:02 +07:00
|
|
|
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
|
|
|
|
|
2013-04-30 14:02:03 +07:00
|
|
|
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
|
|
|
|
pte_t *huge_pte_alloc(struct mm_struct *mm,
|
|
|
|
unsigned long addr, unsigned long sz)
|
|
|
|
{
|
|
|
|
pgd_t *pgd;
|
|
|
|
pud_t *pud;
|
|
|
|
pte_t *pte = NULL;
|
|
|
|
|
|
|
|
pgd = pgd_offset(mm, addr);
|
|
|
|
pud = pud_alloc(mm, pgd, addr);
|
|
|
|
if (pud) {
|
|
|
|
if (sz == PUD_SIZE) {
|
|
|
|
pte = (pte_t *)pud;
|
|
|
|
} else {
|
|
|
|
BUG_ON(sz != PMD_SIZE);
|
|
|
|
if (want_pmd_share() && pud_none(*pud))
|
|
|
|
pte = huge_pmd_share(mm, addr, pud);
|
|
|
|
else
|
|
|
|
pte = (pte_t *)pmd_alloc(mm, pud, addr);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
|
|
|
|
|
|
|
|
return pte;
|
|
|
|
}
|
|
|
|
|
|
|
|
pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
|
|
|
|
{
|
|
|
|
pgd_t *pgd;
|
|
|
|
pud_t *pud;
|
|
|
|
pmd_t *pmd = NULL;
|
|
|
|
|
|
|
|
pgd = pgd_offset(mm, addr);
|
|
|
|
if (pgd_present(*pgd)) {
|
|
|
|
pud = pud_offset(pgd, addr);
|
|
|
|
if (pud_present(*pud)) {
|
|
|
|
if (pud_huge(*pud))
|
|
|
|
return (pte_t *)pud;
|
|
|
|
pmd = pmd_offset(pud, addr);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return (pte_t *) pmd;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct page *
|
|
|
|
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
|
|
|
|
pmd_t *pmd, int write)
|
|
|
|
{
|
|
|
|
struct page *page;
|
|
|
|
|
|
|
|
page = pte_page(*(pte_t *)pmd);
|
|
|
|
if (page)
|
|
|
|
page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
|
|
|
|
return page;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct page *
|
|
|
|
follow_huge_pud(struct mm_struct *mm, unsigned long address,
|
|
|
|
pud_t *pud, int write)
|
|
|
|
{
|
|
|
|
struct page *page;
|
|
|
|
|
|
|
|
page = pte_page(*(pte_t *)pud);
|
|
|
|
if (page)
|
|
|
|
page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
|
|
|
|
return page;
|
|
|
|
}
|
|
|
|
|
|
|
|
#else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
|
|
|
|
|
|
|
|
/* Can be overriden by architectures */
|
|
|
|
__attribute__((weak)) struct page *
|
|
|
|
follow_huge_pud(struct mm_struct *mm, unsigned long address,
|
|
|
|
pud_t *pud, int write)
|
|
|
|
{
|
|
|
|
BUG();
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
|
|
|
|
|
2010-09-27 14:00:12 +07:00
|
|
|
#ifdef CONFIG_MEMORY_FAILURE
|
|
|
|
|
2010-09-08 08:19:36 +07:00
|
|
|
/* Should be called in hugetlb_lock */
|
|
|
|
static int is_hugepage_on_freelist(struct page *hpage)
|
|
|
|
{
|
|
|
|
struct page *page;
|
|
|
|
struct page *tmp;
|
|
|
|
struct hstate *h = page_hstate(hpage);
|
|
|
|
int nid = page_to_nid(hpage);
|
|
|
|
|
|
|
|
list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
|
|
|
|
if (page == hpage)
|
|
|
|
return 1;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2010-05-28 07:29:20 +07:00
|
|
|
/*
|
|
|
|
* This function is called from memory failure code.
|
|
|
|
* Assume the caller holds page lock of the head page.
|
|
|
|
*/
|
2010-09-08 08:19:36 +07:00
|
|
|
int dequeue_hwpoisoned_huge_page(struct page *hpage)
|
2010-05-28 07:29:20 +07:00
|
|
|
{
|
|
|
|
struct hstate *h = page_hstate(hpage);
|
|
|
|
int nid = page_to_nid(hpage);
|
2010-09-08 08:19:36 +07:00
|
|
|
int ret = -EBUSY;
|
2010-05-28 07:29:20 +07:00
|
|
|
|
|
|
|
spin_lock(&hugetlb_lock);
|
2010-09-08 08:19:36 +07:00
|
|
|
if (is_hugepage_on_freelist(hpage)) {
|
2012-12-13 04:52:33 +07:00
|
|
|
/*
|
|
|
|
* Hwpoisoned hugepage isn't linked to activelist or freelist,
|
|
|
|
* but dangling hpage->lru can trigger list-debug warnings
|
|
|
|
* (this happens when we call unpoison_memory() on it),
|
|
|
|
* so let it point to itself with list_del_init().
|
|
|
|
*/
|
|
|
|
list_del_init(&hpage->lru);
|
2010-09-08 08:19:38 +07:00
|
|
|
set_page_refcounted(hpage);
|
2010-09-08 08:19:36 +07:00
|
|
|
h->free_huge_pages--;
|
|
|
|
h->free_huge_pages_node[nid]--;
|
|
|
|
ret = 0;
|
|
|
|
}
|
2010-05-28 07:29:20 +07:00
|
|
|
spin_unlock(&hugetlb_lock);
|
2010-09-08 08:19:36 +07:00
|
|
|
return ret;
|
2010-05-28 07:29:20 +07:00
|
|
|
}
|
2010-09-08 08:19:36 +07:00
|
|
|
#endif
|
mm: migrate: make core migration code aware of hugepage
Currently hugepage migration is available only for soft offlining, but
it's also useful for some other users of page migration (clearly because
users of hugepage can enjoy the benefit of mempolicy and memory hotplug.)
So this patchset tries to extend such users to support hugepage migration.
The target of this patchset is to enable hugepage migration for NUMA
related system calls (migrate_pages(2), move_pages(2), and mbind(2)), and
memory hotplug.
This patchset does not add hugepage migration for memory compaction,
because users of memory compaction mainly expect to construct thp by
arranging raw pages, and there's little or no need to compact hugepages.
CMA, another user of page migration, can have benefit from hugepage
migration, but is not enabled to support it for now (just because of lack
of testing and expertise in CMA.)
Hugepage migration of non pmd-based hugepage (for example 1GB hugepage in
x86_64, or hugepages in architectures like ia64) is not enabled for now
(again, because of lack of testing.)
As for how these are achived, I extended the API (migrate_pages()) to
handle hugepage (with patch 1 and 2) and adjusted code of each caller to
check and collect movable hugepages (with patch 3-7). Remaining 2 patches
are kind of miscellaneous ones to avoid unexpected behavior. Patch 8 is
about making sure that we only migrate pmd-based hugepages. And patch 9
is about choosing appropriate zone for hugepage allocation.
My test is mainly functional one, simply kicking hugepage migration via
each entry point and confirm that migration is done correctly. Test code
is available here:
git://github.com/Naoya-Horiguchi/test_hugepage_migration_extension.git
And I always run libhugetlbfs test when changing hugetlbfs's code. With
this patchset, no regression was found in the test.
This patch (of 9):
Before enabling each user of page migration to support hugepage,
this patch enables the list of pages for migration to link not only
LRU pages, but also hugepages. As a result, putback_movable_pages()
and migrate_pages() can handle both of LRU pages and hugepages.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Acked-by: Hillf Danton <dhillf@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 04:21:59 +07:00
|
|
|
|
|
|
|
bool isolate_huge_page(struct page *page, struct list_head *list)
|
|
|
|
{
|
|
|
|
VM_BUG_ON(!PageHead(page));
|
|
|
|
if (!get_page_unless_zero(page))
|
|
|
|
return false;
|
|
|
|
spin_lock(&hugetlb_lock);
|
|
|
|
list_move_tail(&page->lru, list);
|
|
|
|
spin_unlock(&hugetlb_lock);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
void putback_active_hugepage(struct page *page)
|
|
|
|
{
|
|
|
|
VM_BUG_ON(!PageHead(page));
|
|
|
|
spin_lock(&hugetlb_lock);
|
|
|
|
list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
|
|
|
|
spin_unlock(&hugetlb_lock);
|
|
|
|
put_page(page);
|
|
|
|
}
|
2013-09-12 04:22:09 +07:00
|
|
|
|
|
|
|
bool is_hugepage_active(struct page *page)
|
|
|
|
{
|
|
|
|
VM_BUG_ON(!PageHuge(page));
|
|
|
|
/*
|
|
|
|
* This function can be called for a tail page because the caller,
|
|
|
|
* scan_movable_pages, scans through a given pfn-range which typically
|
|
|
|
* covers one memory block. In systems using gigantic hugepage (1GB
|
|
|
|
* for x86_64,) a hugepage is larger than a memory block, and we don't
|
|
|
|
* support migrating such large hugepages for now, so return false
|
|
|
|
* when called for tail pages.
|
|
|
|
*/
|
|
|
|
if (PageTail(page))
|
|
|
|
return false;
|
|
|
|
/*
|
|
|
|
* Refcount of a hwpoisoned hugepages is 1, but they are not active,
|
|
|
|
* so we should return false for them.
|
|
|
|
*/
|
|
|
|
if (unlikely(PageHWPoison(page)))
|
|
|
|
return false;
|
|
|
|
return page_count(page) > 0;
|
|
|
|
}
|