linux_dsm_epyc7002/arch/x86/kernel/unwind_frame.c

337 lines
8.9 KiB
C
Raw Normal View History

x86/unwind: Add new unwind interface and implementations The x86 stack dump code is a bit of a mess. dump_trace() uses callbacks, and each user of it seems to have slightly different requirements, so there are several slightly different callbacks floating around. Also there are some upcoming features which will need more changes to the stack dump code, including the printing of stack pt_regs, reliable stack detection for live patching, and a DWARF unwinder. Each of those features would at least need more callbacks and/or callback interfaces, resulting in a much bigger mess than what we have today. Before doing all that, we should try to clean things up and replace dump_trace() with something cleaner and more flexible. The new unwinder is a simple state machine which was heavily inspired by a suggestion from Andy Lutomirski: https://lkml.kernel.org/r/CALCETrUbNTqaM2LRyXGRx=kVLRPeY5A3Pc6k4TtQxF320rUT=w@mail.gmail.com It's also similar to the libunwind API: http://www.nongnu.org/libunwind/man/libunwind(3).html Some if its advantages: - Simplicity: no more callback sprawl and less code duplication. - Flexibility: it allows the caller to stop and inspect the stack state at each step in the unwinding process. - Modularity: the unwinder code, console stack dump code, and stack metadata analysis code are all better separated so that changing one of them shouldn't have much of an impact on any of the others. Two implementations are added which conform to the new unwind interface: - The frame pointer unwinder which is used for CONFIG_FRAME_POINTER=y. - The "guess" unwinder which is used for CONFIG_FRAME_POINTER=n. This isn't an "unwinder" per se. All it does is scan the stack for kernel text addresses. But with no frame pointers, guesses are better than nothing in most cases. Suggested-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Byungchul Park <byungchul.park@lge.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nilay Vaish <nilayvaish@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/6dc2f909c47533d213d0505f0a113e64585bec82.1474045023.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-09-17 02:18:12 +07:00
#include <linux/sched.h>
#include <linux/sched/task.h>
#include <linux/sched/task_stack.h>
x86/unwind: Silence entry-related warnings A few people have reported unwinder warnings like the following: WARNING: kernel stack frame pointer at ffffc90000fe7ff0 in rsync:1157 has bad value (null) unwind stack type:0 next_sp: (null) mask:2 graph_idx:0 ffffc90000fe7f98: ffffc90000fe7ff0 (0xffffc90000fe7ff0) ffffc90000fe7fa0: ffffffffb7000f56 (trace_hardirqs_off_thunk+0x1a/0x1c) ffffc90000fe7fa8: 0000000000000246 (0x246) ffffc90000fe7fb0: 0000000000000000 ... ffffc90000fe7fc0: 00007ffe3af639bc (0x7ffe3af639bc) ffffc90000fe7fc8: 0000000000000006 (0x6) ffffc90000fe7fd0: 00007f80af433fc5 (0x7f80af433fc5) ffffc90000fe7fd8: 00007ffe3af638e0 (0x7ffe3af638e0) ffffc90000fe7fe0: 00007ffe3af638e0 (0x7ffe3af638e0) ffffc90000fe7fe8: 00007ffe3af63970 (0x7ffe3af63970) ffffc90000fe7ff0: 0000000000000000 ... ffffc90000fe7ff8: ffffffffb7b74b9a (entry_SYSCALL_64_after_swapgs+0x17/0x4f) This warning can happen when unwinding a code path where an interrupt occurred in x86 entry code before it set up the first stack frame. Silently ignore any warnings for this case. Reported-by: Daniel Borkmann <daniel@iogearbox.net> Reported-by: Dave Jones <davej@codemonkey.org.uk> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Fixes: c32c47c68a0a ("x86/unwind: Warn on bad frame pointer") Link: http://lkml.kernel.org/r/dbd6838826466a60dc23a52098185bc973ce2f1e.1492020577.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-04-13 01:47:12 +07:00
#include <linux/interrupt.h>
#include <asm/sections.h>
x86/unwind: Add new unwind interface and implementations The x86 stack dump code is a bit of a mess. dump_trace() uses callbacks, and each user of it seems to have slightly different requirements, so there are several slightly different callbacks floating around. Also there are some upcoming features which will need more changes to the stack dump code, including the printing of stack pt_regs, reliable stack detection for live patching, and a DWARF unwinder. Each of those features would at least need more callbacks and/or callback interfaces, resulting in a much bigger mess than what we have today. Before doing all that, we should try to clean things up and replace dump_trace() with something cleaner and more flexible. The new unwinder is a simple state machine which was heavily inspired by a suggestion from Andy Lutomirski: https://lkml.kernel.org/r/CALCETrUbNTqaM2LRyXGRx=kVLRPeY5A3Pc6k4TtQxF320rUT=w@mail.gmail.com It's also similar to the libunwind API: http://www.nongnu.org/libunwind/man/libunwind(3).html Some if its advantages: - Simplicity: no more callback sprawl and less code duplication. - Flexibility: it allows the caller to stop and inspect the stack state at each step in the unwinding process. - Modularity: the unwinder code, console stack dump code, and stack metadata analysis code are all better separated so that changing one of them shouldn't have much of an impact on any of the others. Two implementations are added which conform to the new unwind interface: - The frame pointer unwinder which is used for CONFIG_FRAME_POINTER=y. - The "guess" unwinder which is used for CONFIG_FRAME_POINTER=n. This isn't an "unwinder" per se. All it does is scan the stack for kernel text addresses. But with no frame pointers, guesses are better than nothing in most cases. Suggested-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Byungchul Park <byungchul.park@lge.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nilay Vaish <nilayvaish@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/6dc2f909c47533d213d0505f0a113e64585bec82.1474045023.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-09-17 02:18:12 +07:00
#include <asm/ptrace.h>
#include <asm/bitops.h>
#include <asm/stacktrace.h>
#include <asm/unwind.h>
#define FRAME_HEADER_SIZE (sizeof(long) * 2)
x86/unwind: Disable KASAN checks for non-current tasks There are a handful of callers to save_stack_trace_tsk() and show_stack() which try to unwind the stack of a task other than current. In such cases, it's remotely possible that the task is running on one CPU while the unwinder is reading its stack from another CPU, causing the unwinder to see stack corruption. These cases seem to be mostly harmless. The unwinder has checks which prevent it from following bad pointers beyond the bounds of the stack. So it's not really a bug as long as the caller understands that unwinding another task will not always succeed. In such cases, it's possible that the unwinder may read a KASAN-poisoned region of the stack. Account for that by using READ_ONCE_NOCHECK() when reading the stack of another task. Use READ_ONCE() when reading the stack of the current task, since KASAN warnings can still be useful for finding bugs in that case. Reported-by: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Jones <davej@codemonkey.org.uk> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Miroslav Benes <mbenes@suse.cz> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/4c575eb288ba9f73d498dfe0acde2f58674598f1.1483978430.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-01-10 01:00:23 +07:00
/*
* This disables KASAN checking when reading a value from another task's stack,
* since the other task could be running on another CPU and could have poisoned
* the stack in the meantime.
*/
#define READ_ONCE_TASK_STACK(task, x) \
({ \
unsigned long val; \
if (task == current) \
val = READ_ONCE(x); \
else \
val = READ_ONCE_NOCHECK(x); \
val; \
})
static void unwind_dump(struct unwind_state *state, unsigned long *sp)
{
static bool dumped_before = false;
bool prev_zero, zero = false;
unsigned long word;
if (dumped_before)
return;
dumped_before = true;
printk_deferred("unwind stack type:%d next_sp:%p mask:%lx graph_idx:%d\n",
state->stack_info.type, state->stack_info.next_sp,
state->stack_mask, state->graph_idx);
for (sp = state->orig_sp; sp < state->stack_info.end; sp++) {
word = READ_ONCE_NOCHECK(*sp);
prev_zero = zero;
zero = word == 0;
if (zero) {
if (!prev_zero)
printk_deferred("%p: %0*x ...\n",
sp, BITS_PER_LONG/4, 0);
continue;
}
printk_deferred("%p: %0*lx (%pB)\n",
sp, BITS_PER_LONG/4, word, (void *)word);
}
}
x86/unwind: Add new unwind interface and implementations The x86 stack dump code is a bit of a mess. dump_trace() uses callbacks, and each user of it seems to have slightly different requirements, so there are several slightly different callbacks floating around. Also there are some upcoming features which will need more changes to the stack dump code, including the printing of stack pt_regs, reliable stack detection for live patching, and a DWARF unwinder. Each of those features would at least need more callbacks and/or callback interfaces, resulting in a much bigger mess than what we have today. Before doing all that, we should try to clean things up and replace dump_trace() with something cleaner and more flexible. The new unwinder is a simple state machine which was heavily inspired by a suggestion from Andy Lutomirski: https://lkml.kernel.org/r/CALCETrUbNTqaM2LRyXGRx=kVLRPeY5A3Pc6k4TtQxF320rUT=w@mail.gmail.com It's also similar to the libunwind API: http://www.nongnu.org/libunwind/man/libunwind(3).html Some if its advantages: - Simplicity: no more callback sprawl and less code duplication. - Flexibility: it allows the caller to stop and inspect the stack state at each step in the unwinding process. - Modularity: the unwinder code, console stack dump code, and stack metadata analysis code are all better separated so that changing one of them shouldn't have much of an impact on any of the others. Two implementations are added which conform to the new unwind interface: - The frame pointer unwinder which is used for CONFIG_FRAME_POINTER=y. - The "guess" unwinder which is used for CONFIG_FRAME_POINTER=n. This isn't an "unwinder" per se. All it does is scan the stack for kernel text addresses. But with no frame pointers, guesses are better than nothing in most cases. Suggested-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Byungchul Park <byungchul.park@lge.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nilay Vaish <nilayvaish@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/6dc2f909c47533d213d0505f0a113e64585bec82.1474045023.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-09-17 02:18:12 +07:00
unsigned long unwind_get_return_address(struct unwind_state *state)
{
if (unwind_done(state))
return 0;
return __kernel_text_address(state->ip) ? state->ip : 0;
x86/unwind: Add new unwind interface and implementations The x86 stack dump code is a bit of a mess. dump_trace() uses callbacks, and each user of it seems to have slightly different requirements, so there are several slightly different callbacks floating around. Also there are some upcoming features which will need more changes to the stack dump code, including the printing of stack pt_regs, reliable stack detection for live patching, and a DWARF unwinder. Each of those features would at least need more callbacks and/or callback interfaces, resulting in a much bigger mess than what we have today. Before doing all that, we should try to clean things up and replace dump_trace() with something cleaner and more flexible. The new unwinder is a simple state machine which was heavily inspired by a suggestion from Andy Lutomirski: https://lkml.kernel.org/r/CALCETrUbNTqaM2LRyXGRx=kVLRPeY5A3Pc6k4TtQxF320rUT=w@mail.gmail.com It's also similar to the libunwind API: http://www.nongnu.org/libunwind/man/libunwind(3).html Some if its advantages: - Simplicity: no more callback sprawl and less code duplication. - Flexibility: it allows the caller to stop and inspect the stack state at each step in the unwinding process. - Modularity: the unwinder code, console stack dump code, and stack metadata analysis code are all better separated so that changing one of them shouldn't have much of an impact on any of the others. Two implementations are added which conform to the new unwind interface: - The frame pointer unwinder which is used for CONFIG_FRAME_POINTER=y. - The "guess" unwinder which is used for CONFIG_FRAME_POINTER=n. This isn't an "unwinder" per se. All it does is scan the stack for kernel text addresses. But with no frame pointers, guesses are better than nothing in most cases. Suggested-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Byungchul Park <byungchul.park@lge.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nilay Vaish <nilayvaish@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/6dc2f909c47533d213d0505f0a113e64585bec82.1474045023.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-09-17 02:18:12 +07:00
}
EXPORT_SYMBOL_GPL(unwind_get_return_address);
static size_t regs_size(struct pt_regs *regs)
{
/* x86_32 regs from kernel mode are two words shorter: */
if (IS_ENABLED(CONFIG_X86_32) && !user_mode(regs))
return sizeof(*regs) - 2*sizeof(long);
return sizeof(*regs);
}
x86/unwind: Silence entry-related warnings A few people have reported unwinder warnings like the following: WARNING: kernel stack frame pointer at ffffc90000fe7ff0 in rsync:1157 has bad value (null) unwind stack type:0 next_sp: (null) mask:2 graph_idx:0 ffffc90000fe7f98: ffffc90000fe7ff0 (0xffffc90000fe7ff0) ffffc90000fe7fa0: ffffffffb7000f56 (trace_hardirqs_off_thunk+0x1a/0x1c) ffffc90000fe7fa8: 0000000000000246 (0x246) ffffc90000fe7fb0: 0000000000000000 ... ffffc90000fe7fc0: 00007ffe3af639bc (0x7ffe3af639bc) ffffc90000fe7fc8: 0000000000000006 (0x6) ffffc90000fe7fd0: 00007f80af433fc5 (0x7f80af433fc5) ffffc90000fe7fd8: 00007ffe3af638e0 (0x7ffe3af638e0) ffffc90000fe7fe0: 00007ffe3af638e0 (0x7ffe3af638e0) ffffc90000fe7fe8: 00007ffe3af63970 (0x7ffe3af63970) ffffc90000fe7ff0: 0000000000000000 ... ffffc90000fe7ff8: ffffffffb7b74b9a (entry_SYSCALL_64_after_swapgs+0x17/0x4f) This warning can happen when unwinding a code path where an interrupt occurred in x86 entry code before it set up the first stack frame. Silently ignore any warnings for this case. Reported-by: Daniel Borkmann <daniel@iogearbox.net> Reported-by: Dave Jones <davej@codemonkey.org.uk> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Fixes: c32c47c68a0a ("x86/unwind: Warn on bad frame pointer") Link: http://lkml.kernel.org/r/dbd6838826466a60dc23a52098185bc973ce2f1e.1492020577.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-04-13 01:47:12 +07:00
static bool in_entry_code(unsigned long ip)
{
char *addr = (char *)ip;
if (addr >= __entry_text_start && addr < __entry_text_end)
return true;
#if defined(CONFIG_FUNCTION_GRAPH_TRACER) || defined(CONFIG_KASAN)
if (addr >= __irqentry_text_start && addr < __irqentry_text_end)
return true;
#endif
return false;
}
#ifdef CONFIG_X86_32
#define GCC_REALIGN_WORDS 3
#else
#define GCC_REALIGN_WORDS 1
#endif
static bool is_last_task_frame(struct unwind_state *state)
{
unsigned long *last_bp = (unsigned long *)task_pt_regs(state->task) - 2;
unsigned long *aligned_bp = last_bp - GCC_REALIGN_WORDS;
/*
* We have to check for the last task frame at two different locations
* because gcc can occasionally decide to realign the stack pointer and
* change the offset of the stack frame in the prologue of a function
* called by head/entry code. Examples:
*
* <start_secondary>:
* push %edi
* lea 0x8(%esp),%edi
* and $0xfffffff8,%esp
* pushl -0x4(%edi)
* push %ebp
* mov %esp,%ebp
*
* <x86_64_start_kernel>:
* lea 0x8(%rsp),%r10
* and $0xfffffffffffffff0,%rsp
* pushq -0x8(%r10)
* push %rbp
* mov %rsp,%rbp
*
* Note that after aligning the stack, it pushes a duplicate copy of
* the return address before pushing the frame pointer.
*/
return (state->bp == last_bp ||
(state->bp == aligned_bp && *(aligned_bp+1) == *(last_bp+1)));
}
x86/entry/unwind: Create stack frames for saved interrupt registers With frame pointers, when a task is interrupted, its stack is no longer completely reliable because the function could have been interrupted before it had a chance to save the previous frame pointer on the stack. So the caller of the interrupted function could get skipped by a stack trace. This is problematic for live patching, which needs to know whether a stack trace of a sleeping task can be relied upon. There's currently no way to detect if a sleeping task was interrupted by a page fault exception or preemption before it went to sleep. Another issue is that when dumping the stack of an interrupted task, the unwinder has no way of knowing where the saved pt_regs registers are, so it can't print them. This solves those issues by encoding the pt_regs pointer in the frame pointer on entry from an interrupt or an exception. This patch also updates the unwinder to be able to decode it, because otherwise the unwinder would be broken by this change. Note that this causes a change in the behavior of the unwinder: each instance of a pt_regs on the stack is now considered a "frame". So callers of unwind_get_return_address() will now get an occasional 'regs->ip' address that would have previously been skipped over. Suggested-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/8b9f84a21e39d249049e0547b559ff8da0df0988.1476973742.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-10-20 23:34:40 +07:00
/*
* This determines if the frame pointer actually contains an encoded pointer to
* pt_regs on the stack. See ENCODE_FRAME_POINTER.
*/
static struct pt_regs *decode_frame_pointer(unsigned long *bp)
{
unsigned long regs = (unsigned long)bp;
if (!(regs & 0x1))
return NULL;
return (struct pt_regs *)(regs & ~0x1);
}
static bool update_stack_state(struct unwind_state *state,
unsigned long *next_bp)
x86/unwind: Add new unwind interface and implementations The x86 stack dump code is a bit of a mess. dump_trace() uses callbacks, and each user of it seems to have slightly different requirements, so there are several slightly different callbacks floating around. Also there are some upcoming features which will need more changes to the stack dump code, including the printing of stack pt_regs, reliable stack detection for live patching, and a DWARF unwinder. Each of those features would at least need more callbacks and/or callback interfaces, resulting in a much bigger mess than what we have today. Before doing all that, we should try to clean things up and replace dump_trace() with something cleaner and more flexible. The new unwinder is a simple state machine which was heavily inspired by a suggestion from Andy Lutomirski: https://lkml.kernel.org/r/CALCETrUbNTqaM2LRyXGRx=kVLRPeY5A3Pc6k4TtQxF320rUT=w@mail.gmail.com It's also similar to the libunwind API: http://www.nongnu.org/libunwind/man/libunwind(3).html Some if its advantages: - Simplicity: no more callback sprawl and less code duplication. - Flexibility: it allows the caller to stop and inspect the stack state at each step in the unwinding process. - Modularity: the unwinder code, console stack dump code, and stack metadata analysis code are all better separated so that changing one of them shouldn't have much of an impact on any of the others. Two implementations are added which conform to the new unwind interface: - The frame pointer unwinder which is used for CONFIG_FRAME_POINTER=y. - The "guess" unwinder which is used for CONFIG_FRAME_POINTER=n. This isn't an "unwinder" per se. All it does is scan the stack for kernel text addresses. But with no frame pointers, guesses are better than nothing in most cases. Suggested-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Byungchul Park <byungchul.park@lge.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nilay Vaish <nilayvaish@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/6dc2f909c47533d213d0505f0a113e64585bec82.1474045023.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-09-17 02:18:12 +07:00
{
struct stack_info *info = &state->stack_info;
enum stack_type prev_type = info->type;
struct pt_regs *regs;
unsigned long *frame, *prev_frame_end, *addr_p, addr;
size_t len;
if (state->regs)
prev_frame_end = (void *)state->regs + regs_size(state->regs);
else
prev_frame_end = (void *)state->bp + FRAME_HEADER_SIZE;
/* Is the next frame pointer an encoded pointer to pt_regs? */
regs = decode_frame_pointer(next_bp);
if (regs) {
frame = (unsigned long *)regs;
len = regs_size(regs);
x86/unwind: Silence entry-related warnings A few people have reported unwinder warnings like the following: WARNING: kernel stack frame pointer at ffffc90000fe7ff0 in rsync:1157 has bad value (null) unwind stack type:0 next_sp: (null) mask:2 graph_idx:0 ffffc90000fe7f98: ffffc90000fe7ff0 (0xffffc90000fe7ff0) ffffc90000fe7fa0: ffffffffb7000f56 (trace_hardirqs_off_thunk+0x1a/0x1c) ffffc90000fe7fa8: 0000000000000246 (0x246) ffffc90000fe7fb0: 0000000000000000 ... ffffc90000fe7fc0: 00007ffe3af639bc (0x7ffe3af639bc) ffffc90000fe7fc8: 0000000000000006 (0x6) ffffc90000fe7fd0: 00007f80af433fc5 (0x7f80af433fc5) ffffc90000fe7fd8: 00007ffe3af638e0 (0x7ffe3af638e0) ffffc90000fe7fe0: 00007ffe3af638e0 (0x7ffe3af638e0) ffffc90000fe7fe8: 00007ffe3af63970 (0x7ffe3af63970) ffffc90000fe7ff0: 0000000000000000 ... ffffc90000fe7ff8: ffffffffb7b74b9a (entry_SYSCALL_64_after_swapgs+0x17/0x4f) This warning can happen when unwinding a code path where an interrupt occurred in x86 entry code before it set up the first stack frame. Silently ignore any warnings for this case. Reported-by: Daniel Borkmann <daniel@iogearbox.net> Reported-by: Dave Jones <davej@codemonkey.org.uk> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Fixes: c32c47c68a0a ("x86/unwind: Warn on bad frame pointer") Link: http://lkml.kernel.org/r/dbd6838826466a60dc23a52098185bc973ce2f1e.1492020577.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-04-13 01:47:12 +07:00
state->got_irq = true;
} else {
frame = next_bp;
len = FRAME_HEADER_SIZE;
}
x86/unwind: Add new unwind interface and implementations The x86 stack dump code is a bit of a mess. dump_trace() uses callbacks, and each user of it seems to have slightly different requirements, so there are several slightly different callbacks floating around. Also there are some upcoming features which will need more changes to the stack dump code, including the printing of stack pt_regs, reliable stack detection for live patching, and a DWARF unwinder. Each of those features would at least need more callbacks and/or callback interfaces, resulting in a much bigger mess than what we have today. Before doing all that, we should try to clean things up and replace dump_trace() with something cleaner and more flexible. The new unwinder is a simple state machine which was heavily inspired by a suggestion from Andy Lutomirski: https://lkml.kernel.org/r/CALCETrUbNTqaM2LRyXGRx=kVLRPeY5A3Pc6k4TtQxF320rUT=w@mail.gmail.com It's also similar to the libunwind API: http://www.nongnu.org/libunwind/man/libunwind(3).html Some if its advantages: - Simplicity: no more callback sprawl and less code duplication. - Flexibility: it allows the caller to stop and inspect the stack state at each step in the unwinding process. - Modularity: the unwinder code, console stack dump code, and stack metadata analysis code are all better separated so that changing one of them shouldn't have much of an impact on any of the others. Two implementations are added which conform to the new unwind interface: - The frame pointer unwinder which is used for CONFIG_FRAME_POINTER=y. - The "guess" unwinder which is used for CONFIG_FRAME_POINTER=n. This isn't an "unwinder" per se. All it does is scan the stack for kernel text addresses. But with no frame pointers, guesses are better than nothing in most cases. Suggested-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Byungchul Park <byungchul.park@lge.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nilay Vaish <nilayvaish@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/6dc2f909c47533d213d0505f0a113e64585bec82.1474045023.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-09-17 02:18:12 +07:00
/*
* If the next bp isn't on the current stack, switch to the next one.
x86/unwind: Add new unwind interface and implementations The x86 stack dump code is a bit of a mess. dump_trace() uses callbacks, and each user of it seems to have slightly different requirements, so there are several slightly different callbacks floating around. Also there are some upcoming features which will need more changes to the stack dump code, including the printing of stack pt_regs, reliable stack detection for live patching, and a DWARF unwinder. Each of those features would at least need more callbacks and/or callback interfaces, resulting in a much bigger mess than what we have today. Before doing all that, we should try to clean things up and replace dump_trace() with something cleaner and more flexible. The new unwinder is a simple state machine which was heavily inspired by a suggestion from Andy Lutomirski: https://lkml.kernel.org/r/CALCETrUbNTqaM2LRyXGRx=kVLRPeY5A3Pc6k4TtQxF320rUT=w@mail.gmail.com It's also similar to the libunwind API: http://www.nongnu.org/libunwind/man/libunwind(3).html Some if its advantages: - Simplicity: no more callback sprawl and less code duplication. - Flexibility: it allows the caller to stop and inspect the stack state at each step in the unwinding process. - Modularity: the unwinder code, console stack dump code, and stack metadata analysis code are all better separated so that changing one of them shouldn't have much of an impact on any of the others. Two implementations are added which conform to the new unwind interface: - The frame pointer unwinder which is used for CONFIG_FRAME_POINTER=y. - The "guess" unwinder which is used for CONFIG_FRAME_POINTER=n. This isn't an "unwinder" per se. All it does is scan the stack for kernel text addresses. But with no frame pointers, guesses are better than nothing in most cases. Suggested-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Byungchul Park <byungchul.park@lge.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nilay Vaish <nilayvaish@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/6dc2f909c47533d213d0505f0a113e64585bec82.1474045023.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-09-17 02:18:12 +07:00
*
* We may have to traverse multiple stacks to deal with the possibility
* that info->next_sp could point to an empty stack and the next bp
* could be on a subsequent stack.
x86/unwind: Add new unwind interface and implementations The x86 stack dump code is a bit of a mess. dump_trace() uses callbacks, and each user of it seems to have slightly different requirements, so there are several slightly different callbacks floating around. Also there are some upcoming features which will need more changes to the stack dump code, including the printing of stack pt_regs, reliable stack detection for live patching, and a DWARF unwinder. Each of those features would at least need more callbacks and/or callback interfaces, resulting in a much bigger mess than what we have today. Before doing all that, we should try to clean things up and replace dump_trace() with something cleaner and more flexible. The new unwinder is a simple state machine which was heavily inspired by a suggestion from Andy Lutomirski: https://lkml.kernel.org/r/CALCETrUbNTqaM2LRyXGRx=kVLRPeY5A3Pc6k4TtQxF320rUT=w@mail.gmail.com It's also similar to the libunwind API: http://www.nongnu.org/libunwind/man/libunwind(3).html Some if its advantages: - Simplicity: no more callback sprawl and less code duplication. - Flexibility: it allows the caller to stop and inspect the stack state at each step in the unwinding process. - Modularity: the unwinder code, console stack dump code, and stack metadata analysis code are all better separated so that changing one of them shouldn't have much of an impact on any of the others. Two implementations are added which conform to the new unwind interface: - The frame pointer unwinder which is used for CONFIG_FRAME_POINTER=y. - The "guess" unwinder which is used for CONFIG_FRAME_POINTER=n. This isn't an "unwinder" per se. All it does is scan the stack for kernel text addresses. But with no frame pointers, guesses are better than nothing in most cases. Suggested-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Byungchul Park <byungchul.park@lge.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nilay Vaish <nilayvaish@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/6dc2f909c47533d213d0505f0a113e64585bec82.1474045023.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-09-17 02:18:12 +07:00
*/
while (!on_stack(info, frame, len))
x86/unwind: Add new unwind interface and implementations The x86 stack dump code is a bit of a mess. dump_trace() uses callbacks, and each user of it seems to have slightly different requirements, so there are several slightly different callbacks floating around. Also there are some upcoming features which will need more changes to the stack dump code, including the printing of stack pt_regs, reliable stack detection for live patching, and a DWARF unwinder. Each of those features would at least need more callbacks and/or callback interfaces, resulting in a much bigger mess than what we have today. Before doing all that, we should try to clean things up and replace dump_trace() with something cleaner and more flexible. The new unwinder is a simple state machine which was heavily inspired by a suggestion from Andy Lutomirski: https://lkml.kernel.org/r/CALCETrUbNTqaM2LRyXGRx=kVLRPeY5A3Pc6k4TtQxF320rUT=w@mail.gmail.com It's also similar to the libunwind API: http://www.nongnu.org/libunwind/man/libunwind(3).html Some if its advantages: - Simplicity: no more callback sprawl and less code duplication. - Flexibility: it allows the caller to stop and inspect the stack state at each step in the unwinding process. - Modularity: the unwinder code, console stack dump code, and stack metadata analysis code are all better separated so that changing one of them shouldn't have much of an impact on any of the others. Two implementations are added which conform to the new unwind interface: - The frame pointer unwinder which is used for CONFIG_FRAME_POINTER=y. - The "guess" unwinder which is used for CONFIG_FRAME_POINTER=n. This isn't an "unwinder" per se. All it does is scan the stack for kernel text addresses. But with no frame pointers, guesses are better than nothing in most cases. Suggested-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Byungchul Park <byungchul.park@lge.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nilay Vaish <nilayvaish@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/6dc2f909c47533d213d0505f0a113e64585bec82.1474045023.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-09-17 02:18:12 +07:00
if (get_stack_info(info->next_sp, state->task, info,
&state->stack_mask))
return false;
/* Make sure it only unwinds up and doesn't overlap the prev frame: */
if (state->orig_sp && state->stack_info.type == prev_type &&
frame < prev_frame_end)
return false;
/* Move state to the next frame: */
if (regs) {
state->regs = regs;
state->bp = NULL;
} else {
state->bp = next_bp;
state->regs = NULL;
}
/* Save the return address: */
if (state->regs && user_mode(state->regs))
state->ip = 0;
else {
addr_p = unwind_get_return_address_ptr(state);
addr = READ_ONCE_TASK_STACK(state->task, *addr_p);
state->ip = ftrace_graph_ret_addr(state->task, &state->graph_idx,
addr, addr_p);
}
/* Save the original stack pointer for unwind_dump(): */
if (!state->orig_sp || info->type != prev_type)
state->orig_sp = frame;
x86/unwind: Add new unwind interface and implementations The x86 stack dump code is a bit of a mess. dump_trace() uses callbacks, and each user of it seems to have slightly different requirements, so there are several slightly different callbacks floating around. Also there are some upcoming features which will need more changes to the stack dump code, including the printing of stack pt_regs, reliable stack detection for live patching, and a DWARF unwinder. Each of those features would at least need more callbacks and/or callback interfaces, resulting in a much bigger mess than what we have today. Before doing all that, we should try to clean things up and replace dump_trace() with something cleaner and more flexible. The new unwinder is a simple state machine which was heavily inspired by a suggestion from Andy Lutomirski: https://lkml.kernel.org/r/CALCETrUbNTqaM2LRyXGRx=kVLRPeY5A3Pc6k4TtQxF320rUT=w@mail.gmail.com It's also similar to the libunwind API: http://www.nongnu.org/libunwind/man/libunwind(3).html Some if its advantages: - Simplicity: no more callback sprawl and less code duplication. - Flexibility: it allows the caller to stop and inspect the stack state at each step in the unwinding process. - Modularity: the unwinder code, console stack dump code, and stack metadata analysis code are all better separated so that changing one of them shouldn't have much of an impact on any of the others. Two implementations are added which conform to the new unwind interface: - The frame pointer unwinder which is used for CONFIG_FRAME_POINTER=y. - The "guess" unwinder which is used for CONFIG_FRAME_POINTER=n. This isn't an "unwinder" per se. All it does is scan the stack for kernel text addresses. But with no frame pointers, guesses are better than nothing in most cases. Suggested-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Byungchul Park <byungchul.park@lge.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nilay Vaish <nilayvaish@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/6dc2f909c47533d213d0505f0a113e64585bec82.1474045023.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-09-17 02:18:12 +07:00
return true;
}
bool unwind_next_frame(struct unwind_state *state)
{
x86/entry/unwind: Create stack frames for saved interrupt registers With frame pointers, when a task is interrupted, its stack is no longer completely reliable because the function could have been interrupted before it had a chance to save the previous frame pointer on the stack. So the caller of the interrupted function could get skipped by a stack trace. This is problematic for live patching, which needs to know whether a stack trace of a sleeping task can be relied upon. There's currently no way to detect if a sleeping task was interrupted by a page fault exception or preemption before it went to sleep. Another issue is that when dumping the stack of an interrupted task, the unwinder has no way of knowing where the saved pt_regs registers are, so it can't print them. This solves those issues by encoding the pt_regs pointer in the frame pointer on entry from an interrupt or an exception. This patch also updates the unwinder to be able to decode it, because otherwise the unwinder would be broken by this change. Note that this causes a change in the behavior of the unwinder: each instance of a pt_regs on the stack is now considered a "frame". So callers of unwind_get_return_address() will now get an occasional 'regs->ip' address that would have previously been skipped over. Suggested-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/8b9f84a21e39d249049e0547b559ff8da0df0988.1476973742.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-10-20 23:34:40 +07:00
struct pt_regs *regs;
unsigned long *next_bp;
x86/unwind: Add new unwind interface and implementations The x86 stack dump code is a bit of a mess. dump_trace() uses callbacks, and each user of it seems to have slightly different requirements, so there are several slightly different callbacks floating around. Also there are some upcoming features which will need more changes to the stack dump code, including the printing of stack pt_regs, reliable stack detection for live patching, and a DWARF unwinder. Each of those features would at least need more callbacks and/or callback interfaces, resulting in a much bigger mess than what we have today. Before doing all that, we should try to clean things up and replace dump_trace() with something cleaner and more flexible. The new unwinder is a simple state machine which was heavily inspired by a suggestion from Andy Lutomirski: https://lkml.kernel.org/r/CALCETrUbNTqaM2LRyXGRx=kVLRPeY5A3Pc6k4TtQxF320rUT=w@mail.gmail.com It's also similar to the libunwind API: http://www.nongnu.org/libunwind/man/libunwind(3).html Some if its advantages: - Simplicity: no more callback sprawl and less code duplication. - Flexibility: it allows the caller to stop and inspect the stack state at each step in the unwinding process. - Modularity: the unwinder code, console stack dump code, and stack metadata analysis code are all better separated so that changing one of them shouldn't have much of an impact on any of the others. Two implementations are added which conform to the new unwind interface: - The frame pointer unwinder which is used for CONFIG_FRAME_POINTER=y. - The "guess" unwinder which is used for CONFIG_FRAME_POINTER=n. This isn't an "unwinder" per se. All it does is scan the stack for kernel text addresses. But with no frame pointers, guesses are better than nothing in most cases. Suggested-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Byungchul Park <byungchul.park@lge.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nilay Vaish <nilayvaish@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/6dc2f909c47533d213d0505f0a113e64585bec82.1474045023.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-09-17 02:18:12 +07:00
if (unwind_done(state))
return false;
/* Have we reached the end? */
x86/entry/unwind: Create stack frames for saved interrupt registers With frame pointers, when a task is interrupted, its stack is no longer completely reliable because the function could have been interrupted before it had a chance to save the previous frame pointer on the stack. So the caller of the interrupted function could get skipped by a stack trace. This is problematic for live patching, which needs to know whether a stack trace of a sleeping task can be relied upon. There's currently no way to detect if a sleeping task was interrupted by a page fault exception or preemption before it went to sleep. Another issue is that when dumping the stack of an interrupted task, the unwinder has no way of knowing where the saved pt_regs registers are, so it can't print them. This solves those issues by encoding the pt_regs pointer in the frame pointer on entry from an interrupt or an exception. This patch also updates the unwinder to be able to decode it, because otherwise the unwinder would be broken by this change. Note that this causes a change in the behavior of the unwinder: each instance of a pt_regs on the stack is now considered a "frame". So callers of unwind_get_return_address() will now get an occasional 'regs->ip' address that would have previously been skipped over. Suggested-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/8b9f84a21e39d249049e0547b559ff8da0df0988.1476973742.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-10-20 23:34:40 +07:00
if (state->regs && user_mode(state->regs))
goto the_end;
if (is_last_task_frame(state)) {
regs = task_pt_regs(state->task);
/*
* kthreads (other than the boot CPU's idle thread) have some
* partial regs at the end of their stack which were placed
* there by copy_thread_tls(). But the regs don't have any
* useful information, so we can skip them.
*
* This user_mode() check is slightly broader than a PF_KTHREAD
* check because it also catches the awkward situation where a
* newly forked kthread transitions into a user task by calling
* do_execve(), which eventually clears PF_KTHREAD.
*/
if (!user_mode(regs))
goto the_end;
/*
* We're almost at the end, but not quite: there's still the
* syscall regs frame. Entry code doesn't encode the regs
* pointer for syscalls, so we have to set it manually.
*/
state->regs = regs;
state->bp = NULL;
state->ip = 0;
return true;
}
/* Get the next frame pointer: */
x86/entry/unwind: Create stack frames for saved interrupt registers With frame pointers, when a task is interrupted, its stack is no longer completely reliable because the function could have been interrupted before it had a chance to save the previous frame pointer on the stack. So the caller of the interrupted function could get skipped by a stack trace. This is problematic for live patching, which needs to know whether a stack trace of a sleeping task can be relied upon. There's currently no way to detect if a sleeping task was interrupted by a page fault exception or preemption before it went to sleep. Another issue is that when dumping the stack of an interrupted task, the unwinder has no way of knowing where the saved pt_regs registers are, so it can't print them. This solves those issues by encoding the pt_regs pointer in the frame pointer on entry from an interrupt or an exception. This patch also updates the unwinder to be able to decode it, because otherwise the unwinder would be broken by this change. Note that this causes a change in the behavior of the unwinder: each instance of a pt_regs on the stack is now considered a "frame". So callers of unwind_get_return_address() will now get an occasional 'regs->ip' address that would have previously been skipped over. Suggested-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/8b9f84a21e39d249049e0547b559ff8da0df0988.1476973742.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-10-20 23:34:40 +07:00
if (state->regs)
next_bp = (unsigned long *)state->regs->bp;
else
next_bp = (unsigned long *)READ_ONCE_TASK_STACK(state->task, *state->bp);
x86/entry/unwind: Create stack frames for saved interrupt registers With frame pointers, when a task is interrupted, its stack is no longer completely reliable because the function could have been interrupted before it had a chance to save the previous frame pointer on the stack. So the caller of the interrupted function could get skipped by a stack trace. This is problematic for live patching, which needs to know whether a stack trace of a sleeping task can be relied upon. There's currently no way to detect if a sleeping task was interrupted by a page fault exception or preemption before it went to sleep. Another issue is that when dumping the stack of an interrupted task, the unwinder has no way of knowing where the saved pt_regs registers are, so it can't print them. This solves those issues by encoding the pt_regs pointer in the frame pointer on entry from an interrupt or an exception. This patch also updates the unwinder to be able to decode it, because otherwise the unwinder would be broken by this change. Note that this causes a change in the behavior of the unwinder: each instance of a pt_regs on the stack is now considered a "frame". So callers of unwind_get_return_address() will now get an occasional 'regs->ip' address that would have previously been skipped over. Suggested-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/8b9f84a21e39d249049e0547b559ff8da0df0988.1476973742.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-10-20 23:34:40 +07:00
/* Move to the next frame if it's safe: */
x86/unwind: Silence entry-related warnings A few people have reported unwinder warnings like the following: WARNING: kernel stack frame pointer at ffffc90000fe7ff0 in rsync:1157 has bad value (null) unwind stack type:0 next_sp: (null) mask:2 graph_idx:0 ffffc90000fe7f98: ffffc90000fe7ff0 (0xffffc90000fe7ff0) ffffc90000fe7fa0: ffffffffb7000f56 (trace_hardirqs_off_thunk+0x1a/0x1c) ffffc90000fe7fa8: 0000000000000246 (0x246) ffffc90000fe7fb0: 0000000000000000 ... ffffc90000fe7fc0: 00007ffe3af639bc (0x7ffe3af639bc) ffffc90000fe7fc8: 0000000000000006 (0x6) ffffc90000fe7fd0: 00007f80af433fc5 (0x7f80af433fc5) ffffc90000fe7fd8: 00007ffe3af638e0 (0x7ffe3af638e0) ffffc90000fe7fe0: 00007ffe3af638e0 (0x7ffe3af638e0) ffffc90000fe7fe8: 00007ffe3af63970 (0x7ffe3af63970) ffffc90000fe7ff0: 0000000000000000 ... ffffc90000fe7ff8: ffffffffb7b74b9a (entry_SYSCALL_64_after_swapgs+0x17/0x4f) This warning can happen when unwinding a code path where an interrupt occurred in x86 entry code before it set up the first stack frame. Silently ignore any warnings for this case. Reported-by: Daniel Borkmann <daniel@iogearbox.net> Reported-by: Dave Jones <davej@codemonkey.org.uk> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Fixes: c32c47c68a0a ("x86/unwind: Warn on bad frame pointer") Link: http://lkml.kernel.org/r/dbd6838826466a60dc23a52098185bc973ce2f1e.1492020577.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-04-13 01:47:12 +07:00
if (!update_stack_state(state, next_bp))
goto bad_address;
x86/unwind: Add new unwind interface and implementations The x86 stack dump code is a bit of a mess. dump_trace() uses callbacks, and each user of it seems to have slightly different requirements, so there are several slightly different callbacks floating around. Also there are some upcoming features which will need more changes to the stack dump code, including the printing of stack pt_regs, reliable stack detection for live patching, and a DWARF unwinder. Each of those features would at least need more callbacks and/or callback interfaces, resulting in a much bigger mess than what we have today. Before doing all that, we should try to clean things up and replace dump_trace() with something cleaner and more flexible. The new unwinder is a simple state machine which was heavily inspired by a suggestion from Andy Lutomirski: https://lkml.kernel.org/r/CALCETrUbNTqaM2LRyXGRx=kVLRPeY5A3Pc6k4TtQxF320rUT=w@mail.gmail.com It's also similar to the libunwind API: http://www.nongnu.org/libunwind/man/libunwind(3).html Some if its advantages: - Simplicity: no more callback sprawl and less code duplication. - Flexibility: it allows the caller to stop and inspect the stack state at each step in the unwinding process. - Modularity: the unwinder code, console stack dump code, and stack metadata analysis code are all better separated so that changing one of them shouldn't have much of an impact on any of the others. Two implementations are added which conform to the new unwind interface: - The frame pointer unwinder which is used for CONFIG_FRAME_POINTER=y. - The "guess" unwinder which is used for CONFIG_FRAME_POINTER=n. This isn't an "unwinder" per se. All it does is scan the stack for kernel text addresses. But with no frame pointers, guesses are better than nothing in most cases. Suggested-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Byungchul Park <byungchul.park@lge.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nilay Vaish <nilayvaish@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/6dc2f909c47533d213d0505f0a113e64585bec82.1474045023.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-09-17 02:18:12 +07:00
return true;
x86/entry/unwind: Create stack frames for saved interrupt registers With frame pointers, when a task is interrupted, its stack is no longer completely reliable because the function could have been interrupted before it had a chance to save the previous frame pointer on the stack. So the caller of the interrupted function could get skipped by a stack trace. This is problematic for live patching, which needs to know whether a stack trace of a sleeping task can be relied upon. There's currently no way to detect if a sleeping task was interrupted by a page fault exception or preemption before it went to sleep. Another issue is that when dumping the stack of an interrupted task, the unwinder has no way of knowing where the saved pt_regs registers are, so it can't print them. This solves those issues by encoding the pt_regs pointer in the frame pointer on entry from an interrupt or an exception. This patch also updates the unwinder to be able to decode it, because otherwise the unwinder would be broken by this change. Note that this causes a change in the behavior of the unwinder: each instance of a pt_regs on the stack is now considered a "frame". So callers of unwind_get_return_address() will now get an occasional 'regs->ip' address that would have previously been skipped over. Suggested-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/8b9f84a21e39d249049e0547b559ff8da0df0988.1476973742.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-10-20 23:34:40 +07:00
bad_address:
/*
* When unwinding a non-current task, the task might actually be
* running on another CPU, in which case it could be modifying its
* stack while we're reading it. This is generally not a problem and
* can be ignored as long as the caller understands that unwinding
* another task will not always succeed.
*/
if (state->task != current)
goto the_end;
x86/unwind: Silence entry-related warnings A few people have reported unwinder warnings like the following: WARNING: kernel stack frame pointer at ffffc90000fe7ff0 in rsync:1157 has bad value (null) unwind stack type:0 next_sp: (null) mask:2 graph_idx:0 ffffc90000fe7f98: ffffc90000fe7ff0 (0xffffc90000fe7ff0) ffffc90000fe7fa0: ffffffffb7000f56 (trace_hardirqs_off_thunk+0x1a/0x1c) ffffc90000fe7fa8: 0000000000000246 (0x246) ffffc90000fe7fb0: 0000000000000000 ... ffffc90000fe7fc0: 00007ffe3af639bc (0x7ffe3af639bc) ffffc90000fe7fc8: 0000000000000006 (0x6) ffffc90000fe7fd0: 00007f80af433fc5 (0x7f80af433fc5) ffffc90000fe7fd8: 00007ffe3af638e0 (0x7ffe3af638e0) ffffc90000fe7fe0: 00007ffe3af638e0 (0x7ffe3af638e0) ffffc90000fe7fe8: 00007ffe3af63970 (0x7ffe3af63970) ffffc90000fe7ff0: 0000000000000000 ... ffffc90000fe7ff8: ffffffffb7b74b9a (entry_SYSCALL_64_after_swapgs+0x17/0x4f) This warning can happen when unwinding a code path where an interrupt occurred in x86 entry code before it set up the first stack frame. Silently ignore any warnings for this case. Reported-by: Daniel Borkmann <daniel@iogearbox.net> Reported-by: Dave Jones <davej@codemonkey.org.uk> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Fixes: c32c47c68a0a ("x86/unwind: Warn on bad frame pointer") Link: http://lkml.kernel.org/r/dbd6838826466a60dc23a52098185bc973ce2f1e.1492020577.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-04-13 01:47:12 +07:00
/*
* Don't warn if the unwinder got lost due to an interrupt in entry
* code before the stack was set up:
*/
if (state->got_irq && in_entry_code(state->ip))
goto the_end;
if (state->regs) {
printk_deferred_once(KERN_WARNING
"WARNING: kernel stack regs at %p in %s:%d has bad 'bp' value %p\n",
state->regs, state->task->comm,
state->task->pid, next_bp);
unwind_dump(state, (unsigned long *)state->regs);
} else {
printk_deferred_once(KERN_WARNING
"WARNING: kernel stack frame pointer at %p in %s:%d has bad value %p\n",
state->bp, state->task->comm,
state->task->pid, next_bp);
unwind_dump(state, state->bp);
}
x86/entry/unwind: Create stack frames for saved interrupt registers With frame pointers, when a task is interrupted, its stack is no longer completely reliable because the function could have been interrupted before it had a chance to save the previous frame pointer on the stack. So the caller of the interrupted function could get skipped by a stack trace. This is problematic for live patching, which needs to know whether a stack trace of a sleeping task can be relied upon. There's currently no way to detect if a sleeping task was interrupted by a page fault exception or preemption before it went to sleep. Another issue is that when dumping the stack of an interrupted task, the unwinder has no way of knowing where the saved pt_regs registers are, so it can't print them. This solves those issues by encoding the pt_regs pointer in the frame pointer on entry from an interrupt or an exception. This patch also updates the unwinder to be able to decode it, because otherwise the unwinder would be broken by this change. Note that this causes a change in the behavior of the unwinder: each instance of a pt_regs on the stack is now considered a "frame". So callers of unwind_get_return_address() will now get an occasional 'regs->ip' address that would have previously been skipped over. Suggested-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/8b9f84a21e39d249049e0547b559ff8da0df0988.1476973742.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-10-20 23:34:40 +07:00
the_end:
state->stack_info.type = STACK_TYPE_UNKNOWN;
return false;
x86/unwind: Add new unwind interface and implementations The x86 stack dump code is a bit of a mess. dump_trace() uses callbacks, and each user of it seems to have slightly different requirements, so there are several slightly different callbacks floating around. Also there are some upcoming features which will need more changes to the stack dump code, including the printing of stack pt_regs, reliable stack detection for live patching, and a DWARF unwinder. Each of those features would at least need more callbacks and/or callback interfaces, resulting in a much bigger mess than what we have today. Before doing all that, we should try to clean things up and replace dump_trace() with something cleaner and more flexible. The new unwinder is a simple state machine which was heavily inspired by a suggestion from Andy Lutomirski: https://lkml.kernel.org/r/CALCETrUbNTqaM2LRyXGRx=kVLRPeY5A3Pc6k4TtQxF320rUT=w@mail.gmail.com It's also similar to the libunwind API: http://www.nongnu.org/libunwind/man/libunwind(3).html Some if its advantages: - Simplicity: no more callback sprawl and less code duplication. - Flexibility: it allows the caller to stop and inspect the stack state at each step in the unwinding process. - Modularity: the unwinder code, console stack dump code, and stack metadata analysis code are all better separated so that changing one of them shouldn't have much of an impact on any of the others. Two implementations are added which conform to the new unwind interface: - The frame pointer unwinder which is used for CONFIG_FRAME_POINTER=y. - The "guess" unwinder which is used for CONFIG_FRAME_POINTER=n. This isn't an "unwinder" per se. All it does is scan the stack for kernel text addresses. But with no frame pointers, guesses are better than nothing in most cases. Suggested-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Byungchul Park <byungchul.park@lge.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nilay Vaish <nilayvaish@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/6dc2f909c47533d213d0505f0a113e64585bec82.1474045023.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-09-17 02:18:12 +07:00
}
EXPORT_SYMBOL_GPL(unwind_next_frame);
void __unwind_start(struct unwind_state *state, struct task_struct *task,
struct pt_regs *regs, unsigned long *first_frame)
{
unsigned long *bp;
x86/entry/unwind: Create stack frames for saved interrupt registers With frame pointers, when a task is interrupted, its stack is no longer completely reliable because the function could have been interrupted before it had a chance to save the previous frame pointer on the stack. So the caller of the interrupted function could get skipped by a stack trace. This is problematic for live patching, which needs to know whether a stack trace of a sleeping task can be relied upon. There's currently no way to detect if a sleeping task was interrupted by a page fault exception or preemption before it went to sleep. Another issue is that when dumping the stack of an interrupted task, the unwinder has no way of knowing where the saved pt_regs registers are, so it can't print them. This solves those issues by encoding the pt_regs pointer in the frame pointer on entry from an interrupt or an exception. This patch also updates the unwinder to be able to decode it, because otherwise the unwinder would be broken by this change. Note that this causes a change in the behavior of the unwinder: each instance of a pt_regs on the stack is now considered a "frame". So callers of unwind_get_return_address() will now get an occasional 'regs->ip' address that would have previously been skipped over. Suggested-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/8b9f84a21e39d249049e0547b559ff8da0df0988.1476973742.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-10-20 23:34:40 +07:00
x86/unwind: Add new unwind interface and implementations The x86 stack dump code is a bit of a mess. dump_trace() uses callbacks, and each user of it seems to have slightly different requirements, so there are several slightly different callbacks floating around. Also there are some upcoming features which will need more changes to the stack dump code, including the printing of stack pt_regs, reliable stack detection for live patching, and a DWARF unwinder. Each of those features would at least need more callbacks and/or callback interfaces, resulting in a much bigger mess than what we have today. Before doing all that, we should try to clean things up and replace dump_trace() with something cleaner and more flexible. The new unwinder is a simple state machine which was heavily inspired by a suggestion from Andy Lutomirski: https://lkml.kernel.org/r/CALCETrUbNTqaM2LRyXGRx=kVLRPeY5A3Pc6k4TtQxF320rUT=w@mail.gmail.com It's also similar to the libunwind API: http://www.nongnu.org/libunwind/man/libunwind(3).html Some if its advantages: - Simplicity: no more callback sprawl and less code duplication. - Flexibility: it allows the caller to stop and inspect the stack state at each step in the unwinding process. - Modularity: the unwinder code, console stack dump code, and stack metadata analysis code are all better separated so that changing one of them shouldn't have much of an impact on any of the others. Two implementations are added which conform to the new unwind interface: - The frame pointer unwinder which is used for CONFIG_FRAME_POINTER=y. - The "guess" unwinder which is used for CONFIG_FRAME_POINTER=n. This isn't an "unwinder" per se. All it does is scan the stack for kernel text addresses. But with no frame pointers, guesses are better than nothing in most cases. Suggested-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Byungchul Park <byungchul.park@lge.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nilay Vaish <nilayvaish@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/6dc2f909c47533d213d0505f0a113e64585bec82.1474045023.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-09-17 02:18:12 +07:00
memset(state, 0, sizeof(*state));
state->task = task;
x86/unwind: Silence entry-related warnings A few people have reported unwinder warnings like the following: WARNING: kernel stack frame pointer at ffffc90000fe7ff0 in rsync:1157 has bad value (null) unwind stack type:0 next_sp: (null) mask:2 graph_idx:0 ffffc90000fe7f98: ffffc90000fe7ff0 (0xffffc90000fe7ff0) ffffc90000fe7fa0: ffffffffb7000f56 (trace_hardirqs_off_thunk+0x1a/0x1c) ffffc90000fe7fa8: 0000000000000246 (0x246) ffffc90000fe7fb0: 0000000000000000 ... ffffc90000fe7fc0: 00007ffe3af639bc (0x7ffe3af639bc) ffffc90000fe7fc8: 0000000000000006 (0x6) ffffc90000fe7fd0: 00007f80af433fc5 (0x7f80af433fc5) ffffc90000fe7fd8: 00007ffe3af638e0 (0x7ffe3af638e0) ffffc90000fe7fe0: 00007ffe3af638e0 (0x7ffe3af638e0) ffffc90000fe7fe8: 00007ffe3af63970 (0x7ffe3af63970) ffffc90000fe7ff0: 0000000000000000 ... ffffc90000fe7ff8: ffffffffb7b74b9a (entry_SYSCALL_64_after_swapgs+0x17/0x4f) This warning can happen when unwinding a code path where an interrupt occurred in x86 entry code before it set up the first stack frame. Silently ignore any warnings for this case. Reported-by: Daniel Borkmann <daniel@iogearbox.net> Reported-by: Dave Jones <davej@codemonkey.org.uk> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Fixes: c32c47c68a0a ("x86/unwind: Warn on bad frame pointer") Link: http://lkml.kernel.org/r/dbd6838826466a60dc23a52098185bc973ce2f1e.1492020577.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-04-13 01:47:12 +07:00
state->got_irq = (regs);
x86/unwind: Add new unwind interface and implementations The x86 stack dump code is a bit of a mess. dump_trace() uses callbacks, and each user of it seems to have slightly different requirements, so there are several slightly different callbacks floating around. Also there are some upcoming features which will need more changes to the stack dump code, including the printing of stack pt_regs, reliable stack detection for live patching, and a DWARF unwinder. Each of those features would at least need more callbacks and/or callback interfaces, resulting in a much bigger mess than what we have today. Before doing all that, we should try to clean things up and replace dump_trace() with something cleaner and more flexible. The new unwinder is a simple state machine which was heavily inspired by a suggestion from Andy Lutomirski: https://lkml.kernel.org/r/CALCETrUbNTqaM2LRyXGRx=kVLRPeY5A3Pc6k4TtQxF320rUT=w@mail.gmail.com It's also similar to the libunwind API: http://www.nongnu.org/libunwind/man/libunwind(3).html Some if its advantages: - Simplicity: no more callback sprawl and less code duplication. - Flexibility: it allows the caller to stop and inspect the stack state at each step in the unwinding process. - Modularity: the unwinder code, console stack dump code, and stack metadata analysis code are all better separated so that changing one of them shouldn't have much of an impact on any of the others. Two implementations are added which conform to the new unwind interface: - The frame pointer unwinder which is used for CONFIG_FRAME_POINTER=y. - The "guess" unwinder which is used for CONFIG_FRAME_POINTER=n. This isn't an "unwinder" per se. All it does is scan the stack for kernel text addresses. But with no frame pointers, guesses are better than nothing in most cases. Suggested-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Byungchul Park <byungchul.park@lge.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nilay Vaish <nilayvaish@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/6dc2f909c47533d213d0505f0a113e64585bec82.1474045023.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-09-17 02:18:12 +07:00
/* Don't even attempt to start from user mode regs: */
x86/unwind: Add new unwind interface and implementations The x86 stack dump code is a bit of a mess. dump_trace() uses callbacks, and each user of it seems to have slightly different requirements, so there are several slightly different callbacks floating around. Also there are some upcoming features which will need more changes to the stack dump code, including the printing of stack pt_regs, reliable stack detection for live patching, and a DWARF unwinder. Each of those features would at least need more callbacks and/or callback interfaces, resulting in a much bigger mess than what we have today. Before doing all that, we should try to clean things up and replace dump_trace() with something cleaner and more flexible. The new unwinder is a simple state machine which was heavily inspired by a suggestion from Andy Lutomirski: https://lkml.kernel.org/r/CALCETrUbNTqaM2LRyXGRx=kVLRPeY5A3Pc6k4TtQxF320rUT=w@mail.gmail.com It's also similar to the libunwind API: http://www.nongnu.org/libunwind/man/libunwind(3).html Some if its advantages: - Simplicity: no more callback sprawl and less code duplication. - Flexibility: it allows the caller to stop and inspect the stack state at each step in the unwinding process. - Modularity: the unwinder code, console stack dump code, and stack metadata analysis code are all better separated so that changing one of them shouldn't have much of an impact on any of the others. Two implementations are added which conform to the new unwind interface: - The frame pointer unwinder which is used for CONFIG_FRAME_POINTER=y. - The "guess" unwinder which is used for CONFIG_FRAME_POINTER=n. This isn't an "unwinder" per se. All it does is scan the stack for kernel text addresses. But with no frame pointers, guesses are better than nothing in most cases. Suggested-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Byungchul Park <byungchul.park@lge.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nilay Vaish <nilayvaish@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/6dc2f909c47533d213d0505f0a113e64585bec82.1474045023.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-09-17 02:18:12 +07:00
if (regs && user_mode(regs)) {
state->stack_info.type = STACK_TYPE_UNKNOWN;
return;
}
x86/entry/unwind: Create stack frames for saved interrupt registers With frame pointers, when a task is interrupted, its stack is no longer completely reliable because the function could have been interrupted before it had a chance to save the previous frame pointer on the stack. So the caller of the interrupted function could get skipped by a stack trace. This is problematic for live patching, which needs to know whether a stack trace of a sleeping task can be relied upon. There's currently no way to detect if a sleeping task was interrupted by a page fault exception or preemption before it went to sleep. Another issue is that when dumping the stack of an interrupted task, the unwinder has no way of knowing where the saved pt_regs registers are, so it can't print them. This solves those issues by encoding the pt_regs pointer in the frame pointer on entry from an interrupt or an exception. This patch also updates the unwinder to be able to decode it, because otherwise the unwinder would be broken by this change. Note that this causes a change in the behavior of the unwinder: each instance of a pt_regs on the stack is now considered a "frame". So callers of unwind_get_return_address() will now get an occasional 'regs->ip' address that would have previously been skipped over. Suggested-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/8b9f84a21e39d249049e0547b559ff8da0df0988.1476973742.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-10-20 23:34:40 +07:00
bp = get_frame_pointer(task, regs);
x86/unwind: Add new unwind interface and implementations The x86 stack dump code is a bit of a mess. dump_trace() uses callbacks, and each user of it seems to have slightly different requirements, so there are several slightly different callbacks floating around. Also there are some upcoming features which will need more changes to the stack dump code, including the printing of stack pt_regs, reliable stack detection for live patching, and a DWARF unwinder. Each of those features would at least need more callbacks and/or callback interfaces, resulting in a much bigger mess than what we have today. Before doing all that, we should try to clean things up and replace dump_trace() with something cleaner and more flexible. The new unwinder is a simple state machine which was heavily inspired by a suggestion from Andy Lutomirski: https://lkml.kernel.org/r/CALCETrUbNTqaM2LRyXGRx=kVLRPeY5A3Pc6k4TtQxF320rUT=w@mail.gmail.com It's also similar to the libunwind API: http://www.nongnu.org/libunwind/man/libunwind(3).html Some if its advantages: - Simplicity: no more callback sprawl and less code duplication. - Flexibility: it allows the caller to stop and inspect the stack state at each step in the unwinding process. - Modularity: the unwinder code, console stack dump code, and stack metadata analysis code are all better separated so that changing one of them shouldn't have much of an impact on any of the others. Two implementations are added which conform to the new unwind interface: - The frame pointer unwinder which is used for CONFIG_FRAME_POINTER=y. - The "guess" unwinder which is used for CONFIG_FRAME_POINTER=n. This isn't an "unwinder" per se. All it does is scan the stack for kernel text addresses. But with no frame pointers, guesses are better than nothing in most cases. Suggested-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Byungchul Park <byungchul.park@lge.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nilay Vaish <nilayvaish@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/6dc2f909c47533d213d0505f0a113e64585bec82.1474045023.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-09-17 02:18:12 +07:00
/* Initialize stack info and make sure the frame data is accessible: */
get_stack_info(bp, state->task, &state->stack_info,
x86/unwind: Add new unwind interface and implementations The x86 stack dump code is a bit of a mess. dump_trace() uses callbacks, and each user of it seems to have slightly different requirements, so there are several slightly different callbacks floating around. Also there are some upcoming features which will need more changes to the stack dump code, including the printing of stack pt_regs, reliable stack detection for live patching, and a DWARF unwinder. Each of those features would at least need more callbacks and/or callback interfaces, resulting in a much bigger mess than what we have today. Before doing all that, we should try to clean things up and replace dump_trace() with something cleaner and more flexible. The new unwinder is a simple state machine which was heavily inspired by a suggestion from Andy Lutomirski: https://lkml.kernel.org/r/CALCETrUbNTqaM2LRyXGRx=kVLRPeY5A3Pc6k4TtQxF320rUT=w@mail.gmail.com It's also similar to the libunwind API: http://www.nongnu.org/libunwind/man/libunwind(3).html Some if its advantages: - Simplicity: no more callback sprawl and less code duplication. - Flexibility: it allows the caller to stop and inspect the stack state at each step in the unwinding process. - Modularity: the unwinder code, console stack dump code, and stack metadata analysis code are all better separated so that changing one of them shouldn't have much of an impact on any of the others. Two implementations are added which conform to the new unwind interface: - The frame pointer unwinder which is used for CONFIG_FRAME_POINTER=y. - The "guess" unwinder which is used for CONFIG_FRAME_POINTER=n. This isn't an "unwinder" per se. All it does is scan the stack for kernel text addresses. But with no frame pointers, guesses are better than nothing in most cases. Suggested-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Byungchul Park <byungchul.park@lge.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nilay Vaish <nilayvaish@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/6dc2f909c47533d213d0505f0a113e64585bec82.1474045023.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-09-17 02:18:12 +07:00
&state->stack_mask);
update_stack_state(state, bp);
x86/unwind: Add new unwind interface and implementations The x86 stack dump code is a bit of a mess. dump_trace() uses callbacks, and each user of it seems to have slightly different requirements, so there are several slightly different callbacks floating around. Also there are some upcoming features which will need more changes to the stack dump code, including the printing of stack pt_regs, reliable stack detection for live patching, and a DWARF unwinder. Each of those features would at least need more callbacks and/or callback interfaces, resulting in a much bigger mess than what we have today. Before doing all that, we should try to clean things up and replace dump_trace() with something cleaner and more flexible. The new unwinder is a simple state machine which was heavily inspired by a suggestion from Andy Lutomirski: https://lkml.kernel.org/r/CALCETrUbNTqaM2LRyXGRx=kVLRPeY5A3Pc6k4TtQxF320rUT=w@mail.gmail.com It's also similar to the libunwind API: http://www.nongnu.org/libunwind/man/libunwind(3).html Some if its advantages: - Simplicity: no more callback sprawl and less code duplication. - Flexibility: it allows the caller to stop and inspect the stack state at each step in the unwinding process. - Modularity: the unwinder code, console stack dump code, and stack metadata analysis code are all better separated so that changing one of them shouldn't have much of an impact on any of the others. Two implementations are added which conform to the new unwind interface: - The frame pointer unwinder which is used for CONFIG_FRAME_POINTER=y. - The "guess" unwinder which is used for CONFIG_FRAME_POINTER=n. This isn't an "unwinder" per se. All it does is scan the stack for kernel text addresses. But with no frame pointers, guesses are better than nothing in most cases. Suggested-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Byungchul Park <byungchul.park@lge.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nilay Vaish <nilayvaish@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/6dc2f909c47533d213d0505f0a113e64585bec82.1474045023.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-09-17 02:18:12 +07:00
/*
* The caller can provide the address of the first frame directly
* (first_frame) or indirectly (regs->sp) to indicate which stack frame
* to start unwinding at. Skip ahead until we reach it.
*/
while (!unwind_done(state) &&
(!on_stack(&state->stack_info, first_frame, sizeof(long)) ||
state->bp < first_frame))
unwind_next_frame(state);
}
EXPORT_SYMBOL_GPL(__unwind_start);