linux_dsm_epyc7002/fs/cramfs/inode.c

741 lines
18 KiB
C
Raw Normal View History

/*
* Compressed rom filesystem for Linux.
*
* Copyright (C) 1999 Linus Torvalds.
*
* This file is released under the GPL.
*/
/*
* These are the VFS interfaces to the compressed rom filesystem.
* The actual compression is based on zlib, see the other files.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/blkdev.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/super.h>
#include <linux/slab.h>
#include <linux/vfs.h>
#include <linux/mutex.h>
#include <uapi/linux/cramfs_fs.h>
#include <linux/uaccess.h>
#include "internal.h"
/*
* cramfs super-block data in memory
*/
struct cramfs_sb_info {
unsigned long magic;
unsigned long size;
unsigned long blocks;
unsigned long files;
unsigned long flags;
void *linear_virt_addr;
resource_size_t linear_phys_addr;
size_t mtd_point_size;
};
static inline struct cramfs_sb_info *CRAMFS_SB(struct super_block *sb)
{
return sb->s_fs_info;
}
static const struct super_operations cramfs_ops;
static const struct inode_operations cramfs_dir_inode_operations;
static const struct file_operations cramfs_directory_operations;
static const struct address_space_operations cramfs_aops;
static DEFINE_MUTEX(read_mutex);
/* These macros may change in future, to provide better st_ino semantics. */
#define OFFSET(x) ((x)->i_ino)
static unsigned long cramino(const struct cramfs_inode *cino, unsigned int offset)
{
if (!cino->offset)
return offset + 1;
if (!cino->size)
return offset + 1;
/*
* The file mode test fixes buggy mkcramfs implementations where
* cramfs_inode->offset is set to a non zero value for entries
* which did not contain data, like devices node and fifos.
*/
switch (cino->mode & S_IFMT) {
case S_IFREG:
case S_IFDIR:
case S_IFLNK:
return cino->offset << 2;
default:
break;
}
return offset + 1;
}
static struct inode *get_cramfs_inode(struct super_block *sb,
const struct cramfs_inode *cramfs_inode, unsigned int offset)
{
struct inode *inode;
static struct timespec zerotime;
inode = iget_locked(sb, cramino(cramfs_inode, offset));
if (!inode)
return ERR_PTR(-ENOMEM);
if (!(inode->i_state & I_NEW))
return inode;
switch (cramfs_inode->mode & S_IFMT) {
case S_IFREG:
inode->i_fop = &generic_ro_fops;
inode->i_data.a_ops = &cramfs_aops;
break;
case S_IFDIR:
inode->i_op = &cramfs_dir_inode_operations;
inode->i_fop = &cramfs_directory_operations;
break;
case S_IFLNK:
inode->i_op = &page_symlink_inode_operations;
inode_nohighmem(inode);
inode->i_data.a_ops = &cramfs_aops;
break;
default:
init_special_inode(inode, cramfs_inode->mode,
old_decode_dev(cramfs_inode->size));
}
inode->i_mode = cramfs_inode->mode;
i_uid_write(inode, cramfs_inode->uid);
i_gid_write(inode, cramfs_inode->gid);
/* if the lower 2 bits are zero, the inode contains data */
if (!(inode->i_ino & 3)) {
inode->i_size = cramfs_inode->size;
inode->i_blocks = (cramfs_inode->size - 1) / 512 + 1;
}
/* Struct copy intentional */
inode->i_mtime = inode->i_atime = inode->i_ctime = zerotime;
/* inode->i_nlink is left 1 - arguably wrong for directories,
but it's the best we can do without reading the directory
contents. 1 yields the right result in GNU find, even
without -noleaf option. */
unlock_new_inode(inode);
return inode;
}
/*
* We have our own block cache: don't fill up the buffer cache
* with the rom-image, because the way the filesystem is set
* up the accesses should be fairly regular and cached in the
* page cache and dentry tree anyway..
*
* This also acts as a way to guarantee contiguous areas of up to
* BLKS_PER_BUF*PAGE_SIZE, so that the caller doesn't need to
* worry about end-of-buffer issues even when decompressing a full
* page cache.
*
* Note: This is all optimized away at compile time when
* CONFIG_CRAMFS_BLOCKDEV=n.
*/
#define READ_BUFFERS (2)
/* NEXT_BUFFER(): Loop over [0..(READ_BUFFERS-1)]. */
#define NEXT_BUFFER(_ix) ((_ix) ^ 1)
/*
* BLKS_PER_BUF_SHIFT should be at least 2 to allow for "compressed"
* data that takes up more space than the original and with unlucky
* alignment.
*/
#define BLKS_PER_BUF_SHIFT (2)
#define BLKS_PER_BUF (1 << BLKS_PER_BUF_SHIFT)
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 19:29:47 +07:00
#define BUFFER_SIZE (BLKS_PER_BUF*PAGE_SIZE)
static unsigned char read_buffers[READ_BUFFERS][BUFFER_SIZE];
static unsigned buffer_blocknr[READ_BUFFERS];
static struct super_block *buffer_dev[READ_BUFFERS];
static int next_buffer;
/*
* Populate our block cache and return a pointer to it.
*/
static void *cramfs_blkdev_read(struct super_block *sb, unsigned int offset,
unsigned int len)
{
struct address_space *mapping = sb->s_bdev->bd_inode->i_mapping;
struct page *pages[BLKS_PER_BUF];
unsigned i, blocknr, buffer;
unsigned long devsize;
char *data;
if (!len)
return NULL;
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 19:29:47 +07:00
blocknr = offset >> PAGE_SHIFT;
offset &= PAGE_SIZE - 1;
/* Check if an existing buffer already has the data.. */
for (i = 0; i < READ_BUFFERS; i++) {
unsigned int blk_offset;
if (buffer_dev[i] != sb)
continue;
if (blocknr < buffer_blocknr[i])
continue;
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 19:29:47 +07:00
blk_offset = (blocknr - buffer_blocknr[i]) << PAGE_SHIFT;
blk_offset += offset;
if (blk_offset + len > BUFFER_SIZE)
continue;
return read_buffers[i] + blk_offset;
}
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 19:29:47 +07:00
devsize = mapping->host->i_size >> PAGE_SHIFT;
/* Ok, read in BLKS_PER_BUF pages completely first. */
for (i = 0; i < BLKS_PER_BUF; i++) {
struct page *page = NULL;
if (blocknr + i < devsize) {
mm: remove read_cache_page_async() This patch removes read_cache_page_async() which wasn't really needed anywhere and simplifies the code around it a bit. read_cache_page_async() is useful when we want to read a page into the cache without waiting for it to complete. This happens when the appropriate callback 'filler' doesn't complete its read operation and releases the page lock immediately, and instead queues a different completion routine to do that. This never actually happened anywhere in the code. read_cache_page_async() had 3 different callers: - read_cache_page() which is the sync version, it would just wait for the requested read to complete using wait_on_page_read(). - JFFS2 would call it from jffs2_gc_fetch_page(), but the filler function it supplied doesn't do any async reads, and would complete before the filler function returns - making it actually a sync read. - CRAMFS would call it using the read_mapping_page_async() wrapper, with a similar story to JFFS2 - the filler function doesn't do anything that reminds async reads and would always complete before the filler function returns. To sum it up, the code in mm/filemap.c never took advantage of having read_cache_page_async(). While there are filler callbacks that do async reads (such as the block one), we always called it with the read_cache_page(). This patch adds a mandatory wait for read to complete when adding a new page to the cache, and removes read_cache_page_async() and its wrappers. Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 04:48:18 +07:00
page = read_mapping_page(mapping, blocknr + i, NULL);
/* synchronous error? */
if (IS_ERR(page))
page = NULL;
}
pages[i] = page;
}
for (i = 0; i < BLKS_PER_BUF; i++) {
struct page *page = pages[i];
if (page) {
wait_on_page_locked(page);
if (!PageUptodate(page)) {
/* asynchronous error */
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 19:29:47 +07:00
put_page(page);
pages[i] = NULL;
}
}
}
buffer = next_buffer;
next_buffer = NEXT_BUFFER(buffer);
buffer_blocknr[buffer] = blocknr;
buffer_dev[buffer] = sb;
data = read_buffers[buffer];
for (i = 0; i < BLKS_PER_BUF; i++) {
struct page *page = pages[i];
if (page) {
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 19:29:47 +07:00
memcpy(data, kmap(page), PAGE_SIZE);
kunmap(page);
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 19:29:47 +07:00
put_page(page);
} else
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 19:29:47 +07:00
memset(data, 0, PAGE_SIZE);
data += PAGE_SIZE;
}
return read_buffers[buffer] + offset;
}
/*
* Return a pointer to the linearly addressed cramfs image in memory.
*/
static void *cramfs_direct_read(struct super_block *sb, unsigned int offset,
unsigned int len)
{
struct cramfs_sb_info *sbi = CRAMFS_SB(sb);
if (!len)
return NULL;
if (len > sbi->size || offset > sbi->size - len)
return page_address(ZERO_PAGE(0));
return sbi->linear_virt_addr + offset;
}
/*
* Returns a pointer to a buffer containing at least LEN bytes of
* filesystem starting at byte offset OFFSET into the filesystem.
*/
static void *cramfs_read(struct super_block *sb, unsigned int offset,
unsigned int len)
{
struct cramfs_sb_info *sbi = CRAMFS_SB(sb);
if (IS_ENABLED(CONFIG_CRAMFS_MTD) && sbi->linear_virt_addr)
return cramfs_direct_read(sb, offset, len);
else if (IS_ENABLED(CONFIG_CRAMFS_BLOCKDEV))
return cramfs_blkdev_read(sb, offset, len);
else
return NULL;
}
static void cramfs_kill_sb(struct super_block *sb)
{
struct cramfs_sb_info *sbi = CRAMFS_SB(sb);
if (IS_ENABLED(CCONFIG_CRAMFS_MTD) && sb->s_mtd) {
if (sbi && sbi->mtd_point_size)
mtd_unpoint(sb->s_mtd, 0, sbi->mtd_point_size);
kill_mtd_super(sb);
} else if (IS_ENABLED(CONFIG_CRAMFS_BLOCKDEV) && sb->s_bdev) {
kill_block_super(sb);
}
kfree(sbi);
}
static int cramfs_remount(struct super_block *sb, int *flags, char *data)
{
fs: push sync_filesystem() down to the file system's remount_fs() Previously, the no-op "mount -o mount /dev/xxx" operation when the file system is already mounted read-write causes an implied, unconditional syncfs(). This seems pretty stupid, and it's certainly documented or guaraunteed to do this, nor is it particularly useful, except in the case where the file system was mounted rw and is getting remounted read-only. However, it's possible that there might be some file systems that are actually depending on this behavior. In most file systems, it's probably fine to only call sync_filesystem() when transitioning from read-write to read-only, and there are some file systems where this is not needed at all (for example, for a pseudo-filesystem or something like romfs). Signed-off-by: "Theodore Ts'o" <tytso@mit.edu> Cc: linux-fsdevel@vger.kernel.org Cc: Christoph Hellwig <hch@infradead.org> Cc: Artem Bityutskiy <dedekind1@gmail.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Evgeniy Dushistov <dushistov@mail.ru> Cc: Jan Kara <jack@suse.cz> Cc: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp> Cc: Anders Larsen <al@alarsen.net> Cc: Phillip Lougher <phillip@squashfs.org.uk> Cc: Kees Cook <keescook@chromium.org> Cc: Mikulas Patocka <mikulas@artax.karlin.mff.cuni.cz> Cc: Petr Vandrovec <petr@vandrovec.name> Cc: xfs@oss.sgi.com Cc: linux-btrfs@vger.kernel.org Cc: linux-cifs@vger.kernel.org Cc: samba-technical@lists.samba.org Cc: codalist@coda.cs.cmu.edu Cc: linux-ext4@vger.kernel.org Cc: linux-f2fs-devel@lists.sourceforge.net Cc: fuse-devel@lists.sourceforge.net Cc: cluster-devel@redhat.com Cc: linux-mtd@lists.infradead.org Cc: jfs-discussion@lists.sourceforge.net Cc: linux-nfs@vger.kernel.org Cc: linux-nilfs@vger.kernel.org Cc: linux-ntfs-dev@lists.sourceforge.net Cc: ocfs2-devel@oss.oracle.com Cc: reiserfs-devel@vger.kernel.org
2014-03-13 21:14:33 +07:00
sync_filesystem(sb);
*flags |= MS_RDONLY;
return 0;
}
static int cramfs_read_super(struct super_block *sb,
struct cramfs_super *super, int silent)
{
struct cramfs_sb_info *sbi = CRAMFS_SB(sb);
unsigned long root_offset;
/* We don't know the real size yet */
sbi->size = PAGE_SIZE;
/* Read the first block and get the superblock from it */
mutex_lock(&read_mutex);
memcpy(super, cramfs_read(sb, 0, sizeof(*super)), sizeof(*super));
mutex_unlock(&read_mutex);
/* Do sanity checks on the superblock */
if (super->magic != CRAMFS_MAGIC) {
/* check for wrong endianness */
if (super->magic == CRAMFS_MAGIC_WEND) {
if (!silent)
pr_err("wrong endianness\n");
return -EINVAL;
}
/* check at 512 byte offset */
mutex_lock(&read_mutex);
memcpy(super,
cramfs_read(sb, 512, sizeof(*super)),
sizeof(*super));
mutex_unlock(&read_mutex);
if (super->magic != CRAMFS_MAGIC) {
if (super->magic == CRAMFS_MAGIC_WEND && !silent)
pr_err("wrong endianness\n");
else if (!silent)
pr_err("wrong magic\n");
return -EINVAL;
}
}
/* get feature flags first */
if (super->flags & ~CRAMFS_SUPPORTED_FLAGS) {
pr_err("unsupported filesystem features\n");
return -EINVAL;
}
/* Check that the root inode is in a sane state */
if (!S_ISDIR(super->root.mode)) {
pr_err("root is not a directory\n");
return -EINVAL;
}
/* correct strange, hard-coded permissions of mkcramfs */
super->root.mode |= 0555;
root_offset = super->root.offset << 2;
if (super->flags & CRAMFS_FLAG_FSID_VERSION_2) {
sbi->size = super->size;
sbi->blocks = super->fsid.blocks;
sbi->files = super->fsid.files;
} else {
sbi->size = 1<<28;
sbi->blocks = 0;
sbi->files = 0;
}
sbi->magic = super->magic;
sbi->flags = super->flags;
if (root_offset == 0)
pr_info("empty filesystem");
else if (!(super->flags & CRAMFS_FLAG_SHIFTED_ROOT_OFFSET) &&
((root_offset != sizeof(struct cramfs_super)) &&
(root_offset != 512 + sizeof(struct cramfs_super))))
{
pr_err("bad root offset %lu\n", root_offset);
return -EINVAL;
}
return 0;
}
static int cramfs_finalize_super(struct super_block *sb,
struct cramfs_inode *cramfs_root)
{
struct inode *root;
/* Set it all up.. */
sb->s_flags |= MS_RDONLY;
sb->s_op = &cramfs_ops;
root = get_cramfs_inode(sb, cramfs_root, 0);
if (IS_ERR(root))
return PTR_ERR(root);
sb->s_root = d_make_root(root);
if (!sb->s_root)
return -ENOMEM;
return 0;
}
static int cramfs_blkdev_fill_super(struct super_block *sb, void *data,
int silent)
{
struct cramfs_sb_info *sbi;
struct cramfs_super super;
int i, err;
sbi = kzalloc(sizeof(struct cramfs_sb_info), GFP_KERNEL);
if (!sbi)
return -ENOMEM;
sb->s_fs_info = sbi;
/* Invalidate the read buffers on mount: think disk change.. */
for (i = 0; i < READ_BUFFERS; i++)
buffer_blocknr[i] = -1;
err = cramfs_read_super(sb, &super, silent);
if (err)
return err;
return cramfs_finalize_super(sb, &super.root);
}
static int cramfs_mtd_fill_super(struct super_block *sb, void *data,
int silent)
{
struct cramfs_sb_info *sbi;
struct cramfs_super super;
int err;
sbi = kzalloc(sizeof(struct cramfs_sb_info), GFP_KERNEL);
if (!sbi)
return -ENOMEM;
sb->s_fs_info = sbi;
/* Map only one page for now. Will remap it when fs size is known. */
err = mtd_point(sb->s_mtd, 0, PAGE_SIZE, &sbi->mtd_point_size,
&sbi->linear_virt_addr, &sbi->linear_phys_addr);
if (err || sbi->mtd_point_size != PAGE_SIZE) {
pr_err("unable to get direct memory access to mtd:%s\n",
sb->s_mtd->name);
return err ? : -ENODATA;
}
pr_info("checking physical address %pap for linear cramfs image\n",
&sbi->linear_phys_addr);
err = cramfs_read_super(sb, &super, silent);
if (err)
return err;
/* Remap the whole filesystem now */
pr_info("linear cramfs image on mtd:%s appears to be %lu KB in size\n",
sb->s_mtd->name, sbi->size/1024);
mtd_unpoint(sb->s_mtd, 0, PAGE_SIZE);
err = mtd_point(sb->s_mtd, 0, sbi->size, &sbi->mtd_point_size,
&sbi->linear_virt_addr, &sbi->linear_phys_addr);
if (err || sbi->mtd_point_size != sbi->size) {
pr_err("unable to get direct memory access to mtd:%s\n",
sb->s_mtd->name);
return err ? : -ENODATA;
}
return cramfs_finalize_super(sb, &super.root);
}
static int cramfs_statfs(struct dentry *dentry, struct kstatfs *buf)
{
struct super_block *sb = dentry->d_sb;
u64 id = 0;
if (sb->s_bdev)
id = huge_encode_dev(sb->s_bdev->bd_dev);
else if (sb->s_dev)
id = huge_encode_dev(sb->s_dev);
buf->f_type = CRAMFS_MAGIC;
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 19:29:47 +07:00
buf->f_bsize = PAGE_SIZE;
buf->f_blocks = CRAMFS_SB(sb)->blocks;
buf->f_bfree = 0;
buf->f_bavail = 0;
buf->f_files = CRAMFS_SB(sb)->files;
buf->f_ffree = 0;
buf->f_fsid.val[0] = (u32)id;
buf->f_fsid.val[1] = (u32)(id >> 32);
buf->f_namelen = CRAMFS_MAXPATHLEN;
return 0;
}
/*
* Read a cramfs directory entry.
*/
static int cramfs_readdir(struct file *file, struct dir_context *ctx)
{
struct inode *inode = file_inode(file);
struct super_block *sb = inode->i_sb;
char *buf;
unsigned int offset;
/* Offset within the thing. */
if (ctx->pos >= inode->i_size)
return 0;
offset = ctx->pos;
/* Directory entries are always 4-byte aligned */
if (offset & 3)
return -EINVAL;
buf = kmalloc(CRAMFS_MAXPATHLEN, GFP_KERNEL);
if (!buf)
return -ENOMEM;
while (offset < inode->i_size) {
struct cramfs_inode *de;
unsigned long nextoffset;
char *name;
ino_t ino;
umode_t mode;
int namelen;
mutex_lock(&read_mutex);
de = cramfs_read(sb, OFFSET(inode) + offset, sizeof(*de)+CRAMFS_MAXPATHLEN);
name = (char *)(de+1);
/*
* Namelengths on disk are shifted by two
* and the name padded out to 4-byte boundaries
* with zeroes.
*/
namelen = de->namelen << 2;
memcpy(buf, name, namelen);
ino = cramino(de, OFFSET(inode) + offset);
mode = de->mode;
mutex_unlock(&read_mutex);
nextoffset = offset + sizeof(*de) + namelen;
for (;;) {
if (!namelen) {
kfree(buf);
return -EIO;
}
if (buf[namelen-1])
break;
namelen--;
}
if (!dir_emit(ctx, buf, namelen, ino, mode >> 12))
break;
ctx->pos = offset = nextoffset;
}
kfree(buf);
return 0;
}
/*
* Lookup and fill in the inode data..
*/
static struct dentry *cramfs_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
{
unsigned int offset = 0;
struct inode *inode = NULL;
int sorted;
mutex_lock(&read_mutex);
sorted = CRAMFS_SB(dir->i_sb)->flags & CRAMFS_FLAG_SORTED_DIRS;
while (offset < dir->i_size) {
struct cramfs_inode *de;
char *name;
int namelen, retval;
int dir_off = OFFSET(dir) + offset;
de = cramfs_read(dir->i_sb, dir_off, sizeof(*de)+CRAMFS_MAXPATHLEN);
name = (char *)(de+1);
/* Try to take advantage of sorted directories */
if (sorted && (dentry->d_name.name[0] < name[0]))
break;
namelen = de->namelen << 2;
offset += sizeof(*de) + namelen;
/* Quick check that the name is roughly the right length */
if (((dentry->d_name.len + 3) & ~3) != namelen)
continue;
for (;;) {
if (!namelen) {
inode = ERR_PTR(-EIO);
goto out;
}
if (name[namelen-1])
break;
namelen--;
}
if (namelen != dentry->d_name.len)
continue;
retval = memcmp(dentry->d_name.name, name, namelen);
if (retval > 0)
continue;
if (!retval) {
inode = get_cramfs_inode(dir->i_sb, de, dir_off);
break;
}
/* else (retval < 0) */
if (sorted)
break;
}
out:
mutex_unlock(&read_mutex);
if (IS_ERR(inode))
return ERR_CAST(inode);
d_add(dentry, inode);
return NULL;
}
static int cramfs_readpage(struct file *file, struct page *page)
{
struct inode *inode = page->mapping->host;
u32 maxblock;
int bytes_filled;
void *pgdata;
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 19:29:47 +07:00
maxblock = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
bytes_filled = 0;
pgdata = kmap(page);
if (page->index < maxblock) {
struct super_block *sb = inode->i_sb;
u32 blkptr_offset = OFFSET(inode) + page->index*4;
u32 start_offset, compr_len;
start_offset = OFFSET(inode) + maxblock*4;
mutex_lock(&read_mutex);
if (page->index)
start_offset = *(u32 *) cramfs_read(sb, blkptr_offset-4,
4);
compr_len = (*(u32 *) cramfs_read(sb, blkptr_offset, 4) -
start_offset);
mutex_unlock(&read_mutex);
if (compr_len == 0)
; /* hole */
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 19:29:47 +07:00
else if (unlikely(compr_len > (PAGE_SIZE << 1))) {
pr_err("bad compressed blocksize %u\n",
compr_len);
goto err;
} else {
mutex_lock(&read_mutex);
bytes_filled = cramfs_uncompress_block(pgdata,
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 19:29:47 +07:00
PAGE_SIZE,
cramfs_read(sb, start_offset, compr_len),
compr_len);
mutex_unlock(&read_mutex);
if (unlikely(bytes_filled < 0))
goto err;
}
}
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 19:29:47 +07:00
memset(pgdata + bytes_filled, 0, PAGE_SIZE - bytes_filled);
flush_dcache_page(page);
kunmap(page);
SetPageUptodate(page);
unlock_page(page);
return 0;
err:
kunmap(page);
ClearPageUptodate(page);
SetPageError(page);
unlock_page(page);
return 0;
}
static const struct address_space_operations cramfs_aops = {
.readpage = cramfs_readpage
};
/*
* Our operations:
*/
/*
* A directory can only readdir
*/
static const struct file_operations cramfs_directory_operations = {
.llseek = generic_file_llseek,
.read = generic_read_dir,
.iterate_shared = cramfs_readdir,
};
static const struct inode_operations cramfs_dir_inode_operations = {
.lookup = cramfs_lookup,
};
static const struct super_operations cramfs_ops = {
.remount_fs = cramfs_remount,
.statfs = cramfs_statfs,
};
static struct dentry *cramfs_mount(struct file_system_type *fs_type, int flags,
const char *dev_name, void *data)
{
struct dentry *ret = ERR_PTR(-ENOPROTOOPT);
if (IS_ENABLED(CONFIG_CRAMFS_MTD)) {
ret = mount_mtd(fs_type, flags, dev_name, data,
cramfs_mtd_fill_super);
if (!IS_ERR(ret))
return ret;
}
if (IS_ENABLED(CONFIG_CRAMFS_BLOCKDEV)) {
ret = mount_bdev(fs_type, flags, dev_name, data,
cramfs_blkdev_fill_super);
}
return ret;
}
static struct file_system_type cramfs_fs_type = {
.owner = THIS_MODULE,
.name = "cramfs",
.mount = cramfs_mount,
.kill_sb = cramfs_kill_sb,
.fs_flags = FS_REQUIRES_DEV,
};
fs: Limit sys_mount to only request filesystem modules. Modify the request_module to prefix the file system type with "fs-" and add aliases to all of the filesystems that can be built as modules to match. A common practice is to build all of the kernel code and leave code that is not commonly needed as modules, with the result that many users are exposed to any bug anywhere in the kernel. Looking for filesystems with a fs- prefix limits the pool of possible modules that can be loaded by mount to just filesystems trivially making things safer with no real cost. Using aliases means user space can control the policy of which filesystem modules are auto-loaded by editing /etc/modprobe.d/*.conf with blacklist and alias directives. Allowing simple, safe, well understood work-arounds to known problematic software. This also addresses a rare but unfortunate problem where the filesystem name is not the same as it's module name and module auto-loading would not work. While writing this patch I saw a handful of such cases. The most significant being autofs that lives in the module autofs4. This is relevant to user namespaces because we can reach the request module in get_fs_type() without having any special permissions, and people get uncomfortable when a user specified string (in this case the filesystem type) goes all of the way to request_module. After having looked at this issue I don't think there is any particular reason to perform any filtering or permission checks beyond making it clear in the module request that we want a filesystem module. The common pattern in the kernel is to call request_module() without regards to the users permissions. In general all a filesystem module does once loaded is call register_filesystem() and go to sleep. Which means there is not much attack surface exposed by loading a filesytem module unless the filesystem is mounted. In a user namespace filesystems are not mounted unless .fs_flags = FS_USERNS_MOUNT, which most filesystems do not set today. Acked-by: Serge Hallyn <serge.hallyn@canonical.com> Acked-by: Kees Cook <keescook@chromium.org> Reported-by: Kees Cook <keescook@google.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2013-03-03 10:39:14 +07:00
MODULE_ALIAS_FS("cramfs");
static int __init init_cramfs_fs(void)
{
int rv;
rv = cramfs_uncompress_init();
if (rv < 0)
return rv;
rv = register_filesystem(&cramfs_fs_type);
if (rv < 0)
cramfs_uncompress_exit();
return rv;
}
static void __exit exit_cramfs_fs(void)
{
cramfs_uncompress_exit();
unregister_filesystem(&cramfs_fs_type);
}
module_init(init_cramfs_fs)
module_exit(exit_cramfs_fs)
MODULE_LICENSE("GPL");