linux_dsm_epyc7002/drivers/mmc/host/cqhci.c

1166 lines
28 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2015, The Linux Foundation. All rights reserved.
*/
#include <linux/delay.h>
#include <linux/highmem.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include <linux/scatterlist.h>
#include <linux/platform_device.h>
#include <linux/ktime.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/host.h>
#include <linux/mmc/card.h>
#include "cqhci.h"
#define DCMD_SLOT 31
#define NUM_SLOTS 32
struct cqhci_slot {
struct mmc_request *mrq;
unsigned int flags;
#define CQHCI_EXTERNAL_TIMEOUT BIT(0)
#define CQHCI_COMPLETED BIT(1)
#define CQHCI_HOST_CRC BIT(2)
#define CQHCI_HOST_TIMEOUT BIT(3)
#define CQHCI_HOST_OTHER BIT(4)
};
static inline u8 *get_desc(struct cqhci_host *cq_host, u8 tag)
{
return cq_host->desc_base + (tag * cq_host->slot_sz);
}
static inline u8 *get_link_desc(struct cqhci_host *cq_host, u8 tag)
{
u8 *desc = get_desc(cq_host, tag);
return desc + cq_host->task_desc_len;
}
static inline dma_addr_t get_trans_desc_dma(struct cqhci_host *cq_host, u8 tag)
{
return cq_host->trans_desc_dma_base +
(cq_host->mmc->max_segs * tag *
cq_host->trans_desc_len);
}
static inline u8 *get_trans_desc(struct cqhci_host *cq_host, u8 tag)
{
return cq_host->trans_desc_base +
(cq_host->trans_desc_len * cq_host->mmc->max_segs * tag);
}
static void setup_trans_desc(struct cqhci_host *cq_host, u8 tag)
{
u8 *link_temp;
dma_addr_t trans_temp;
link_temp = get_link_desc(cq_host, tag);
trans_temp = get_trans_desc_dma(cq_host, tag);
memset(link_temp, 0, cq_host->link_desc_len);
if (cq_host->link_desc_len > 8)
*(link_temp + 8) = 0;
if (tag == DCMD_SLOT && (cq_host->mmc->caps2 & MMC_CAP2_CQE_DCMD)) {
*link_temp = CQHCI_VALID(0) | CQHCI_ACT(0) | CQHCI_END(1);
return;
}
*link_temp = CQHCI_VALID(1) | CQHCI_ACT(0x6) | CQHCI_END(0);
if (cq_host->dma64) {
__le64 *data_addr = (__le64 __force *)(link_temp + 4);
data_addr[0] = cpu_to_le64(trans_temp);
} else {
__le32 *data_addr = (__le32 __force *)(link_temp + 4);
data_addr[0] = cpu_to_le32(trans_temp);
}
}
static void cqhci_set_irqs(struct cqhci_host *cq_host, u32 set)
{
cqhci_writel(cq_host, set, CQHCI_ISTE);
cqhci_writel(cq_host, set, CQHCI_ISGE);
}
#define DRV_NAME "cqhci"
#define CQHCI_DUMP(f, x...) \
pr_err("%s: " DRV_NAME ": " f, mmc_hostname(mmc), ## x)
static void cqhci_dumpregs(struct cqhci_host *cq_host)
{
struct mmc_host *mmc = cq_host->mmc;
CQHCI_DUMP("============ CQHCI REGISTER DUMP ===========\n");
CQHCI_DUMP("Caps: 0x%08x | Version: 0x%08x\n",
cqhci_readl(cq_host, CQHCI_CAP),
cqhci_readl(cq_host, CQHCI_VER));
CQHCI_DUMP("Config: 0x%08x | Control: 0x%08x\n",
cqhci_readl(cq_host, CQHCI_CFG),
cqhci_readl(cq_host, CQHCI_CTL));
CQHCI_DUMP("Int stat: 0x%08x | Int enab: 0x%08x\n",
cqhci_readl(cq_host, CQHCI_IS),
cqhci_readl(cq_host, CQHCI_ISTE));
CQHCI_DUMP("Int sig: 0x%08x | Int Coal: 0x%08x\n",
cqhci_readl(cq_host, CQHCI_ISGE),
cqhci_readl(cq_host, CQHCI_IC));
CQHCI_DUMP("TDL base: 0x%08x | TDL up32: 0x%08x\n",
cqhci_readl(cq_host, CQHCI_TDLBA),
cqhci_readl(cq_host, CQHCI_TDLBAU));
CQHCI_DUMP("Doorbell: 0x%08x | TCN: 0x%08x\n",
cqhci_readl(cq_host, CQHCI_TDBR),
cqhci_readl(cq_host, CQHCI_TCN));
CQHCI_DUMP("Dev queue: 0x%08x | Dev Pend: 0x%08x\n",
cqhci_readl(cq_host, CQHCI_DQS),
cqhci_readl(cq_host, CQHCI_DPT));
CQHCI_DUMP("Task clr: 0x%08x | SSC1: 0x%08x\n",
cqhci_readl(cq_host, CQHCI_TCLR),
cqhci_readl(cq_host, CQHCI_SSC1));
CQHCI_DUMP("SSC2: 0x%08x | DCMD rsp: 0x%08x\n",
cqhci_readl(cq_host, CQHCI_SSC2),
cqhci_readl(cq_host, CQHCI_CRDCT));
CQHCI_DUMP("RED mask: 0x%08x | TERRI: 0x%08x\n",
cqhci_readl(cq_host, CQHCI_RMEM),
cqhci_readl(cq_host, CQHCI_TERRI));
CQHCI_DUMP("Resp idx: 0x%08x | Resp arg: 0x%08x\n",
cqhci_readl(cq_host, CQHCI_CRI),
cqhci_readl(cq_host, CQHCI_CRA));
if (cq_host->ops->dumpregs)
cq_host->ops->dumpregs(mmc);
else
CQHCI_DUMP(": ===========================================\n");
}
/*
* The allocated descriptor table for task, link & transfer descritors
* looks like:
* |----------|
* |task desc | |->|----------|
* |----------| | |trans desc|
* |link desc-|->| |----------|
* |----------| .
* . .
* no. of slots max-segs
* . |----------|
* |----------|
* The idea here is to create the [task+trans] table and mark & point the
* link desc to the transfer desc table on a per slot basis.
*/
static int cqhci_host_alloc_tdl(struct cqhci_host *cq_host)
{
int i = 0;
/* task descriptor can be 64/128 bit irrespective of arch */
if (cq_host->caps & CQHCI_TASK_DESC_SZ_128) {
cqhci_writel(cq_host, cqhci_readl(cq_host, CQHCI_CFG) |
CQHCI_TASK_DESC_SZ, CQHCI_CFG);
cq_host->task_desc_len = 16;
} else {
cq_host->task_desc_len = 8;
}
/*
* 96 bits length of transfer desc instead of 128 bits which means
* ADMA would expect next valid descriptor at the 96th bit
* or 128th bit
*/
if (cq_host->dma64) {
if (cq_host->quirks & CQHCI_QUIRK_SHORT_TXFR_DESC_SZ)
cq_host->trans_desc_len = 12;
else
cq_host->trans_desc_len = 16;
cq_host->link_desc_len = 16;
} else {
cq_host->trans_desc_len = 8;
cq_host->link_desc_len = 8;
}
/* total size of a slot: 1 task & 1 transfer (link) */
cq_host->slot_sz = cq_host->task_desc_len + cq_host->link_desc_len;
cq_host->desc_size = cq_host->slot_sz * cq_host->num_slots;
cq_host->data_size = cq_host->trans_desc_len * cq_host->mmc->max_segs *
cq_host->mmc->cqe_qdepth;
pr_debug("%s: cqhci: desc_size: %zu data_sz: %zu slot-sz: %d\n",
mmc_hostname(cq_host->mmc), cq_host->desc_size, cq_host->data_size,
cq_host->slot_sz);
/*
* allocate a dma-mapped chunk of memory for the descriptors
* allocate a dma-mapped chunk of memory for link descriptors
* setup each link-desc memory offset per slot-number to
* the descriptor table.
*/
cq_host->desc_base = dmam_alloc_coherent(mmc_dev(cq_host->mmc),
cq_host->desc_size,
&cq_host->desc_dma_base,
GFP_KERNEL);
if (!cq_host->desc_base)
return -ENOMEM;
cq_host->trans_desc_base = dmam_alloc_coherent(mmc_dev(cq_host->mmc),
cq_host->data_size,
&cq_host->trans_desc_dma_base,
GFP_KERNEL);
if (!cq_host->trans_desc_base) {
dmam_free_coherent(mmc_dev(cq_host->mmc), cq_host->desc_size,
cq_host->desc_base,
cq_host->desc_dma_base);
cq_host->desc_base = NULL;
cq_host->desc_dma_base = 0;
return -ENOMEM;
}
pr_debug("%s: cqhci: desc-base: 0x%p trans-base: 0x%p\n desc_dma 0x%llx trans_dma: 0x%llx\n",
mmc_hostname(cq_host->mmc), cq_host->desc_base, cq_host->trans_desc_base,
(unsigned long long)cq_host->desc_dma_base,
(unsigned long long)cq_host->trans_desc_dma_base);
for (; i < (cq_host->num_slots); i++)
setup_trans_desc(cq_host, i);
return 0;
}
static void __cqhci_enable(struct cqhci_host *cq_host)
{
struct mmc_host *mmc = cq_host->mmc;
u32 cqcfg;
cqcfg = cqhci_readl(cq_host, CQHCI_CFG);
/* Configuration must not be changed while enabled */
if (cqcfg & CQHCI_ENABLE) {
cqcfg &= ~CQHCI_ENABLE;
cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
}
cqcfg &= ~(CQHCI_DCMD | CQHCI_TASK_DESC_SZ);
if (mmc->caps2 & MMC_CAP2_CQE_DCMD)
cqcfg |= CQHCI_DCMD;
if (cq_host->caps & CQHCI_TASK_DESC_SZ_128)
cqcfg |= CQHCI_TASK_DESC_SZ;
cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
cqhci_writel(cq_host, lower_32_bits(cq_host->desc_dma_base),
CQHCI_TDLBA);
cqhci_writel(cq_host, upper_32_bits(cq_host->desc_dma_base),
CQHCI_TDLBAU);
cqhci_writel(cq_host, cq_host->rca, CQHCI_SSC2);
cqhci_set_irqs(cq_host, 0);
cqcfg |= CQHCI_ENABLE;
cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
mmc->cqe_on = true;
if (cq_host->ops->enable)
cq_host->ops->enable(mmc);
/* Ensure all writes are done before interrupts are enabled */
wmb();
cqhci_set_irqs(cq_host, CQHCI_IS_MASK);
cq_host->activated = true;
}
static void __cqhci_disable(struct cqhci_host *cq_host)
{
u32 cqcfg;
cqcfg = cqhci_readl(cq_host, CQHCI_CFG);
cqcfg &= ~CQHCI_ENABLE;
cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
cq_host->mmc->cqe_on = false;
cq_host->activated = false;
}
int cqhci_deactivate(struct mmc_host *mmc)
{
struct cqhci_host *cq_host = mmc->cqe_private;
if (cq_host->enabled && cq_host->activated)
__cqhci_disable(cq_host);
return 0;
}
EXPORT_SYMBOL(cqhci_deactivate);
int cqhci_resume(struct mmc_host *mmc)
{
/* Re-enable is done upon first request */
return 0;
}
EXPORT_SYMBOL(cqhci_resume);
static int cqhci_enable(struct mmc_host *mmc, struct mmc_card *card)
{
struct cqhci_host *cq_host = mmc->cqe_private;
int err;
mmc: Add MMC host software queue support Now the MMC read/write stack will always wait for previous request is completed by mmc_blk_rw_wait(), before sending a new request to hardware, or queue a work to complete request, that will bring context switching overhead and spend some extra time to poll the card for busy completion for I/O writes via sending CMD13, especially for high I/O per second rates, to affect the IO performance. Thus this patch introduces MMC software queue interface based on the hardware command queue engine's interfaces, which is similar with the hardware command queue engine's idea, that can remove the context switching. Moreover we set the default queue depth as 64 for software queue, which allows more requests to be prepared, merged and inserted into IO scheduler to improve performance, but we only allow 2 requests in flight, that is enough to let the irq handler always trigger the next request without a context switch, as well as avoiding a long latency. Moreover the host controller should support HW busy detection for I/O operations when enabling the host software queue. That means, the host controller must not complete a data transfer request, until after the card stops signals busy. From the fio testing data in cover letter, we can see the software queue can improve some performance with 4K block size, increasing about 16% for random read, increasing about 90% for random write, though no obvious improvement for sequential read and write. Moreover we can expand the software queue interface to support MMC packed request or packed command in future. Reviewed-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Baolin Wang <baolin.wang@linaro.org> Signed-off-by: Baolin Wang <baolin.wang7@gmail.com> Link: https://lore.kernel.org/r/4409c1586a9b3ed20d57ad2faf6c262fc3ccb6e2.1581478568.git.baolin.wang7@gmail.com Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2020-02-12 11:12:56 +07:00
if (!card->ext_csd.cmdq_en)
return -EINVAL;
if (cq_host->enabled)
return 0;
cq_host->rca = card->rca;
err = cqhci_host_alloc_tdl(cq_host);
mmc: Add MMC host software queue support Now the MMC read/write stack will always wait for previous request is completed by mmc_blk_rw_wait(), before sending a new request to hardware, or queue a work to complete request, that will bring context switching overhead and spend some extra time to poll the card for busy completion for I/O writes via sending CMD13, especially for high I/O per second rates, to affect the IO performance. Thus this patch introduces MMC software queue interface based on the hardware command queue engine's interfaces, which is similar with the hardware command queue engine's idea, that can remove the context switching. Moreover we set the default queue depth as 64 for software queue, which allows more requests to be prepared, merged and inserted into IO scheduler to improve performance, but we only allow 2 requests in flight, that is enough to let the irq handler always trigger the next request without a context switch, as well as avoiding a long latency. Moreover the host controller should support HW busy detection for I/O operations when enabling the host software queue. That means, the host controller must not complete a data transfer request, until after the card stops signals busy. From the fio testing data in cover letter, we can see the software queue can improve some performance with 4K block size, increasing about 16% for random read, increasing about 90% for random write, though no obvious improvement for sequential read and write. Moreover we can expand the software queue interface to support MMC packed request or packed command in future. Reviewed-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Baolin Wang <baolin.wang@linaro.org> Signed-off-by: Baolin Wang <baolin.wang7@gmail.com> Link: https://lore.kernel.org/r/4409c1586a9b3ed20d57ad2faf6c262fc3ccb6e2.1581478568.git.baolin.wang7@gmail.com Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2020-02-12 11:12:56 +07:00
if (err) {
pr_err("%s: Failed to enable CQE, error %d\n",
mmc_hostname(mmc), err);
return err;
mmc: Add MMC host software queue support Now the MMC read/write stack will always wait for previous request is completed by mmc_blk_rw_wait(), before sending a new request to hardware, or queue a work to complete request, that will bring context switching overhead and spend some extra time to poll the card for busy completion for I/O writes via sending CMD13, especially for high I/O per second rates, to affect the IO performance. Thus this patch introduces MMC software queue interface based on the hardware command queue engine's interfaces, which is similar with the hardware command queue engine's idea, that can remove the context switching. Moreover we set the default queue depth as 64 for software queue, which allows more requests to be prepared, merged and inserted into IO scheduler to improve performance, but we only allow 2 requests in flight, that is enough to let the irq handler always trigger the next request without a context switch, as well as avoiding a long latency. Moreover the host controller should support HW busy detection for I/O operations when enabling the host software queue. That means, the host controller must not complete a data transfer request, until after the card stops signals busy. From the fio testing data in cover letter, we can see the software queue can improve some performance with 4K block size, increasing about 16% for random read, increasing about 90% for random write, though no obvious improvement for sequential read and write. Moreover we can expand the software queue interface to support MMC packed request or packed command in future. Reviewed-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Baolin Wang <baolin.wang@linaro.org> Signed-off-by: Baolin Wang <baolin.wang7@gmail.com> Link: https://lore.kernel.org/r/4409c1586a9b3ed20d57ad2faf6c262fc3ccb6e2.1581478568.git.baolin.wang7@gmail.com Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2020-02-12 11:12:56 +07:00
}
__cqhci_enable(cq_host);
cq_host->enabled = true;
#ifdef DEBUG
cqhci_dumpregs(cq_host);
#endif
return 0;
}
/* CQHCI is idle and should halt immediately, so set a small timeout */
#define CQHCI_OFF_TIMEOUT 100
static u32 cqhci_read_ctl(struct cqhci_host *cq_host)
{
return cqhci_readl(cq_host, CQHCI_CTL);
}
static void cqhci_off(struct mmc_host *mmc)
{
struct cqhci_host *cq_host = mmc->cqe_private;
u32 reg;
int err;
if (!cq_host->enabled || !mmc->cqe_on || cq_host->recovery_halt)
return;
if (cq_host->ops->disable)
cq_host->ops->disable(mmc, false);
cqhci_writel(cq_host, CQHCI_HALT, CQHCI_CTL);
err = readx_poll_timeout(cqhci_read_ctl, cq_host, reg,
reg & CQHCI_HALT, 0, CQHCI_OFF_TIMEOUT);
if (err < 0)
pr_err("%s: cqhci: CQE stuck on\n", mmc_hostname(mmc));
else
pr_debug("%s: cqhci: CQE off\n", mmc_hostname(mmc));
if (cq_host->ops->post_disable)
cq_host->ops->post_disable(mmc);
mmc->cqe_on = false;
}
static void cqhci_disable(struct mmc_host *mmc)
{
struct cqhci_host *cq_host = mmc->cqe_private;
if (!cq_host->enabled)
return;
cqhci_off(mmc);
__cqhci_disable(cq_host);
dmam_free_coherent(mmc_dev(mmc), cq_host->data_size,
cq_host->trans_desc_base,
cq_host->trans_desc_dma_base);
dmam_free_coherent(mmc_dev(mmc), cq_host->desc_size,
cq_host->desc_base,
cq_host->desc_dma_base);
cq_host->trans_desc_base = NULL;
cq_host->desc_base = NULL;
cq_host->enabled = false;
}
static void cqhci_prep_task_desc(struct mmc_request *mrq,
u64 *data, bool intr)
{
u32 req_flags = mrq->data->flags;
*data = CQHCI_VALID(1) |
CQHCI_END(1) |
CQHCI_INT(intr) |
CQHCI_ACT(0x5) |
CQHCI_FORCED_PROG(!!(req_flags & MMC_DATA_FORCED_PRG)) |
CQHCI_DATA_TAG(!!(req_flags & MMC_DATA_DAT_TAG)) |
CQHCI_DATA_DIR(!!(req_flags & MMC_DATA_READ)) |
CQHCI_PRIORITY(!!(req_flags & MMC_DATA_PRIO)) |
CQHCI_QBAR(!!(req_flags & MMC_DATA_QBR)) |
CQHCI_REL_WRITE(!!(req_flags & MMC_DATA_REL_WR)) |
CQHCI_BLK_COUNT(mrq->data->blocks) |
CQHCI_BLK_ADDR((u64)mrq->data->blk_addr);
pr_debug("%s: cqhci: tag %d task descriptor 0x%016llx\n",
mmc_hostname(mrq->host), mrq->tag, (unsigned long long)*data);
}
static int cqhci_dma_map(struct mmc_host *host, struct mmc_request *mrq)
{
int sg_count;
struct mmc_data *data = mrq->data;
if (!data)
return -EINVAL;
sg_count = dma_map_sg(mmc_dev(host), data->sg,
data->sg_len,
(data->flags & MMC_DATA_WRITE) ?
DMA_TO_DEVICE : DMA_FROM_DEVICE);
if (!sg_count) {
pr_err("%s: sg-len: %d\n", __func__, data->sg_len);
return -ENOMEM;
}
return sg_count;
}
static void cqhci_set_tran_desc(u8 *desc, dma_addr_t addr, int len, bool end,
bool dma64)
{
__le32 *attr = (__le32 __force *)desc;
*attr = (CQHCI_VALID(1) |
CQHCI_END(end ? 1 : 0) |
CQHCI_INT(0) |
CQHCI_ACT(0x4) |
CQHCI_DAT_LENGTH(len));
if (dma64) {
__le64 *dataddr = (__le64 __force *)(desc + 4);
dataddr[0] = cpu_to_le64(addr);
} else {
__le32 *dataddr = (__le32 __force *)(desc + 4);
dataddr[0] = cpu_to_le32(addr);
}
}
static int cqhci_prep_tran_desc(struct mmc_request *mrq,
struct cqhci_host *cq_host, int tag)
{
struct mmc_data *data = mrq->data;
int i, sg_count, len;
bool end = false;
bool dma64 = cq_host->dma64;
dma_addr_t addr;
u8 *desc;
struct scatterlist *sg;
sg_count = cqhci_dma_map(mrq->host, mrq);
if (sg_count < 0) {
pr_err("%s: %s: unable to map sg lists, %d\n",
mmc_hostname(mrq->host), __func__, sg_count);
return sg_count;
}
desc = get_trans_desc(cq_host, tag);
for_each_sg(data->sg, sg, sg_count, i) {
addr = sg_dma_address(sg);
len = sg_dma_len(sg);
if ((i+1) == sg_count)
end = true;
cqhci_set_tran_desc(desc, addr, len, end, dma64);
desc += cq_host->trans_desc_len;
}
return 0;
}
static void cqhci_prep_dcmd_desc(struct mmc_host *mmc,
struct mmc_request *mrq)
{
u64 *task_desc = NULL;
u64 data = 0;
u8 resp_type;
u8 *desc;
__le64 *dataddr;
struct cqhci_host *cq_host = mmc->cqe_private;
u8 timing;
if (!(mrq->cmd->flags & MMC_RSP_PRESENT)) {
resp_type = 0x0;
timing = 0x1;
} else {
if (mrq->cmd->flags & MMC_RSP_R1B) {
resp_type = 0x3;
timing = 0x0;
} else {
resp_type = 0x2;
timing = 0x1;
}
}
task_desc = (__le64 __force *)get_desc(cq_host, cq_host->dcmd_slot);
memset(task_desc, 0, cq_host->task_desc_len);
data |= (CQHCI_VALID(1) |
CQHCI_END(1) |
CQHCI_INT(1) |
CQHCI_QBAR(1) |
CQHCI_ACT(0x5) |
CQHCI_CMD_INDEX(mrq->cmd->opcode) |
CQHCI_CMD_TIMING(timing) | CQHCI_RESP_TYPE(resp_type));
if (cq_host->ops->update_dcmd_desc)
cq_host->ops->update_dcmd_desc(mmc, mrq, &data);
*task_desc |= data;
desc = (u8 *)task_desc;
pr_debug("%s: cqhci: dcmd: cmd: %d timing: %d resp: %d\n",
mmc_hostname(mmc), mrq->cmd->opcode, timing, resp_type);
dataddr = (__le64 __force *)(desc + 4);
dataddr[0] = cpu_to_le64((u64)mrq->cmd->arg);
}
static void cqhci_post_req(struct mmc_host *host, struct mmc_request *mrq)
{
struct mmc_data *data = mrq->data;
if (data) {
dma_unmap_sg(mmc_dev(host), data->sg, data->sg_len,
(data->flags & MMC_DATA_READ) ?
DMA_FROM_DEVICE : DMA_TO_DEVICE);
}
}
static inline int cqhci_tag(struct mmc_request *mrq)
{
return mrq->cmd ? DCMD_SLOT : mrq->tag;
}
static int cqhci_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
int err = 0;
u64 data = 0;
u64 *task_desc = NULL;
int tag = cqhci_tag(mrq);
struct cqhci_host *cq_host = mmc->cqe_private;
unsigned long flags;
if (!cq_host->enabled) {
pr_err("%s: cqhci: not enabled\n", mmc_hostname(mmc));
return -EINVAL;
}
/* First request after resume has to re-enable */
if (!cq_host->activated)
__cqhci_enable(cq_host);
if (!mmc->cqe_on) {
if (cq_host->ops->pre_enable)
cq_host->ops->pre_enable(mmc);
cqhci_writel(cq_host, 0, CQHCI_CTL);
mmc->cqe_on = true;
pr_debug("%s: cqhci: CQE on\n", mmc_hostname(mmc));
if (cqhci_readl(cq_host, CQHCI_CTL) && CQHCI_HALT) {
pr_err("%s: cqhci: CQE failed to exit halt state\n",
mmc_hostname(mmc));
}
if (cq_host->ops->enable)
cq_host->ops->enable(mmc);
}
if (mrq->data) {
task_desc = (__le64 __force *)get_desc(cq_host, tag);
cqhci_prep_task_desc(mrq, &data, 1);
*task_desc = cpu_to_le64(data);
err = cqhci_prep_tran_desc(mrq, cq_host, tag);
if (err) {
pr_err("%s: cqhci: failed to setup tx desc: %d\n",
mmc_hostname(mmc), err);
return err;
}
} else {
cqhci_prep_dcmd_desc(mmc, mrq);
}
spin_lock_irqsave(&cq_host->lock, flags);
if (cq_host->recovery_halt) {
err = -EBUSY;
goto out_unlock;
}
cq_host->slot[tag].mrq = mrq;
cq_host->slot[tag].flags = 0;
cq_host->qcnt += 1;
/* Make sure descriptors are ready before ringing the doorbell */
wmb();
cqhci_writel(cq_host, 1 << tag, CQHCI_TDBR);
if (!(cqhci_readl(cq_host, CQHCI_TDBR) & (1 << tag)))
pr_debug("%s: cqhci: doorbell not set for tag %d\n",
mmc_hostname(mmc), tag);
out_unlock:
spin_unlock_irqrestore(&cq_host->lock, flags);
if (err)
cqhci_post_req(mmc, mrq);
return err;
}
static void cqhci_recovery_needed(struct mmc_host *mmc, struct mmc_request *mrq,
bool notify)
{
struct cqhci_host *cq_host = mmc->cqe_private;
if (!cq_host->recovery_halt) {
cq_host->recovery_halt = true;
pr_debug("%s: cqhci: recovery needed\n", mmc_hostname(mmc));
wake_up(&cq_host->wait_queue);
if (notify && mrq->recovery_notifier)
mrq->recovery_notifier(mrq);
}
}
static unsigned int cqhci_error_flags(int error1, int error2)
{
int error = error1 ? error1 : error2;
switch (error) {
case -EILSEQ:
return CQHCI_HOST_CRC;
case -ETIMEDOUT:
return CQHCI_HOST_TIMEOUT;
default:
return CQHCI_HOST_OTHER;
}
}
static void cqhci_error_irq(struct mmc_host *mmc, u32 status, int cmd_error,
int data_error)
{
struct cqhci_host *cq_host = mmc->cqe_private;
struct cqhci_slot *slot;
u32 terri;
int tag;
spin_lock(&cq_host->lock);
terri = cqhci_readl(cq_host, CQHCI_TERRI);
pr_debug("%s: cqhci: error IRQ status: 0x%08x cmd error %d data error %d TERRI: 0x%08x\n",
mmc_hostname(mmc), status, cmd_error, data_error, terri);
/* Forget about errors when recovery has already been triggered */
if (cq_host->recovery_halt)
goto out_unlock;
if (!cq_host->qcnt) {
WARN_ONCE(1, "%s: cqhci: error when idle. IRQ status: 0x%08x cmd error %d data error %d TERRI: 0x%08x\n",
mmc_hostname(mmc), status, cmd_error, data_error,
terri);
goto out_unlock;
}
if (CQHCI_TERRI_C_VALID(terri)) {
tag = CQHCI_TERRI_C_TASK(terri);
slot = &cq_host->slot[tag];
if (slot->mrq) {
slot->flags = cqhci_error_flags(cmd_error, data_error);
cqhci_recovery_needed(mmc, slot->mrq, true);
}
}
if (CQHCI_TERRI_D_VALID(terri)) {
tag = CQHCI_TERRI_D_TASK(terri);
slot = &cq_host->slot[tag];
if (slot->mrq) {
slot->flags = cqhci_error_flags(data_error, cmd_error);
cqhci_recovery_needed(mmc, slot->mrq, true);
}
}
if (!cq_host->recovery_halt) {
/*
* The only way to guarantee forward progress is to mark at
* least one task in error, so if none is indicated, pick one.
*/
for (tag = 0; tag < NUM_SLOTS; tag++) {
slot = &cq_host->slot[tag];
if (!slot->mrq)
continue;
slot->flags = cqhci_error_flags(data_error, cmd_error);
cqhci_recovery_needed(mmc, slot->mrq, true);
break;
}
}
out_unlock:
spin_unlock(&cq_host->lock);
}
static void cqhci_finish_mrq(struct mmc_host *mmc, unsigned int tag)
{
struct cqhci_host *cq_host = mmc->cqe_private;
struct cqhci_slot *slot = &cq_host->slot[tag];
struct mmc_request *mrq = slot->mrq;
struct mmc_data *data;
if (!mrq) {
WARN_ONCE(1, "%s: cqhci: spurious TCN for tag %d\n",
mmc_hostname(mmc), tag);
return;
}
/* No completions allowed during recovery */
if (cq_host->recovery_halt) {
slot->flags |= CQHCI_COMPLETED;
return;
}
slot->mrq = NULL;
cq_host->qcnt -= 1;
data = mrq->data;
if (data) {
if (data->error)
data->bytes_xfered = 0;
else
data->bytes_xfered = data->blksz * data->blocks;
}
mmc_cqe_request_done(mmc, mrq);
}
irqreturn_t cqhci_irq(struct mmc_host *mmc, u32 intmask, int cmd_error,
int data_error)
{
u32 status;
unsigned long tag = 0, comp_status;
struct cqhci_host *cq_host = mmc->cqe_private;
status = cqhci_readl(cq_host, CQHCI_IS);
cqhci_writel(cq_host, status, CQHCI_IS);
pr_debug("%s: cqhci: IRQ status: 0x%08x\n", mmc_hostname(mmc), status);
if ((status & CQHCI_IS_RED) || cmd_error || data_error)
cqhci_error_irq(mmc, status, cmd_error, data_error);
if (status & CQHCI_IS_TCC) {
/* read TCN and complete the request */
comp_status = cqhci_readl(cq_host, CQHCI_TCN);
cqhci_writel(cq_host, comp_status, CQHCI_TCN);
pr_debug("%s: cqhci: TCN: 0x%08lx\n",
mmc_hostname(mmc), comp_status);
spin_lock(&cq_host->lock);
for_each_set_bit(tag, &comp_status, cq_host->num_slots) {
/* complete the corresponding mrq */
pr_debug("%s: cqhci: completing tag %lu\n",
mmc_hostname(mmc), tag);
cqhci_finish_mrq(mmc, tag);
}
if (cq_host->waiting_for_idle && !cq_host->qcnt) {
cq_host->waiting_for_idle = false;
wake_up(&cq_host->wait_queue);
}
spin_unlock(&cq_host->lock);
}
if (status & CQHCI_IS_TCL)
wake_up(&cq_host->wait_queue);
if (status & CQHCI_IS_HAC)
wake_up(&cq_host->wait_queue);
return IRQ_HANDLED;
}
EXPORT_SYMBOL(cqhci_irq);
static bool cqhci_is_idle(struct cqhci_host *cq_host, int *ret)
{
unsigned long flags;
bool is_idle;
spin_lock_irqsave(&cq_host->lock, flags);
is_idle = !cq_host->qcnt || cq_host->recovery_halt;
*ret = cq_host->recovery_halt ? -EBUSY : 0;
cq_host->waiting_for_idle = !is_idle;
spin_unlock_irqrestore(&cq_host->lock, flags);
return is_idle;
}
static int cqhci_wait_for_idle(struct mmc_host *mmc)
{
struct cqhci_host *cq_host = mmc->cqe_private;
int ret;
wait_event(cq_host->wait_queue, cqhci_is_idle(cq_host, &ret));
return ret;
}
static bool cqhci_timeout(struct mmc_host *mmc, struct mmc_request *mrq,
bool *recovery_needed)
{
struct cqhci_host *cq_host = mmc->cqe_private;
int tag = cqhci_tag(mrq);
struct cqhci_slot *slot = &cq_host->slot[tag];
unsigned long flags;
bool timed_out;
spin_lock_irqsave(&cq_host->lock, flags);
timed_out = slot->mrq == mrq;
if (timed_out) {
slot->flags |= CQHCI_EXTERNAL_TIMEOUT;
cqhci_recovery_needed(mmc, mrq, false);
*recovery_needed = cq_host->recovery_halt;
}
spin_unlock_irqrestore(&cq_host->lock, flags);
if (timed_out) {
pr_err("%s: cqhci: timeout for tag %d\n",
mmc_hostname(mmc), tag);
cqhci_dumpregs(cq_host);
}
return timed_out;
}
static bool cqhci_tasks_cleared(struct cqhci_host *cq_host)
{
return !(cqhci_readl(cq_host, CQHCI_CTL) & CQHCI_CLEAR_ALL_TASKS);
}
static bool cqhci_clear_all_tasks(struct mmc_host *mmc, unsigned int timeout)
{
struct cqhci_host *cq_host = mmc->cqe_private;
bool ret;
u32 ctl;
cqhci_set_irqs(cq_host, CQHCI_IS_TCL);
ctl = cqhci_readl(cq_host, CQHCI_CTL);
ctl |= CQHCI_CLEAR_ALL_TASKS;
cqhci_writel(cq_host, ctl, CQHCI_CTL);
wait_event_timeout(cq_host->wait_queue, cqhci_tasks_cleared(cq_host),
msecs_to_jiffies(timeout) + 1);
cqhci_set_irqs(cq_host, 0);
ret = cqhci_tasks_cleared(cq_host);
if (!ret)
pr_debug("%s: cqhci: Failed to clear tasks\n",
mmc_hostname(mmc));
return ret;
}
static bool cqhci_halted(struct cqhci_host *cq_host)
{
return cqhci_readl(cq_host, CQHCI_CTL) & CQHCI_HALT;
}
static bool cqhci_halt(struct mmc_host *mmc, unsigned int timeout)
{
struct cqhci_host *cq_host = mmc->cqe_private;
bool ret;
u32 ctl;
if (cqhci_halted(cq_host))
return true;
cqhci_set_irqs(cq_host, CQHCI_IS_HAC);
ctl = cqhci_readl(cq_host, CQHCI_CTL);
ctl |= CQHCI_HALT;
cqhci_writel(cq_host, ctl, CQHCI_CTL);
wait_event_timeout(cq_host->wait_queue, cqhci_halted(cq_host),
msecs_to_jiffies(timeout) + 1);
cqhci_set_irqs(cq_host, 0);
ret = cqhci_halted(cq_host);
if (!ret)
pr_debug("%s: cqhci: Failed to halt\n", mmc_hostname(mmc));
return ret;
}
/*
* After halting we expect to be able to use the command line. We interpret the
* failure to halt to mean the data lines might still be in use (and the upper
* layers will need to send a STOP command), so we set the timeout based on a
* generous command timeout.
*/
#define CQHCI_START_HALT_TIMEOUT 5
static void cqhci_recovery_start(struct mmc_host *mmc)
{
struct cqhci_host *cq_host = mmc->cqe_private;
pr_debug("%s: cqhci: %s\n", mmc_hostname(mmc), __func__);
WARN_ON(!cq_host->recovery_halt);
cqhci_halt(mmc, CQHCI_START_HALT_TIMEOUT);
if (cq_host->ops->disable)
cq_host->ops->disable(mmc, true);
mmc->cqe_on = false;
}
static int cqhci_error_from_flags(unsigned int flags)
{
if (!flags)
return 0;
/* CRC errors might indicate re-tuning so prefer to report that */
if (flags & CQHCI_HOST_CRC)
return -EILSEQ;
if (flags & (CQHCI_EXTERNAL_TIMEOUT | CQHCI_HOST_TIMEOUT))
return -ETIMEDOUT;
return -EIO;
}
static void cqhci_recover_mrq(struct cqhci_host *cq_host, unsigned int tag)
{
struct cqhci_slot *slot = &cq_host->slot[tag];
struct mmc_request *mrq = slot->mrq;
struct mmc_data *data;
if (!mrq)
return;
slot->mrq = NULL;
cq_host->qcnt -= 1;
data = mrq->data;
if (data) {
data->bytes_xfered = 0;
data->error = cqhci_error_from_flags(slot->flags);
} else {
mrq->cmd->error = cqhci_error_from_flags(slot->flags);
}
mmc_cqe_request_done(cq_host->mmc, mrq);
}
static void cqhci_recover_mrqs(struct cqhci_host *cq_host)
{
int i;
for (i = 0; i < cq_host->num_slots; i++)
cqhci_recover_mrq(cq_host, i);
}
/*
* By now the command and data lines should be unused so there is no reason for
* CQHCI to take a long time to halt, but if it doesn't halt there could be
* problems clearing tasks, so be generous.
*/
#define CQHCI_FINISH_HALT_TIMEOUT 20
/* CQHCI could be expected to clear it's internal state pretty quickly */
#define CQHCI_CLEAR_TIMEOUT 20
static void cqhci_recovery_finish(struct mmc_host *mmc)
{
struct cqhci_host *cq_host = mmc->cqe_private;
unsigned long flags;
u32 cqcfg;
bool ok;
pr_debug("%s: cqhci: %s\n", mmc_hostname(mmc), __func__);
WARN_ON(!cq_host->recovery_halt);
ok = cqhci_halt(mmc, CQHCI_FINISH_HALT_TIMEOUT);
if (!cqhci_clear_all_tasks(mmc, CQHCI_CLEAR_TIMEOUT))
ok = false;
/*
* The specification contradicts itself, by saying that tasks cannot be
* cleared if CQHCI does not halt, but if CQHCI does not halt, it should
* be disabled/re-enabled, but not to disable before clearing tasks.
* Have a go anyway.
*/
if (!ok) {
pr_debug("%s: cqhci: disable / re-enable\n", mmc_hostname(mmc));
cqcfg = cqhci_readl(cq_host, CQHCI_CFG);
cqcfg &= ~CQHCI_ENABLE;
cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
cqcfg |= CQHCI_ENABLE;
cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
/* Be sure that there are no tasks */
ok = cqhci_halt(mmc, CQHCI_FINISH_HALT_TIMEOUT);
if (!cqhci_clear_all_tasks(mmc, CQHCI_CLEAR_TIMEOUT))
ok = false;
WARN_ON(!ok);
}
cqhci_recover_mrqs(cq_host);
WARN_ON(cq_host->qcnt);
spin_lock_irqsave(&cq_host->lock, flags);
cq_host->qcnt = 0;
cq_host->recovery_halt = false;
mmc->cqe_on = false;
spin_unlock_irqrestore(&cq_host->lock, flags);
/* Ensure all writes are done before interrupts are re-enabled */
wmb();
cqhci_writel(cq_host, CQHCI_IS_HAC | CQHCI_IS_TCL, CQHCI_IS);
cqhci_set_irqs(cq_host, CQHCI_IS_MASK);
pr_debug("%s: cqhci: recovery done\n", mmc_hostname(mmc));
}
static const struct mmc_cqe_ops cqhci_cqe_ops = {
.cqe_enable = cqhci_enable,
.cqe_disable = cqhci_disable,
.cqe_request = cqhci_request,
.cqe_post_req = cqhci_post_req,
.cqe_off = cqhci_off,
.cqe_wait_for_idle = cqhci_wait_for_idle,
.cqe_timeout = cqhci_timeout,
.cqe_recovery_start = cqhci_recovery_start,
.cqe_recovery_finish = cqhci_recovery_finish,
};
struct cqhci_host *cqhci_pltfm_init(struct platform_device *pdev)
{
struct cqhci_host *cq_host;
struct resource *cqhci_memres = NULL;
/* check and setup CMDQ interface */
cqhci_memres = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"cqhci");
if (!cqhci_memres) {
dev_dbg(&pdev->dev, "CMDQ not supported\n");
return ERR_PTR(-EINVAL);
}
cq_host = devm_kzalloc(&pdev->dev, sizeof(*cq_host), GFP_KERNEL);
if (!cq_host)
return ERR_PTR(-ENOMEM);
cq_host->mmio = devm_ioremap(&pdev->dev,
cqhci_memres->start,
resource_size(cqhci_memres));
if (!cq_host->mmio) {
dev_err(&pdev->dev, "failed to remap cqhci regs\n");
return ERR_PTR(-EBUSY);
}
dev_dbg(&pdev->dev, "CMDQ ioremap: done\n");
return cq_host;
}
EXPORT_SYMBOL(cqhci_pltfm_init);
static unsigned int cqhci_ver_major(struct cqhci_host *cq_host)
{
return CQHCI_VER_MAJOR(cqhci_readl(cq_host, CQHCI_VER));
}
static unsigned int cqhci_ver_minor(struct cqhci_host *cq_host)
{
u32 ver = cqhci_readl(cq_host, CQHCI_VER);
return CQHCI_VER_MINOR1(ver) * 10 + CQHCI_VER_MINOR2(ver);
}
int cqhci_init(struct cqhci_host *cq_host, struct mmc_host *mmc,
bool dma64)
{
int err;
cq_host->dma64 = dma64;
cq_host->mmc = mmc;
cq_host->mmc->cqe_private = cq_host;
cq_host->num_slots = NUM_SLOTS;
cq_host->dcmd_slot = DCMD_SLOT;
mmc->cqe_ops = &cqhci_cqe_ops;
mmc->cqe_qdepth = NUM_SLOTS;
if (mmc->caps2 & MMC_CAP2_CQE_DCMD)
mmc->cqe_qdepth -= 1;
cq_host->slot = devm_kcalloc(mmc_dev(mmc), cq_host->num_slots,
sizeof(*cq_host->slot), GFP_KERNEL);
if (!cq_host->slot) {
err = -ENOMEM;
goto out_err;
}
spin_lock_init(&cq_host->lock);
init_completion(&cq_host->halt_comp);
init_waitqueue_head(&cq_host->wait_queue);
pr_info("%s: CQHCI version %u.%02u\n",
mmc_hostname(mmc), cqhci_ver_major(cq_host),
cqhci_ver_minor(cq_host));
return 0;
out_err:
pr_err("%s: CQHCI version %u.%02u failed to initialize, error %d\n",
mmc_hostname(mmc), cqhci_ver_major(cq_host),
cqhci_ver_minor(cq_host), err);
return err;
}
EXPORT_SYMBOL(cqhci_init);
MODULE_AUTHOR("Venkat Gopalakrishnan <venkatg@codeaurora.org>");
MODULE_DESCRIPTION("Command Queue Host Controller Interface driver");
MODULE_LICENSE("GPL v2");