linux_dsm_epyc7002/include/linux/pwm.h

540 lines
13 KiB
C
Raw Normal View History

#ifndef __LINUX_PWM_H
#define __LINUX_PWM_H
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/of.h>
struct seq_file;
pwm: Add PWM framework support This patch adds framework support for PWM (pulse width modulation) devices. The is a barebone PWM API already in the kernel under include/linux/pwm.h, but it does not allow for multiple drivers as each of them implements the pwm_*() functions. There are other PWM framework patches around from Bill Gatliff. Unlike his framework this one does not change the existing API for PWMs so that this framework can act as a drop in replacement for the existing API. Why another framework? Several people argue that there should not be another framework for PWMs but they should be integrated into one of the existing frameworks like led or hwmon. Unlike these frameworks the PWM framework is agnostic to the purpose of the PWM. In fact, a PWM can drive a LED, but this makes the LED framework a user of a PWM, like already done in leds-pwm.c. The gpio framework also is not suitable for PWMs. Every gpio could be turned into a PWM using timer based toggling, but on the other hand not every PWM hardware device can be turned into a gpio due to the lack of hardware capabilities. This patch does not try to improve the PWM API yet, this could be done in subsequent patches. Signed-off-by: Sascha Hauer <s.hauer@pengutronix.de> Acked-by: Kurt Van Dijck <kurt.van.dijck@eia.be> Reviewed-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Matthias Kaehlcke <matthias@kaehlcke.net> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Shawn Guo <shawn.guo@linaro.org> [thierry.reding@avionic-design.de: fixup typos, kerneldoc comments] Signed-off-by: Thierry Reding <thierry.reding@avionic-design.de>
2011-01-28 15:40:40 +07:00
struct pwm_chip;
/**
* enum pwm_polarity - polarity of a PWM signal
* @PWM_POLARITY_NORMAL: a high signal for the duration of the duty-
* cycle, followed by a low signal for the remainder of the pulse
* period
* @PWM_POLARITY_INVERSED: a low signal for the duration of the duty-
* cycle, followed by a high signal for the remainder of the pulse
* period
*/
enum pwm_polarity {
PWM_POLARITY_NORMAL,
PWM_POLARITY_INVERSED,
};
/**
* struct pwm_args - board-dependent PWM arguments
* @period: reference period
* @polarity: reference polarity
*
* This structure describes board-dependent arguments attached to a PWM
* device. These arguments are usually retrieved from the PWM lookup table or
* device tree.
*
* Do not confuse this with the PWM state: PWM arguments represent the initial
* configuration that users want to use on this PWM device rather than the
* current PWM hardware state.
*/
struct pwm_args {
unsigned int period;
enum pwm_polarity polarity;
};
enum {
PWMF_REQUESTED = 1 << 0,
PWMF_EXPORTED = 1 << 1,
};
/*
* struct pwm_state - state of a PWM channel
* @period: PWM period (in nanoseconds)
* @duty_cycle: PWM duty cycle (in nanoseconds)
* @polarity: PWM polarity
* @enabled: PWM enabled status
*/
struct pwm_state {
unsigned int period;
unsigned int duty_cycle;
enum pwm_polarity polarity;
bool enabled;
};
/**
* struct pwm_device - PWM channel object
* @label: name of the PWM device
* @flags: flags associated with the PWM device
* @hwpwm: per-chip relative index of the PWM device
* @pwm: global index of the PWM device
* @chip: PWM chip providing this PWM device
* @chip_data: chip-private data associated with the PWM device
* @args: PWM arguments
* @state: curent PWM channel state
*/
struct pwm_device {
const char *label;
unsigned long flags;
unsigned int hwpwm;
unsigned int pwm;
struct pwm_chip *chip;
void *chip_data;
struct pwm_args args;
struct pwm_state state;
};
/**
* pwm_get_state() - retrieve the current PWM state
* @pwm: PWM device
* @state: state to fill with the current PWM state
*/
static inline void pwm_get_state(const struct pwm_device *pwm,
struct pwm_state *state)
{
*state = pwm->state;
}
static inline bool pwm_is_enabled(const struct pwm_device *pwm)
{
struct pwm_state state;
pwm_get_state(pwm, &state);
return state.enabled;
}
static inline void pwm_set_period(struct pwm_device *pwm, unsigned int period)
{
if (pwm)
pwm->state.period = period;
}
static inline unsigned int pwm_get_period(const struct pwm_device *pwm)
{
struct pwm_state state;
pwm_get_state(pwm, &state);
return state.period;
}
static inline void pwm_set_duty_cycle(struct pwm_device *pwm, unsigned int duty)
{
if (pwm)
pwm->state.duty_cycle = duty;
}
static inline unsigned int pwm_get_duty_cycle(const struct pwm_device *pwm)
{
struct pwm_state state;
pwm_get_state(pwm, &state);
return state.duty_cycle;
}
static inline enum pwm_polarity pwm_get_polarity(const struct pwm_device *pwm)
{
struct pwm_state state;
pwm_get_state(pwm, &state);
return state.polarity;
}
static inline void pwm_get_args(const struct pwm_device *pwm,
struct pwm_args *args)
{
*args = pwm->args;
}
pwm: Add PWM framework support This patch adds framework support for PWM (pulse width modulation) devices. The is a barebone PWM API already in the kernel under include/linux/pwm.h, but it does not allow for multiple drivers as each of them implements the pwm_*() functions. There are other PWM framework patches around from Bill Gatliff. Unlike his framework this one does not change the existing API for PWMs so that this framework can act as a drop in replacement for the existing API. Why another framework? Several people argue that there should not be another framework for PWMs but they should be integrated into one of the existing frameworks like led or hwmon. Unlike these frameworks the PWM framework is agnostic to the purpose of the PWM. In fact, a PWM can drive a LED, but this makes the LED framework a user of a PWM, like already done in leds-pwm.c. The gpio framework also is not suitable for PWMs. Every gpio could be turned into a PWM using timer based toggling, but on the other hand not every PWM hardware device can be turned into a gpio due to the lack of hardware capabilities. This patch does not try to improve the PWM API yet, this could be done in subsequent patches. Signed-off-by: Sascha Hauer <s.hauer@pengutronix.de> Acked-by: Kurt Van Dijck <kurt.van.dijck@eia.be> Reviewed-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Matthias Kaehlcke <matthias@kaehlcke.net> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Shawn Guo <shawn.guo@linaro.org> [thierry.reding@avionic-design.de: fixup typos, kerneldoc comments] Signed-off-by: Thierry Reding <thierry.reding@avionic-design.de>
2011-01-28 15:40:40 +07:00
/**
* struct pwm_ops - PWM controller operations
* @request: optional hook for requesting a PWM
* @free: optional hook for freeing a PWM
* @config: configure duty cycles and period length for this PWM
* @set_polarity: configure the polarity of this PWM
pwm: Add PWM framework support This patch adds framework support for PWM (pulse width modulation) devices. The is a barebone PWM API already in the kernel under include/linux/pwm.h, but it does not allow for multiple drivers as each of them implements the pwm_*() functions. There are other PWM framework patches around from Bill Gatliff. Unlike his framework this one does not change the existing API for PWMs so that this framework can act as a drop in replacement for the existing API. Why another framework? Several people argue that there should not be another framework for PWMs but they should be integrated into one of the existing frameworks like led or hwmon. Unlike these frameworks the PWM framework is agnostic to the purpose of the PWM. In fact, a PWM can drive a LED, but this makes the LED framework a user of a PWM, like already done in leds-pwm.c. The gpio framework also is not suitable for PWMs. Every gpio could be turned into a PWM using timer based toggling, but on the other hand not every PWM hardware device can be turned into a gpio due to the lack of hardware capabilities. This patch does not try to improve the PWM API yet, this could be done in subsequent patches. Signed-off-by: Sascha Hauer <s.hauer@pengutronix.de> Acked-by: Kurt Van Dijck <kurt.van.dijck@eia.be> Reviewed-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Matthias Kaehlcke <matthias@kaehlcke.net> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Shawn Guo <shawn.guo@linaro.org> [thierry.reding@avionic-design.de: fixup typos, kerneldoc comments] Signed-off-by: Thierry Reding <thierry.reding@avionic-design.de>
2011-01-28 15:40:40 +07:00
* @enable: enable PWM output toggling
* @disable: disable PWM output toggling
* @apply: atomically apply a new PWM config. The state argument
* should be adjusted with the real hardware config (if the
* approximate the period or duty_cycle value, state should
* reflect it)
* @get_state: get the current PWM state. This function is only
* called once per PWM device when the PWM chip is
* registered.
* @dbg_show: optional routine to show contents in debugfs
pwm: Add PWM framework support This patch adds framework support for PWM (pulse width modulation) devices. The is a barebone PWM API already in the kernel under include/linux/pwm.h, but it does not allow for multiple drivers as each of them implements the pwm_*() functions. There are other PWM framework patches around from Bill Gatliff. Unlike his framework this one does not change the existing API for PWMs so that this framework can act as a drop in replacement for the existing API. Why another framework? Several people argue that there should not be another framework for PWMs but they should be integrated into one of the existing frameworks like led or hwmon. Unlike these frameworks the PWM framework is agnostic to the purpose of the PWM. In fact, a PWM can drive a LED, but this makes the LED framework a user of a PWM, like already done in leds-pwm.c. The gpio framework also is not suitable for PWMs. Every gpio could be turned into a PWM using timer based toggling, but on the other hand not every PWM hardware device can be turned into a gpio due to the lack of hardware capabilities. This patch does not try to improve the PWM API yet, this could be done in subsequent patches. Signed-off-by: Sascha Hauer <s.hauer@pengutronix.de> Acked-by: Kurt Van Dijck <kurt.van.dijck@eia.be> Reviewed-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Matthias Kaehlcke <matthias@kaehlcke.net> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Shawn Guo <shawn.guo@linaro.org> [thierry.reding@avionic-design.de: fixup typos, kerneldoc comments] Signed-off-by: Thierry Reding <thierry.reding@avionic-design.de>
2011-01-28 15:40:40 +07:00
* @owner: helps prevent removal of modules exporting active PWMs
*/
struct pwm_ops {
int (*request)(struct pwm_chip *chip, struct pwm_device *pwm);
void (*free)(struct pwm_chip *chip, struct pwm_device *pwm);
int (*config)(struct pwm_chip *chip, struct pwm_device *pwm,
int duty_ns, int period_ns);
int (*set_polarity)(struct pwm_chip *chip, struct pwm_device *pwm,
enum pwm_polarity polarity);
int (*enable)(struct pwm_chip *chip, struct pwm_device *pwm);
void (*disable)(struct pwm_chip *chip, struct pwm_device *pwm);
int (*apply)(struct pwm_chip *chip, struct pwm_device *pwm,
struct pwm_state *state);
void (*get_state)(struct pwm_chip *chip, struct pwm_device *pwm,
struct pwm_state *state);
#ifdef CONFIG_DEBUG_FS
void (*dbg_show)(struct pwm_chip *chip, struct seq_file *s);
#endif
struct module *owner;
pwm: Add PWM framework support This patch adds framework support for PWM (pulse width modulation) devices. The is a barebone PWM API already in the kernel under include/linux/pwm.h, but it does not allow for multiple drivers as each of them implements the pwm_*() functions. There are other PWM framework patches around from Bill Gatliff. Unlike his framework this one does not change the existing API for PWMs so that this framework can act as a drop in replacement for the existing API. Why another framework? Several people argue that there should not be another framework for PWMs but they should be integrated into one of the existing frameworks like led or hwmon. Unlike these frameworks the PWM framework is agnostic to the purpose of the PWM. In fact, a PWM can drive a LED, but this makes the LED framework a user of a PWM, like already done in leds-pwm.c. The gpio framework also is not suitable for PWMs. Every gpio could be turned into a PWM using timer based toggling, but on the other hand not every PWM hardware device can be turned into a gpio due to the lack of hardware capabilities. This patch does not try to improve the PWM API yet, this could be done in subsequent patches. Signed-off-by: Sascha Hauer <s.hauer@pengutronix.de> Acked-by: Kurt Van Dijck <kurt.van.dijck@eia.be> Reviewed-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Matthias Kaehlcke <matthias@kaehlcke.net> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Shawn Guo <shawn.guo@linaro.org> [thierry.reding@avionic-design.de: fixup typos, kerneldoc comments] Signed-off-by: Thierry Reding <thierry.reding@avionic-design.de>
2011-01-28 15:40:40 +07:00
};
/**
* struct pwm_chip - abstract a PWM controller
* @dev: device providing the PWMs
* @list: list node for internal use
* @ops: callbacks for this PWM controller
* @base: number of first PWM controlled by this chip
* @npwm: number of PWMs controlled by this chip
* @pwms: array of PWM devices allocated by the framework
* @of_xlate: request a PWM device given a device tree PWM specifier
* @of_pwm_n_cells: number of cells expected in the device tree PWM specifier
* @can_sleep: must be true if the .config(), .enable() or .disable()
* operations may sleep
pwm: Add PWM framework support This patch adds framework support for PWM (pulse width modulation) devices. The is a barebone PWM API already in the kernel under include/linux/pwm.h, but it does not allow for multiple drivers as each of them implements the pwm_*() functions. There are other PWM framework patches around from Bill Gatliff. Unlike his framework this one does not change the existing API for PWMs so that this framework can act as a drop in replacement for the existing API. Why another framework? Several people argue that there should not be another framework for PWMs but they should be integrated into one of the existing frameworks like led or hwmon. Unlike these frameworks the PWM framework is agnostic to the purpose of the PWM. In fact, a PWM can drive a LED, but this makes the LED framework a user of a PWM, like already done in leds-pwm.c. The gpio framework also is not suitable for PWMs. Every gpio could be turned into a PWM using timer based toggling, but on the other hand not every PWM hardware device can be turned into a gpio due to the lack of hardware capabilities. This patch does not try to improve the PWM API yet, this could be done in subsequent patches. Signed-off-by: Sascha Hauer <s.hauer@pengutronix.de> Acked-by: Kurt Van Dijck <kurt.van.dijck@eia.be> Reviewed-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Matthias Kaehlcke <matthias@kaehlcke.net> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Shawn Guo <shawn.guo@linaro.org> [thierry.reding@avionic-design.de: fixup typos, kerneldoc comments] Signed-off-by: Thierry Reding <thierry.reding@avionic-design.de>
2011-01-28 15:40:40 +07:00
*/
struct pwm_chip {
struct device *dev;
struct list_head list;
const struct pwm_ops *ops;
int base;
unsigned int npwm;
struct pwm_device *pwms;
struct pwm_device * (*of_xlate)(struct pwm_chip *pc,
const struct of_phandle_args *args);
unsigned int of_pwm_n_cells;
bool can_sleep;
pwm: Add PWM framework support This patch adds framework support for PWM (pulse width modulation) devices. The is a barebone PWM API already in the kernel under include/linux/pwm.h, but it does not allow for multiple drivers as each of them implements the pwm_*() functions. There are other PWM framework patches around from Bill Gatliff. Unlike his framework this one does not change the existing API for PWMs so that this framework can act as a drop in replacement for the existing API. Why another framework? Several people argue that there should not be another framework for PWMs but they should be integrated into one of the existing frameworks like led or hwmon. Unlike these frameworks the PWM framework is agnostic to the purpose of the PWM. In fact, a PWM can drive a LED, but this makes the LED framework a user of a PWM, like already done in leds-pwm.c. The gpio framework also is not suitable for PWMs. Every gpio could be turned into a PWM using timer based toggling, but on the other hand not every PWM hardware device can be turned into a gpio due to the lack of hardware capabilities. This patch does not try to improve the PWM API yet, this could be done in subsequent patches. Signed-off-by: Sascha Hauer <s.hauer@pengutronix.de> Acked-by: Kurt Van Dijck <kurt.van.dijck@eia.be> Reviewed-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Matthias Kaehlcke <matthias@kaehlcke.net> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Shawn Guo <shawn.guo@linaro.org> [thierry.reding@avionic-design.de: fixup typos, kerneldoc comments] Signed-off-by: Thierry Reding <thierry.reding@avionic-design.de>
2011-01-28 15:40:40 +07:00
};
#if IS_ENABLED(CONFIG_PWM)
/* PWM user APIs */
struct pwm_device *pwm_request(int pwm_id, const char *label);
void pwm_free(struct pwm_device *pwm);
int pwm_apply_state(struct pwm_device *pwm, struct pwm_state *state);
int pwm_adjust_config(struct pwm_device *pwm);
/**
* pwm_config() - change a PWM device configuration
* @pwm: PWM device
* @duty_ns: "on" time (in nanoseconds)
* @period_ns: duration (in nanoseconds) of one cycle
*
* Returns: 0 on success or a negative error code on failure.
*/
static inline int pwm_config(struct pwm_device *pwm, int duty_ns,
int period_ns)
{
struct pwm_state state;
if (!pwm)
return -EINVAL;
if (duty_ns < 0 || period_ns < 0)
return -EINVAL;
pwm_get_state(pwm, &state);
if (state.duty_cycle == duty_ns && state.period == period_ns)
return 0;
state.duty_cycle = duty_ns;
state.period = period_ns;
return pwm_apply_state(pwm, &state);
}
/**
* pwm_set_polarity() - configure the polarity of a PWM signal
* @pwm: PWM device
* @polarity: new polarity of the PWM signal
*
* Note that the polarity cannot be configured while the PWM device is
* enabled.
*
* Returns: 0 on success or a negative error code on failure.
*/
static inline int pwm_set_polarity(struct pwm_device *pwm,
enum pwm_polarity polarity)
{
struct pwm_state state;
if (!pwm)
return -EINVAL;
pwm_get_state(pwm, &state);
if (state.polarity == polarity)
return 0;
/*
* Changing the polarity of a running PWM without adjusting the
* dutycycle/period value is a bit risky (can introduce glitches).
* Return -EBUSY in this case.
* Note that this is allowed when using pwm_apply_state() because
* the user specifies all the parameters.
*/
if (state.enabled)
return -EBUSY;
state.polarity = polarity;
return pwm_apply_state(pwm, &state);
}
/**
* pwm_enable() - start a PWM output toggling
* @pwm: PWM device
*
* Returns: 0 on success or a negative error code on failure.
*/
static inline int pwm_enable(struct pwm_device *pwm)
{
struct pwm_state state;
if (!pwm)
return -EINVAL;
pwm_get_state(pwm, &state);
if (state.enabled)
return 0;
state.enabled = true;
return pwm_apply_state(pwm, &state);
}
/**
* pwm_disable() - stop a PWM output toggling
* @pwm: PWM device
*/
static inline void pwm_disable(struct pwm_device *pwm)
{
struct pwm_state state;
if (!pwm)
return;
pwm_get_state(pwm, &state);
if (!state.enabled)
return;
state.enabled = false;
pwm_apply_state(pwm, &state);
}
/* PWM provider APIs */
int pwm_set_chip_data(struct pwm_device *pwm, void *data);
void *pwm_get_chip_data(struct pwm_device *pwm);
int pwmchip_add_with_polarity(struct pwm_chip *chip,
enum pwm_polarity polarity);
pwm: Add PWM framework support This patch adds framework support for PWM (pulse width modulation) devices. The is a barebone PWM API already in the kernel under include/linux/pwm.h, but it does not allow for multiple drivers as each of them implements the pwm_*() functions. There are other PWM framework patches around from Bill Gatliff. Unlike his framework this one does not change the existing API for PWMs so that this framework can act as a drop in replacement for the existing API. Why another framework? Several people argue that there should not be another framework for PWMs but they should be integrated into one of the existing frameworks like led or hwmon. Unlike these frameworks the PWM framework is agnostic to the purpose of the PWM. In fact, a PWM can drive a LED, but this makes the LED framework a user of a PWM, like already done in leds-pwm.c. The gpio framework also is not suitable for PWMs. Every gpio could be turned into a PWM using timer based toggling, but on the other hand not every PWM hardware device can be turned into a gpio due to the lack of hardware capabilities. This patch does not try to improve the PWM API yet, this could be done in subsequent patches. Signed-off-by: Sascha Hauer <s.hauer@pengutronix.de> Acked-by: Kurt Van Dijck <kurt.van.dijck@eia.be> Reviewed-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Matthias Kaehlcke <matthias@kaehlcke.net> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Shawn Guo <shawn.guo@linaro.org> [thierry.reding@avionic-design.de: fixup typos, kerneldoc comments] Signed-off-by: Thierry Reding <thierry.reding@avionic-design.de>
2011-01-28 15:40:40 +07:00
int pwmchip_add(struct pwm_chip *chip);
int pwmchip_remove(struct pwm_chip *chip);
struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
unsigned int index,
const char *label);
struct pwm_device *of_pwm_xlate_with_flags(struct pwm_chip *pc,
const struct of_phandle_args *args);
struct pwm_device *pwm_get(struct device *dev, const char *con_id);
struct pwm_device *of_pwm_get(struct device_node *np, const char *con_id);
void pwm_put(struct pwm_device *pwm);
struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id);
struct pwm_device *devm_of_pwm_get(struct device *dev, struct device_node *np,
const char *con_id);
void devm_pwm_put(struct device *dev, struct pwm_device *pwm);
bool pwm_can_sleep(struct pwm_device *pwm);
#else
static inline struct pwm_device *pwm_request(int pwm_id, const char *label)
{
return ERR_PTR(-ENODEV);
}
static inline void pwm_free(struct pwm_device *pwm)
{
}
static inline int pwm_apply_state(struct pwm_device *pwm,
const struct pwm_state *state)
{
return -ENOTSUPP;
}
static inline int pwm_adjust_config(struct pwm_device *pwm)
{
return -ENOTSUPP;
}
static inline int pwm_config(struct pwm_device *pwm, int duty_ns,
int period_ns)
{
return -EINVAL;
}
static inline int pwm_set_polarity(struct pwm_device *pwm,
enum pwm_polarity polarity)
{
return -ENOTSUPP;
}
static inline int pwm_enable(struct pwm_device *pwm)
{
return -EINVAL;
}
static inline void pwm_disable(struct pwm_device *pwm)
{
}
static inline int pwm_set_chip_data(struct pwm_device *pwm, void *data)
{
return -EINVAL;
}
static inline void *pwm_get_chip_data(struct pwm_device *pwm)
{
return NULL;
}
static inline int pwmchip_add(struct pwm_chip *chip)
{
return -EINVAL;
}
static inline int pwmchip_add_inversed(struct pwm_chip *chip)
{
return -EINVAL;
}
static inline int pwmchip_remove(struct pwm_chip *chip)
{
return -EINVAL;
}
static inline struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
unsigned int index,
const char *label)
{
return ERR_PTR(-ENODEV);
}
static inline struct pwm_device *pwm_get(struct device *dev,
const char *consumer)
{
return ERR_PTR(-ENODEV);
}
static inline struct pwm_device *of_pwm_get(struct device_node *np,
const char *con_id)
{
return ERR_PTR(-ENODEV);
}
static inline void pwm_put(struct pwm_device *pwm)
{
}
static inline struct pwm_device *devm_pwm_get(struct device *dev,
const char *consumer)
{
return ERR_PTR(-ENODEV);
}
static inline struct pwm_device *devm_of_pwm_get(struct device *dev,
struct device_node *np,
const char *con_id)
{
return ERR_PTR(-ENODEV);
}
static inline void devm_pwm_put(struct device *dev, struct pwm_device *pwm)
{
}
static inline bool pwm_can_sleep(struct pwm_device *pwm)
{
return false;
}
#endif
static inline void pwm_apply_args(struct pwm_device *pwm)
{
/*
* PWM users calling pwm_apply_args() expect to have a fresh config
* where the polarity and period are set according to pwm_args info.
* The problem is, polarity can only be changed when the PWM is
* disabled.
*
* PWM drivers supporting hardware readout may declare the PWM device
* as enabled, and prevent polarity setting, which changes from the
* existing behavior, where all PWM devices are declared as disabled
* at startup (even if they are actually enabled), thus authorizing
* polarity setting.
*
* Instead of setting ->enabled to false, we call pwm_disable()
* before pwm_set_polarity() to ensure that everything is configured
* as expected, and the PWM is really disabled when the user request
* it.
*
* Note that PWM users requiring a smooth handover between the
* bootloader and the kernel (like critical regulators controlled by
* PWM devices) will have to switch to the atomic API and avoid calling
* pwm_apply_args().
*/
pwm_disable(pwm);
pwm_set_polarity(pwm, pwm->args.polarity);
}
struct pwm_lookup {
struct list_head list;
const char *provider;
unsigned int index;
const char *dev_id;
const char *con_id;
unsigned int period;
enum pwm_polarity polarity;
};
#define PWM_LOOKUP(_provider, _index, _dev_id, _con_id, _period, _polarity) \
{ \
.provider = _provider, \
.index = _index, \
.dev_id = _dev_id, \
.con_id = _con_id, \
.period = _period, \
.polarity = _polarity \
}
#if IS_ENABLED(CONFIG_PWM)
void pwm_add_table(struct pwm_lookup *table, size_t num);
void pwm_remove_table(struct pwm_lookup *table, size_t num);
#else
static inline void pwm_add_table(struct pwm_lookup *table, size_t num)
{
}
static inline void pwm_remove_table(struct pwm_lookup *table, size_t num)
{
}
pwm: Add PWM framework support This patch adds framework support for PWM (pulse width modulation) devices. The is a barebone PWM API already in the kernel under include/linux/pwm.h, but it does not allow for multiple drivers as each of them implements the pwm_*() functions. There are other PWM framework patches around from Bill Gatliff. Unlike his framework this one does not change the existing API for PWMs so that this framework can act as a drop in replacement for the existing API. Why another framework? Several people argue that there should not be another framework for PWMs but they should be integrated into one of the existing frameworks like led or hwmon. Unlike these frameworks the PWM framework is agnostic to the purpose of the PWM. In fact, a PWM can drive a LED, but this makes the LED framework a user of a PWM, like already done in leds-pwm.c. The gpio framework also is not suitable for PWMs. Every gpio could be turned into a PWM using timer based toggling, but on the other hand not every PWM hardware device can be turned into a gpio due to the lack of hardware capabilities. This patch does not try to improve the PWM API yet, this could be done in subsequent patches. Signed-off-by: Sascha Hauer <s.hauer@pengutronix.de> Acked-by: Kurt Van Dijck <kurt.van.dijck@eia.be> Reviewed-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Matthias Kaehlcke <matthias@kaehlcke.net> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Shawn Guo <shawn.guo@linaro.org> [thierry.reding@avionic-design.de: fixup typos, kerneldoc comments] Signed-off-by: Thierry Reding <thierry.reding@avionic-design.de>
2011-01-28 15:40:40 +07:00
#endif
#ifdef CONFIG_PWM_SYSFS
void pwmchip_sysfs_export(struct pwm_chip *chip);
void pwmchip_sysfs_unexport(struct pwm_chip *chip);
#else
static inline void pwmchip_sysfs_export(struct pwm_chip *chip)
{
}
static inline void pwmchip_sysfs_unexport(struct pwm_chip *chip)
{
}
#endif /* CONFIG_PWM_SYSFS */
#endif /* __LINUX_PWM_H */