linux_dsm_epyc7002/arch/x86/include/asm/pci.h

159 lines
3.5 KiB
C
Raw Normal View History

#ifndef _ASM_X86_PCI_H
#define _ASM_X86_PCI_H
#include <linux/mm.h> /* for struct page */
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/scatterlist.h>
#include <asm/io.h>
#include <asm/x86_init.h>
#ifdef __KERNEL__
struct pci_sysdata {
int domain; /* PCI domain */
int node; /* NUMA node */
ACPI / PCI: Set root bridge ACPI handle in advance The ACPI handles of PCI root bridges need to be known to acpi_bind_one(), so that it can create the appropriate "firmware_node" and "physical_node" files for them, but currently the way it gets to know those handles is not exactly straightforward (to put it lightly). This is how it works, roughly: 1. acpi_bus_scan() finds the handle of a PCI root bridge, creates a struct acpi_device object for it and passes that object to acpi_pci_root_add(). 2. acpi_pci_root_add() creates a struct acpi_pci_root object, populates its "device" field with its argument's address (device->handle is the ACPI handle found in step 1). 3. The struct acpi_pci_root object created in step 2 is passed to pci_acpi_scan_root() and used to get resources that are passed to pci_create_root_bus(). 4. pci_create_root_bus() creates a struct pci_host_bridge object and passes its "dev" member to device_register(). 5. platform_notify(), which for systems with ACPI is set to acpi_platform_notify(), is called. So far, so good. Now it starts to be "interesting". 6. acpi_find_bridge_device() is used to find the ACPI handle of the given device (which is the PCI root bridge) and executes acpi_pci_find_root_bridge(), among other things, for the given device object. 7. acpi_pci_find_root_bridge() uses the name (sic!) of the given device object to extract the segment and bus numbers of the PCI root bridge and passes them to acpi_get_pci_rootbridge_handle(). 8. acpi_get_pci_rootbridge_handle() browses the list of ACPI PCI root bridges and finds the one that matches the given segment and bus numbers. Its handle is then used to initialize the ACPI handle of the PCI root bridge's device object by acpi_bind_one(). However, this is *exactly* the ACPI handle we started with in step 1. Needless to say, this is quite embarassing, but it may be avoided thanks to commit f3fd0c8 (ACPI: Allow ACPI handles of devices to be initialized in advance), which makes it possible to initialize the ACPI handle of a device before passing it to device_register(). Accordingly, add a new __weak routine, pcibios_root_bridge_prepare(), defaulting to an empty implementation that can be replaced by the interested architecutres (x86 and ia64 at the moment) with functions that will set the root bridge's ACPI handle before its dev member is passed to device_register(). Make both x86 and ia64 provide such implementations of pcibios_root_bridge_prepare() and remove acpi_pci_find_root_bridge() and acpi_get_pci_rootbridge_handle() that aren't necessary any more. Included is a fix for breakage on systems with non-ACPI PCI host bridges from Bjorn Helgaas. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
2013-01-10 04:33:37 +07:00
#ifdef CONFIG_ACPI
ACPI / driver core: Store an ACPI device pointer in struct acpi_dev_node Modify struct acpi_dev_node to contain a pointer to struct acpi_device associated with the given device object (that is, its ACPI companion device) instead of an ACPI handle corresponding to it. Introduce two new macros for manipulating that pointer in a CONFIG_ACPI-safe way, ACPI_COMPANION() and ACPI_COMPANION_SET(), and rework the ACPI_HANDLE() macro to take the above changes into account. Drop the ACPI_HANDLE_SET() macro entirely and rework its users to use ACPI_COMPANION_SET() instead. For some of them who used to pass the result of acpi_get_child() directly to ACPI_HANDLE_SET() introduce a helper routine acpi_preset_companion() doing an equivalent thing. The main motivation for doing this is that there are things represented by struct acpi_device objects that don't have valid ACPI handles (so called fixed ACPI hardware features, such as power and sleep buttons) and we would like to create platform device objects for them and "glue" them to their ACPI companions in the usual way (which currently is impossible due to the lack of valid ACPI handles). However, there are more reasons why it may be useful. First, struct acpi_device pointers allow of much better type checking than void pointers which are ACPI handles, so it should be more difficult to write buggy code using modified struct acpi_dev_node and the new macros. Second, the change should help to reduce (over time) the number of places in which the result of ACPI_HANDLE() is passed to acpi_bus_get_device() in order to obtain a pointer to the struct acpi_device associated with the given "physical" device, because now that pointer is returned by ACPI_COMPANION() directly. Finally, the change should make it easier to write generic code that will build both for CONFIG_ACPI set and unset without adding explicit compiler directives to it. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com> # on Haswell Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Aaron Lu <aaron.lu@intel.com> # for ATA and SDIO part
2013-11-12 04:41:56 +07:00
struct acpi_device *companion; /* ACPI companion device */
ACPI / PCI: Set root bridge ACPI handle in advance The ACPI handles of PCI root bridges need to be known to acpi_bind_one(), so that it can create the appropriate "firmware_node" and "physical_node" files for them, but currently the way it gets to know those handles is not exactly straightforward (to put it lightly). This is how it works, roughly: 1. acpi_bus_scan() finds the handle of a PCI root bridge, creates a struct acpi_device object for it and passes that object to acpi_pci_root_add(). 2. acpi_pci_root_add() creates a struct acpi_pci_root object, populates its "device" field with its argument's address (device->handle is the ACPI handle found in step 1). 3. The struct acpi_pci_root object created in step 2 is passed to pci_acpi_scan_root() and used to get resources that are passed to pci_create_root_bus(). 4. pci_create_root_bus() creates a struct pci_host_bridge object and passes its "dev" member to device_register(). 5. platform_notify(), which for systems with ACPI is set to acpi_platform_notify(), is called. So far, so good. Now it starts to be "interesting". 6. acpi_find_bridge_device() is used to find the ACPI handle of the given device (which is the PCI root bridge) and executes acpi_pci_find_root_bridge(), among other things, for the given device object. 7. acpi_pci_find_root_bridge() uses the name (sic!) of the given device object to extract the segment and bus numbers of the PCI root bridge and passes them to acpi_get_pci_rootbridge_handle(). 8. acpi_get_pci_rootbridge_handle() browses the list of ACPI PCI root bridges and finds the one that matches the given segment and bus numbers. Its handle is then used to initialize the ACPI handle of the PCI root bridge's device object by acpi_bind_one(). However, this is *exactly* the ACPI handle we started with in step 1. Needless to say, this is quite embarassing, but it may be avoided thanks to commit f3fd0c8 (ACPI: Allow ACPI handles of devices to be initialized in advance), which makes it possible to initialize the ACPI handle of a device before passing it to device_register(). Accordingly, add a new __weak routine, pcibios_root_bridge_prepare(), defaulting to an empty implementation that can be replaced by the interested architecutres (x86 and ia64 at the moment) with functions that will set the root bridge's ACPI handle before its dev member is passed to device_register(). Make both x86 and ia64 provide such implementations of pcibios_root_bridge_prepare() and remove acpi_pci_find_root_bridge() and acpi_get_pci_rootbridge_handle() that aren't necessary any more. Included is a fix for breakage on systems with non-ACPI PCI host bridges from Bjorn Helgaas. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
2013-01-10 04:33:37 +07:00
#endif
#ifdef CONFIG_X86_64
void *iommu; /* IOMMU private data */
#endif
#ifdef CONFIG_PCI_MSI_IRQ_DOMAIN
void *fwnode; /* IRQ domain for MSI assignment */
#endif
};
extern int pci_routeirq;
extern int noioapicquirk;
extern int noioapicreroute;
#ifdef CONFIG_PCI
#ifdef CONFIG_PCI_DOMAINS
static inline int pci_domain_nr(struct pci_bus *bus)
{
struct pci_sysdata *sd = bus->sysdata;
return sd->domain;
}
static inline int pci_proc_domain(struct pci_bus *bus)
{
return pci_domain_nr(bus);
}
#endif
#ifdef CONFIG_PCI_MSI_IRQ_DOMAIN
static inline void *_pci_root_bus_fwnode(struct pci_bus *bus)
{
struct pci_sysdata *sd = bus->sysdata;
return sd->fwnode;
}
#define pci_root_bus_fwnode _pci_root_bus_fwnode
#endif
/* Can be used to override the logic in pci_scan_bus for skipping
already-configured bus numbers - to be used for buggy BIOSes
or architectures with incomplete PCI setup by the loader */
extern unsigned int pcibios_assign_all_busses(void);
extern int pci_legacy_init(void);
# ifdef CONFIG_ACPI
# define x86_default_pci_init pci_acpi_init
# else
# define x86_default_pci_init pci_legacy_init
# endif
#else
# define pcibios_assign_all_busses() 0
# define x86_default_pci_init NULL
#endif
extern unsigned long pci_mem_start;
#define PCIBIOS_MIN_IO 0x1000
#define PCIBIOS_MIN_MEM (pci_mem_start)
#define PCIBIOS_MIN_CARDBUS_IO 0x4000
x86: Add NX protection for kernel data This patch expands functionality of CONFIG_DEBUG_RODATA to set main (static) kernel data area as NX. The following steps are taken to achieve this: 1. Linker script is adjusted so .text always starts and ends on a page bound 2. Linker script is adjusted so .rodata always start and end on a page boundary 3. NX is set for all pages from _etext through _end in mark_rodata_ro. 4. free_init_pages() sets released memory NX in arch/x86/mm/init.c 5. bios rom is set to x when pcibios is used. The results of patch application may be observed in the diff of kernel page table dumps: pcibios: -- data_nx_pt_before.txt 2009-10-13 07:48:59.000000000 -0400 ++ data_nx_pt_after.txt 2009-10-13 07:26:46.000000000 -0400 0x00000000-0xc0000000 3G pmd ---[ Kernel Mapping ]--- -0xc0000000-0xc0100000 1M RW GLB x pte +0xc0000000-0xc00a0000 640K RW GLB NX pte +0xc00a0000-0xc0100000 384K RW GLB x pte -0xc0100000-0xc03d7000 2908K ro GLB x pte +0xc0100000-0xc0318000 2144K ro GLB x pte +0xc0318000-0xc03d7000 764K ro GLB NX pte -0xc03d7000-0xc0600000 2212K RW GLB x pte +0xc03d7000-0xc0600000 2212K RW GLB NX pte 0xc0600000-0xf7a00000 884M RW PSE GLB NX pmd 0xf7a00000-0xf7bfe000 2040K RW GLB NX pte 0xf7bfe000-0xf7c00000 8K pte No pcibios: -- data_nx_pt_before.txt 2009-10-13 07:48:59.000000000 -0400 ++ data_nx_pt_after.txt 2009-10-13 07:26:46.000000000 -0400 0x00000000-0xc0000000 3G pmd ---[ Kernel Mapping ]--- -0xc0000000-0xc0100000 1M RW GLB x pte +0xc0000000-0xc0100000 1M RW GLB NX pte -0xc0100000-0xc03d7000 2908K ro GLB x pte +0xc0100000-0xc0318000 2144K ro GLB x pte +0xc0318000-0xc03d7000 764K ro GLB NX pte -0xc03d7000-0xc0600000 2212K RW GLB x pte +0xc03d7000-0xc0600000 2212K RW GLB NX pte 0xc0600000-0xf7a00000 884M RW PSE GLB NX pmd 0xf7a00000-0xf7bfe000 2040K RW GLB NX pte 0xf7bfe000-0xf7c00000 8K pte The patch has been originally developed for Linux 2.6.34-rc2 x86 by Siarhei Liakh <sliakh.lkml@gmail.com> and Xuxian Jiang <jiang@cs.ncsu.edu>. -v1: initial patch for 2.6.30 -v2: patch for 2.6.31-rc7 -v3: moved all code into arch/x86, adjusted credits -v4: fixed ifdef, removed credits from CREDITS -v5: fixed an address calculation bug in mark_nxdata_nx() -v6: added acked-by and PT dump diff to commit log -v7: minor adjustments for -tip -v8: rework with the merge of "Set first MB as RW+NX" Signed-off-by: Siarhei Liakh <sliakh.lkml@gmail.com> Signed-off-by: Xuxian Jiang <jiang@cs.ncsu.edu> Signed-off-by: Matthieu CASTET <castet.matthieu@free.fr> Cc: Arjan van de Ven <arjan@infradead.org> Cc: James Morris <jmorris@namei.org> Cc: Andi Kleen <ak@muc.de> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Dave Jones <davej@redhat.com> Cc: Kees Cook <kees.cook@canonical.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> LKML-Reference: <4CE2F82E.60601@free.fr> [ minor cleanliness edits ] Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-11-17 04:31:26 +07:00
extern int pcibios_enabled;
void pcibios_config_init(void);
void pcibios_scan_root(int bus);
void pcibios_set_master(struct pci_dev *dev);
struct irq_routing_table *pcibios_get_irq_routing_table(void);
int pcibios_set_irq_routing(struct pci_dev *dev, int pin, int irq);
#define HAVE_PCI_MMAP
extern int pci_mmap_page_range(struct pci_dev *dev, struct vm_area_struct *vma,
enum pci_mmap_state mmap_state,
int write_combine);
#ifdef CONFIG_PCI
extern void early_quirks(void);
#else
static inline void early_quirks(void) { }
#endif
extern void pci_iommu_alloc(void);
#ifdef CONFIG_PCI_MSI
/* implemented in arch/x86/kernel/apic/io_apic. */
struct msi_desc;
int native_setup_msi_irqs(struct pci_dev *dev, int nvec, int type);
void native_teardown_msi_irq(unsigned int irq);
void native_restore_msi_irqs(struct pci_dev *dev);
#else
#define native_setup_msi_irqs NULL
#define native_teardown_msi_irq NULL
#endif
#define PCI_DMA_BUS_IS_PHYS (dma_ops->is_phys)
#endif /* __KERNEL__ */
#ifdef CONFIG_X86_64
#include <asm/pci_64.h>
#endif
/* generic pci stuff */
#include <asm-generic/pci.h>
#ifdef CONFIG_NUMA
/* Returns the node based on pci bus */
static inline int __pcibus_to_node(const struct pci_bus *bus)
{
const struct pci_sysdata *sd = bus->sysdata;
return sd->node;
}
static inline const struct cpumask *
cpumask_of_pcibus(const struct pci_bus *bus)
{
int node;
node = __pcibus_to_node(bus);
return (node == -1) ? cpu_online_mask :
cpumask_of_node(node);
}
#endif
struct pci_setup_rom {
struct setup_data data;
uint16_t vendor;
uint16_t devid;
uint64_t pcilen;
unsigned long segment;
unsigned long bus;
unsigned long device;
unsigned long function;
uint8_t romdata[0];
};
#endif /* _ASM_X86_PCI_H */