linux_dsm_epyc7002/include/linux/mmzone.h

875 lines
26 KiB
C
Raw Normal View History

#ifndef _LINUX_MMZONE_H
#define _LINUX_MMZONE_H
#ifdef __KERNEL__
#ifndef __ASSEMBLY__
#include <linux/spinlock.h>
#include <linux/list.h>
#include <linux/wait.h>
#include <linux/cache.h>
#include <linux/threads.h>
#include <linux/numa.h>
#include <linux/init.h>
#include <linux/seqlock.h>
#include <linux/nodemask.h>
#include <asm/atomic.h>
[PATCH] Sparsemem build fix From: Ralf Baechle <ralf@linux-mips.org> <linux/mmzone.h> uses PAGE_SIZE, PAGE_SHIFT from <asm/page.h> without including that header itself. For some sparsemem configurations this may result in build errors like: CC init/initramfs.o In file included from include/linux/gfp.h:4, from include/linux/slab.h:15, from include/linux/percpu.h:4, from include/linux/rcupdate.h:41, from include/linux/dcache.h:10, from include/linux/fs.h:226, from init/initramfs.c:2: include/linux/mmzone.h:498:22: warning: "PAGE_SHIFT" is not defined In file included from include/linux/gfp.h:4, from include/linux/slab.h:15, from include/linux/percpu.h:4, from include/linux/rcupdate.h:41, from include/linux/dcache.h:10, from include/linux/fs.h:226, from init/initramfs.c:2: include/linux/mmzone.h:526: error: `PAGE_SIZE' undeclared here (not in a function) include/linux/mmzone.h: In function `__pfn_to_section': include/linux/mmzone.h:573: error: `PAGE_SHIFT' undeclared (first use in this function) include/linux/mmzone.h:573: error: (Each undeclared identifier is reported only once include/linux/mmzone.h:573: error: for each function it appears in.) include/linux/mmzone.h: In function `pfn_valid': include/linux/mmzone.h:578: error: `PAGE_SHIFT' undeclared (first use in this function) make[1]: *** [init/initramfs.o] Error 1 make: *** [init] Error 2 Signed-off-by: Ralf Baechle <ralf@linux-mips.org> Seems-reasonable-to: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-04 16:51:29 +07:00
#include <asm/page.h>
/* Free memory management - zoned buddy allocator. */
#ifndef CONFIG_FORCE_MAX_ZONEORDER
#define MAX_ORDER 11
#else
#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
#endif
#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
Lumpy Reclaim V4 When we are out of memory of a suitable size we enter reclaim. The current reclaim algorithm targets pages in LRU order, which is great for fairness at order-0 but highly unsuitable if you desire pages at higher orders. To get pages of higher order we must shoot down a very high proportion of memory; >95% in a lot of cases. This patch set adds a lumpy reclaim algorithm to the allocator. It targets groups of pages at the specified order anchored at the end of the active and inactive lists. This encourages groups of pages at the requested orders to move from active to inactive, and active to free lists. This behaviour is only triggered out of direct reclaim when higher order pages have been requested. This patch set is particularly effective when utilised with an anti-fragmentation scheme which groups pages of similar reclaimability together. This patch set is based on Peter Zijlstra's lumpy reclaim V2 patch which forms the foundation. Credit to Mel Gorman for sanitity checking. Mel said: The patches have an application with hugepage pool resizing. When lumpy-reclaim is used used with ZONE_MOVABLE, the hugepages pool can be resized with greater reliability. Testing on a desktop machine with 2GB of RAM showed that growing the hugepage pool with ZONE_MOVABLE on it's own was very slow as the success rate was quite low. Without lumpy-reclaim, each attempt to grow the pool by 100 pages would yield 1 or 2 hugepages. With lumpy-reclaim, getting 40 to 70 hugepages on each attempt was typical. [akpm@osdl.org: ia64 pfn_to_nid fixes and loop cleanup] [bunk@stusta.de: static declarations for internal functions] [a.p.zijlstra@chello.nl: initial lumpy V2 implementation] Signed-off-by: Andy Whitcroft <apw@shadowen.org> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-17 18:03:16 +07:00
/*
* PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
* costly to service. That is between allocation orders which should
* coelesce naturally under reasonable reclaim pressure and those which
* will not.
*/
#define PAGE_ALLOC_COSTLY_ORDER 3
struct free_area {
struct list_head free_list;
unsigned long nr_free;
};
struct pglist_data;
/*
* zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
* So add a wild amount of padding here to ensure that they fall into separate
* cachelines. There are very few zone structures in the machine, so space
* consumption is not a concern here.
*/
#if defined(CONFIG_SMP)
struct zone_padding {
char x[0];
} ____cacheline_internodealigned_in_smp;
#define ZONE_PADDING(name) struct zone_padding name;
#else
#define ZONE_PADDING(name)
#endif
[PATCH] zoned vm counters: basic ZVC (zoned vm counter) implementation Per zone counter infrastructure The counters that we currently have for the VM are split per processor. The processor however has not much to do with the zone these pages belong to. We cannot tell f.e. how many ZONE_DMA pages are dirty. So we are blind to potentially inbalances in the usage of memory in various zones. F.e. in a NUMA system we cannot tell how many pages are dirty on a particular node. If we knew then we could put measures into the VM to balance the use of memory between different zones and different nodes in a NUMA system. For example it would be possible to limit the dirty pages per node so that fast local memory is kept available even if a process is dirtying huge amounts of pages. Another example is zone reclaim. We do not know how many unmapped pages exist per zone. So we just have to try to reclaim. If it is not working then we pause and try again later. It would be better if we knew when it makes sense to reclaim unmapped pages from a zone. This patchset allows the determination of the number of unmapped pages per zone. We can remove the zone reclaim interval with the counters introduced here. Futhermore the ability to have various usage statistics available will allow the development of new NUMA balancing algorithms that may be able to improve the decision making in the scheduler of when to move a process to another node and hopefully will also enable automatic page migration through a user space program that can analyse the memory load distribution and then rebalance memory use in order to increase performance. The counter framework here implements differential counters for each processor in struct zone. The differential counters are consolidated when a threshold is exceeded (like done in the current implementation for nr_pageache), when slab reaping occurs or when a consolidation function is called. Consolidation uses atomic operations and accumulates counters per zone in the zone structure and also globally in the vm_stat array. VM functions can access the counts by simply indexing a global or zone specific array. The arrangement of counters in an array also simplifies processing when output has to be generated for /proc/*. Counters can be updated by calling inc/dec_zone_page_state or _inc/dec_zone_page_state analogous to *_page_state. The second group of functions can be called if it is known that interrupts are disabled. Special optimized increment and decrement functions are provided. These can avoid certain checks and use increment or decrement instructions that an architecture may provide. We also add a new CONFIG_DMA_IS_NORMAL that signifies that an architecture can do DMA to all memory and therefore ZONE_NORMAL will not be populated. This is only currently set for IA64 SGI SN2 and currently only affects node_page_state(). In the best case node_page_state can be reduced to retrieving a single counter for the one zone on the node. [akpm@osdl.org: cleanups] [akpm@osdl.org: export vm_stat[] for filesystems] Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-30 15:55:33 +07:00
enum zone_stat_item {
/* First 128 byte cacheline (assuming 64 bit words) */
NR_FREE_PAGES,
[PATCH] Use ZVC for inactive and active counts The determination of the dirty ratio to determine writeback behavior is currently based on the number of total pages on the system. However, not all pages in the system may be dirtied. Thus the ratio is always too low and can never reach 100%. The ratio may be particularly skewed if large hugepage allocations, slab allocations or device driver buffers make large sections of memory not available anymore. In that case we may get into a situation in which f.e. the background writeback ratio of 40% cannot be reached anymore which leads to undesired writeback behavior. This patchset fixes that issue by determining the ratio based on the actual pages that may potentially be dirty. These are the pages on the active and the inactive list plus free pages. The problem with those counts has so far been that it is expensive to calculate these because counts from multiple nodes and multiple zones will have to be summed up. This patchset makes these counters ZVC counters. This means that a current sum per zone, per node and for the whole system is always available via global variables and not expensive anymore to calculate. The patchset results in some other good side effects: - Removal of the various functions that sum up free, active and inactive page counts - Cleanup of the functions that display information via the proc filesystem. This patch: The use of a ZVC for nr_inactive and nr_active allows a simplification of some counter operations. More ZVC functionality is used for sums etc in the following patches. [akpm@osdl.org: UP build fix] Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-10 16:43:01 +07:00
NR_INACTIVE,
NR_ACTIVE,
NR_ANON_PAGES, /* Mapped anonymous pages */
NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
only modified from process context */
NR_FILE_PAGES,
NR_FILE_DIRTY,
NR_WRITEBACK,
/* Second 128 byte cacheline */
NR_SLAB_RECLAIMABLE,
NR_SLAB_UNRECLAIMABLE,
NR_PAGETABLE, /* used for pagetables */
NR_UNSTABLE_NFS, /* NFS unstable pages */
NR_BOUNCE,
NR_VMSCAN_WRITE,
#ifdef CONFIG_NUMA
NUMA_HIT, /* allocated in intended node */
NUMA_MISS, /* allocated in non intended node */
NUMA_FOREIGN, /* was intended here, hit elsewhere */
NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
NUMA_LOCAL, /* allocation from local node */
NUMA_OTHER, /* allocation from other node */
#endif
[PATCH] zoned vm counters: basic ZVC (zoned vm counter) implementation Per zone counter infrastructure The counters that we currently have for the VM are split per processor. The processor however has not much to do with the zone these pages belong to. We cannot tell f.e. how many ZONE_DMA pages are dirty. So we are blind to potentially inbalances in the usage of memory in various zones. F.e. in a NUMA system we cannot tell how many pages are dirty on a particular node. If we knew then we could put measures into the VM to balance the use of memory between different zones and different nodes in a NUMA system. For example it would be possible to limit the dirty pages per node so that fast local memory is kept available even if a process is dirtying huge amounts of pages. Another example is zone reclaim. We do not know how many unmapped pages exist per zone. So we just have to try to reclaim. If it is not working then we pause and try again later. It would be better if we knew when it makes sense to reclaim unmapped pages from a zone. This patchset allows the determination of the number of unmapped pages per zone. We can remove the zone reclaim interval with the counters introduced here. Futhermore the ability to have various usage statistics available will allow the development of new NUMA balancing algorithms that may be able to improve the decision making in the scheduler of when to move a process to another node and hopefully will also enable automatic page migration through a user space program that can analyse the memory load distribution and then rebalance memory use in order to increase performance. The counter framework here implements differential counters for each processor in struct zone. The differential counters are consolidated when a threshold is exceeded (like done in the current implementation for nr_pageache), when slab reaping occurs or when a consolidation function is called. Consolidation uses atomic operations and accumulates counters per zone in the zone structure and also globally in the vm_stat array. VM functions can access the counts by simply indexing a global or zone specific array. The arrangement of counters in an array also simplifies processing when output has to be generated for /proc/*. Counters can be updated by calling inc/dec_zone_page_state or _inc/dec_zone_page_state analogous to *_page_state. The second group of functions can be called if it is known that interrupts are disabled. Special optimized increment and decrement functions are provided. These can avoid certain checks and use increment or decrement instructions that an architecture may provide. We also add a new CONFIG_DMA_IS_NORMAL that signifies that an architecture can do DMA to all memory and therefore ZONE_NORMAL will not be populated. This is only currently set for IA64 SGI SN2 and currently only affects node_page_state(). In the best case node_page_state can be reduced to retrieving a single counter for the one zone on the node. [akpm@osdl.org: cleanups] [akpm@osdl.org: export vm_stat[] for filesystems] Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-30 15:55:33 +07:00
NR_VM_ZONE_STAT_ITEMS };
struct per_cpu_pages {
int count; /* number of pages in the list */
int high; /* high watermark, emptying needed */
int batch; /* chunk size for buddy add/remove */
struct list_head list; /* the list of pages */
};
struct per_cpu_pageset {
struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */
Move remote node draining out of slab allocators Currently the slab allocators contain callbacks into the page allocator to perform the draining of pagesets on remote nodes. This requires SLUB to have a whole subsystem in order to be compatible with SLAB. Moving node draining out of the slab allocators avoids a section of code in SLUB. Move the node draining so that is is done when the vm statistics are updated. At that point we are already touching all the cachelines with the pagesets of a processor. Add a expire counter there. If we have to update per zone or global vm statistics then assume that the pageset will require subsequent draining. The expire counter will be decremented on each vm stats update pass until it reaches zero. Then we will drain one batch from the pageset. The draining will cause vm counter updates which will then cause another expiration until the pcp is empty. So we will drain a batch every 3 seconds. Note that remote node draining is a somewhat esoteric feature that is required on large NUMA systems because otherwise significant portions of system memory can become trapped in pcp queues. The number of pcp is determined by the number of processors and nodes in a system. A system with 4 processors and 2 nodes has 8 pcps which is okay. But a system with 1024 processors and 512 nodes has 512k pcps with a high potential for large amount of memory being caught in them. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 16:35:14 +07:00
#ifdef CONFIG_NUMA
s8 expire;
#endif
[PATCH] zoned vm counters: basic ZVC (zoned vm counter) implementation Per zone counter infrastructure The counters that we currently have for the VM are split per processor. The processor however has not much to do with the zone these pages belong to. We cannot tell f.e. how many ZONE_DMA pages are dirty. So we are blind to potentially inbalances in the usage of memory in various zones. F.e. in a NUMA system we cannot tell how many pages are dirty on a particular node. If we knew then we could put measures into the VM to balance the use of memory between different zones and different nodes in a NUMA system. For example it would be possible to limit the dirty pages per node so that fast local memory is kept available even if a process is dirtying huge amounts of pages. Another example is zone reclaim. We do not know how many unmapped pages exist per zone. So we just have to try to reclaim. If it is not working then we pause and try again later. It would be better if we knew when it makes sense to reclaim unmapped pages from a zone. This patchset allows the determination of the number of unmapped pages per zone. We can remove the zone reclaim interval with the counters introduced here. Futhermore the ability to have various usage statistics available will allow the development of new NUMA balancing algorithms that may be able to improve the decision making in the scheduler of when to move a process to another node and hopefully will also enable automatic page migration through a user space program that can analyse the memory load distribution and then rebalance memory use in order to increase performance. The counter framework here implements differential counters for each processor in struct zone. The differential counters are consolidated when a threshold is exceeded (like done in the current implementation for nr_pageache), when slab reaping occurs or when a consolidation function is called. Consolidation uses atomic operations and accumulates counters per zone in the zone structure and also globally in the vm_stat array. VM functions can access the counts by simply indexing a global or zone specific array. The arrangement of counters in an array also simplifies processing when output has to be generated for /proc/*. Counters can be updated by calling inc/dec_zone_page_state or _inc/dec_zone_page_state analogous to *_page_state. The second group of functions can be called if it is known that interrupts are disabled. Special optimized increment and decrement functions are provided. These can avoid certain checks and use increment or decrement instructions that an architecture may provide. We also add a new CONFIG_DMA_IS_NORMAL that signifies that an architecture can do DMA to all memory and therefore ZONE_NORMAL will not be populated. This is only currently set for IA64 SGI SN2 and currently only affects node_page_state(). In the best case node_page_state can be reduced to retrieving a single counter for the one zone on the node. [akpm@osdl.org: cleanups] [akpm@osdl.org: export vm_stat[] for filesystems] Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-30 15:55:33 +07:00
#ifdef CONFIG_SMP
[PATCH] ZVC: Scale thresholds depending on the size of the system The ZVC counter update threshold is currently set to a fixed value of 32. This patch sets up the threshold depending on the number of processors and the sizes of the zones in the system. With the current threshold of 32, I was able to observe slight contention when more than 130-140 processors concurrently updated the counters. The contention vanished when I either increased the threshold to 64 or used Andrew's idea of overstepping the interval (see ZVC overstep patch). However, we saw contention again at 220-230 processors. So we need higher values for larger systems. But the current default is already a bit of an overkill for smaller systems. Some systems have tiny zones where precision matters. For example i386 and x86_64 have 16M DMA zones and either 900M ZONE_NORMAL or ZONE_DMA32. These are even present on SMP and NUMA systems. The patch here sets up a threshold based on the number of processors in the system and the size of the zone that these counters are used for. The threshold should grow logarithmically, so we use fls() as an easy approximation. Results of tests on a system with 1024 processors (4TB RAM) The following output is from a test allocating 1GB of memory concurrently on each processor (Forking the process. So contention on mmap_sem and the pte locks is not a factor): X MIN TYPE: CPUS WALL WALL SYS USER TOTCPU fork 1 0.552 0.552 0.540 0.012 0.552 fork 4 0.552 0.548 2.164 0.036 2.200 fork 16 0.564 0.548 8.812 0.164 8.976 fork 128 0.580 0.572 72.204 1.208 73.412 fork 256 1.300 0.660 310.400 2.160 312.560 fork 512 3.512 0.696 1526.836 4.816 1531.652 fork 1020 20.024 0.700 17243.176 6.688 17249.863 So a threshold of 32 is fine up to 128 processors. At 256 processors contention becomes a factor. Overstepping the counter (earlier patch) improves the numbers a bit: fork 4 0.552 0.548 2.164 0.040 2.204 fork 16 0.552 0.548 8.640 0.148 8.788 fork 128 0.556 0.548 69.676 0.956 70.632 fork 256 0.876 0.636 212.468 2.108 214.576 fork 512 2.276 0.672 997.324 4.260 1001.584 fork 1020 13.564 0.680 11586.436 6.088 11592.523 Still contention at 512 and 1020. Contention at 1020 is down by a third. 256 still has a slight bit of contention. After this patch the counter threshold will be set to 125 which reduces contention significantly: fork 128 0.560 0.548 69.776 0.932 70.708 fork 256 0.636 0.556 143.460 2.036 145.496 fork 512 0.640 0.548 284.244 4.236 288.480 fork 1020 1.500 0.588 1326.152 8.892 1335.044 [akpm@osdl.org: !SMP build fix] Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-01 11:27:35 +07:00
s8 stat_threshold;
[PATCH] zoned vm counters: basic ZVC (zoned vm counter) implementation Per zone counter infrastructure The counters that we currently have for the VM are split per processor. The processor however has not much to do with the zone these pages belong to. We cannot tell f.e. how many ZONE_DMA pages are dirty. So we are blind to potentially inbalances in the usage of memory in various zones. F.e. in a NUMA system we cannot tell how many pages are dirty on a particular node. If we knew then we could put measures into the VM to balance the use of memory between different zones and different nodes in a NUMA system. For example it would be possible to limit the dirty pages per node so that fast local memory is kept available even if a process is dirtying huge amounts of pages. Another example is zone reclaim. We do not know how many unmapped pages exist per zone. So we just have to try to reclaim. If it is not working then we pause and try again later. It would be better if we knew when it makes sense to reclaim unmapped pages from a zone. This patchset allows the determination of the number of unmapped pages per zone. We can remove the zone reclaim interval with the counters introduced here. Futhermore the ability to have various usage statistics available will allow the development of new NUMA balancing algorithms that may be able to improve the decision making in the scheduler of when to move a process to another node and hopefully will also enable automatic page migration through a user space program that can analyse the memory load distribution and then rebalance memory use in order to increase performance. The counter framework here implements differential counters for each processor in struct zone. The differential counters are consolidated when a threshold is exceeded (like done in the current implementation for nr_pageache), when slab reaping occurs or when a consolidation function is called. Consolidation uses atomic operations and accumulates counters per zone in the zone structure and also globally in the vm_stat array. VM functions can access the counts by simply indexing a global or zone specific array. The arrangement of counters in an array also simplifies processing when output has to be generated for /proc/*. Counters can be updated by calling inc/dec_zone_page_state or _inc/dec_zone_page_state analogous to *_page_state. The second group of functions can be called if it is known that interrupts are disabled. Special optimized increment and decrement functions are provided. These can avoid certain checks and use increment or decrement instructions that an architecture may provide. We also add a new CONFIG_DMA_IS_NORMAL that signifies that an architecture can do DMA to all memory and therefore ZONE_NORMAL will not be populated. This is only currently set for IA64 SGI SN2 and currently only affects node_page_state(). In the best case node_page_state can be reduced to retrieving a single counter for the one zone on the node. [akpm@osdl.org: cleanups] [akpm@osdl.org: export vm_stat[] for filesystems] Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-30 15:55:33 +07:00
s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
#endif
} ____cacheline_aligned_in_smp;
[PATCH] node local per-cpu-pages This patch modifies the way pagesets in struct zone are managed. Each zone has a per-cpu array of pagesets. So any particular CPU has some memory in each zone structure which belongs to itself. Even if that CPU is not local to that zone. So the patch relocates the pagesets for each cpu to the node that is nearest to the cpu instead of allocating the pagesets in the (possibly remote) target zone. This means that the operations to manage pages on remote zone can be done with information available locally. We play a macro trick so that non-NUMA pmachines avoid the additional pointer chase on the page allocator fastpath. AIM7 benchmark on a 32 CPU SGI Altix w/o patches: Tasks jobs/min jti jobs/min/task real cpu 1 484.68 100 484.6769 12.01 1.97 Fri Mar 25 11:01:42 2005 100 27140.46 89 271.4046 21.44 148.71 Fri Mar 25 11:02:04 2005 200 30792.02 82 153.9601 37.80 296.72 Fri Mar 25 11:02:42 2005 300 32209.27 81 107.3642 54.21 451.34 Fri Mar 25 11:03:37 2005 400 34962.83 78 87.4071 66.59 588.97 Fri Mar 25 11:04:44 2005 500 31676.92 75 63.3538 91.87 742.71 Fri Mar 25 11:06:16 2005 600 36032.69 73 60.0545 96.91 885.44 Fri Mar 25 11:07:54 2005 700 35540.43 77 50.7720 114.63 1024.28 Fri Mar 25 11:09:49 2005 800 33906.70 74 42.3834 137.32 1181.65 Fri Mar 25 11:12:06 2005 900 34120.67 73 37.9119 153.51 1325.26 Fri Mar 25 11:14:41 2005 1000 34802.37 74 34.8024 167.23 1465.26 Fri Mar 25 11:17:28 2005 with slab API changes and pageset patch: Tasks jobs/min jti jobs/min/task real cpu 1 485.00 100 485.0000 12.00 1.96 Fri Mar 25 11:46:18 2005 100 28000.96 89 280.0096 20.79 150.45 Fri Mar 25 11:46:39 2005 200 32285.80 79 161.4290 36.05 293.37 Fri Mar 25 11:47:16 2005 300 40424.15 84 134.7472 43.19 438.42 Fri Mar 25 11:47:59 2005 400 39155.01 79 97.8875 59.46 590.05 Fri Mar 25 11:48:59 2005 500 37881.25 82 75.7625 76.82 730.19 Fri Mar 25 11:50:16 2005 600 39083.14 78 65.1386 89.35 872.79 Fri Mar 25 11:51:46 2005 700 38627.83 77 55.1826 105.47 1022.46 Fri Mar 25 11:53:32 2005 800 39631.94 78 49.5399 117.48 1169.94 Fri Mar 25 11:55:30 2005 900 36903.70 79 41.0041 141.94 1310.78 Fri Mar 25 11:57:53 2005 1000 36201.23 77 36.2012 160.77 1458.31 Fri Mar 25 12:00:34 2005 Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Shobhit Dayal <shobhit@calsoftinc.com> Signed-off-by: Shai Fultheim <Shai@Scalex86.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-22 07:14:47 +07:00
#ifdef CONFIG_NUMA
#define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
#else
#define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
#endif
enum zone_type {
#ifdef CONFIG_ZONE_DMA
/*
* ZONE_DMA is used when there are devices that are not able
* to do DMA to all of addressable memory (ZONE_NORMAL). Then we
* carve out the portion of memory that is needed for these devices.
* The range is arch specific.
*
* Some examples
*
* Architecture Limit
* ---------------------------
* parisc, ia64, sparc <4G
* s390 <2G
* arm Various
* alpha Unlimited or 0-16MB.
*
* i386, x86_64 and multiple other arches
* <16M.
*/
ZONE_DMA,
#endif
#ifdef CONFIG_ZONE_DMA32
/*
* x86_64 needs two ZONE_DMAs because it supports devices that are
* only able to do DMA to the lower 16M but also 32 bit devices that
* can only do DMA areas below 4G.
*/
ZONE_DMA32,
#endif
/*
* Normal addressable memory is in ZONE_NORMAL. DMA operations can be
* performed on pages in ZONE_NORMAL if the DMA devices support
* transfers to all addressable memory.
*/
ZONE_NORMAL,
#ifdef CONFIG_HIGHMEM
/*
* A memory area that is only addressable by the kernel through
* mapping portions into its own address space. This is for example
* used by i386 to allow the kernel to address the memory beyond
* 900MB. The kernel will set up special mappings (page
* table entries on i386) for each page that the kernel needs to
* access.
*/
ZONE_HIGHMEM,
#endif
Create the ZONE_MOVABLE zone The following 8 patches against 2.6.20-mm2 create a zone called ZONE_MOVABLE that is only usable by allocations that specify both __GFP_HIGHMEM and __GFP_MOVABLE. This has the effect of keeping all non-movable pages within a single memory partition while allowing movable allocations to be satisfied from either partition. The patches may be applied with the list-based anti-fragmentation patches that groups pages together based on mobility. The size of the zone is determined by a kernelcore= parameter specified at boot-time. This specifies how much memory is usable by non-movable allocations and the remainder is used for ZONE_MOVABLE. Any range of pages within ZONE_MOVABLE can be released by migrating the pages or by reclaiming. When selecting a zone to take pages from for ZONE_MOVABLE, there are two things to consider. First, only memory from the highest populated zone is used for ZONE_MOVABLE. On the x86, this is probably going to be ZONE_HIGHMEM but it would be ZONE_DMA on ppc64 or possibly ZONE_DMA32 on x86_64. Second, the amount of memory usable by the kernel will be spread evenly throughout NUMA nodes where possible. If the nodes are not of equal size, the amount of memory usable by the kernel on some nodes may be greater than others. By default, the zone is not as useful for hugetlb allocations because they are pinned and non-migratable (currently at least). A sysctl is provided that allows huge pages to be allocated from that zone. This means that the huge page pool can be resized to the size of ZONE_MOVABLE during the lifetime of the system assuming that pages are not mlocked. Despite huge pages being non-movable, we do not introduce additional external fragmentation of note as huge pages are always the largest contiguous block we care about. Credit goes to Andy Whitcroft for catching a large variety of problems during review of the patches. This patch creates an additional zone, ZONE_MOVABLE. This zone is only usable by allocations which specify both __GFP_HIGHMEM and __GFP_MOVABLE. Hot-added memory continues to be placed in their existing destination as there is no mechanism to redirect them to a specific zone. [y-goto@jp.fujitsu.com: Fix section mismatch of memory hotplug related code] [akpm@linux-foundation.org: various fixes] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: William Lee Irwin III <wli@holomorphy.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-17 18:03:12 +07:00
ZONE_MOVABLE,
MAX_NR_ZONES
};
/*
* When a memory allocation must conform to specific limitations (such
* as being suitable for DMA) the caller will pass in hints to the
* allocator in the gfp_mask, in the zone modifier bits. These bits
* are used to select a priority ordered list of memory zones which
* match the requested limits. See gfp_zone() in include/linux/gfp.h
*/
/*
* Count the active zones. Note that the use of defined(X) outside
* #if and family is not necessarily defined so ensure we cannot use
* it later. Use __ZONE_COUNT to work out how many shift bits we need.
*/
#define __ZONE_COUNT ( \
defined(CONFIG_ZONE_DMA) \
+ defined(CONFIG_ZONE_DMA32) \
+ 1 \
+ defined(CONFIG_HIGHMEM) \
Create the ZONE_MOVABLE zone The following 8 patches against 2.6.20-mm2 create a zone called ZONE_MOVABLE that is only usable by allocations that specify both __GFP_HIGHMEM and __GFP_MOVABLE. This has the effect of keeping all non-movable pages within a single memory partition while allowing movable allocations to be satisfied from either partition. The patches may be applied with the list-based anti-fragmentation patches that groups pages together based on mobility. The size of the zone is determined by a kernelcore= parameter specified at boot-time. This specifies how much memory is usable by non-movable allocations and the remainder is used for ZONE_MOVABLE. Any range of pages within ZONE_MOVABLE can be released by migrating the pages or by reclaiming. When selecting a zone to take pages from for ZONE_MOVABLE, there are two things to consider. First, only memory from the highest populated zone is used for ZONE_MOVABLE. On the x86, this is probably going to be ZONE_HIGHMEM but it would be ZONE_DMA on ppc64 or possibly ZONE_DMA32 on x86_64. Second, the amount of memory usable by the kernel will be spread evenly throughout NUMA nodes where possible. If the nodes are not of equal size, the amount of memory usable by the kernel on some nodes may be greater than others. By default, the zone is not as useful for hugetlb allocations because they are pinned and non-migratable (currently at least). A sysctl is provided that allows huge pages to be allocated from that zone. This means that the huge page pool can be resized to the size of ZONE_MOVABLE during the lifetime of the system assuming that pages are not mlocked. Despite huge pages being non-movable, we do not introduce additional external fragmentation of note as huge pages are always the largest contiguous block we care about. Credit goes to Andy Whitcroft for catching a large variety of problems during review of the patches. This patch creates an additional zone, ZONE_MOVABLE. This zone is only usable by allocations which specify both __GFP_HIGHMEM and __GFP_MOVABLE. Hot-added memory continues to be placed in their existing destination as there is no mechanism to redirect them to a specific zone. [y-goto@jp.fujitsu.com: Fix section mismatch of memory hotplug related code] [akpm@linux-foundation.org: various fixes] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: William Lee Irwin III <wli@holomorphy.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-17 18:03:12 +07:00
+ 1 \
)
#if __ZONE_COUNT < 2
#define ZONES_SHIFT 0
#elif __ZONE_COUNT <= 2
#define ZONES_SHIFT 1
#elif __ZONE_COUNT <= 4
#define ZONES_SHIFT 2
#else
#error ZONES_SHIFT -- too many zones configured adjust calculation
#endif
#undef __ZONE_COUNT
struct zone {
/* Fields commonly accessed by the page allocator */
unsigned long pages_min, pages_low, pages_high;
/*
* We don't know if the memory that we're going to allocate will be freeable
* or/and it will be released eventually, so to avoid totally wasting several
* GB of ram we must reserve some of the lower zone memory (otherwise we risk
* to run OOM on the lower zones despite there's tons of freeable ram
* on the higher zones). This array is recalculated at runtime if the
* sysctl_lowmem_reserve_ratio sysctl changes.
*/
unsigned long lowmem_reserve[MAX_NR_ZONES];
[PATCH] node local per-cpu-pages This patch modifies the way pagesets in struct zone are managed. Each zone has a per-cpu array of pagesets. So any particular CPU has some memory in each zone structure which belongs to itself. Even if that CPU is not local to that zone. So the patch relocates the pagesets for each cpu to the node that is nearest to the cpu instead of allocating the pagesets in the (possibly remote) target zone. This means that the operations to manage pages on remote zone can be done with information available locally. We play a macro trick so that non-NUMA pmachines avoid the additional pointer chase on the page allocator fastpath. AIM7 benchmark on a 32 CPU SGI Altix w/o patches: Tasks jobs/min jti jobs/min/task real cpu 1 484.68 100 484.6769 12.01 1.97 Fri Mar 25 11:01:42 2005 100 27140.46 89 271.4046 21.44 148.71 Fri Mar 25 11:02:04 2005 200 30792.02 82 153.9601 37.80 296.72 Fri Mar 25 11:02:42 2005 300 32209.27 81 107.3642 54.21 451.34 Fri Mar 25 11:03:37 2005 400 34962.83 78 87.4071 66.59 588.97 Fri Mar 25 11:04:44 2005 500 31676.92 75 63.3538 91.87 742.71 Fri Mar 25 11:06:16 2005 600 36032.69 73 60.0545 96.91 885.44 Fri Mar 25 11:07:54 2005 700 35540.43 77 50.7720 114.63 1024.28 Fri Mar 25 11:09:49 2005 800 33906.70 74 42.3834 137.32 1181.65 Fri Mar 25 11:12:06 2005 900 34120.67 73 37.9119 153.51 1325.26 Fri Mar 25 11:14:41 2005 1000 34802.37 74 34.8024 167.23 1465.26 Fri Mar 25 11:17:28 2005 with slab API changes and pageset patch: Tasks jobs/min jti jobs/min/task real cpu 1 485.00 100 485.0000 12.00 1.96 Fri Mar 25 11:46:18 2005 100 28000.96 89 280.0096 20.79 150.45 Fri Mar 25 11:46:39 2005 200 32285.80 79 161.4290 36.05 293.37 Fri Mar 25 11:47:16 2005 300 40424.15 84 134.7472 43.19 438.42 Fri Mar 25 11:47:59 2005 400 39155.01 79 97.8875 59.46 590.05 Fri Mar 25 11:48:59 2005 500 37881.25 82 75.7625 76.82 730.19 Fri Mar 25 11:50:16 2005 600 39083.14 78 65.1386 89.35 872.79 Fri Mar 25 11:51:46 2005 700 38627.83 77 55.1826 105.47 1022.46 Fri Mar 25 11:53:32 2005 800 39631.94 78 49.5399 117.48 1169.94 Fri Mar 25 11:55:30 2005 900 36903.70 79 41.0041 141.94 1310.78 Fri Mar 25 11:57:53 2005 1000 36201.23 77 36.2012 160.77 1458.31 Fri Mar 25 12:00:34 2005 Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Shobhit Dayal <shobhit@calsoftinc.com> Signed-off-by: Shai Fultheim <Shai@Scalex86.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-22 07:14:47 +07:00
#ifdef CONFIG_NUMA
int node;
/*
* zone reclaim becomes active if more unmapped pages exist.
*/
unsigned long min_unmapped_pages;
[PATCH] zone_reclaim: dynamic slab reclaim Currently one can enable slab reclaim by setting an explicit option in /proc/sys/vm/zone_reclaim_mode. Slab reclaim is then used as a final option if the freeing of unmapped file backed pages is not enough to free enough pages to allow a local allocation. However, that means that the slab can grow excessively and that most memory of a node may be used by slabs. We have had a case where a machine with 46GB of memory was using 40-42GB for slab. Zone reclaim was effective in dealing with pagecache pages. However, slab reclaim was only done during global reclaim (which is a bit rare on NUMA systems). This patch implements slab reclaim during zone reclaim. Zone reclaim occurs if there is a danger of an off node allocation. At that point we 1. Shrink the per node page cache if the number of pagecache pages is more than min_unmapped_ratio percent of pages in a zone. 2. Shrink the slab cache if the number of the nodes reclaimable slab pages (patch depends on earlier one that implements that counter) are more than min_slab_ratio (a new /proc/sys/vm tunable). The shrinking of the slab cache is a bit problematic since it is not node specific. So we simply calculate what point in the slab we want to reach (current per node slab use minus the number of pages that neeed to be allocated) and then repeately run the global reclaim until that is unsuccessful or we have reached the limit. I hope we will have zone based slab reclaim at some point which will make that easier. The default for the min_slab_ratio is 5% Also remove the slab option from /proc/sys/vm/zone_reclaim_mode. [akpm@osdl.org: cleanups] Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 13:31:52 +07:00
unsigned long min_slab_pages;
[PATCH] node local per-cpu-pages This patch modifies the way pagesets in struct zone are managed. Each zone has a per-cpu array of pagesets. So any particular CPU has some memory in each zone structure which belongs to itself. Even if that CPU is not local to that zone. So the patch relocates the pagesets for each cpu to the node that is nearest to the cpu instead of allocating the pagesets in the (possibly remote) target zone. This means that the operations to manage pages on remote zone can be done with information available locally. We play a macro trick so that non-NUMA pmachines avoid the additional pointer chase on the page allocator fastpath. AIM7 benchmark on a 32 CPU SGI Altix w/o patches: Tasks jobs/min jti jobs/min/task real cpu 1 484.68 100 484.6769 12.01 1.97 Fri Mar 25 11:01:42 2005 100 27140.46 89 271.4046 21.44 148.71 Fri Mar 25 11:02:04 2005 200 30792.02 82 153.9601 37.80 296.72 Fri Mar 25 11:02:42 2005 300 32209.27 81 107.3642 54.21 451.34 Fri Mar 25 11:03:37 2005 400 34962.83 78 87.4071 66.59 588.97 Fri Mar 25 11:04:44 2005 500 31676.92 75 63.3538 91.87 742.71 Fri Mar 25 11:06:16 2005 600 36032.69 73 60.0545 96.91 885.44 Fri Mar 25 11:07:54 2005 700 35540.43 77 50.7720 114.63 1024.28 Fri Mar 25 11:09:49 2005 800 33906.70 74 42.3834 137.32 1181.65 Fri Mar 25 11:12:06 2005 900 34120.67 73 37.9119 153.51 1325.26 Fri Mar 25 11:14:41 2005 1000 34802.37 74 34.8024 167.23 1465.26 Fri Mar 25 11:17:28 2005 with slab API changes and pageset patch: Tasks jobs/min jti jobs/min/task real cpu 1 485.00 100 485.0000 12.00 1.96 Fri Mar 25 11:46:18 2005 100 28000.96 89 280.0096 20.79 150.45 Fri Mar 25 11:46:39 2005 200 32285.80 79 161.4290 36.05 293.37 Fri Mar 25 11:47:16 2005 300 40424.15 84 134.7472 43.19 438.42 Fri Mar 25 11:47:59 2005 400 39155.01 79 97.8875 59.46 590.05 Fri Mar 25 11:48:59 2005 500 37881.25 82 75.7625 76.82 730.19 Fri Mar 25 11:50:16 2005 600 39083.14 78 65.1386 89.35 872.79 Fri Mar 25 11:51:46 2005 700 38627.83 77 55.1826 105.47 1022.46 Fri Mar 25 11:53:32 2005 800 39631.94 78 49.5399 117.48 1169.94 Fri Mar 25 11:55:30 2005 900 36903.70 79 41.0041 141.94 1310.78 Fri Mar 25 11:57:53 2005 1000 36201.23 77 36.2012 160.77 1458.31 Fri Mar 25 12:00:34 2005 Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Shobhit Dayal <shobhit@calsoftinc.com> Signed-off-by: Shai Fultheim <Shai@Scalex86.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-22 07:14:47 +07:00
struct per_cpu_pageset *pageset[NR_CPUS];
#else
struct per_cpu_pageset pageset[NR_CPUS];
[PATCH] node local per-cpu-pages This patch modifies the way pagesets in struct zone are managed. Each zone has a per-cpu array of pagesets. So any particular CPU has some memory in each zone structure which belongs to itself. Even if that CPU is not local to that zone. So the patch relocates the pagesets for each cpu to the node that is nearest to the cpu instead of allocating the pagesets in the (possibly remote) target zone. This means that the operations to manage pages on remote zone can be done with information available locally. We play a macro trick so that non-NUMA pmachines avoid the additional pointer chase on the page allocator fastpath. AIM7 benchmark on a 32 CPU SGI Altix w/o patches: Tasks jobs/min jti jobs/min/task real cpu 1 484.68 100 484.6769 12.01 1.97 Fri Mar 25 11:01:42 2005 100 27140.46 89 271.4046 21.44 148.71 Fri Mar 25 11:02:04 2005 200 30792.02 82 153.9601 37.80 296.72 Fri Mar 25 11:02:42 2005 300 32209.27 81 107.3642 54.21 451.34 Fri Mar 25 11:03:37 2005 400 34962.83 78 87.4071 66.59 588.97 Fri Mar 25 11:04:44 2005 500 31676.92 75 63.3538 91.87 742.71 Fri Mar 25 11:06:16 2005 600 36032.69 73 60.0545 96.91 885.44 Fri Mar 25 11:07:54 2005 700 35540.43 77 50.7720 114.63 1024.28 Fri Mar 25 11:09:49 2005 800 33906.70 74 42.3834 137.32 1181.65 Fri Mar 25 11:12:06 2005 900 34120.67 73 37.9119 153.51 1325.26 Fri Mar 25 11:14:41 2005 1000 34802.37 74 34.8024 167.23 1465.26 Fri Mar 25 11:17:28 2005 with slab API changes and pageset patch: Tasks jobs/min jti jobs/min/task real cpu 1 485.00 100 485.0000 12.00 1.96 Fri Mar 25 11:46:18 2005 100 28000.96 89 280.0096 20.79 150.45 Fri Mar 25 11:46:39 2005 200 32285.80 79 161.4290 36.05 293.37 Fri Mar 25 11:47:16 2005 300 40424.15 84 134.7472 43.19 438.42 Fri Mar 25 11:47:59 2005 400 39155.01 79 97.8875 59.46 590.05 Fri Mar 25 11:48:59 2005 500 37881.25 82 75.7625 76.82 730.19 Fri Mar 25 11:50:16 2005 600 39083.14 78 65.1386 89.35 872.79 Fri Mar 25 11:51:46 2005 700 38627.83 77 55.1826 105.47 1022.46 Fri Mar 25 11:53:32 2005 800 39631.94 78 49.5399 117.48 1169.94 Fri Mar 25 11:55:30 2005 900 36903.70 79 41.0041 141.94 1310.78 Fri Mar 25 11:57:53 2005 1000 36201.23 77 36.2012 160.77 1458.31 Fri Mar 25 12:00:34 2005 Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Shobhit Dayal <shobhit@calsoftinc.com> Signed-off-by: Shai Fultheim <Shai@Scalex86.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-22 07:14:47 +07:00
#endif
/*
* free areas of different sizes
*/
spinlock_t lock;
#ifdef CONFIG_MEMORY_HOTPLUG
/* see spanned/present_pages for more description */
seqlock_t span_seqlock;
#endif
struct free_area free_area[MAX_ORDER];
ZONE_PADDING(_pad1_)
/* Fields commonly accessed by the page reclaim scanner */
spinlock_t lru_lock;
struct list_head active_list;
struct list_head inactive_list;
unsigned long nr_scan_active;
unsigned long nr_scan_inactive;
unsigned long pages_scanned; /* since last reclaim */
int all_unreclaimable; /* All pages pinned */
/* A count of how many reclaimers are scanning this zone */
atomic_t reclaim_in_progress;
[PATCH] VM: early zone reclaim This is the core of the (much simplified) early reclaim. The goal of this patch is to reclaim some easily-freed pages from a zone before falling back onto another zone. One of the major uses of this is NUMA machines. With the default allocator behavior the allocator would look for memory in another zone, which might be off-node, before trying to reclaim from the current zone. This adds a zone tuneable to enable early zone reclaim. It is selected on a per-zone basis and is turned on/off via syscall. Adding some extra throttling on the reclaim was also required (patch 4/4). Without the machine would grind to a crawl when doing a "make -j" kernel build. Even with this patch the System Time is higher on average, but it seems tolerable. Here are some numbers for kernbench runs on a 2-node, 4cpu, 8Gig RAM Altix in the "make -j" run: wall user sys %cpu ctx sw. sleeps ---- ---- --- ---- ------ ------ No patch 1009 1384 847 258 298170 504402 w/patch, no reclaim 880 1376 667 288 254064 396745 w/patch & reclaim 1079 1385 926 252 291625 548873 These numbers are the average of 2 runs of 3 "make -j" runs done right after system boot. Run-to-run variability for "make -j" is huge, so these numbers aren't terribly useful except to seee that with reclaim the benchmark still finishes in a reasonable amount of time. I also looked at the NUMA hit/miss stats for the "make -j" runs and the reclaim doesn't make any difference when the machine is thrashing away. Doing a "make -j8" on a single node that is filled with page cache pages takes 700 seconds with reclaim turned on and 735 seconds without reclaim (due to remote memory accesses). The simple zone_reclaim syscall program is at http://www.bork.org/~mort/sgi/zone_reclaim.c Signed-off-by: Martin Hicks <mort@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-22 07:14:41 +07:00
[PATCH] zoned vm counters: basic ZVC (zoned vm counter) implementation Per zone counter infrastructure The counters that we currently have for the VM are split per processor. The processor however has not much to do with the zone these pages belong to. We cannot tell f.e. how many ZONE_DMA pages are dirty. So we are blind to potentially inbalances in the usage of memory in various zones. F.e. in a NUMA system we cannot tell how many pages are dirty on a particular node. If we knew then we could put measures into the VM to balance the use of memory between different zones and different nodes in a NUMA system. For example it would be possible to limit the dirty pages per node so that fast local memory is kept available even if a process is dirtying huge amounts of pages. Another example is zone reclaim. We do not know how many unmapped pages exist per zone. So we just have to try to reclaim. If it is not working then we pause and try again later. It would be better if we knew when it makes sense to reclaim unmapped pages from a zone. This patchset allows the determination of the number of unmapped pages per zone. We can remove the zone reclaim interval with the counters introduced here. Futhermore the ability to have various usage statistics available will allow the development of new NUMA balancing algorithms that may be able to improve the decision making in the scheduler of when to move a process to another node and hopefully will also enable automatic page migration through a user space program that can analyse the memory load distribution and then rebalance memory use in order to increase performance. The counter framework here implements differential counters for each processor in struct zone. The differential counters are consolidated when a threshold is exceeded (like done in the current implementation for nr_pageache), when slab reaping occurs or when a consolidation function is called. Consolidation uses atomic operations and accumulates counters per zone in the zone structure and also globally in the vm_stat array. VM functions can access the counts by simply indexing a global or zone specific array. The arrangement of counters in an array also simplifies processing when output has to be generated for /proc/*. Counters can be updated by calling inc/dec_zone_page_state or _inc/dec_zone_page_state analogous to *_page_state. The second group of functions can be called if it is known that interrupts are disabled. Special optimized increment and decrement functions are provided. These can avoid certain checks and use increment or decrement instructions that an architecture may provide. We also add a new CONFIG_DMA_IS_NORMAL that signifies that an architecture can do DMA to all memory and therefore ZONE_NORMAL will not be populated. This is only currently set for IA64 SGI SN2 and currently only affects node_page_state(). In the best case node_page_state can be reduced to retrieving a single counter for the one zone on the node. [akpm@osdl.org: cleanups] [akpm@osdl.org: export vm_stat[] for filesystems] Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-30 15:55:33 +07:00
/* Zone statistics */
atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
/*
* prev_priority holds the scanning priority for this zone. It is
* defined as the scanning priority at which we achieved our reclaim
* target at the previous try_to_free_pages() or balance_pgdat()
* invokation.
*
* We use prev_priority as a measure of how much stress page reclaim is
* under - it drives the swappiness decision: whether to unmap mapped
* pages.
*
[PATCH] vmscan: Fix temp_priority race The temp_priority field in zone is racy, as we can walk through a reclaim path, and just before we copy it into prev_priority, it can be overwritten (say with DEF_PRIORITY) by another reclaimer. The same bug is contained in both try_to_free_pages and balance_pgdat, but it is fixed slightly differently. In balance_pgdat, we keep a separate priority record per zone in a local array. In try_to_free_pages there is no need to do this, as the priority level is the same for all zones that we reclaim from. Impact of this bug is that temp_priority is copied into prev_priority, and setting this artificially high causes reclaimers to set distress artificially low. They then fail to reclaim mapped pages, when they are, in fact, under severe memory pressure (their priority may be as low as 0). This causes the OOM killer to fire incorrectly. From: Andrew Morton <akpm@osdl.org> __zone_reclaim() isn't modifying zone->prev_priority. But zone->prev_priority is used in the decision whether or not to bring mapped pages onto the inactive list. Hence there's a risk here that __zone_reclaim() will fail because zone->prev_priority ir large (ie: low urgency) and lots of mapped pages end up stuck on the active list. Fix that up by decreasing (ie making more urgent) zone->prev_priority as __zone_reclaim() scans the zone's pages. This bug perhaps explains why ZONE_RECLAIM_PRIORITY was created. It should be possible to remove that now, and to just start out at DEF_PRIORITY? Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Christoph Lameter <clameter@engr.sgi.com> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-29 00:38:24 +07:00
* Access to both this field is quite racy even on uniprocessor. But
* it is expected to average out OK.
*/
int prev_priority;
ZONE_PADDING(_pad2_)
/* Rarely used or read-mostly fields */
/*
* wait_table -- the array holding the hash table
* wait_table_hash_nr_entries -- the size of the hash table array
* wait_table_bits -- wait_table_size == (1 << wait_table_bits)
*
* The purpose of all these is to keep track of the people
* waiting for a page to become available and make them
* runnable again when possible. The trouble is that this
* consumes a lot of space, especially when so few things
* wait on pages at a given time. So instead of using
* per-page waitqueues, we use a waitqueue hash table.
*
* The bucket discipline is to sleep on the same queue when
* colliding and wake all in that wait queue when removing.
* When something wakes, it must check to be sure its page is
* truly available, a la thundering herd. The cost of a
* collision is great, but given the expected load of the
* table, they should be so rare as to be outweighed by the
* benefits from the saved space.
*
* __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
* primary users of these fields, and in mm/page_alloc.c
* free_area_init_core() performs the initialization of them.
*/
wait_queue_head_t * wait_table;
unsigned long wait_table_hash_nr_entries;
unsigned long wait_table_bits;
/*
* Discontig memory support fields.
*/
struct pglist_data *zone_pgdat;
/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
unsigned long zone_start_pfn;
/*
* zone_start_pfn, spanned_pages and present_pages are all
* protected by span_seqlock. It is a seqlock because it has
* to be read outside of zone->lock, and it is done in the main
* allocator path. But, it is written quite infrequently.
*
* The lock is declared along with zone->lock because it is
* frequently read in proximity to zone->lock. It's good to
* give them a chance of being in the same cacheline.
*/
unsigned long spanned_pages; /* total size, including holes */
unsigned long present_pages; /* amount of memory (excluding holes) */
/*
* rarely used fields:
*/
const char *name;
} ____cacheline_internodealigned_in_smp;
/*
* The "priority" of VM scanning is how much of the queues we will scan in one
* go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
* queues ("queue_length >> 12") during an aging round.
*/
#define DEF_PRIORITY 12
[PATCH] memory page_alloc zonelist caching speedup Optimize the critical zonelist scanning for free pages in the kernel memory allocator by caching the zones that were found to be full recently, and skipping them. Remembers the zones in a zonelist that were short of free memory in the last second. And it stashes a zone-to-node table in the zonelist struct, to optimize that conversion (minimize its cache footprint.) Recent changes: This differs in a significant way from a similar patch that I posted a week ago. Now, instead of having a nodemask_t of recently full nodes, I have a bitmask of recently full zones. This solves a problem that last weeks patch had, which on systems with multiple zones per node (such as DMA zone) would take seeing any of these zones full as meaning that all zones on that node were full. Also I changed names - from "zonelist faster" to "zonelist cache", as that seemed to better convey what we're doing here - caching some of the key zonelist state (for faster access.) See below for some performance benchmark results. After all that discussion with David on why I didn't need them, I went and got some ;). I wanted to verify that I had not hurt the normal case of memory allocation noticeably. At least for my one little microbenchmark, I found (1) the normal case wasn't affected, and (2) workloads that forced scanning across multiple nodes for memory improved up to 10% fewer System CPU cycles and lower elapsed clock time ('sys' and 'real'). Good. See details, below. I didn't have the logic in get_page_from_freelist() for various full nodes and zone reclaim failures correct. That should be fixed up now - notice the new goto labels zonelist_scan, this_zone_full, and try_next_zone, in get_page_from_freelist(). There are two reasons I persued this alternative, over some earlier proposals that would have focused on optimizing the fake numa emulation case by caching the last useful zone: 1) Contrary to what I said before, we (SGI, on large ia64 sn2 systems) have seen real customer loads where the cost to scan the zonelist was a problem, due to many nodes being full of memory before we got to a node we could use. Or at least, I think we have. This was related to me by another engineer, based on experiences from some time past. So this is not guaranteed. Most likely, though. The following approach should help such real numa systems just as much as it helps fake numa systems, or any combination thereof. 2) The effort to distinguish fake from real numa, using node_distance, so that we could cache a fake numa node and optimize choosing it over equivalent distance fake nodes, while continuing to properly scan all real nodes in distance order, was going to require a nasty blob of zonelist and node distance munging. The following approach has no new dependency on node distances or zone sorting. See comment in the patch below for a description of what it actually does. Technical details of note (or controversy): - See the use of "zlc_active" and "did_zlc_setup" below, to delay adding any work for this new mechanism until we've looked at the first zone in zonelist. I figured the odds of the first zone having the memory we needed were high enough that we should just look there, first, then get fancy only if we need to keep looking. - Some odd hackery was needed to add items to struct zonelist, while not tripping up the custom zonelists built by the mm/mempolicy.c code for MPOL_BIND. My usual wordy comments below explain this. Search for "MPOL_BIND". - Some per-node data in the struct zonelist is now modified frequently, with no locking. Multiple CPU cores on a node could hit and mangle this data. The theory is that this is just performance hint data, and the memory allocator will work just fine despite any such mangling. The fields at risk are the struct 'zonelist_cache' fields 'fullzones' (a bitmask) and 'last_full_zap' (unsigned long jiffies). It should all be self correcting after at most a one second delay. - This still does a linear scan of the same lengths as before. All I've optimized is making the scan faster, not algorithmically shorter. It is now able to scan a compact array of 'unsigned short' in the case of many full nodes, so one cache line should cover quite a few nodes, rather than each node hitting another one or two new and distinct cache lines. - If both Andi and Nick don't find this too complicated, I will be (pleasantly) flabbergasted. - I removed the comment claiming we only use one cachline's worth of zonelist. We seem, at least in the fake numa case, to have put the lie to that claim. - I pay no attention to the various watermarks and such in this performance hint. A node could be marked full for one watermark, and then skipped over when searching for a page using a different watermark. I think that's actually quite ok, as it will tend to slightly increase the spreading of memory over other nodes, away from a memory stressed node. =============== Performance - some benchmark results and analysis: This benchmark runs a memory hog program that uses multiple threads to touch alot of memory as quickly as it can. Multiple runs were made, touching 12, 38, 64 or 90 GBytes out of the total 96 GBytes on the system, and using 1, 19, 37, or 55 threads (on a 56 CPU system.) System, user and real (elapsed) timings were recorded for each run, shown in units of seconds, in the table below. Two kernels were tested - 2.6.18-mm3 and the same kernel with this zonelist caching patch added. The table also shows the percentage improvement the zonelist caching sys time is over (lower than) the stock *-mm kernel. number 2.6.18-mm3 zonelist-cache delta (< 0 good) percent GBs N ------------ -------------- ---------------- systime mem threads sys user real sys user real sys user real better 12 1 153 24 177 151 24 176 -2 0 -1 1% 12 19 99 22 8 99 22 8 0 0 0 0% 12 37 111 25 6 112 25 6 1 0 0 -0% 12 55 115 25 5 110 23 5 -5 -2 0 4% 38 1 502 74 576 497 73 570 -5 -1 -6 0% 38 19 426 78 48 373 76 39 -53 -2 -9 12% 38 37 544 83 36 547 82 36 3 -1 0 -0% 38 55 501 77 23 511 80 24 10 3 1 -1% 64 1 917 125 1042 890 124 1014 -27 -1 -28 2% 64 19 1118 138 119 965 141 103 -153 3 -16 13% 64 37 1202 151 94 1136 150 81 -66 -1 -13 5% 64 55 1118 141 61 1072 140 58 -46 -1 -3 4% 90 1 1342 177 1519 1275 174 1450 -67 -3 -69 4% 90 19 2392 199 192 2116 189 176 -276 -10 -16 11% 90 37 3313 238 175 2972 225 145 -341 -13 -30 10% 90 55 1948 210 104 1843 213 100 -105 3 -4 5% Notes: 1) This test ran a memory hog program that started a specified number N of threads, and had each thread allocate and touch 1/N'th of the total memory to be used in the test run in a single loop, writing a constant word to memory, one store every 4096 bytes. Watching this test during some earlier trial runs, I would see each of these threads sit down on one CPU and stay there, for the remainder of the pass, a different CPU for each thread. 2) The 'real' column is not comparable to the 'sys' or 'user' columns. The 'real' column is seconds wall clock time elapsed, from beginning to end of that test pass. The 'sys' and 'user' columns are total CPU seconds spent on that test pass. For a 19 thread test run, for example, the sum of 'sys' and 'user' could be up to 19 times the number of 'real' elapsed wall clock seconds. 3) Tests were run on a fresh, single-user boot, to minimize the amount of memory already in use at the start of the test, and to minimize the amount of background activity that might interfere. 4) Tests were done on a 56 CPU, 28 Node system with 96 GBytes of RAM. 5) Notice that the 'real' time gets large for the single thread runs, even though the measured 'sys' and 'user' times are modest. I'm not sure what that means - probably something to do with it being slow for one thread to be accessing memory along ways away. Perhaps the fake numa system, running ostensibly the same workload, would not show this substantial degradation of 'real' time for one thread on many nodes -- lets hope not. 6) The high thread count passes (one thread per CPU - on 55 of 56 CPUs) ran quite efficiently, as one might expect. Each pair of threads needed to allocate and touch the memory on the node the two threads shared, a pleasantly parallizable workload. 7) The intermediate thread count passes, when asking for alot of memory forcing them to go to a few neighboring nodes, improved the most with this zonelist caching patch. Conclusions: * This zonelist cache patch probably makes little difference one way or the other for most workloads on real numa hardware, if those workloads avoid heavy off node allocations. * For memory intensive workloads requiring substantial off-node allocations on real numa hardware, this patch improves both kernel and elapsed timings up to ten per-cent. * For fake numa systems, I'm optimistic, but will have to leave that up to Rohit Seth to actually test (once I get him a 2.6.18 backport.) Signed-off-by: Paul Jackson <pj@sgi.com> Cc: Rohit Seth <rohitseth@google.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Cc: David Rientjes <rientjes@cs.washington.edu> Cc: Paul Menage <menage@google.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 11:31:48 +07:00
/* Maximum number of zones on a zonelist */
#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
#ifdef CONFIG_NUMA
/*
* The NUMA zonelists are doubled becausse we need zonelists that restrict the
* allocations to a single node for GFP_THISNODE.
*
* [0 .. MAX_NR_ZONES -1] : Zonelists with fallback
* [MAZ_NR_ZONES ... MAZ_ZONELISTS -1] : No fallback (GFP_THISNODE)
*/
#define MAX_ZONELISTS (2 * MAX_NR_ZONES)
[PATCH] memory page_alloc zonelist caching speedup Optimize the critical zonelist scanning for free pages in the kernel memory allocator by caching the zones that were found to be full recently, and skipping them. Remembers the zones in a zonelist that were short of free memory in the last second. And it stashes a zone-to-node table in the zonelist struct, to optimize that conversion (minimize its cache footprint.) Recent changes: This differs in a significant way from a similar patch that I posted a week ago. Now, instead of having a nodemask_t of recently full nodes, I have a bitmask of recently full zones. This solves a problem that last weeks patch had, which on systems with multiple zones per node (such as DMA zone) would take seeing any of these zones full as meaning that all zones on that node were full. Also I changed names - from "zonelist faster" to "zonelist cache", as that seemed to better convey what we're doing here - caching some of the key zonelist state (for faster access.) See below for some performance benchmark results. After all that discussion with David on why I didn't need them, I went and got some ;). I wanted to verify that I had not hurt the normal case of memory allocation noticeably. At least for my one little microbenchmark, I found (1) the normal case wasn't affected, and (2) workloads that forced scanning across multiple nodes for memory improved up to 10% fewer System CPU cycles and lower elapsed clock time ('sys' and 'real'). Good. See details, below. I didn't have the logic in get_page_from_freelist() for various full nodes and zone reclaim failures correct. That should be fixed up now - notice the new goto labels zonelist_scan, this_zone_full, and try_next_zone, in get_page_from_freelist(). There are two reasons I persued this alternative, over some earlier proposals that would have focused on optimizing the fake numa emulation case by caching the last useful zone: 1) Contrary to what I said before, we (SGI, on large ia64 sn2 systems) have seen real customer loads where the cost to scan the zonelist was a problem, due to many nodes being full of memory before we got to a node we could use. Or at least, I think we have. This was related to me by another engineer, based on experiences from some time past. So this is not guaranteed. Most likely, though. The following approach should help such real numa systems just as much as it helps fake numa systems, or any combination thereof. 2) The effort to distinguish fake from real numa, using node_distance, so that we could cache a fake numa node and optimize choosing it over equivalent distance fake nodes, while continuing to properly scan all real nodes in distance order, was going to require a nasty blob of zonelist and node distance munging. The following approach has no new dependency on node distances or zone sorting. See comment in the patch below for a description of what it actually does. Technical details of note (or controversy): - See the use of "zlc_active" and "did_zlc_setup" below, to delay adding any work for this new mechanism until we've looked at the first zone in zonelist. I figured the odds of the first zone having the memory we needed were high enough that we should just look there, first, then get fancy only if we need to keep looking. - Some odd hackery was needed to add items to struct zonelist, while not tripping up the custom zonelists built by the mm/mempolicy.c code for MPOL_BIND. My usual wordy comments below explain this. Search for "MPOL_BIND". - Some per-node data in the struct zonelist is now modified frequently, with no locking. Multiple CPU cores on a node could hit and mangle this data. The theory is that this is just performance hint data, and the memory allocator will work just fine despite any such mangling. The fields at risk are the struct 'zonelist_cache' fields 'fullzones' (a bitmask) and 'last_full_zap' (unsigned long jiffies). It should all be self correcting after at most a one second delay. - This still does a linear scan of the same lengths as before. All I've optimized is making the scan faster, not algorithmically shorter. It is now able to scan a compact array of 'unsigned short' in the case of many full nodes, so one cache line should cover quite a few nodes, rather than each node hitting another one or two new and distinct cache lines. - If both Andi and Nick don't find this too complicated, I will be (pleasantly) flabbergasted. - I removed the comment claiming we only use one cachline's worth of zonelist. We seem, at least in the fake numa case, to have put the lie to that claim. - I pay no attention to the various watermarks and such in this performance hint. A node could be marked full for one watermark, and then skipped over when searching for a page using a different watermark. I think that's actually quite ok, as it will tend to slightly increase the spreading of memory over other nodes, away from a memory stressed node. =============== Performance - some benchmark results and analysis: This benchmark runs a memory hog program that uses multiple threads to touch alot of memory as quickly as it can. Multiple runs were made, touching 12, 38, 64 or 90 GBytes out of the total 96 GBytes on the system, and using 1, 19, 37, or 55 threads (on a 56 CPU system.) System, user and real (elapsed) timings were recorded for each run, shown in units of seconds, in the table below. Two kernels were tested - 2.6.18-mm3 and the same kernel with this zonelist caching patch added. The table also shows the percentage improvement the zonelist caching sys time is over (lower than) the stock *-mm kernel. number 2.6.18-mm3 zonelist-cache delta (< 0 good) percent GBs N ------------ -------------- ---------------- systime mem threads sys user real sys user real sys user real better 12 1 153 24 177 151 24 176 -2 0 -1 1% 12 19 99 22 8 99 22 8 0 0 0 0% 12 37 111 25 6 112 25 6 1 0 0 -0% 12 55 115 25 5 110 23 5 -5 -2 0 4% 38 1 502 74 576 497 73 570 -5 -1 -6 0% 38 19 426 78 48 373 76 39 -53 -2 -9 12% 38 37 544 83 36 547 82 36 3 -1 0 -0% 38 55 501 77 23 511 80 24 10 3 1 -1% 64 1 917 125 1042 890 124 1014 -27 -1 -28 2% 64 19 1118 138 119 965 141 103 -153 3 -16 13% 64 37 1202 151 94 1136 150 81 -66 -1 -13 5% 64 55 1118 141 61 1072 140 58 -46 -1 -3 4% 90 1 1342 177 1519 1275 174 1450 -67 -3 -69 4% 90 19 2392 199 192 2116 189 176 -276 -10 -16 11% 90 37 3313 238 175 2972 225 145 -341 -13 -30 10% 90 55 1948 210 104 1843 213 100 -105 3 -4 5% Notes: 1) This test ran a memory hog program that started a specified number N of threads, and had each thread allocate and touch 1/N'th of the total memory to be used in the test run in a single loop, writing a constant word to memory, one store every 4096 bytes. Watching this test during some earlier trial runs, I would see each of these threads sit down on one CPU and stay there, for the remainder of the pass, a different CPU for each thread. 2) The 'real' column is not comparable to the 'sys' or 'user' columns. The 'real' column is seconds wall clock time elapsed, from beginning to end of that test pass. The 'sys' and 'user' columns are total CPU seconds spent on that test pass. For a 19 thread test run, for example, the sum of 'sys' and 'user' could be up to 19 times the number of 'real' elapsed wall clock seconds. 3) Tests were run on a fresh, single-user boot, to minimize the amount of memory already in use at the start of the test, and to minimize the amount of background activity that might interfere. 4) Tests were done on a 56 CPU, 28 Node system with 96 GBytes of RAM. 5) Notice that the 'real' time gets large for the single thread runs, even though the measured 'sys' and 'user' times are modest. I'm not sure what that means - probably something to do with it being slow for one thread to be accessing memory along ways away. Perhaps the fake numa system, running ostensibly the same workload, would not show this substantial degradation of 'real' time for one thread on many nodes -- lets hope not. 6) The high thread count passes (one thread per CPU - on 55 of 56 CPUs) ran quite efficiently, as one might expect. Each pair of threads needed to allocate and touch the memory on the node the two threads shared, a pleasantly parallizable workload. 7) The intermediate thread count passes, when asking for alot of memory forcing them to go to a few neighboring nodes, improved the most with this zonelist caching patch. Conclusions: * This zonelist cache patch probably makes little difference one way or the other for most workloads on real numa hardware, if those workloads avoid heavy off node allocations. * For memory intensive workloads requiring substantial off-node allocations on real numa hardware, this patch improves both kernel and elapsed timings up to ten per-cent. * For fake numa systems, I'm optimistic, but will have to leave that up to Rohit Seth to actually test (once I get him a 2.6.18 backport.) Signed-off-by: Paul Jackson <pj@sgi.com> Cc: Rohit Seth <rohitseth@google.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Cc: David Rientjes <rientjes@cs.washington.edu> Cc: Paul Menage <menage@google.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 11:31:48 +07:00
/*
* We cache key information from each zonelist for smaller cache
* footprint when scanning for free pages in get_page_from_freelist().
*
* 1) The BITMAP fullzones tracks which zones in a zonelist have come
* up short of free memory since the last time (last_fullzone_zap)
* we zero'd fullzones.
* 2) The array z_to_n[] maps each zone in the zonelist to its node
* id, so that we can efficiently evaluate whether that node is
* set in the current tasks mems_allowed.
*
* Both fullzones and z_to_n[] are one-to-one with the zonelist,
* indexed by a zones offset in the zonelist zones[] array.
*
* The get_page_from_freelist() routine does two scans. During the
* first scan, we skip zones whose corresponding bit in 'fullzones'
* is set or whose corresponding node in current->mems_allowed (which
* comes from cpusets) is not set. During the second scan, we bypass
* this zonelist_cache, to ensure we look methodically at each zone.
*
* Once per second, we zero out (zap) fullzones, forcing us to
* reconsider nodes that might have regained more free memory.
* The field last_full_zap is the time we last zapped fullzones.
*
* This mechanism reduces the amount of time we waste repeatedly
* reexaming zones for free memory when they just came up low on
* memory momentarilly ago.
*
* The zonelist_cache struct members logically belong in struct
* zonelist. However, the mempolicy zonelists constructed for
* MPOL_BIND are intentionally variable length (and usually much
* shorter). A general purpose mechanism for handling structs with
* multiple variable length members is more mechanism than we want
* here. We resort to some special case hackery instead.
*
* The MPOL_BIND zonelists don't need this zonelist_cache (in good
* part because they are shorter), so we put the fixed length stuff
* at the front of the zonelist struct, ending in a variable length
* zones[], as is needed by MPOL_BIND.
*
* Then we put the optional zonelist cache on the end of the zonelist
* struct. This optional stuff is found by a 'zlcache_ptr' pointer in
* the fixed length portion at the front of the struct. This pointer
* both enables us to find the zonelist cache, and in the case of
* MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
* to know that the zonelist cache is not there.
*
* The end result is that struct zonelists come in two flavors:
* 1) The full, fixed length version, shown below, and
* 2) The custom zonelists for MPOL_BIND.
* The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
*
* Even though there may be multiple CPU cores on a node modifying
* fullzones or last_full_zap in the same zonelist_cache at the same
* time, we don't lock it. This is just hint data - if it is wrong now
* and then, the allocator will still function, perhaps a bit slower.
*/
struct zonelist_cache {
unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
[PATCH] memory page_alloc zonelist caching speedup Optimize the critical zonelist scanning for free pages in the kernel memory allocator by caching the zones that were found to be full recently, and skipping them. Remembers the zones in a zonelist that were short of free memory in the last second. And it stashes a zone-to-node table in the zonelist struct, to optimize that conversion (minimize its cache footprint.) Recent changes: This differs in a significant way from a similar patch that I posted a week ago. Now, instead of having a nodemask_t of recently full nodes, I have a bitmask of recently full zones. This solves a problem that last weeks patch had, which on systems with multiple zones per node (such as DMA zone) would take seeing any of these zones full as meaning that all zones on that node were full. Also I changed names - from "zonelist faster" to "zonelist cache", as that seemed to better convey what we're doing here - caching some of the key zonelist state (for faster access.) See below for some performance benchmark results. After all that discussion with David on why I didn't need them, I went and got some ;). I wanted to verify that I had not hurt the normal case of memory allocation noticeably. At least for my one little microbenchmark, I found (1) the normal case wasn't affected, and (2) workloads that forced scanning across multiple nodes for memory improved up to 10% fewer System CPU cycles and lower elapsed clock time ('sys' and 'real'). Good. See details, below. I didn't have the logic in get_page_from_freelist() for various full nodes and zone reclaim failures correct. That should be fixed up now - notice the new goto labels zonelist_scan, this_zone_full, and try_next_zone, in get_page_from_freelist(). There are two reasons I persued this alternative, over some earlier proposals that would have focused on optimizing the fake numa emulation case by caching the last useful zone: 1) Contrary to what I said before, we (SGI, on large ia64 sn2 systems) have seen real customer loads where the cost to scan the zonelist was a problem, due to many nodes being full of memory before we got to a node we could use. Or at least, I think we have. This was related to me by another engineer, based on experiences from some time past. So this is not guaranteed. Most likely, though. The following approach should help such real numa systems just as much as it helps fake numa systems, or any combination thereof. 2) The effort to distinguish fake from real numa, using node_distance, so that we could cache a fake numa node and optimize choosing it over equivalent distance fake nodes, while continuing to properly scan all real nodes in distance order, was going to require a nasty blob of zonelist and node distance munging. The following approach has no new dependency on node distances or zone sorting. See comment in the patch below for a description of what it actually does. Technical details of note (or controversy): - See the use of "zlc_active" and "did_zlc_setup" below, to delay adding any work for this new mechanism until we've looked at the first zone in zonelist. I figured the odds of the first zone having the memory we needed were high enough that we should just look there, first, then get fancy only if we need to keep looking. - Some odd hackery was needed to add items to struct zonelist, while not tripping up the custom zonelists built by the mm/mempolicy.c code for MPOL_BIND. My usual wordy comments below explain this. Search for "MPOL_BIND". - Some per-node data in the struct zonelist is now modified frequently, with no locking. Multiple CPU cores on a node could hit and mangle this data. The theory is that this is just performance hint data, and the memory allocator will work just fine despite any such mangling. The fields at risk are the struct 'zonelist_cache' fields 'fullzones' (a bitmask) and 'last_full_zap' (unsigned long jiffies). It should all be self correcting after at most a one second delay. - This still does a linear scan of the same lengths as before. All I've optimized is making the scan faster, not algorithmically shorter. It is now able to scan a compact array of 'unsigned short' in the case of many full nodes, so one cache line should cover quite a few nodes, rather than each node hitting another one or two new and distinct cache lines. - If both Andi and Nick don't find this too complicated, I will be (pleasantly) flabbergasted. - I removed the comment claiming we only use one cachline's worth of zonelist. We seem, at least in the fake numa case, to have put the lie to that claim. - I pay no attention to the various watermarks and such in this performance hint. A node could be marked full for one watermark, and then skipped over when searching for a page using a different watermark. I think that's actually quite ok, as it will tend to slightly increase the spreading of memory over other nodes, away from a memory stressed node. =============== Performance - some benchmark results and analysis: This benchmark runs a memory hog program that uses multiple threads to touch alot of memory as quickly as it can. Multiple runs were made, touching 12, 38, 64 or 90 GBytes out of the total 96 GBytes on the system, and using 1, 19, 37, or 55 threads (on a 56 CPU system.) System, user and real (elapsed) timings were recorded for each run, shown in units of seconds, in the table below. Two kernels were tested - 2.6.18-mm3 and the same kernel with this zonelist caching patch added. The table also shows the percentage improvement the zonelist caching sys time is over (lower than) the stock *-mm kernel. number 2.6.18-mm3 zonelist-cache delta (< 0 good) percent GBs N ------------ -------------- ---------------- systime mem threads sys user real sys user real sys user real better 12 1 153 24 177 151 24 176 -2 0 -1 1% 12 19 99 22 8 99 22 8 0 0 0 0% 12 37 111 25 6 112 25 6 1 0 0 -0% 12 55 115 25 5 110 23 5 -5 -2 0 4% 38 1 502 74 576 497 73 570 -5 -1 -6 0% 38 19 426 78 48 373 76 39 -53 -2 -9 12% 38 37 544 83 36 547 82 36 3 -1 0 -0% 38 55 501 77 23 511 80 24 10 3 1 -1% 64 1 917 125 1042 890 124 1014 -27 -1 -28 2% 64 19 1118 138 119 965 141 103 -153 3 -16 13% 64 37 1202 151 94 1136 150 81 -66 -1 -13 5% 64 55 1118 141 61 1072 140 58 -46 -1 -3 4% 90 1 1342 177 1519 1275 174 1450 -67 -3 -69 4% 90 19 2392 199 192 2116 189 176 -276 -10 -16 11% 90 37 3313 238 175 2972 225 145 -341 -13 -30 10% 90 55 1948 210 104 1843 213 100 -105 3 -4 5% Notes: 1) This test ran a memory hog program that started a specified number N of threads, and had each thread allocate and touch 1/N'th of the total memory to be used in the test run in a single loop, writing a constant word to memory, one store every 4096 bytes. Watching this test during some earlier trial runs, I would see each of these threads sit down on one CPU and stay there, for the remainder of the pass, a different CPU for each thread. 2) The 'real' column is not comparable to the 'sys' or 'user' columns. The 'real' column is seconds wall clock time elapsed, from beginning to end of that test pass. The 'sys' and 'user' columns are total CPU seconds spent on that test pass. For a 19 thread test run, for example, the sum of 'sys' and 'user' could be up to 19 times the number of 'real' elapsed wall clock seconds. 3) Tests were run on a fresh, single-user boot, to minimize the amount of memory already in use at the start of the test, and to minimize the amount of background activity that might interfere. 4) Tests were done on a 56 CPU, 28 Node system with 96 GBytes of RAM. 5) Notice that the 'real' time gets large for the single thread runs, even though the measured 'sys' and 'user' times are modest. I'm not sure what that means - probably something to do with it being slow for one thread to be accessing memory along ways away. Perhaps the fake numa system, running ostensibly the same workload, would not show this substantial degradation of 'real' time for one thread on many nodes -- lets hope not. 6) The high thread count passes (one thread per CPU - on 55 of 56 CPUs) ran quite efficiently, as one might expect. Each pair of threads needed to allocate and touch the memory on the node the two threads shared, a pleasantly parallizable workload. 7) The intermediate thread count passes, when asking for alot of memory forcing them to go to a few neighboring nodes, improved the most with this zonelist caching patch. Conclusions: * This zonelist cache patch probably makes little difference one way or the other for most workloads on real numa hardware, if those workloads avoid heavy off node allocations. * For memory intensive workloads requiring substantial off-node allocations on real numa hardware, this patch improves both kernel and elapsed timings up to ten per-cent. * For fake numa systems, I'm optimistic, but will have to leave that up to Rohit Seth to actually test (once I get him a 2.6.18 backport.) Signed-off-by: Paul Jackson <pj@sgi.com> Cc: Rohit Seth <rohitseth@google.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Cc: David Rientjes <rientjes@cs.washington.edu> Cc: Paul Menage <menage@google.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 11:31:48 +07:00
unsigned long last_full_zap; /* when last zap'd (jiffies) */
};
#else
#define MAX_ZONELISTS MAX_NR_ZONES
[PATCH] memory page_alloc zonelist caching speedup Optimize the critical zonelist scanning for free pages in the kernel memory allocator by caching the zones that were found to be full recently, and skipping them. Remembers the zones in a zonelist that were short of free memory in the last second. And it stashes a zone-to-node table in the zonelist struct, to optimize that conversion (minimize its cache footprint.) Recent changes: This differs in a significant way from a similar patch that I posted a week ago. Now, instead of having a nodemask_t of recently full nodes, I have a bitmask of recently full zones. This solves a problem that last weeks patch had, which on systems with multiple zones per node (such as DMA zone) would take seeing any of these zones full as meaning that all zones on that node were full. Also I changed names - from "zonelist faster" to "zonelist cache", as that seemed to better convey what we're doing here - caching some of the key zonelist state (for faster access.) See below for some performance benchmark results. After all that discussion with David on why I didn't need them, I went and got some ;). I wanted to verify that I had not hurt the normal case of memory allocation noticeably. At least for my one little microbenchmark, I found (1) the normal case wasn't affected, and (2) workloads that forced scanning across multiple nodes for memory improved up to 10% fewer System CPU cycles and lower elapsed clock time ('sys' and 'real'). Good. See details, below. I didn't have the logic in get_page_from_freelist() for various full nodes and zone reclaim failures correct. That should be fixed up now - notice the new goto labels zonelist_scan, this_zone_full, and try_next_zone, in get_page_from_freelist(). There are two reasons I persued this alternative, over some earlier proposals that would have focused on optimizing the fake numa emulation case by caching the last useful zone: 1) Contrary to what I said before, we (SGI, on large ia64 sn2 systems) have seen real customer loads where the cost to scan the zonelist was a problem, due to many nodes being full of memory before we got to a node we could use. Or at least, I think we have. This was related to me by another engineer, based on experiences from some time past. So this is not guaranteed. Most likely, though. The following approach should help such real numa systems just as much as it helps fake numa systems, or any combination thereof. 2) The effort to distinguish fake from real numa, using node_distance, so that we could cache a fake numa node and optimize choosing it over equivalent distance fake nodes, while continuing to properly scan all real nodes in distance order, was going to require a nasty blob of zonelist and node distance munging. The following approach has no new dependency on node distances or zone sorting. See comment in the patch below for a description of what it actually does. Technical details of note (or controversy): - See the use of "zlc_active" and "did_zlc_setup" below, to delay adding any work for this new mechanism until we've looked at the first zone in zonelist. I figured the odds of the first zone having the memory we needed were high enough that we should just look there, first, then get fancy only if we need to keep looking. - Some odd hackery was needed to add items to struct zonelist, while not tripping up the custom zonelists built by the mm/mempolicy.c code for MPOL_BIND. My usual wordy comments below explain this. Search for "MPOL_BIND". - Some per-node data in the struct zonelist is now modified frequently, with no locking. Multiple CPU cores on a node could hit and mangle this data. The theory is that this is just performance hint data, and the memory allocator will work just fine despite any such mangling. The fields at risk are the struct 'zonelist_cache' fields 'fullzones' (a bitmask) and 'last_full_zap' (unsigned long jiffies). It should all be self correcting after at most a one second delay. - This still does a linear scan of the same lengths as before. All I've optimized is making the scan faster, not algorithmically shorter. It is now able to scan a compact array of 'unsigned short' in the case of many full nodes, so one cache line should cover quite a few nodes, rather than each node hitting another one or two new and distinct cache lines. - If both Andi and Nick don't find this too complicated, I will be (pleasantly) flabbergasted. - I removed the comment claiming we only use one cachline's worth of zonelist. We seem, at least in the fake numa case, to have put the lie to that claim. - I pay no attention to the various watermarks and such in this performance hint. A node could be marked full for one watermark, and then skipped over when searching for a page using a different watermark. I think that's actually quite ok, as it will tend to slightly increase the spreading of memory over other nodes, away from a memory stressed node. =============== Performance - some benchmark results and analysis: This benchmark runs a memory hog program that uses multiple threads to touch alot of memory as quickly as it can. Multiple runs were made, touching 12, 38, 64 or 90 GBytes out of the total 96 GBytes on the system, and using 1, 19, 37, or 55 threads (on a 56 CPU system.) System, user and real (elapsed) timings were recorded for each run, shown in units of seconds, in the table below. Two kernels were tested - 2.6.18-mm3 and the same kernel with this zonelist caching patch added. The table also shows the percentage improvement the zonelist caching sys time is over (lower than) the stock *-mm kernel. number 2.6.18-mm3 zonelist-cache delta (< 0 good) percent GBs N ------------ -------------- ---------------- systime mem threads sys user real sys user real sys user real better 12 1 153 24 177 151 24 176 -2 0 -1 1% 12 19 99 22 8 99 22 8 0 0 0 0% 12 37 111 25 6 112 25 6 1 0 0 -0% 12 55 115 25 5 110 23 5 -5 -2 0 4% 38 1 502 74 576 497 73 570 -5 -1 -6 0% 38 19 426 78 48 373 76 39 -53 -2 -9 12% 38 37 544 83 36 547 82 36 3 -1 0 -0% 38 55 501 77 23 511 80 24 10 3 1 -1% 64 1 917 125 1042 890 124 1014 -27 -1 -28 2% 64 19 1118 138 119 965 141 103 -153 3 -16 13% 64 37 1202 151 94 1136 150 81 -66 -1 -13 5% 64 55 1118 141 61 1072 140 58 -46 -1 -3 4% 90 1 1342 177 1519 1275 174 1450 -67 -3 -69 4% 90 19 2392 199 192 2116 189 176 -276 -10 -16 11% 90 37 3313 238 175 2972 225 145 -341 -13 -30 10% 90 55 1948 210 104 1843 213 100 -105 3 -4 5% Notes: 1) This test ran a memory hog program that started a specified number N of threads, and had each thread allocate and touch 1/N'th of the total memory to be used in the test run in a single loop, writing a constant word to memory, one store every 4096 bytes. Watching this test during some earlier trial runs, I would see each of these threads sit down on one CPU and stay there, for the remainder of the pass, a different CPU for each thread. 2) The 'real' column is not comparable to the 'sys' or 'user' columns. The 'real' column is seconds wall clock time elapsed, from beginning to end of that test pass. The 'sys' and 'user' columns are total CPU seconds spent on that test pass. For a 19 thread test run, for example, the sum of 'sys' and 'user' could be up to 19 times the number of 'real' elapsed wall clock seconds. 3) Tests were run on a fresh, single-user boot, to minimize the amount of memory already in use at the start of the test, and to minimize the amount of background activity that might interfere. 4) Tests were done on a 56 CPU, 28 Node system with 96 GBytes of RAM. 5) Notice that the 'real' time gets large for the single thread runs, even though the measured 'sys' and 'user' times are modest. I'm not sure what that means - probably something to do with it being slow for one thread to be accessing memory along ways away. Perhaps the fake numa system, running ostensibly the same workload, would not show this substantial degradation of 'real' time for one thread on many nodes -- lets hope not. 6) The high thread count passes (one thread per CPU - on 55 of 56 CPUs) ran quite efficiently, as one might expect. Each pair of threads needed to allocate and touch the memory on the node the two threads shared, a pleasantly parallizable workload. 7) The intermediate thread count passes, when asking for alot of memory forcing them to go to a few neighboring nodes, improved the most with this zonelist caching patch. Conclusions: * This zonelist cache patch probably makes little difference one way or the other for most workloads on real numa hardware, if those workloads avoid heavy off node allocations. * For memory intensive workloads requiring substantial off-node allocations on real numa hardware, this patch improves both kernel and elapsed timings up to ten per-cent. * For fake numa systems, I'm optimistic, but will have to leave that up to Rohit Seth to actually test (once I get him a 2.6.18 backport.) Signed-off-by: Paul Jackson <pj@sgi.com> Cc: Rohit Seth <rohitseth@google.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Cc: David Rientjes <rientjes@cs.washington.edu> Cc: Paul Menage <menage@google.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 11:31:48 +07:00
struct zonelist_cache;
#endif
/*
* One allocation request operates on a zonelist. A zonelist
* is a list of zones, the first one is the 'goal' of the
* allocation, the other zones are fallback zones, in decreasing
* priority.
*
[PATCH] memory page_alloc zonelist caching speedup Optimize the critical zonelist scanning for free pages in the kernel memory allocator by caching the zones that were found to be full recently, and skipping them. Remembers the zones in a zonelist that were short of free memory in the last second. And it stashes a zone-to-node table in the zonelist struct, to optimize that conversion (minimize its cache footprint.) Recent changes: This differs in a significant way from a similar patch that I posted a week ago. Now, instead of having a nodemask_t of recently full nodes, I have a bitmask of recently full zones. This solves a problem that last weeks patch had, which on systems with multiple zones per node (such as DMA zone) would take seeing any of these zones full as meaning that all zones on that node were full. Also I changed names - from "zonelist faster" to "zonelist cache", as that seemed to better convey what we're doing here - caching some of the key zonelist state (for faster access.) See below for some performance benchmark results. After all that discussion with David on why I didn't need them, I went and got some ;). I wanted to verify that I had not hurt the normal case of memory allocation noticeably. At least for my one little microbenchmark, I found (1) the normal case wasn't affected, and (2) workloads that forced scanning across multiple nodes for memory improved up to 10% fewer System CPU cycles and lower elapsed clock time ('sys' and 'real'). Good. See details, below. I didn't have the logic in get_page_from_freelist() for various full nodes and zone reclaim failures correct. That should be fixed up now - notice the new goto labels zonelist_scan, this_zone_full, and try_next_zone, in get_page_from_freelist(). There are two reasons I persued this alternative, over some earlier proposals that would have focused on optimizing the fake numa emulation case by caching the last useful zone: 1) Contrary to what I said before, we (SGI, on large ia64 sn2 systems) have seen real customer loads where the cost to scan the zonelist was a problem, due to many nodes being full of memory before we got to a node we could use. Or at least, I think we have. This was related to me by another engineer, based on experiences from some time past. So this is not guaranteed. Most likely, though. The following approach should help such real numa systems just as much as it helps fake numa systems, or any combination thereof. 2) The effort to distinguish fake from real numa, using node_distance, so that we could cache a fake numa node and optimize choosing it over equivalent distance fake nodes, while continuing to properly scan all real nodes in distance order, was going to require a nasty blob of zonelist and node distance munging. The following approach has no new dependency on node distances or zone sorting. See comment in the patch below for a description of what it actually does. Technical details of note (or controversy): - See the use of "zlc_active" and "did_zlc_setup" below, to delay adding any work for this new mechanism until we've looked at the first zone in zonelist. I figured the odds of the first zone having the memory we needed were high enough that we should just look there, first, then get fancy only if we need to keep looking. - Some odd hackery was needed to add items to struct zonelist, while not tripping up the custom zonelists built by the mm/mempolicy.c code for MPOL_BIND. My usual wordy comments below explain this. Search for "MPOL_BIND". - Some per-node data in the struct zonelist is now modified frequently, with no locking. Multiple CPU cores on a node could hit and mangle this data. The theory is that this is just performance hint data, and the memory allocator will work just fine despite any such mangling. The fields at risk are the struct 'zonelist_cache' fields 'fullzones' (a bitmask) and 'last_full_zap' (unsigned long jiffies). It should all be self correcting after at most a one second delay. - This still does a linear scan of the same lengths as before. All I've optimized is making the scan faster, not algorithmically shorter. It is now able to scan a compact array of 'unsigned short' in the case of many full nodes, so one cache line should cover quite a few nodes, rather than each node hitting another one or two new and distinct cache lines. - If both Andi and Nick don't find this too complicated, I will be (pleasantly) flabbergasted. - I removed the comment claiming we only use one cachline's worth of zonelist. We seem, at least in the fake numa case, to have put the lie to that claim. - I pay no attention to the various watermarks and such in this performance hint. A node could be marked full for one watermark, and then skipped over when searching for a page using a different watermark. I think that's actually quite ok, as it will tend to slightly increase the spreading of memory over other nodes, away from a memory stressed node. =============== Performance - some benchmark results and analysis: This benchmark runs a memory hog program that uses multiple threads to touch alot of memory as quickly as it can. Multiple runs were made, touching 12, 38, 64 or 90 GBytes out of the total 96 GBytes on the system, and using 1, 19, 37, or 55 threads (on a 56 CPU system.) System, user and real (elapsed) timings were recorded for each run, shown in units of seconds, in the table below. Two kernels were tested - 2.6.18-mm3 and the same kernel with this zonelist caching patch added. The table also shows the percentage improvement the zonelist caching sys time is over (lower than) the stock *-mm kernel. number 2.6.18-mm3 zonelist-cache delta (< 0 good) percent GBs N ------------ -------------- ---------------- systime mem threads sys user real sys user real sys user real better 12 1 153 24 177 151 24 176 -2 0 -1 1% 12 19 99 22 8 99 22 8 0 0 0 0% 12 37 111 25 6 112 25 6 1 0 0 -0% 12 55 115 25 5 110 23 5 -5 -2 0 4% 38 1 502 74 576 497 73 570 -5 -1 -6 0% 38 19 426 78 48 373 76 39 -53 -2 -9 12% 38 37 544 83 36 547 82 36 3 -1 0 -0% 38 55 501 77 23 511 80 24 10 3 1 -1% 64 1 917 125 1042 890 124 1014 -27 -1 -28 2% 64 19 1118 138 119 965 141 103 -153 3 -16 13% 64 37 1202 151 94 1136 150 81 -66 -1 -13 5% 64 55 1118 141 61 1072 140 58 -46 -1 -3 4% 90 1 1342 177 1519 1275 174 1450 -67 -3 -69 4% 90 19 2392 199 192 2116 189 176 -276 -10 -16 11% 90 37 3313 238 175 2972 225 145 -341 -13 -30 10% 90 55 1948 210 104 1843 213 100 -105 3 -4 5% Notes: 1) This test ran a memory hog program that started a specified number N of threads, and had each thread allocate and touch 1/N'th of the total memory to be used in the test run in a single loop, writing a constant word to memory, one store every 4096 bytes. Watching this test during some earlier trial runs, I would see each of these threads sit down on one CPU and stay there, for the remainder of the pass, a different CPU for each thread. 2) The 'real' column is not comparable to the 'sys' or 'user' columns. The 'real' column is seconds wall clock time elapsed, from beginning to end of that test pass. The 'sys' and 'user' columns are total CPU seconds spent on that test pass. For a 19 thread test run, for example, the sum of 'sys' and 'user' could be up to 19 times the number of 'real' elapsed wall clock seconds. 3) Tests were run on a fresh, single-user boot, to minimize the amount of memory already in use at the start of the test, and to minimize the amount of background activity that might interfere. 4) Tests were done on a 56 CPU, 28 Node system with 96 GBytes of RAM. 5) Notice that the 'real' time gets large for the single thread runs, even though the measured 'sys' and 'user' times are modest. I'm not sure what that means - probably something to do with it being slow for one thread to be accessing memory along ways away. Perhaps the fake numa system, running ostensibly the same workload, would not show this substantial degradation of 'real' time for one thread on many nodes -- lets hope not. 6) The high thread count passes (one thread per CPU - on 55 of 56 CPUs) ran quite efficiently, as one might expect. Each pair of threads needed to allocate and touch the memory on the node the two threads shared, a pleasantly parallizable workload. 7) The intermediate thread count passes, when asking for alot of memory forcing them to go to a few neighboring nodes, improved the most with this zonelist caching patch. Conclusions: * This zonelist cache patch probably makes little difference one way or the other for most workloads on real numa hardware, if those workloads avoid heavy off node allocations. * For memory intensive workloads requiring substantial off-node allocations on real numa hardware, this patch improves both kernel and elapsed timings up to ten per-cent. * For fake numa systems, I'm optimistic, but will have to leave that up to Rohit Seth to actually test (once I get him a 2.6.18 backport.) Signed-off-by: Paul Jackson <pj@sgi.com> Cc: Rohit Seth <rohitseth@google.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Cc: David Rientjes <rientjes@cs.washington.edu> Cc: Paul Menage <menage@google.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 11:31:48 +07:00
* If zlcache_ptr is not NULL, then it is just the address of zlcache,
* as explained above. If zlcache_ptr is NULL, there is no zlcache.
*/
[PATCH] memory page_alloc zonelist caching speedup Optimize the critical zonelist scanning for free pages in the kernel memory allocator by caching the zones that were found to be full recently, and skipping them. Remembers the zones in a zonelist that were short of free memory in the last second. And it stashes a zone-to-node table in the zonelist struct, to optimize that conversion (minimize its cache footprint.) Recent changes: This differs in a significant way from a similar patch that I posted a week ago. Now, instead of having a nodemask_t of recently full nodes, I have a bitmask of recently full zones. This solves a problem that last weeks patch had, which on systems with multiple zones per node (such as DMA zone) would take seeing any of these zones full as meaning that all zones on that node were full. Also I changed names - from "zonelist faster" to "zonelist cache", as that seemed to better convey what we're doing here - caching some of the key zonelist state (for faster access.) See below for some performance benchmark results. After all that discussion with David on why I didn't need them, I went and got some ;). I wanted to verify that I had not hurt the normal case of memory allocation noticeably. At least for my one little microbenchmark, I found (1) the normal case wasn't affected, and (2) workloads that forced scanning across multiple nodes for memory improved up to 10% fewer System CPU cycles and lower elapsed clock time ('sys' and 'real'). Good. See details, below. I didn't have the logic in get_page_from_freelist() for various full nodes and zone reclaim failures correct. That should be fixed up now - notice the new goto labels zonelist_scan, this_zone_full, and try_next_zone, in get_page_from_freelist(). There are two reasons I persued this alternative, over some earlier proposals that would have focused on optimizing the fake numa emulation case by caching the last useful zone: 1) Contrary to what I said before, we (SGI, on large ia64 sn2 systems) have seen real customer loads where the cost to scan the zonelist was a problem, due to many nodes being full of memory before we got to a node we could use. Or at least, I think we have. This was related to me by another engineer, based on experiences from some time past. So this is not guaranteed. Most likely, though. The following approach should help such real numa systems just as much as it helps fake numa systems, or any combination thereof. 2) The effort to distinguish fake from real numa, using node_distance, so that we could cache a fake numa node and optimize choosing it over equivalent distance fake nodes, while continuing to properly scan all real nodes in distance order, was going to require a nasty blob of zonelist and node distance munging. The following approach has no new dependency on node distances or zone sorting. See comment in the patch below for a description of what it actually does. Technical details of note (or controversy): - See the use of "zlc_active" and "did_zlc_setup" below, to delay adding any work for this new mechanism until we've looked at the first zone in zonelist. I figured the odds of the first zone having the memory we needed were high enough that we should just look there, first, then get fancy only if we need to keep looking. - Some odd hackery was needed to add items to struct zonelist, while not tripping up the custom zonelists built by the mm/mempolicy.c code for MPOL_BIND. My usual wordy comments below explain this. Search for "MPOL_BIND". - Some per-node data in the struct zonelist is now modified frequently, with no locking. Multiple CPU cores on a node could hit and mangle this data. The theory is that this is just performance hint data, and the memory allocator will work just fine despite any such mangling. The fields at risk are the struct 'zonelist_cache' fields 'fullzones' (a bitmask) and 'last_full_zap' (unsigned long jiffies). It should all be self correcting after at most a one second delay. - This still does a linear scan of the same lengths as before. All I've optimized is making the scan faster, not algorithmically shorter. It is now able to scan a compact array of 'unsigned short' in the case of many full nodes, so one cache line should cover quite a few nodes, rather than each node hitting another one or two new and distinct cache lines. - If both Andi and Nick don't find this too complicated, I will be (pleasantly) flabbergasted. - I removed the comment claiming we only use one cachline's worth of zonelist. We seem, at least in the fake numa case, to have put the lie to that claim. - I pay no attention to the various watermarks and such in this performance hint. A node could be marked full for one watermark, and then skipped over when searching for a page using a different watermark. I think that's actually quite ok, as it will tend to slightly increase the spreading of memory over other nodes, away from a memory stressed node. =============== Performance - some benchmark results and analysis: This benchmark runs a memory hog program that uses multiple threads to touch alot of memory as quickly as it can. Multiple runs were made, touching 12, 38, 64 or 90 GBytes out of the total 96 GBytes on the system, and using 1, 19, 37, or 55 threads (on a 56 CPU system.) System, user and real (elapsed) timings were recorded for each run, shown in units of seconds, in the table below. Two kernels were tested - 2.6.18-mm3 and the same kernel with this zonelist caching patch added. The table also shows the percentage improvement the zonelist caching sys time is over (lower than) the stock *-mm kernel. number 2.6.18-mm3 zonelist-cache delta (< 0 good) percent GBs N ------------ -------------- ---------------- systime mem threads sys user real sys user real sys user real better 12 1 153 24 177 151 24 176 -2 0 -1 1% 12 19 99 22 8 99 22 8 0 0 0 0% 12 37 111 25 6 112 25 6 1 0 0 -0% 12 55 115 25 5 110 23 5 -5 -2 0 4% 38 1 502 74 576 497 73 570 -5 -1 -6 0% 38 19 426 78 48 373 76 39 -53 -2 -9 12% 38 37 544 83 36 547 82 36 3 -1 0 -0% 38 55 501 77 23 511 80 24 10 3 1 -1% 64 1 917 125 1042 890 124 1014 -27 -1 -28 2% 64 19 1118 138 119 965 141 103 -153 3 -16 13% 64 37 1202 151 94 1136 150 81 -66 -1 -13 5% 64 55 1118 141 61 1072 140 58 -46 -1 -3 4% 90 1 1342 177 1519 1275 174 1450 -67 -3 -69 4% 90 19 2392 199 192 2116 189 176 -276 -10 -16 11% 90 37 3313 238 175 2972 225 145 -341 -13 -30 10% 90 55 1948 210 104 1843 213 100 -105 3 -4 5% Notes: 1) This test ran a memory hog program that started a specified number N of threads, and had each thread allocate and touch 1/N'th of the total memory to be used in the test run in a single loop, writing a constant word to memory, one store every 4096 bytes. Watching this test during some earlier trial runs, I would see each of these threads sit down on one CPU and stay there, for the remainder of the pass, a different CPU for each thread. 2) The 'real' column is not comparable to the 'sys' or 'user' columns. The 'real' column is seconds wall clock time elapsed, from beginning to end of that test pass. The 'sys' and 'user' columns are total CPU seconds spent on that test pass. For a 19 thread test run, for example, the sum of 'sys' and 'user' could be up to 19 times the number of 'real' elapsed wall clock seconds. 3) Tests were run on a fresh, single-user boot, to minimize the amount of memory already in use at the start of the test, and to minimize the amount of background activity that might interfere. 4) Tests were done on a 56 CPU, 28 Node system with 96 GBytes of RAM. 5) Notice that the 'real' time gets large for the single thread runs, even though the measured 'sys' and 'user' times are modest. I'm not sure what that means - probably something to do with it being slow for one thread to be accessing memory along ways away. Perhaps the fake numa system, running ostensibly the same workload, would not show this substantial degradation of 'real' time for one thread on many nodes -- lets hope not. 6) The high thread count passes (one thread per CPU - on 55 of 56 CPUs) ran quite efficiently, as one might expect. Each pair of threads needed to allocate and touch the memory on the node the two threads shared, a pleasantly parallizable workload. 7) The intermediate thread count passes, when asking for alot of memory forcing them to go to a few neighboring nodes, improved the most with this zonelist caching patch. Conclusions: * This zonelist cache patch probably makes little difference one way or the other for most workloads on real numa hardware, if those workloads avoid heavy off node allocations. * For memory intensive workloads requiring substantial off-node allocations on real numa hardware, this patch improves both kernel and elapsed timings up to ten per-cent. * For fake numa systems, I'm optimistic, but will have to leave that up to Rohit Seth to actually test (once I get him a 2.6.18 backport.) Signed-off-by: Paul Jackson <pj@sgi.com> Cc: Rohit Seth <rohitseth@google.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Cc: David Rientjes <rientjes@cs.washington.edu> Cc: Paul Menage <menage@google.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 11:31:48 +07:00
struct zonelist {
[PATCH] memory page_alloc zonelist caching speedup Optimize the critical zonelist scanning for free pages in the kernel memory allocator by caching the zones that were found to be full recently, and skipping them. Remembers the zones in a zonelist that were short of free memory in the last second. And it stashes a zone-to-node table in the zonelist struct, to optimize that conversion (minimize its cache footprint.) Recent changes: This differs in a significant way from a similar patch that I posted a week ago. Now, instead of having a nodemask_t of recently full nodes, I have a bitmask of recently full zones. This solves a problem that last weeks patch had, which on systems with multiple zones per node (such as DMA zone) would take seeing any of these zones full as meaning that all zones on that node were full. Also I changed names - from "zonelist faster" to "zonelist cache", as that seemed to better convey what we're doing here - caching some of the key zonelist state (for faster access.) See below for some performance benchmark results. After all that discussion with David on why I didn't need them, I went and got some ;). I wanted to verify that I had not hurt the normal case of memory allocation noticeably. At least for my one little microbenchmark, I found (1) the normal case wasn't affected, and (2) workloads that forced scanning across multiple nodes for memory improved up to 10% fewer System CPU cycles and lower elapsed clock time ('sys' and 'real'). Good. See details, below. I didn't have the logic in get_page_from_freelist() for various full nodes and zone reclaim failures correct. That should be fixed up now - notice the new goto labels zonelist_scan, this_zone_full, and try_next_zone, in get_page_from_freelist(). There are two reasons I persued this alternative, over some earlier proposals that would have focused on optimizing the fake numa emulation case by caching the last useful zone: 1) Contrary to what I said before, we (SGI, on large ia64 sn2 systems) have seen real customer loads where the cost to scan the zonelist was a problem, due to many nodes being full of memory before we got to a node we could use. Or at least, I think we have. This was related to me by another engineer, based on experiences from some time past. So this is not guaranteed. Most likely, though. The following approach should help such real numa systems just as much as it helps fake numa systems, or any combination thereof. 2) The effort to distinguish fake from real numa, using node_distance, so that we could cache a fake numa node and optimize choosing it over equivalent distance fake nodes, while continuing to properly scan all real nodes in distance order, was going to require a nasty blob of zonelist and node distance munging. The following approach has no new dependency on node distances or zone sorting. See comment in the patch below for a description of what it actually does. Technical details of note (or controversy): - See the use of "zlc_active" and "did_zlc_setup" below, to delay adding any work for this new mechanism until we've looked at the first zone in zonelist. I figured the odds of the first zone having the memory we needed were high enough that we should just look there, first, then get fancy only if we need to keep looking. - Some odd hackery was needed to add items to struct zonelist, while not tripping up the custom zonelists built by the mm/mempolicy.c code for MPOL_BIND. My usual wordy comments below explain this. Search for "MPOL_BIND". - Some per-node data in the struct zonelist is now modified frequently, with no locking. Multiple CPU cores on a node could hit and mangle this data. The theory is that this is just performance hint data, and the memory allocator will work just fine despite any such mangling. The fields at risk are the struct 'zonelist_cache' fields 'fullzones' (a bitmask) and 'last_full_zap' (unsigned long jiffies). It should all be self correcting after at most a one second delay. - This still does a linear scan of the same lengths as before. All I've optimized is making the scan faster, not algorithmically shorter. It is now able to scan a compact array of 'unsigned short' in the case of many full nodes, so one cache line should cover quite a few nodes, rather than each node hitting another one or two new and distinct cache lines. - If both Andi and Nick don't find this too complicated, I will be (pleasantly) flabbergasted. - I removed the comment claiming we only use one cachline's worth of zonelist. We seem, at least in the fake numa case, to have put the lie to that claim. - I pay no attention to the various watermarks and such in this performance hint. A node could be marked full for one watermark, and then skipped over when searching for a page using a different watermark. I think that's actually quite ok, as it will tend to slightly increase the spreading of memory over other nodes, away from a memory stressed node. =============== Performance - some benchmark results and analysis: This benchmark runs a memory hog program that uses multiple threads to touch alot of memory as quickly as it can. Multiple runs were made, touching 12, 38, 64 or 90 GBytes out of the total 96 GBytes on the system, and using 1, 19, 37, or 55 threads (on a 56 CPU system.) System, user and real (elapsed) timings were recorded for each run, shown in units of seconds, in the table below. Two kernels were tested - 2.6.18-mm3 and the same kernel with this zonelist caching patch added. The table also shows the percentage improvement the zonelist caching sys time is over (lower than) the stock *-mm kernel. number 2.6.18-mm3 zonelist-cache delta (< 0 good) percent GBs N ------------ -------------- ---------------- systime mem threads sys user real sys user real sys user real better 12 1 153 24 177 151 24 176 -2 0 -1 1% 12 19 99 22 8 99 22 8 0 0 0 0% 12 37 111 25 6 112 25 6 1 0 0 -0% 12 55 115 25 5 110 23 5 -5 -2 0 4% 38 1 502 74 576 497 73 570 -5 -1 -6 0% 38 19 426 78 48 373 76 39 -53 -2 -9 12% 38 37 544 83 36 547 82 36 3 -1 0 -0% 38 55 501 77 23 511 80 24 10 3 1 -1% 64 1 917 125 1042 890 124 1014 -27 -1 -28 2% 64 19 1118 138 119 965 141 103 -153 3 -16 13% 64 37 1202 151 94 1136 150 81 -66 -1 -13 5% 64 55 1118 141 61 1072 140 58 -46 -1 -3 4% 90 1 1342 177 1519 1275 174 1450 -67 -3 -69 4% 90 19 2392 199 192 2116 189 176 -276 -10 -16 11% 90 37 3313 238 175 2972 225 145 -341 -13 -30 10% 90 55 1948 210 104 1843 213 100 -105 3 -4 5% Notes: 1) This test ran a memory hog program that started a specified number N of threads, and had each thread allocate and touch 1/N'th of the total memory to be used in the test run in a single loop, writing a constant word to memory, one store every 4096 bytes. Watching this test during some earlier trial runs, I would see each of these threads sit down on one CPU and stay there, for the remainder of the pass, a different CPU for each thread. 2) The 'real' column is not comparable to the 'sys' or 'user' columns. The 'real' column is seconds wall clock time elapsed, from beginning to end of that test pass. The 'sys' and 'user' columns are total CPU seconds spent on that test pass. For a 19 thread test run, for example, the sum of 'sys' and 'user' could be up to 19 times the number of 'real' elapsed wall clock seconds. 3) Tests were run on a fresh, single-user boot, to minimize the amount of memory already in use at the start of the test, and to minimize the amount of background activity that might interfere. 4) Tests were done on a 56 CPU, 28 Node system with 96 GBytes of RAM. 5) Notice that the 'real' time gets large for the single thread runs, even though the measured 'sys' and 'user' times are modest. I'm not sure what that means - probably something to do with it being slow for one thread to be accessing memory along ways away. Perhaps the fake numa system, running ostensibly the same workload, would not show this substantial degradation of 'real' time for one thread on many nodes -- lets hope not. 6) The high thread count passes (one thread per CPU - on 55 of 56 CPUs) ran quite efficiently, as one might expect. Each pair of threads needed to allocate and touch the memory on the node the two threads shared, a pleasantly parallizable workload. 7) The intermediate thread count passes, when asking for alot of memory forcing them to go to a few neighboring nodes, improved the most with this zonelist caching patch. Conclusions: * This zonelist cache patch probably makes little difference one way or the other for most workloads on real numa hardware, if those workloads avoid heavy off node allocations. * For memory intensive workloads requiring substantial off-node allocations on real numa hardware, this patch improves both kernel and elapsed timings up to ten per-cent. * For fake numa systems, I'm optimistic, but will have to leave that up to Rohit Seth to actually test (once I get him a 2.6.18 backport.) Signed-off-by: Paul Jackson <pj@sgi.com> Cc: Rohit Seth <rohitseth@google.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Cc: David Rientjes <rientjes@cs.washington.edu> Cc: Paul Menage <menage@google.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 11:31:48 +07:00
struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
struct zone *zones[MAX_ZONES_PER_ZONELIST + 1]; // NULL delimited
#ifdef CONFIG_NUMA
struct zonelist_cache zlcache; // optional ...
#endif
};
Apply memory policies to top two highest zones when highest zone is ZONE_MOVABLE The NUMA layer only supports NUMA policies for the highest zone. When ZONE_MOVABLE is configured with kernelcore=, the the highest zone becomes ZONE_MOVABLE. The result is that policies are only applied to allocations like anonymous pages and page cache allocated from ZONE_MOVABLE when the zone is used. This patch applies policies to the two highest zones when the highest zone is ZONE_MOVABLE. As ZONE_MOVABLE consists of pages from the highest "real" zone, it's always functionally equivalent. The patch has been tested on a variety of machines both NUMA and non-NUMA covering x86, x86_64 and ppc64. No abnormal results were seen in kernbench, tbench, dbench or hackbench. It passes regression tests from the numactl package with and without kernelcore= once numactl tests are patched to wait for vmstat counters to update. akpm: this is the nasty hack to fix NUMA mempolicies in the presence of ZONE_MOVABLE and kernelcore= in 2.6.23. Christoph says "For .24 either merge the mobility or get the other solution that Mel is working on. That solution would only use a single zonelist per node and filter on the fly. That may help performance and also help to make memory policies work better." Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Tested-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Christoph Lameter <clameter@sgi.com> Cc: Andi Kleen <ak@suse.de> Cc: Paul Mundt <lethal@linux-sh.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-08-23 04:02:05 +07:00
#ifdef CONFIG_NUMA
/*
* Only custom zonelists like MPOL_BIND need to be filtered as part of
* policies. As described in the comment for struct zonelist_cache, these
* zonelists will not have a zlcache so zlcache_ptr will not be set. Use
* that to determine if the zonelists needs to be filtered or not.
*/
static inline int alloc_should_filter_zonelist(struct zonelist *zonelist)
{
return !zonelist->zlcache_ptr;
}
#else
static inline int alloc_should_filter_zonelist(struct zonelist *zonelist)
{
return 0;
}
#endif /* CONFIG_NUMA */
[PATCH] Introduce mechanism for registering active regions of memory At a basic level, architectures define structures to record where active ranges of page frames are located. Once located, the code to calculate zone sizes and holes in each architecture is very similar. Some of this zone and hole sizing code is difficult to read for no good reason. This set of patches eliminates the similar-looking architecture-specific code. The patches introduce a mechanism where architectures register where the active ranges of page frames are with add_active_range(). When all areas have been discovered, free_area_init_nodes() is called to initialise the pgdat and zones. The zone sizes and holes are then calculated in an architecture independent manner. Patch 1 introduces the mechanism for registering and initialising PFN ranges Patch 2 changes ppc to use the mechanism - 139 arch-specific LOC removed Patch 3 changes x86 to use the mechanism - 136 arch-specific LOC removed Patch 4 changes x86_64 to use the mechanism - 74 arch-specific LOC removed Patch 5 changes ia64 to use the mechanism - 52 arch-specific LOC removed Patch 6 accounts for mem_map as a memory hole as the pages are not reclaimable. It adjusts the watermarks slightly Tony Luck has successfully tested for ia64 on Itanium with tiger_defconfig, gensparse_defconfig and defconfig. Bob Picco has also tested and debugged on IA64. Jack Steiner successfully boot tested on a mammoth SGI IA64-based machine. These were on patches against 2.6.17-rc1 and release 3 of these patches but there have been no ia64-changes since release 3. There are differences in the zone sizes for x86_64 as the arch-specific code for x86_64 accounts the kernel image and the starting mem_maps as memory holes but the architecture-independent code accounts the memory as present. The big benefit of this set of patches is a sizable reduction of architecture-specific code, some of which is very hairy. There should be a greater reduction when other architectures use the same mechanisms for zone and hole sizing but I lack the hardware to test on. Additional credit; Dave Hansen for the initial suggestion and comments on early patches Andy Whitcroft for reviewing early versions and catching numerous errors Tony Luck for testing and debugging on IA64 Bob Picco for fixing bugs related to pfn registration, reviewing a number of patch revisions, providing a number of suggestions on future direction and testing heavily Jack Steiner and Robin Holt for testing on IA64 and clarifying issues related to memory holes Yasunori for testing on IA64 Andi Kleen for reviewing and feeding back about x86_64 Christian Kujau for providing valuable information related to ACPI problems on x86_64 and testing potential fixes This patch: Define the structure to represent an active range of page frames within a node in an architecture independent manner. Architectures are expected to register active ranges of PFNs using add_active_range(nid, start_pfn, end_pfn) and call free_area_init_nodes() passing the PFNs of the end of each zone. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Bob Picco <bob.picco@hp.com> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: Andi Kleen <ak@muc.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "Keith Mannthey" <kmannth@gmail.com> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-27 15:49:43 +07:00
#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
struct node_active_region {
unsigned long start_pfn;
unsigned long end_pfn;
int nid;
};
#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
#ifndef CONFIG_DISCONTIGMEM
/* The array of struct pages - for discontigmem use pgdat->lmem_map */
extern struct page *mem_map;
#endif
/*
* The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
* (mostly NUMA machines?) to denote a higher-level memory zone than the
* zone denotes.
*
* On NUMA machines, each NUMA node would have a pg_data_t to describe
* it's memory layout.
*
* Memory statistics and page replacement data structures are maintained on a
* per-zone basis.
*/
struct bootmem_data;
typedef struct pglist_data {
struct zone node_zones[MAX_NR_ZONES];
struct zonelist node_zonelists[MAX_ZONELISTS];
int nr_zones;
[PATCH] sparsemem memory model Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 14:07:54 +07:00
#ifdef CONFIG_FLAT_NODE_MEM_MAP
struct page *node_mem_map;
[PATCH] sparsemem memory model Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 14:07:54 +07:00
#endif
struct bootmem_data *bdata;
#ifdef CONFIG_MEMORY_HOTPLUG
/*
* Must be held any time you expect node_start_pfn, node_present_pages
* or node_spanned_pages stay constant. Holding this will also
* guarantee that any pfn_valid() stays that way.
*
* Nests above zone->lock and zone->size_seqlock.
*/
spinlock_t node_size_lock;
#endif
unsigned long node_start_pfn;
unsigned long node_present_pages; /* total number of physical pages */
unsigned long node_spanned_pages; /* total size of physical page
range, including holes */
int node_id;
wait_queue_head_t kswapd_wait;
struct task_struct *kswapd;
int kswapd_max_order;
} pg_data_t;
#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
[PATCH] sparsemem memory model Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 14:07:54 +07:00
#ifdef CONFIG_FLAT_NODE_MEM_MAP
2005-06-23 14:07:37 +07:00
#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
[PATCH] sparsemem memory model Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 14:07:54 +07:00
#else
#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
#endif
2005-06-23 14:07:37 +07:00
#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
#include <linux/memory_hotplug.h>
void get_zone_counts(unsigned long *active, unsigned long *inactive,
unsigned long *free);
void build_all_zonelists(void);
void wakeup_kswapd(struct zone *zone, int order);
int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
int classzone_idx, int alloc_flags);
enum memmap_context {
MEMMAP_EARLY,
MEMMAP_HOTPLUG,
};
extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
unsigned long size,
enum memmap_context context);
#ifdef CONFIG_HAVE_MEMORY_PRESENT
void memory_present(int nid, unsigned long start, unsigned long end);
#else
static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
#endif
#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
#endif
/*
* zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
*/
#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
static inline int populated_zone(struct zone *zone)
{
return (!!zone->present_pages);
}
Create the ZONE_MOVABLE zone The following 8 patches against 2.6.20-mm2 create a zone called ZONE_MOVABLE that is only usable by allocations that specify both __GFP_HIGHMEM and __GFP_MOVABLE. This has the effect of keeping all non-movable pages within a single memory partition while allowing movable allocations to be satisfied from either partition. The patches may be applied with the list-based anti-fragmentation patches that groups pages together based on mobility. The size of the zone is determined by a kernelcore= parameter specified at boot-time. This specifies how much memory is usable by non-movable allocations and the remainder is used for ZONE_MOVABLE. Any range of pages within ZONE_MOVABLE can be released by migrating the pages or by reclaiming. When selecting a zone to take pages from for ZONE_MOVABLE, there are two things to consider. First, only memory from the highest populated zone is used for ZONE_MOVABLE. On the x86, this is probably going to be ZONE_HIGHMEM but it would be ZONE_DMA on ppc64 or possibly ZONE_DMA32 on x86_64. Second, the amount of memory usable by the kernel will be spread evenly throughout NUMA nodes where possible. If the nodes are not of equal size, the amount of memory usable by the kernel on some nodes may be greater than others. By default, the zone is not as useful for hugetlb allocations because they are pinned and non-migratable (currently at least). A sysctl is provided that allows huge pages to be allocated from that zone. This means that the huge page pool can be resized to the size of ZONE_MOVABLE during the lifetime of the system assuming that pages are not mlocked. Despite huge pages being non-movable, we do not introduce additional external fragmentation of note as huge pages are always the largest contiguous block we care about. Credit goes to Andy Whitcroft for catching a large variety of problems during review of the patches. This patch creates an additional zone, ZONE_MOVABLE. This zone is only usable by allocations which specify both __GFP_HIGHMEM and __GFP_MOVABLE. Hot-added memory continues to be placed in their existing destination as there is no mechanism to redirect them to a specific zone. [y-goto@jp.fujitsu.com: Fix section mismatch of memory hotplug related code] [akpm@linux-foundation.org: various fixes] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: William Lee Irwin III <wli@holomorphy.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-17 18:03:12 +07:00
extern int movable_zone;
static inline int zone_movable_is_highmem(void)
{
#if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
return movable_zone == ZONE_HIGHMEM;
#else
return 0;
#endif
}
static inline int is_highmem_idx(enum zone_type idx)
{
#ifdef CONFIG_HIGHMEM
Create the ZONE_MOVABLE zone The following 8 patches against 2.6.20-mm2 create a zone called ZONE_MOVABLE that is only usable by allocations that specify both __GFP_HIGHMEM and __GFP_MOVABLE. This has the effect of keeping all non-movable pages within a single memory partition while allowing movable allocations to be satisfied from either partition. The patches may be applied with the list-based anti-fragmentation patches that groups pages together based on mobility. The size of the zone is determined by a kernelcore= parameter specified at boot-time. This specifies how much memory is usable by non-movable allocations and the remainder is used for ZONE_MOVABLE. Any range of pages within ZONE_MOVABLE can be released by migrating the pages or by reclaiming. When selecting a zone to take pages from for ZONE_MOVABLE, there are two things to consider. First, only memory from the highest populated zone is used for ZONE_MOVABLE. On the x86, this is probably going to be ZONE_HIGHMEM but it would be ZONE_DMA on ppc64 or possibly ZONE_DMA32 on x86_64. Second, the amount of memory usable by the kernel will be spread evenly throughout NUMA nodes where possible. If the nodes are not of equal size, the amount of memory usable by the kernel on some nodes may be greater than others. By default, the zone is not as useful for hugetlb allocations because they are pinned and non-migratable (currently at least). A sysctl is provided that allows huge pages to be allocated from that zone. This means that the huge page pool can be resized to the size of ZONE_MOVABLE during the lifetime of the system assuming that pages are not mlocked. Despite huge pages being non-movable, we do not introduce additional external fragmentation of note as huge pages are always the largest contiguous block we care about. Credit goes to Andy Whitcroft for catching a large variety of problems during review of the patches. This patch creates an additional zone, ZONE_MOVABLE. This zone is only usable by allocations which specify both __GFP_HIGHMEM and __GFP_MOVABLE. Hot-added memory continues to be placed in their existing destination as there is no mechanism to redirect them to a specific zone. [y-goto@jp.fujitsu.com: Fix section mismatch of memory hotplug related code] [akpm@linux-foundation.org: various fixes] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: William Lee Irwin III <wli@holomorphy.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-17 18:03:12 +07:00
return (idx == ZONE_HIGHMEM ||
(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
#else
return 0;
#endif
}
static inline int is_normal_idx(enum zone_type idx)
{
return (idx == ZONE_NORMAL);
}
/**
* is_highmem - helper function to quickly check if a struct zone is a
* highmem zone or not. This is an attempt to keep references
* to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
* @zone - pointer to struct zone variable
*/
static inline int is_highmem(struct zone *zone)
{
#ifdef CONFIG_HIGHMEM
Create the ZONE_MOVABLE zone The following 8 patches against 2.6.20-mm2 create a zone called ZONE_MOVABLE that is only usable by allocations that specify both __GFP_HIGHMEM and __GFP_MOVABLE. This has the effect of keeping all non-movable pages within a single memory partition while allowing movable allocations to be satisfied from either partition. The patches may be applied with the list-based anti-fragmentation patches that groups pages together based on mobility. The size of the zone is determined by a kernelcore= parameter specified at boot-time. This specifies how much memory is usable by non-movable allocations and the remainder is used for ZONE_MOVABLE. Any range of pages within ZONE_MOVABLE can be released by migrating the pages or by reclaiming. When selecting a zone to take pages from for ZONE_MOVABLE, there are two things to consider. First, only memory from the highest populated zone is used for ZONE_MOVABLE. On the x86, this is probably going to be ZONE_HIGHMEM but it would be ZONE_DMA on ppc64 or possibly ZONE_DMA32 on x86_64. Second, the amount of memory usable by the kernel will be spread evenly throughout NUMA nodes where possible. If the nodes are not of equal size, the amount of memory usable by the kernel on some nodes may be greater than others. By default, the zone is not as useful for hugetlb allocations because they are pinned and non-migratable (currently at least). A sysctl is provided that allows huge pages to be allocated from that zone. This means that the huge page pool can be resized to the size of ZONE_MOVABLE during the lifetime of the system assuming that pages are not mlocked. Despite huge pages being non-movable, we do not introduce additional external fragmentation of note as huge pages are always the largest contiguous block we care about. Credit goes to Andy Whitcroft for catching a large variety of problems during review of the patches. This patch creates an additional zone, ZONE_MOVABLE. This zone is only usable by allocations which specify both __GFP_HIGHMEM and __GFP_MOVABLE. Hot-added memory continues to be placed in their existing destination as there is no mechanism to redirect them to a specific zone. [y-goto@jp.fujitsu.com: Fix section mismatch of memory hotplug related code] [akpm@linux-foundation.org: various fixes] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: William Lee Irwin III <wli@holomorphy.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-17 18:03:12 +07:00
int zone_idx = zone - zone->zone_pgdat->node_zones;
return zone_idx == ZONE_HIGHMEM ||
(zone_idx == ZONE_MOVABLE && zone_movable_is_highmem());
#else
return 0;
#endif
}
static inline int is_normal(struct zone *zone)
{
return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
}
static inline int is_dma32(struct zone *zone)
{
#ifdef CONFIG_ZONE_DMA32
return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
#else
return 0;
#endif
}
static inline int is_dma(struct zone *zone)
{
#ifdef CONFIG_ZONE_DMA
return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
#else
return 0;
#endif
}
/* These two functions are used to setup the per zone pages min values */
struct ctl_table;
struct file;
int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
void __user *, size_t *, loff_t *);
extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
void __user *, size_t *, loff_t *);
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
void __user *, size_t *, loff_t *);
int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
struct file *, void __user *, size_t *, loff_t *);
[PATCH] zone_reclaim: dynamic slab reclaim Currently one can enable slab reclaim by setting an explicit option in /proc/sys/vm/zone_reclaim_mode. Slab reclaim is then used as a final option if the freeing of unmapped file backed pages is not enough to free enough pages to allow a local allocation. However, that means that the slab can grow excessively and that most memory of a node may be used by slabs. We have had a case where a machine with 46GB of memory was using 40-42GB for slab. Zone reclaim was effective in dealing with pagecache pages. However, slab reclaim was only done during global reclaim (which is a bit rare on NUMA systems). This patch implements slab reclaim during zone reclaim. Zone reclaim occurs if there is a danger of an off node allocation. At that point we 1. Shrink the per node page cache if the number of pagecache pages is more than min_unmapped_ratio percent of pages in a zone. 2. Shrink the slab cache if the number of the nodes reclaimable slab pages (patch depends on earlier one that implements that counter) are more than min_slab_ratio (a new /proc/sys/vm tunable). The shrinking of the slab cache is a bit problematic since it is not node specific. So we simply calculate what point in the slab we want to reach (current per node slab use minus the number of pages that neeed to be allocated) and then repeately run the global reclaim until that is unsuccessful or we have reached the limit. I hope we will have zone based slab reclaim at some point which will make that easier. The default for the min_slab_ratio is 5% Also remove the slab option from /proc/sys/vm/zone_reclaim_mode. [akpm@osdl.org: cleanups] Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 13:31:52 +07:00
int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
struct file *, void __user *, size_t *, loff_t *);
change zonelist order: zonelist order selection logic Make zonelist creation policy selectable from sysctl/boot option v6. This patch makes NUMA's zonelist (of pgdat) order selectable. Available order are Default(automatic)/ Node-based / Zone-based. [Default Order] The kernel selects Node-based or Zone-based order automatically. [Node-based Order] This policy treats the locality of memory as the most important parameter. Zonelist order is created by each zone's locality. This means lower zones (ex. ZONE_DMA) can be used before higher zone (ex. ZONE_NORMAL) exhausion. IOW. ZONE_DMA will be in the middle of zonelist. current 2.6.21 kernel uses this. Pros. * A user can expect local memory as much as possible. Cons. * lower zone will be exhansted before higher zone. This may cause OOM_KILL. Maybe suitable if ZONE_DMA is relatively big and you never see OOM_KILL because of ZONE_DMA exhaution and you need the best locality. (example) assume 2 node NUMA. node(0) has ZONE_DMA/ZONE_NORMAL, node(1) has ZONE_NORMAL. *node(0)'s memory allocation order: node(0)'s NORMAL -> node(0)'s DMA -> node(1)'s NORMAL. *node(1)'s memory allocation order: node(1)'s NORMAL -> node(0)'s NORMAL -> node(0)'s DMA. [Zone-based order] This policy treats the zone type as the most important parameter. Zonelist order is created by zone-type order. This means lower zone never be used bofere higher zone exhaustion. IOW. ZONE_DMA will be always at the tail of zonelist. Pros. * OOM_KILL(bacause of lower zone) occurs only if the whole zones are exhausted. Cons. * memory locality may not be best. (example) assume 2 node NUMA. node(0) has ZONE_DMA/ZONE_NORMAL, node(1) has ZONE_NORMAL. *node(0)'s memory allocation order: node(0)'s NORMAL -> node(1)'s NORMAL -> node(0)'s DMA. *node(1)'s memory allocation order: node(1)'s NORMAL -> node(0)'s NORMAL -> node(0)'s DMA. bootoption "numa_zonelist_order=" and proc/sysctl is supporetd. command: %echo N > /proc/sys/vm/numa_zonelist_order Will rebuild zonelist in Node-based order. command: %echo Z > /proc/sys/vm/numa_zonelist_order Will rebuild zonelist in Zone-based order. Thanks to Lee Schermerhorn, he gives me much help and codes. [Lee.Schermerhorn@hp.com: add check_highest_zone to build_zonelists_in_zone_order] [akpm@linux-foundation.org: build fix] Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: Andi Kleen <ak@suse.de> Cc: "jesse.barnes@intel.com" <jesse.barnes@intel.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 13:38:01 +07:00
extern int numa_zonelist_order_handler(struct ctl_table *, int,
struct file *, void __user *, size_t *, loff_t *);
extern char numa_zonelist_order[];
#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
#include <linux/topology.h>
/* Returns the number of the current Node. */
#ifndef numa_node_id
#define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
#endif
#ifndef CONFIG_NEED_MULTIPLE_NODES
extern struct pglist_data contig_page_data;
#define NODE_DATA(nid) (&contig_page_data)
#define NODE_MEM_MAP(nid) mem_map
#define MAX_NODES_SHIFT 1
#else /* CONFIG_NEED_MULTIPLE_NODES */
#include <asm/mmzone.h>
#endif /* !CONFIG_NEED_MULTIPLE_NODES */
extern struct pglist_data *first_online_pgdat(void);
extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
extern struct zone *next_zone(struct zone *zone);
/**
* for_each_pgdat - helper macro to iterate over all nodes
* @pgdat - pointer to a pg_data_t variable
*/
#define for_each_online_pgdat(pgdat) \
for (pgdat = first_online_pgdat(); \
pgdat; \
pgdat = next_online_pgdat(pgdat))
/**
* for_each_zone - helper macro to iterate over all memory zones
* @zone - pointer to struct zone variable
*
* The user only needs to declare the zone variable, for_each_zone
* fills it in.
*/
#define for_each_zone(zone) \
for (zone = (first_online_pgdat())->node_zones; \
zone; \
zone = next_zone(zone))
[PATCH] sparsemem memory model Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 14:07:54 +07:00
#ifdef CONFIG_SPARSEMEM
#include <asm/sparsemem.h>
#endif
#if BITS_PER_LONG == 32
/*
[PATCH] x86_64: Add 4GB DMA32 zone Add a new 4GB GFP_DMA32 zone between the GFP_DMA and GFP_NORMAL zones. As a bit of historical background: when the x86-64 port was originally designed we had some discussion if we should use a 16MB DMA zone like i386 or a 4GB DMA zone like IA64 or both. Both was ruled out at this point because it was in early 2.4 when VM is still quite shakey and had bad troubles even dealing with one DMA zone. We settled on the 16MB DMA zone mainly because we worried about older soundcards and the floppy. But this has always caused problems since then because device drivers had trouble getting enough DMA able memory. These days the VM works much better and the wide use of NUMA has proven it can deal with many zones successfully. So this patch adds both zones. This helps drivers who need a lot of memory below 4GB because their hardware is not accessing more (graphic drivers - proprietary and free ones, video frame buffer drivers, sound drivers etc.). Previously they could only use IOMMU+16MB GFP_DMA, which was not enough memory. Another common problem is that hardware who has full memory addressing for >4GB misses it for some control structures in memory (like transmit rings or other metadata). They tended to allocate memory in the 16MB GFP_DMA or the IOMMU/swiotlb then using pci_alloc_consistent, but that can tie up a lot of precious 16MB GFPDMA/IOMMU/swiotlb memory (even on AMD systems the IOMMU tends to be quite small) especially if you have many devices. With the new zone pci_alloc_consistent can just put this stuff into memory below 4GB which works better. One argument was still if the zone should be 4GB or 2GB. The main motivation for 2GB would be an unnamed not so unpopular hardware raid controller (mostly found in older machines from a particular four letter company) who has a strange 2GB restriction in firmware. But that one works ok with swiotlb/IOMMU anyways, so it doesn't really need GFP_DMA32. I chose 4GB to be compatible with IA64 and because it seems to be the most common restriction. The new zone is so far added only for x86-64. For other architectures who don't set up this new zone nothing changes. Architectures can set a compatibility define in Kconfig CONFIG_DMA_IS_DMA32 that will define GFP_DMA32 as GFP_DMA. Otherwise it's a nop because on 32bit architectures it's normally not needed because GFP_NORMAL (=0) is DMA able enough. One problem is still that GFP_DMA means different things on different architectures. e.g. some drivers used to have #ifdef ia64 use GFP_DMA (trusting it to be 4GB) #elif __x86_64__ (use other hacks like the swiotlb because 16MB is not enough) ... . This was quite ugly and is now obsolete. These should be now converted to use GFP_DMA32 unconditionally. I haven't done this yet. Or best only use pci_alloc_consistent/dma_alloc_coherent which will use GFP_DMA32 transparently. Signed-off-by: Andi Kleen <ak@suse.de> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-11-05 23:25:53 +07:00
* with 32 bit page->flags field, we reserve 9 bits for node/zone info.
* there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes.
*/
[PATCH] x86_64: Add 4GB DMA32 zone Add a new 4GB GFP_DMA32 zone between the GFP_DMA and GFP_NORMAL zones. As a bit of historical background: when the x86-64 port was originally designed we had some discussion if we should use a 16MB DMA zone like i386 or a 4GB DMA zone like IA64 or both. Both was ruled out at this point because it was in early 2.4 when VM is still quite shakey and had bad troubles even dealing with one DMA zone. We settled on the 16MB DMA zone mainly because we worried about older soundcards and the floppy. But this has always caused problems since then because device drivers had trouble getting enough DMA able memory. These days the VM works much better and the wide use of NUMA has proven it can deal with many zones successfully. So this patch adds both zones. This helps drivers who need a lot of memory below 4GB because their hardware is not accessing more (graphic drivers - proprietary and free ones, video frame buffer drivers, sound drivers etc.). Previously they could only use IOMMU+16MB GFP_DMA, which was not enough memory. Another common problem is that hardware who has full memory addressing for >4GB misses it for some control structures in memory (like transmit rings or other metadata). They tended to allocate memory in the 16MB GFP_DMA or the IOMMU/swiotlb then using pci_alloc_consistent, but that can tie up a lot of precious 16MB GFPDMA/IOMMU/swiotlb memory (even on AMD systems the IOMMU tends to be quite small) especially if you have many devices. With the new zone pci_alloc_consistent can just put this stuff into memory below 4GB which works better. One argument was still if the zone should be 4GB or 2GB. The main motivation for 2GB would be an unnamed not so unpopular hardware raid controller (mostly found in older machines from a particular four letter company) who has a strange 2GB restriction in firmware. But that one works ok with swiotlb/IOMMU anyways, so it doesn't really need GFP_DMA32. I chose 4GB to be compatible with IA64 and because it seems to be the most common restriction. The new zone is so far added only for x86-64. For other architectures who don't set up this new zone nothing changes. Architectures can set a compatibility define in Kconfig CONFIG_DMA_IS_DMA32 that will define GFP_DMA32 as GFP_DMA. Otherwise it's a nop because on 32bit architectures it's normally not needed because GFP_NORMAL (=0) is DMA able enough. One problem is still that GFP_DMA means different things on different architectures. e.g. some drivers used to have #ifdef ia64 use GFP_DMA (trusting it to be 4GB) #elif __x86_64__ (use other hacks like the swiotlb because 16MB is not enough) ... . This was quite ugly and is now obsolete. These should be now converted to use GFP_DMA32 unconditionally. I haven't done this yet. Or best only use pci_alloc_consistent/dma_alloc_coherent which will use GFP_DMA32 transparently. Signed-off-by: Andi Kleen <ak@suse.de> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-11-05 23:25:53 +07:00
#define FLAGS_RESERVED 9
#elif BITS_PER_LONG == 64
/*
* with 64 bit flags field, there's plenty of room.
*/
#define FLAGS_RESERVED 32
#else
#error BITS_PER_LONG not defined
#endif
[PATCH] Introduce mechanism for registering active regions of memory At a basic level, architectures define structures to record where active ranges of page frames are located. Once located, the code to calculate zone sizes and holes in each architecture is very similar. Some of this zone and hole sizing code is difficult to read for no good reason. This set of patches eliminates the similar-looking architecture-specific code. The patches introduce a mechanism where architectures register where the active ranges of page frames are with add_active_range(). When all areas have been discovered, free_area_init_nodes() is called to initialise the pgdat and zones. The zone sizes and holes are then calculated in an architecture independent manner. Patch 1 introduces the mechanism for registering and initialising PFN ranges Patch 2 changes ppc to use the mechanism - 139 arch-specific LOC removed Patch 3 changes x86 to use the mechanism - 136 arch-specific LOC removed Patch 4 changes x86_64 to use the mechanism - 74 arch-specific LOC removed Patch 5 changes ia64 to use the mechanism - 52 arch-specific LOC removed Patch 6 accounts for mem_map as a memory hole as the pages are not reclaimable. It adjusts the watermarks slightly Tony Luck has successfully tested for ia64 on Itanium with tiger_defconfig, gensparse_defconfig and defconfig. Bob Picco has also tested and debugged on IA64. Jack Steiner successfully boot tested on a mammoth SGI IA64-based machine. These were on patches against 2.6.17-rc1 and release 3 of these patches but there have been no ia64-changes since release 3. There are differences in the zone sizes for x86_64 as the arch-specific code for x86_64 accounts the kernel image and the starting mem_maps as memory holes but the architecture-independent code accounts the memory as present. The big benefit of this set of patches is a sizable reduction of architecture-specific code, some of which is very hairy. There should be a greater reduction when other architectures use the same mechanisms for zone and hole sizing but I lack the hardware to test on. Additional credit; Dave Hansen for the initial suggestion and comments on early patches Andy Whitcroft for reviewing early versions and catching numerous errors Tony Luck for testing and debugging on IA64 Bob Picco for fixing bugs related to pfn registration, reviewing a number of patch revisions, providing a number of suggestions on future direction and testing heavily Jack Steiner and Robin Holt for testing on IA64 and clarifying issues related to memory holes Yasunori for testing on IA64 Andi Kleen for reviewing and feeding back about x86_64 Christian Kujau for providing valuable information related to ACPI problems on x86_64 and testing potential fixes This patch: Define the structure to represent an active range of page frames within a node in an architecture independent manner. Architectures are expected to register active ranges of PFNs using add_active_range(nid, start_pfn, end_pfn) and call free_area_init_nodes() passing the PFNs of the end of each zone. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Bob Picco <bob.picco@hp.com> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: Andi Kleen <ak@muc.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "Keith Mannthey" <kmannth@gmail.com> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-27 15:49:43 +07:00
#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
!defined(CONFIG_ARCH_POPULATES_NODE_MAP)
#define early_pfn_to_nid(nid) (0UL)
#endif
[PATCH] flatmem split out memory model There are three places we define pfn_to_nid(). Two in linux/mmzone.h and one in asm/mmzone.h. These in essence represent the three memory models. The definition in linux/mmzone.h under !NEED_MULTIPLE_NODES is both the FLATMEM definition and the optimisation for single NUMA nodes; the one under SPARSEMEM is the NUMA sparsemem one; the one in asm/mmzone.h under DISCONTIGMEM is the discontigmem one. This is not in the least bit obvious, particularly the connection between the non-NUMA optimisations and the memory models. Two patches: flatmem-split-out-memory-model: simplifies the selection of pfn_to_nid() implementations. The selection is based primarily off the memory model selected. Optimisations for non-NUMA are applied where needed. sparse-provide-pfn_to_nid: implement pfn_to_nid() for SPARSEMEM This patch: pfn_to_nid is memory model specific The pfn_to_nid() call is memory model specific. It represents the locality identifier for the memory passed. Classically this would be a NUMA node, but not a chunk of memory under DISCONTIGMEM. The SPARSEMEM and FLATMEM memory model non-NUMA versions of pfn_to_nid() are folded together under NEED_MULTIPLE_NODES, while DISCONTIGMEM has its own optimisation. This is all very confusing. This patch splits out each implementation of pfn_to_nid() so that we can see them and the optimisations to each. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-06 15:10:53 +07:00
#ifdef CONFIG_FLATMEM
#define pfn_to_nid(pfn) (0)
#endif
[PATCH] sparsemem memory model Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 14:07:54 +07:00
#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
#ifdef CONFIG_SPARSEMEM
/*
* SECTION_SHIFT #bits space required to store a section #
*
* PA_SECTION_SHIFT physical address to/from section number
* PFN_SECTION_SHIFT pfn to/from section number
*/
#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
#error Allocator MAX_ORDER exceeds SECTION_SIZE
#endif
struct page;
struct mem_section {
[PATCH] sparsemem hotplug base Make sparse's initalization be accessible at runtime. This allows sparse mappings to be created after boot in a hotplug situation. This patch is separated from the previous one just to give an indication how much of the sparse infrastructure is *just* for hotplug memory. The section_mem_map doesn't really store a pointer. It stores something that is convenient to do some math against to get a pointer. It isn't valid to just do *section_mem_map, so I don't think it should be stored as a pointer. There are a couple of things I'd like to store about a section. First of all, the fact that it is !NULL does not mean that it is present. There could be such a combination where section_mem_map *is* NULL, but the math gets you properly to a real mem_map. So, I don't think that check is safe. Since we're storing 32-bit-aligned structures, we have a few bits in the bottom of the pointer to play with. Use one bit to encode whether there's really a mem_map there, and the other one to tell whether there's a valid section there. We need to distinguish between the two because sometimes there's a gap between when a section is discovered to be present and when we can get the mem_map for it. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Jack Steiner <steiner@sgi.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 14:08:00 +07:00
/*
* This is, logically, a pointer to an array of struct
* pages. However, it is stored with some other magic.
* (see sparse.c::sparse_init_one_section())
*
* Additionally during early boot we encode node id of
* the location of the section here to guide allocation.
* (see sparse.c::memory_present())
*
[PATCH] sparsemem hotplug base Make sparse's initalization be accessible at runtime. This allows sparse mappings to be created after boot in a hotplug situation. This patch is separated from the previous one just to give an indication how much of the sparse infrastructure is *just* for hotplug memory. The section_mem_map doesn't really store a pointer. It stores something that is convenient to do some math against to get a pointer. It isn't valid to just do *section_mem_map, so I don't think it should be stored as a pointer. There are a couple of things I'd like to store about a section. First of all, the fact that it is !NULL does not mean that it is present. There could be such a combination where section_mem_map *is* NULL, but the math gets you properly to a real mem_map. So, I don't think that check is safe. Since we're storing 32-bit-aligned structures, we have a few bits in the bottom of the pointer to play with. Use one bit to encode whether there's really a mem_map there, and the other one to tell whether there's a valid section there. We need to distinguish between the two because sometimes there's a gap between when a section is discovered to be present and when we can get the mem_map for it. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Jack Steiner <steiner@sgi.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 14:08:00 +07:00
* Making it a UL at least makes someone do a cast
* before using it wrong.
*/
unsigned long section_mem_map;
[PATCH] sparsemem memory model Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 14:07:54 +07:00
};
#ifdef CONFIG_SPARSEMEM_EXTREME
#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
#else
#define SECTIONS_PER_ROOT 1
#endif
#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
#define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
#ifdef CONFIG_SPARSEMEM_EXTREME
extern struct mem_section *mem_section[NR_SECTION_ROOTS];
#else
extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
#endif
[PATCH] sparsemem memory model Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 14:07:54 +07:00
[PATCH] sparsemem hotplug base Make sparse's initalization be accessible at runtime. This allows sparse mappings to be created after boot in a hotplug situation. This patch is separated from the previous one just to give an indication how much of the sparse infrastructure is *just* for hotplug memory. The section_mem_map doesn't really store a pointer. It stores something that is convenient to do some math against to get a pointer. It isn't valid to just do *section_mem_map, so I don't think it should be stored as a pointer. There are a couple of things I'd like to store about a section. First of all, the fact that it is !NULL does not mean that it is present. There could be such a combination where section_mem_map *is* NULL, but the math gets you properly to a real mem_map. So, I don't think that check is safe. Since we're storing 32-bit-aligned structures, we have a few bits in the bottom of the pointer to play with. Use one bit to encode whether there's really a mem_map there, and the other one to tell whether there's a valid section there. We need to distinguish between the two because sometimes there's a gap between when a section is discovered to be present and when we can get the mem_map for it. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Jack Steiner <steiner@sgi.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 14:08:00 +07:00
static inline struct mem_section *__nr_to_section(unsigned long nr)
{
if (!mem_section[SECTION_NR_TO_ROOT(nr)])
return NULL;
return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
[PATCH] sparsemem hotplug base Make sparse's initalization be accessible at runtime. This allows sparse mappings to be created after boot in a hotplug situation. This patch is separated from the previous one just to give an indication how much of the sparse infrastructure is *just* for hotplug memory. The section_mem_map doesn't really store a pointer. It stores something that is convenient to do some math against to get a pointer. It isn't valid to just do *section_mem_map, so I don't think it should be stored as a pointer. There are a couple of things I'd like to store about a section. First of all, the fact that it is !NULL does not mean that it is present. There could be such a combination where section_mem_map *is* NULL, but the math gets you properly to a real mem_map. So, I don't think that check is safe. Since we're storing 32-bit-aligned structures, we have a few bits in the bottom of the pointer to play with. Use one bit to encode whether there's really a mem_map there, and the other one to tell whether there's a valid section there. We need to distinguish between the two because sometimes there's a gap between when a section is discovered to be present and when we can get the mem_map for it. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Jack Steiner <steiner@sgi.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 14:08:00 +07:00
}
extern int __section_nr(struct mem_section* ms);
[PATCH] sparsemem hotplug base Make sparse's initalization be accessible at runtime. This allows sparse mappings to be created after boot in a hotplug situation. This patch is separated from the previous one just to give an indication how much of the sparse infrastructure is *just* for hotplug memory. The section_mem_map doesn't really store a pointer. It stores something that is convenient to do some math against to get a pointer. It isn't valid to just do *section_mem_map, so I don't think it should be stored as a pointer. There are a couple of things I'd like to store about a section. First of all, the fact that it is !NULL does not mean that it is present. There could be such a combination where section_mem_map *is* NULL, but the math gets you properly to a real mem_map. So, I don't think that check is safe. Since we're storing 32-bit-aligned structures, we have a few bits in the bottom of the pointer to play with. Use one bit to encode whether there's really a mem_map there, and the other one to tell whether there's a valid section there. We need to distinguish between the two because sometimes there's a gap between when a section is discovered to be present and when we can get the mem_map for it. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Jack Steiner <steiner@sgi.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 14:08:00 +07:00
/*
* We use the lower bits of the mem_map pointer to store
* a little bit of information. There should be at least
* 3 bits here due to 32-bit alignment.
*/
#define SECTION_MARKED_PRESENT (1UL<<0)
#define SECTION_HAS_MEM_MAP (1UL<<1)
#define SECTION_MAP_LAST_BIT (1UL<<2)
#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
#define SECTION_NID_SHIFT 2
[PATCH] sparsemem hotplug base Make sparse's initalization be accessible at runtime. This allows sparse mappings to be created after boot in a hotplug situation. This patch is separated from the previous one just to give an indication how much of the sparse infrastructure is *just* for hotplug memory. The section_mem_map doesn't really store a pointer. It stores something that is convenient to do some math against to get a pointer. It isn't valid to just do *section_mem_map, so I don't think it should be stored as a pointer. There are a couple of things I'd like to store about a section. First of all, the fact that it is !NULL does not mean that it is present. There could be such a combination where section_mem_map *is* NULL, but the math gets you properly to a real mem_map. So, I don't think that check is safe. Since we're storing 32-bit-aligned structures, we have a few bits in the bottom of the pointer to play with. Use one bit to encode whether there's really a mem_map there, and the other one to tell whether there's a valid section there. We need to distinguish between the two because sometimes there's a gap between when a section is discovered to be present and when we can get the mem_map for it. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Jack Steiner <steiner@sgi.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 14:08:00 +07:00
static inline struct page *__section_mem_map_addr(struct mem_section *section)
{
unsigned long map = section->section_mem_map;
map &= SECTION_MAP_MASK;
return (struct page *)map;
}
static inline int present_section(struct mem_section *section)
[PATCH] sparsemem hotplug base Make sparse's initalization be accessible at runtime. This allows sparse mappings to be created after boot in a hotplug situation. This patch is separated from the previous one just to give an indication how much of the sparse infrastructure is *just* for hotplug memory. The section_mem_map doesn't really store a pointer. It stores something that is convenient to do some math against to get a pointer. It isn't valid to just do *section_mem_map, so I don't think it should be stored as a pointer. There are a couple of things I'd like to store about a section. First of all, the fact that it is !NULL does not mean that it is present. There could be such a combination where section_mem_map *is* NULL, but the math gets you properly to a real mem_map. So, I don't think that check is safe. Since we're storing 32-bit-aligned structures, we have a few bits in the bottom of the pointer to play with. Use one bit to encode whether there's really a mem_map there, and the other one to tell whether there's a valid section there. We need to distinguish between the two because sometimes there's a gap between when a section is discovered to be present and when we can get the mem_map for it. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Jack Steiner <steiner@sgi.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 14:08:00 +07:00
{
return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
[PATCH] sparsemem hotplug base Make sparse's initalization be accessible at runtime. This allows sparse mappings to be created after boot in a hotplug situation. This patch is separated from the previous one just to give an indication how much of the sparse infrastructure is *just* for hotplug memory. The section_mem_map doesn't really store a pointer. It stores something that is convenient to do some math against to get a pointer. It isn't valid to just do *section_mem_map, so I don't think it should be stored as a pointer. There are a couple of things I'd like to store about a section. First of all, the fact that it is !NULL does not mean that it is present. There could be such a combination where section_mem_map *is* NULL, but the math gets you properly to a real mem_map. So, I don't think that check is safe. Since we're storing 32-bit-aligned structures, we have a few bits in the bottom of the pointer to play with. Use one bit to encode whether there's really a mem_map there, and the other one to tell whether there's a valid section there. We need to distinguish between the two because sometimes there's a gap between when a section is discovered to be present and when we can get the mem_map for it. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Jack Steiner <steiner@sgi.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 14:08:00 +07:00
}
static inline int present_section_nr(unsigned long nr)
{
return present_section(__nr_to_section(nr));
}
static inline int valid_section(struct mem_section *section)
[PATCH] sparsemem hotplug base Make sparse's initalization be accessible at runtime. This allows sparse mappings to be created after boot in a hotplug situation. This patch is separated from the previous one just to give an indication how much of the sparse infrastructure is *just* for hotplug memory. The section_mem_map doesn't really store a pointer. It stores something that is convenient to do some math against to get a pointer. It isn't valid to just do *section_mem_map, so I don't think it should be stored as a pointer. There are a couple of things I'd like to store about a section. First of all, the fact that it is !NULL does not mean that it is present. There could be such a combination where section_mem_map *is* NULL, but the math gets you properly to a real mem_map. So, I don't think that check is safe. Since we're storing 32-bit-aligned structures, we have a few bits in the bottom of the pointer to play with. Use one bit to encode whether there's really a mem_map there, and the other one to tell whether there's a valid section there. We need to distinguish between the two because sometimes there's a gap between when a section is discovered to be present and when we can get the mem_map for it. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Jack Steiner <steiner@sgi.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 14:08:00 +07:00
{
return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
[PATCH] sparsemem hotplug base Make sparse's initalization be accessible at runtime. This allows sparse mappings to be created after boot in a hotplug situation. This patch is separated from the previous one just to give an indication how much of the sparse infrastructure is *just* for hotplug memory. The section_mem_map doesn't really store a pointer. It stores something that is convenient to do some math against to get a pointer. It isn't valid to just do *section_mem_map, so I don't think it should be stored as a pointer. There are a couple of things I'd like to store about a section. First of all, the fact that it is !NULL does not mean that it is present. There could be such a combination where section_mem_map *is* NULL, but the math gets you properly to a real mem_map. So, I don't think that check is safe. Since we're storing 32-bit-aligned structures, we have a few bits in the bottom of the pointer to play with. Use one bit to encode whether there's really a mem_map there, and the other one to tell whether there's a valid section there. We need to distinguish between the two because sometimes there's a gap between when a section is discovered to be present and when we can get the mem_map for it. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Jack Steiner <steiner@sgi.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 14:08:00 +07:00
}
static inline int valid_section_nr(unsigned long nr)
{
return valid_section(__nr_to_section(nr));
}
[PATCH] sparsemem memory model Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 14:07:54 +07:00
static inline struct mem_section *__pfn_to_section(unsigned long pfn)
{
[PATCH] sparsemem hotplug base Make sparse's initalization be accessible at runtime. This allows sparse mappings to be created after boot in a hotplug situation. This patch is separated from the previous one just to give an indication how much of the sparse infrastructure is *just* for hotplug memory. The section_mem_map doesn't really store a pointer. It stores something that is convenient to do some math against to get a pointer. It isn't valid to just do *section_mem_map, so I don't think it should be stored as a pointer. There are a couple of things I'd like to store about a section. First of all, the fact that it is !NULL does not mean that it is present. There could be such a combination where section_mem_map *is* NULL, but the math gets you properly to a real mem_map. So, I don't think that check is safe. Since we're storing 32-bit-aligned structures, we have a few bits in the bottom of the pointer to play with. Use one bit to encode whether there's really a mem_map there, and the other one to tell whether there's a valid section there. We need to distinguish between the two because sometimes there's a gap between when a section is discovered to be present and when we can get the mem_map for it. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Jack Steiner <steiner@sgi.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 14:08:00 +07:00
return __nr_to_section(pfn_to_section_nr(pfn));
[PATCH] sparsemem memory model Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 14:07:54 +07:00
}
static inline int pfn_valid(unsigned long pfn)
{
if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
return 0;
[PATCH] sparsemem hotplug base Make sparse's initalization be accessible at runtime. This allows sparse mappings to be created after boot in a hotplug situation. This patch is separated from the previous one just to give an indication how much of the sparse infrastructure is *just* for hotplug memory. The section_mem_map doesn't really store a pointer. It stores something that is convenient to do some math against to get a pointer. It isn't valid to just do *section_mem_map, so I don't think it should be stored as a pointer. There are a couple of things I'd like to store about a section. First of all, the fact that it is !NULL does not mean that it is present. There could be such a combination where section_mem_map *is* NULL, but the math gets you properly to a real mem_map. So, I don't think that check is safe. Since we're storing 32-bit-aligned structures, we have a few bits in the bottom of the pointer to play with. Use one bit to encode whether there's really a mem_map there, and the other one to tell whether there's a valid section there. We need to distinguish between the two because sometimes there's a gap between when a section is discovered to be present and when we can get the mem_map for it. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Jack Steiner <steiner@sgi.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 14:08:00 +07:00
return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
[PATCH] sparsemem memory model Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 14:07:54 +07:00
}
static inline int pfn_present(unsigned long pfn)
{
if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
return 0;
return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
}
[PATCH] sparsemem memory model Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 14:07:54 +07:00
/*
* These are _only_ used during initialisation, therefore they
* can use __initdata ... They could have names to indicate
* this restriction.
*/
#ifdef CONFIG_NUMA
#define pfn_to_nid(pfn) \
({ \
unsigned long __pfn_to_nid_pfn = (pfn); \
page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
})
[PATCH] flatmem split out memory model There are three places we define pfn_to_nid(). Two in linux/mmzone.h and one in asm/mmzone.h. These in essence represent the three memory models. The definition in linux/mmzone.h under !NEED_MULTIPLE_NODES is both the FLATMEM definition and the optimisation for single NUMA nodes; the one under SPARSEMEM is the NUMA sparsemem one; the one in asm/mmzone.h under DISCONTIGMEM is the discontigmem one. This is not in the least bit obvious, particularly the connection between the non-NUMA optimisations and the memory models. Two patches: flatmem-split-out-memory-model: simplifies the selection of pfn_to_nid() implementations. The selection is based primarily off the memory model selected. Optimisations for non-NUMA are applied where needed. sparse-provide-pfn_to_nid: implement pfn_to_nid() for SPARSEMEM This patch: pfn_to_nid is memory model specific The pfn_to_nid() call is memory model specific. It represents the locality identifier for the memory passed. Classically this would be a NUMA node, but not a chunk of memory under DISCONTIGMEM. The SPARSEMEM and FLATMEM memory model non-NUMA versions of pfn_to_nid() are folded together under NEED_MULTIPLE_NODES, while DISCONTIGMEM has its own optimisation. This is all very confusing. This patch splits out each implementation of pfn_to_nid() so that we can see them and the optimisations to each. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-06 15:10:53 +07:00
#else
#define pfn_to_nid(pfn) (0)
[PATCH] sparsemem memory model Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 14:07:54 +07:00
#endif
#define early_pfn_valid(pfn) pfn_valid(pfn)
void sparse_init(void);
#else
#define sparse_init() do {} while (0)
#define sparse_index_init(_sec, _nid) do {} while (0)
[PATCH] sparsemem memory model Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 14:07:54 +07:00
#endif /* CONFIG_SPARSEMEM */
#ifdef CONFIG_NODES_SPAN_OTHER_NODES
#define early_pfn_in_nid(pfn, nid) (early_pfn_to_nid(pfn) == (nid))
#else
#define early_pfn_in_nid(pfn, nid) (1)
#endif
[PATCH] sparsemem memory model Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 14:07:54 +07:00
#ifndef early_pfn_valid
#define early_pfn_valid(pfn) (1)
#endif
void memory_present(int nid, unsigned long start, unsigned long end);
unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
/*
* If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
* need to check pfn validility within that MAX_ORDER_NR_PAGES block.
* pfn_valid_within() should be used in this case; we optimise this away
* when we have no holes within a MAX_ORDER_NR_PAGES block.
*/
#ifdef CONFIG_HOLES_IN_ZONE
#define pfn_valid_within(pfn) pfn_valid(pfn)
#else
#define pfn_valid_within(pfn) (1)
#endif
#endif /* !__ASSEMBLY__ */
#endif /* __KERNEL__ */
#endif /* _LINUX_MMZONE_H */