2015-08-12 21:43:39 +07:00
|
|
|
/*
|
|
|
|
* Copyright © 2014 Intel Corporation
|
|
|
|
*
|
|
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
|
|
* to deal in the Software without restriction, including without limitation
|
|
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
|
|
*
|
|
|
|
* The above copyright notice and this permission notice (including the next
|
|
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
|
|
* Software.
|
|
|
|
*
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
|
|
* IN THE SOFTWARE.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
#include <linux/firmware.h>
|
|
|
|
#include <linux/circ_buf.h>
|
|
|
|
#include "i915_drv.h"
|
|
|
|
#include "intel_guc.h"
|
|
|
|
|
2015-08-12 21:43:41 +07:00
|
|
|
/**
|
2015-10-20 06:10:54 +07:00
|
|
|
* DOC: GuC-based command submission
|
2015-08-12 21:43:41 +07:00
|
|
|
*
|
|
|
|
* i915_guc_client:
|
|
|
|
* We use the term client to avoid confusion with contexts. A i915_guc_client is
|
|
|
|
* equivalent to GuC object guc_context_desc. This context descriptor is
|
|
|
|
* allocated from a pool of 1024 entries. Kernel driver will allocate doorbell
|
|
|
|
* and workqueue for it. Also the process descriptor (guc_process_desc), which
|
|
|
|
* is mapped to client space. So the client can write Work Item then ring the
|
|
|
|
* doorbell.
|
|
|
|
*
|
|
|
|
* To simplify the implementation, we allocate one gem object that contains all
|
|
|
|
* pages for doorbell, process descriptor and workqueue.
|
|
|
|
*
|
|
|
|
* The Scratch registers:
|
|
|
|
* There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
|
|
|
|
* a value to the action register (SOFT_SCRATCH_0) along with any data. It then
|
|
|
|
* triggers an interrupt on the GuC via another register write (0xC4C8).
|
|
|
|
* Firmware writes a success/fail code back to the action register after
|
|
|
|
* processes the request. The kernel driver polls waiting for this update and
|
|
|
|
* then proceeds.
|
|
|
|
* See host2guc_action()
|
|
|
|
*
|
|
|
|
* Doorbells:
|
|
|
|
* Doorbells are interrupts to uKernel. A doorbell is a single cache line (QW)
|
|
|
|
* mapped into process space.
|
|
|
|
*
|
|
|
|
* Work Items:
|
|
|
|
* There are several types of work items that the host may place into a
|
|
|
|
* workqueue, each with its own requirements and limitations. Currently only
|
|
|
|
* WQ_TYPE_INORDER is needed to support legacy submission via GuC, which
|
|
|
|
* represents in-order queue. The kernel driver packs ring tail pointer and an
|
|
|
|
* ELSP context descriptor dword into Work Item.
|
2016-09-13 03:19:37 +07:00
|
|
|
* See guc_wq_item_append()
|
2015-08-12 21:43:41 +07:00
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Read GuC command/status register (SOFT_SCRATCH_0)
|
|
|
|
* Return true if it contains a response rather than a command
|
|
|
|
*/
|
|
|
|
static inline bool host2guc_action_response(struct drm_i915_private *dev_priv,
|
|
|
|
u32 *status)
|
|
|
|
{
|
|
|
|
u32 val = I915_READ(SOFT_SCRATCH(0));
|
|
|
|
*status = val;
|
|
|
|
return GUC2HOST_IS_RESPONSE(val);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int host2guc_action(struct intel_guc *guc, u32 *data, u32 len)
|
|
|
|
{
|
|
|
|
struct drm_i915_private *dev_priv = guc_to_i915(guc);
|
|
|
|
u32 status;
|
|
|
|
int i;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
if (WARN_ON(len < 1 || len > 15))
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
|
|
|
|
|
|
|
|
dev_priv->guc.action_count += 1;
|
|
|
|
dev_priv->guc.action_cmd = data[0];
|
|
|
|
|
|
|
|
for (i = 0; i < len; i++)
|
|
|
|
I915_WRITE(SOFT_SCRATCH(i), data[i]);
|
|
|
|
|
|
|
|
POSTING_READ(SOFT_SCRATCH(i - 1));
|
|
|
|
|
|
|
|
I915_WRITE(HOST2GUC_INTERRUPT, HOST2GUC_TRIGGER);
|
|
|
|
|
2016-07-06 21:30:11 +07:00
|
|
|
/*
|
|
|
|
* Fast commands should complete in less than 10us, so sample quickly
|
|
|
|
* up to that length of time, then switch to a slower sleep-wait loop.
|
|
|
|
* No HOST2GUC command should ever take longer than 10ms.
|
|
|
|
*/
|
|
|
|
ret = wait_for_us(host2guc_action_response(dev_priv, &status), 10);
|
|
|
|
if (ret)
|
|
|
|
ret = wait_for(host2guc_action_response(dev_priv, &status), 10);
|
2015-08-12 21:43:41 +07:00
|
|
|
if (status != GUC2HOST_STATUS_SUCCESS) {
|
|
|
|
/*
|
|
|
|
* Either the GuC explicitly returned an error (which
|
|
|
|
* we convert to -EIO here) or no response at all was
|
|
|
|
* received within the timeout limit (-ETIMEDOUT)
|
|
|
|
*/
|
|
|
|
if (ret != -ETIMEDOUT)
|
|
|
|
ret = -EIO;
|
|
|
|
|
2016-08-19 00:17:23 +07:00
|
|
|
DRM_WARN("Action 0x%X failed; ret=%d status=0x%08X response=0x%08X\n",
|
|
|
|
data[0], ret, status, I915_READ(SOFT_SCRATCH(15)));
|
2015-08-12 21:43:41 +07:00
|
|
|
|
|
|
|
dev_priv->guc.action_fail += 1;
|
|
|
|
dev_priv->guc.action_err = ret;
|
|
|
|
}
|
|
|
|
dev_priv->guc.action_status = status;
|
|
|
|
|
|
|
|
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Tell the GuC to allocate or deallocate a specific doorbell
|
|
|
|
*/
|
|
|
|
|
|
|
|
static int host2guc_allocate_doorbell(struct intel_guc *guc,
|
|
|
|
struct i915_guc_client *client)
|
|
|
|
{
|
|
|
|
u32 data[2];
|
|
|
|
|
|
|
|
data[0] = HOST2GUC_ACTION_ALLOCATE_DOORBELL;
|
|
|
|
data[1] = client->ctx_index;
|
|
|
|
|
|
|
|
return host2guc_action(guc, data, 2);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int host2guc_release_doorbell(struct intel_guc *guc,
|
|
|
|
struct i915_guc_client *client)
|
|
|
|
{
|
|
|
|
u32 data[2];
|
|
|
|
|
|
|
|
data[0] = HOST2GUC_ACTION_DEALLOCATE_DOORBELL;
|
|
|
|
data[1] = client->ctx_index;
|
|
|
|
|
|
|
|
return host2guc_action(guc, data, 2);
|
|
|
|
}
|
|
|
|
|
2015-08-19 04:34:47 +07:00
|
|
|
static int host2guc_sample_forcewake(struct intel_guc *guc,
|
|
|
|
struct i915_guc_client *client)
|
|
|
|
{
|
|
|
|
struct drm_i915_private *dev_priv = guc_to_i915(guc);
|
|
|
|
u32 data[2];
|
|
|
|
|
|
|
|
data[0] = HOST2GUC_ACTION_SAMPLE_FORCEWAKE;
|
2015-09-26 01:46:56 +07:00
|
|
|
/* WaRsDisableCoarsePowerGating:skl,bxt */
|
2016-06-21 21:07:14 +07:00
|
|
|
if (!intel_enable_rc6() || NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
|
2015-09-26 01:46:56 +07:00
|
|
|
data[1] = 0;
|
|
|
|
else
|
|
|
|
/* bit 0 and 1 are for Render and Media domain separately */
|
|
|
|
data[1] = GUC_FORCEWAKE_RENDER | GUC_FORCEWAKE_MEDIA;
|
|
|
|
|
|
|
|
return host2guc_action(guc, data, ARRAY_SIZE(data));
|
2015-08-19 04:34:47 +07:00
|
|
|
}
|
|
|
|
|
2015-08-12 21:43:41 +07:00
|
|
|
/*
|
|
|
|
* Initialise, update, or clear doorbell data shared with the GuC
|
|
|
|
*
|
|
|
|
* These functions modify shared data and so need access to the mapped
|
|
|
|
* client object which contains the page being used for the doorbell
|
|
|
|
*/
|
|
|
|
|
2016-06-13 23:57:32 +07:00
|
|
|
static int guc_update_doorbell_id(struct intel_guc *guc,
|
|
|
|
struct i915_guc_client *client,
|
|
|
|
u16 new_id)
|
2015-08-12 21:43:41 +07:00
|
|
|
{
|
2016-08-15 16:48:51 +07:00
|
|
|
struct sg_table *sg = guc->ctx_pool_vma->pages;
|
2016-06-13 23:57:32 +07:00
|
|
|
void *doorbell_bitmap = guc->doorbell_bitmap;
|
2015-08-12 21:43:41 +07:00
|
|
|
struct guc_doorbell_info *doorbell;
|
2016-06-13 23:57:32 +07:00
|
|
|
struct guc_context_desc desc;
|
|
|
|
size_t len;
|
2015-08-12 21:43:41 +07:00
|
|
|
|
2016-04-19 22:08:34 +07:00
|
|
|
doorbell = client->client_base + client->doorbell_offset;
|
2015-08-12 21:43:41 +07:00
|
|
|
|
2016-06-13 23:57:32 +07:00
|
|
|
if (client->doorbell_id != GUC_INVALID_DOORBELL_ID &&
|
|
|
|
test_bit(client->doorbell_id, doorbell_bitmap)) {
|
|
|
|
/* Deactivate the old doorbell */
|
|
|
|
doorbell->db_status = GUC_DOORBELL_DISABLED;
|
|
|
|
(void)host2guc_release_doorbell(guc, client);
|
|
|
|
__clear_bit(client->doorbell_id, doorbell_bitmap);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Update the GuC's idea of the doorbell ID */
|
|
|
|
len = sg_pcopy_to_buffer(sg->sgl, sg->nents, &desc, sizeof(desc),
|
|
|
|
sizeof(desc) * client->ctx_index);
|
|
|
|
if (len != sizeof(desc))
|
|
|
|
return -EFAULT;
|
|
|
|
desc.db_id = new_id;
|
|
|
|
len = sg_pcopy_from_buffer(sg->sgl, sg->nents, &desc, sizeof(desc),
|
|
|
|
sizeof(desc) * client->ctx_index);
|
|
|
|
if (len != sizeof(desc))
|
|
|
|
return -EFAULT;
|
|
|
|
|
|
|
|
client->doorbell_id = new_id;
|
|
|
|
if (new_id == GUC_INVALID_DOORBELL_ID)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/* Activate the new doorbell */
|
|
|
|
__set_bit(new_id, doorbell_bitmap);
|
2015-08-12 21:43:41 +07:00
|
|
|
doorbell->cookie = 0;
|
2016-06-13 23:57:32 +07:00
|
|
|
doorbell->db_status = GUC_DOORBELL_ENABLED;
|
|
|
|
return host2guc_allocate_doorbell(guc, client);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int guc_init_doorbell(struct intel_guc *guc,
|
|
|
|
struct i915_guc_client *client,
|
|
|
|
uint16_t db_id)
|
|
|
|
{
|
|
|
|
return guc_update_doorbell_id(guc, client, db_id);
|
2015-08-12 21:43:41 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
static void guc_disable_doorbell(struct intel_guc *guc,
|
|
|
|
struct i915_guc_client *client)
|
|
|
|
{
|
2016-06-13 23:57:32 +07:00
|
|
|
(void)guc_update_doorbell_id(guc, client, GUC_INVALID_DOORBELL_ID);
|
2015-08-12 21:43:41 +07:00
|
|
|
|
|
|
|
/* XXX: wait for any interrupts */
|
|
|
|
/* XXX: wait for workqueue to drain */
|
|
|
|
}
|
|
|
|
|
2016-06-13 23:57:33 +07:00
|
|
|
static uint16_t
|
|
|
|
select_doorbell_register(struct intel_guc *guc, uint32_t priority)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* The bitmap tracks which doorbell registers are currently in use.
|
|
|
|
* It is split into two halves; the first half is used for normal
|
|
|
|
* priority contexts, the second half for high-priority ones.
|
|
|
|
* Note that logically higher priorities are numerically less than
|
|
|
|
* normal ones, so the test below means "is it high-priority?"
|
|
|
|
*/
|
|
|
|
const bool hi_pri = (priority <= GUC_CTX_PRIORITY_HIGH);
|
|
|
|
const uint16_t half = GUC_MAX_DOORBELLS / 2;
|
|
|
|
const uint16_t start = hi_pri ? half : 0;
|
|
|
|
const uint16_t end = start + half;
|
|
|
|
uint16_t id;
|
|
|
|
|
|
|
|
id = find_next_zero_bit(guc->doorbell_bitmap, end, start);
|
|
|
|
if (id == end)
|
|
|
|
id = GUC_INVALID_DOORBELL_ID;
|
|
|
|
|
|
|
|
DRM_DEBUG_DRIVER("assigned %s priority doorbell id 0x%x\n",
|
|
|
|
hi_pri ? "high" : "normal", id);
|
|
|
|
|
|
|
|
return id;
|
|
|
|
}
|
|
|
|
|
2015-08-12 21:43:41 +07:00
|
|
|
/*
|
|
|
|
* Select, assign and relase doorbell cachelines
|
|
|
|
*
|
|
|
|
* These functions track which doorbell cachelines are in use.
|
|
|
|
* The data they manipulate is protected by the host2guc lock.
|
|
|
|
*/
|
|
|
|
|
|
|
|
static uint32_t select_doorbell_cacheline(struct intel_guc *guc)
|
|
|
|
{
|
|
|
|
const uint32_t cacheline_size = cache_line_size();
|
|
|
|
uint32_t offset;
|
|
|
|
|
|
|
|
/* Doorbell uses a single cache line within a page */
|
|
|
|
offset = offset_in_page(guc->db_cacheline);
|
|
|
|
|
|
|
|
/* Moving to next cache line to reduce contention */
|
|
|
|
guc->db_cacheline += cacheline_size;
|
|
|
|
|
|
|
|
DRM_DEBUG_DRIVER("selected doorbell cacheline 0x%x, next 0x%x, linesize %u\n",
|
|
|
|
offset, guc->db_cacheline, cacheline_size);
|
|
|
|
|
|
|
|
return offset;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Initialise the process descriptor shared with the GuC firmware.
|
|
|
|
*/
|
2016-09-13 03:19:37 +07:00
|
|
|
static void guc_proc_desc_init(struct intel_guc *guc,
|
2015-08-12 21:43:41 +07:00
|
|
|
struct i915_guc_client *client)
|
|
|
|
{
|
|
|
|
struct guc_process_desc *desc;
|
|
|
|
|
2016-04-19 22:08:34 +07:00
|
|
|
desc = client->client_base + client->proc_desc_offset;
|
2015-08-12 21:43:41 +07:00
|
|
|
|
|
|
|
memset(desc, 0, sizeof(*desc));
|
|
|
|
|
|
|
|
/*
|
|
|
|
* XXX: pDoorbell and WQVBaseAddress are pointers in process address
|
|
|
|
* space for ring3 clients (set them as in mmap_ioctl) or kernel
|
|
|
|
* space for kernel clients (map on demand instead? May make debug
|
|
|
|
* easier to have it mapped).
|
|
|
|
*/
|
|
|
|
desc->wq_base_addr = 0;
|
|
|
|
desc->db_base_addr = 0;
|
|
|
|
|
|
|
|
desc->context_id = client->ctx_index;
|
|
|
|
desc->wq_size_bytes = client->wq_size;
|
|
|
|
desc->wq_status = WQ_STATUS_ACTIVE;
|
|
|
|
desc->priority = client->priority;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Initialise/clear the context descriptor shared with the GuC firmware.
|
|
|
|
*
|
|
|
|
* This descriptor tells the GuC where (in GGTT space) to find the important
|
|
|
|
* data structures relating to this client (doorbell, process descriptor,
|
|
|
|
* write queue, etc).
|
|
|
|
*/
|
|
|
|
|
2016-09-13 03:19:37 +07:00
|
|
|
static void guc_ctx_desc_init(struct intel_guc *guc,
|
2015-08-12 21:43:41 +07:00
|
|
|
struct i915_guc_client *client)
|
|
|
|
{
|
2016-01-24 02:58:14 +07:00
|
|
|
struct drm_i915_private *dev_priv = guc_to_i915(guc);
|
2016-03-16 18:00:36 +07:00
|
|
|
struct intel_engine_cs *engine;
|
2016-05-24 20:53:34 +07:00
|
|
|
struct i915_gem_context *ctx = client->owner;
|
2015-08-12 21:43:41 +07:00
|
|
|
struct guc_context_desc desc;
|
|
|
|
struct sg_table *sg;
|
2016-08-27 14:54:01 +07:00
|
|
|
unsigned int tmp;
|
2016-04-19 22:08:36 +07:00
|
|
|
u32 gfx_addr;
|
2015-08-12 21:43:41 +07:00
|
|
|
|
|
|
|
memset(&desc, 0, sizeof(desc));
|
|
|
|
|
|
|
|
desc.attribute = GUC_CTX_DESC_ATTR_ACTIVE | GUC_CTX_DESC_ATTR_KERNEL;
|
|
|
|
desc.context_id = client->ctx_index;
|
|
|
|
desc.priority = client->priority;
|
|
|
|
desc.db_id = client->doorbell_id;
|
|
|
|
|
2016-08-27 14:54:01 +07:00
|
|
|
for_each_engine_masked(engine, dev_priv, client->engines, tmp) {
|
2016-05-24 20:53:37 +07:00
|
|
|
struct intel_context *ce = &ctx->engine[engine->id];
|
2016-08-09 21:19:22 +07:00
|
|
|
uint32_t guc_engine_id = engine->guc_id;
|
|
|
|
struct guc_execlist_context *lrc = &desc.lrc[guc_engine_id];
|
drm/i915: Integrate GuC-based command submission
GuC-based submission is mostly the same as execlist mode, up to
intel_logical_ring_advance_and_submit(), where the context being
dispatched would be added to the execlist queue; at this point
we submit the context to the GuC backend instead.
There are, however, a few other changes also required, notably:
1. Contexts must be pinned at GGTT addresses accessible by the GuC
i.e. NOT in the range [0..WOPCM_SIZE), so we have to add the
PIN_OFFSET_BIAS flag to the relevant GGTT-pinning calls.
2. The GuC's TLB must be invalidated after a context is pinned at
a new GGTT address.
3. GuC firmware uses the one page before Ring Context as shared data.
Therefore, whenever driver wants to get base address of LRC, we
will offset one page for it. LRC_PPHWSP_PN is defined as the page
number of LRCA.
4. In the work queue used to pass requests to the GuC, the GuC
firmware requires the ring-tail-offset to be represented as an
11-bit value, expressed in QWords. Therefore, the ringbuffer
size must be reduced to the representable range (4 pages).
v2:
Defer adding #defines until needed [Chris Wilson]
Rationalise type declarations [Chris Wilson]
v4:
Squashed kerneldoc patch into here [Daniel Vetter]
v5:
Update request->tail in code common to both GuC and execlist modes.
Add a private version of lr_context_update(), as sharing the
execlist version leads to race conditions when the CPU and
the GuC both update TAIL in the context image.
Conversion of error-captured HWS page to string must account
for offset from start of object to actual HWS (LRC_PPHWSP_PN).
Issue: VIZ-4884
Signed-off-by: Alex Dai <yu.dai@intel.com>
Signed-off-by: Dave Gordon <david.s.gordon@intel.com>
Reviewed-by: Tom O'Rourke <Tom.O'Rourke@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-08-12 21:43:43 +07:00
|
|
|
|
|
|
|
/* TODO: We have a design issue to be solved here. Only when we
|
|
|
|
* receive the first batch, we know which engine is used by the
|
|
|
|
* user. But here GuC expects the lrc and ring to be pinned. It
|
|
|
|
* is not an issue for default context, which is the only one
|
|
|
|
* for now who owns a GuC client. But for future owner of GuC
|
|
|
|
* client, need to make sure lrc is pinned prior to enter here.
|
|
|
|
*/
|
2016-05-24 20:53:37 +07:00
|
|
|
if (!ce->state)
|
drm/i915: Integrate GuC-based command submission
GuC-based submission is mostly the same as execlist mode, up to
intel_logical_ring_advance_and_submit(), where the context being
dispatched would be added to the execlist queue; at this point
we submit the context to the GuC backend instead.
There are, however, a few other changes also required, notably:
1. Contexts must be pinned at GGTT addresses accessible by the GuC
i.e. NOT in the range [0..WOPCM_SIZE), so we have to add the
PIN_OFFSET_BIAS flag to the relevant GGTT-pinning calls.
2. The GuC's TLB must be invalidated after a context is pinned at
a new GGTT address.
3. GuC firmware uses the one page before Ring Context as shared data.
Therefore, whenever driver wants to get base address of LRC, we
will offset one page for it. LRC_PPHWSP_PN is defined as the page
number of LRCA.
4. In the work queue used to pass requests to the GuC, the GuC
firmware requires the ring-tail-offset to be represented as an
11-bit value, expressed in QWords. Therefore, the ringbuffer
size must be reduced to the representable range (4 pages).
v2:
Defer adding #defines until needed [Chris Wilson]
Rationalise type declarations [Chris Wilson]
v4:
Squashed kerneldoc patch into here [Daniel Vetter]
v5:
Update request->tail in code common to both GuC and execlist modes.
Add a private version of lr_context_update(), as sharing the
execlist version leads to race conditions when the CPU and
the GuC both update TAIL in the context image.
Conversion of error-captured HWS page to string must account
for offset from start of object to actual HWS (LRC_PPHWSP_PN).
Issue: VIZ-4884
Signed-off-by: Alex Dai <yu.dai@intel.com>
Signed-off-by: Dave Gordon <david.s.gordon@intel.com>
Reviewed-by: Tom O'Rourke <Tom.O'Rourke@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-08-12 21:43:43 +07:00
|
|
|
break; /* XXX: continue? */
|
|
|
|
|
2016-05-24 20:53:37 +07:00
|
|
|
lrc->context_desc = lower_32_bits(ce->lrc_desc);
|
drm/i915: Integrate GuC-based command submission
GuC-based submission is mostly the same as execlist mode, up to
intel_logical_ring_advance_and_submit(), where the context being
dispatched would be added to the execlist queue; at this point
we submit the context to the GuC backend instead.
There are, however, a few other changes also required, notably:
1. Contexts must be pinned at GGTT addresses accessible by the GuC
i.e. NOT in the range [0..WOPCM_SIZE), so we have to add the
PIN_OFFSET_BIAS flag to the relevant GGTT-pinning calls.
2. The GuC's TLB must be invalidated after a context is pinned at
a new GGTT address.
3. GuC firmware uses the one page before Ring Context as shared data.
Therefore, whenever driver wants to get base address of LRC, we
will offset one page for it. LRC_PPHWSP_PN is defined as the page
number of LRCA.
4. In the work queue used to pass requests to the GuC, the GuC
firmware requires the ring-tail-offset to be represented as an
11-bit value, expressed in QWords. Therefore, the ringbuffer
size must be reduced to the representable range (4 pages).
v2:
Defer adding #defines until needed [Chris Wilson]
Rationalise type declarations [Chris Wilson]
v4:
Squashed kerneldoc patch into here [Daniel Vetter]
v5:
Update request->tail in code common to both GuC and execlist modes.
Add a private version of lr_context_update(), as sharing the
execlist version leads to race conditions when the CPU and
the GuC both update TAIL in the context image.
Conversion of error-captured HWS page to string must account
for offset from start of object to actual HWS (LRC_PPHWSP_PN).
Issue: VIZ-4884
Signed-off-by: Alex Dai <yu.dai@intel.com>
Signed-off-by: Dave Gordon <david.s.gordon@intel.com>
Reviewed-by: Tom O'Rourke <Tom.O'Rourke@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-08-12 21:43:43 +07:00
|
|
|
|
|
|
|
/* The state page is after PPHWSP */
|
2016-08-15 16:48:57 +07:00
|
|
|
lrc->ring_lcra =
|
2016-08-15 16:49:07 +07:00
|
|
|
i915_ggtt_offset(ce->state) + LRC_STATE_PN * PAGE_SIZE;
|
drm/i915: Integrate GuC-based command submission
GuC-based submission is mostly the same as execlist mode, up to
intel_logical_ring_advance_and_submit(), where the context being
dispatched would be added to the execlist queue; at this point
we submit the context to the GuC backend instead.
There are, however, a few other changes also required, notably:
1. Contexts must be pinned at GGTT addresses accessible by the GuC
i.e. NOT in the range [0..WOPCM_SIZE), so we have to add the
PIN_OFFSET_BIAS flag to the relevant GGTT-pinning calls.
2. The GuC's TLB must be invalidated after a context is pinned at
a new GGTT address.
3. GuC firmware uses the one page before Ring Context as shared data.
Therefore, whenever driver wants to get base address of LRC, we
will offset one page for it. LRC_PPHWSP_PN is defined as the page
number of LRCA.
4. In the work queue used to pass requests to the GuC, the GuC
firmware requires the ring-tail-offset to be represented as an
11-bit value, expressed in QWords. Therefore, the ringbuffer
size must be reduced to the representable range (4 pages).
v2:
Defer adding #defines until needed [Chris Wilson]
Rationalise type declarations [Chris Wilson]
v4:
Squashed kerneldoc patch into here [Daniel Vetter]
v5:
Update request->tail in code common to both GuC and execlist modes.
Add a private version of lr_context_update(), as sharing the
execlist version leads to race conditions when the CPU and
the GuC both update TAIL in the context image.
Conversion of error-captured HWS page to string must account
for offset from start of object to actual HWS (LRC_PPHWSP_PN).
Issue: VIZ-4884
Signed-off-by: Alex Dai <yu.dai@intel.com>
Signed-off-by: Dave Gordon <david.s.gordon@intel.com>
Reviewed-by: Tom O'Rourke <Tom.O'Rourke@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-08-12 21:43:43 +07:00
|
|
|
lrc->context_id = (client->ctx_index << GUC_ELC_CTXID_OFFSET) |
|
2016-08-09 21:19:22 +07:00
|
|
|
(guc_engine_id << GUC_ELC_ENGINE_OFFSET);
|
drm/i915: Integrate GuC-based command submission
GuC-based submission is mostly the same as execlist mode, up to
intel_logical_ring_advance_and_submit(), where the context being
dispatched would be added to the execlist queue; at this point
we submit the context to the GuC backend instead.
There are, however, a few other changes also required, notably:
1. Contexts must be pinned at GGTT addresses accessible by the GuC
i.e. NOT in the range [0..WOPCM_SIZE), so we have to add the
PIN_OFFSET_BIAS flag to the relevant GGTT-pinning calls.
2. The GuC's TLB must be invalidated after a context is pinned at
a new GGTT address.
3. GuC firmware uses the one page before Ring Context as shared data.
Therefore, whenever driver wants to get base address of LRC, we
will offset one page for it. LRC_PPHWSP_PN is defined as the page
number of LRCA.
4. In the work queue used to pass requests to the GuC, the GuC
firmware requires the ring-tail-offset to be represented as an
11-bit value, expressed in QWords. Therefore, the ringbuffer
size must be reduced to the representable range (4 pages).
v2:
Defer adding #defines until needed [Chris Wilson]
Rationalise type declarations [Chris Wilson]
v4:
Squashed kerneldoc patch into here [Daniel Vetter]
v5:
Update request->tail in code common to both GuC and execlist modes.
Add a private version of lr_context_update(), as sharing the
execlist version leads to race conditions when the CPU and
the GuC both update TAIL in the context image.
Conversion of error-captured HWS page to string must account
for offset from start of object to actual HWS (LRC_PPHWSP_PN).
Issue: VIZ-4884
Signed-off-by: Alex Dai <yu.dai@intel.com>
Signed-off-by: Dave Gordon <david.s.gordon@intel.com>
Reviewed-by: Tom O'Rourke <Tom.O'Rourke@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-08-12 21:43:43 +07:00
|
|
|
|
2016-08-15 16:49:07 +07:00
|
|
|
lrc->ring_begin = i915_ggtt_offset(ce->ring->vma);
|
2016-08-15 16:48:57 +07:00
|
|
|
lrc->ring_end = lrc->ring_begin + ce->ring->size - 1;
|
|
|
|
lrc->ring_next_free_location = lrc->ring_begin;
|
drm/i915: Integrate GuC-based command submission
GuC-based submission is mostly the same as execlist mode, up to
intel_logical_ring_advance_and_submit(), where the context being
dispatched would be added to the execlist queue; at this point
we submit the context to the GuC backend instead.
There are, however, a few other changes also required, notably:
1. Contexts must be pinned at GGTT addresses accessible by the GuC
i.e. NOT in the range [0..WOPCM_SIZE), so we have to add the
PIN_OFFSET_BIAS flag to the relevant GGTT-pinning calls.
2. The GuC's TLB must be invalidated after a context is pinned at
a new GGTT address.
3. GuC firmware uses the one page before Ring Context as shared data.
Therefore, whenever driver wants to get base address of LRC, we
will offset one page for it. LRC_PPHWSP_PN is defined as the page
number of LRCA.
4. In the work queue used to pass requests to the GuC, the GuC
firmware requires the ring-tail-offset to be represented as an
11-bit value, expressed in QWords. Therefore, the ringbuffer
size must be reduced to the representable range (4 pages).
v2:
Defer adding #defines until needed [Chris Wilson]
Rationalise type declarations [Chris Wilson]
v4:
Squashed kerneldoc patch into here [Daniel Vetter]
v5:
Update request->tail in code common to both GuC and execlist modes.
Add a private version of lr_context_update(), as sharing the
execlist version leads to race conditions when the CPU and
the GuC both update TAIL in the context image.
Conversion of error-captured HWS page to string must account
for offset from start of object to actual HWS (LRC_PPHWSP_PN).
Issue: VIZ-4884
Signed-off-by: Alex Dai <yu.dai@intel.com>
Signed-off-by: Dave Gordon <david.s.gordon@intel.com>
Reviewed-by: Tom O'Rourke <Tom.O'Rourke@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-08-12 21:43:43 +07:00
|
|
|
lrc->ring_current_tail_pointer_value = 0;
|
|
|
|
|
2016-08-09 21:19:22 +07:00
|
|
|
desc.engines_used |= (1 << guc_engine_id);
|
drm/i915: Integrate GuC-based command submission
GuC-based submission is mostly the same as execlist mode, up to
intel_logical_ring_advance_and_submit(), where the context being
dispatched would be added to the execlist queue; at this point
we submit the context to the GuC backend instead.
There are, however, a few other changes also required, notably:
1. Contexts must be pinned at GGTT addresses accessible by the GuC
i.e. NOT in the range [0..WOPCM_SIZE), so we have to add the
PIN_OFFSET_BIAS flag to the relevant GGTT-pinning calls.
2. The GuC's TLB must be invalidated after a context is pinned at
a new GGTT address.
3. GuC firmware uses the one page before Ring Context as shared data.
Therefore, whenever driver wants to get base address of LRC, we
will offset one page for it. LRC_PPHWSP_PN is defined as the page
number of LRCA.
4. In the work queue used to pass requests to the GuC, the GuC
firmware requires the ring-tail-offset to be represented as an
11-bit value, expressed in QWords. Therefore, the ringbuffer
size must be reduced to the representable range (4 pages).
v2:
Defer adding #defines until needed [Chris Wilson]
Rationalise type declarations [Chris Wilson]
v4:
Squashed kerneldoc patch into here [Daniel Vetter]
v5:
Update request->tail in code common to both GuC and execlist modes.
Add a private version of lr_context_update(), as sharing the
execlist version leads to race conditions when the CPU and
the GuC both update TAIL in the context image.
Conversion of error-captured HWS page to string must account
for offset from start of object to actual HWS (LRC_PPHWSP_PN).
Issue: VIZ-4884
Signed-off-by: Alex Dai <yu.dai@intel.com>
Signed-off-by: Dave Gordon <david.s.gordon@intel.com>
Reviewed-by: Tom O'Rourke <Tom.O'Rourke@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-08-12 21:43:43 +07:00
|
|
|
}
|
|
|
|
|
2016-08-09 21:19:21 +07:00
|
|
|
DRM_DEBUG_DRIVER("Host engines 0x%x => GuC engines used 0x%x\n",
|
|
|
|
client->engines, desc.engines_used);
|
drm/i915: Integrate GuC-based command submission
GuC-based submission is mostly the same as execlist mode, up to
intel_logical_ring_advance_and_submit(), where the context being
dispatched would be added to the execlist queue; at this point
we submit the context to the GuC backend instead.
There are, however, a few other changes also required, notably:
1. Contexts must be pinned at GGTT addresses accessible by the GuC
i.e. NOT in the range [0..WOPCM_SIZE), so we have to add the
PIN_OFFSET_BIAS flag to the relevant GGTT-pinning calls.
2. The GuC's TLB must be invalidated after a context is pinned at
a new GGTT address.
3. GuC firmware uses the one page before Ring Context as shared data.
Therefore, whenever driver wants to get base address of LRC, we
will offset one page for it. LRC_PPHWSP_PN is defined as the page
number of LRCA.
4. In the work queue used to pass requests to the GuC, the GuC
firmware requires the ring-tail-offset to be represented as an
11-bit value, expressed in QWords. Therefore, the ringbuffer
size must be reduced to the representable range (4 pages).
v2:
Defer adding #defines until needed [Chris Wilson]
Rationalise type declarations [Chris Wilson]
v4:
Squashed kerneldoc patch into here [Daniel Vetter]
v5:
Update request->tail in code common to both GuC and execlist modes.
Add a private version of lr_context_update(), as sharing the
execlist version leads to race conditions when the CPU and
the GuC both update TAIL in the context image.
Conversion of error-captured HWS page to string must account
for offset from start of object to actual HWS (LRC_PPHWSP_PN).
Issue: VIZ-4884
Signed-off-by: Alex Dai <yu.dai@intel.com>
Signed-off-by: Dave Gordon <david.s.gordon@intel.com>
Reviewed-by: Tom O'Rourke <Tom.O'Rourke@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-08-12 21:43:43 +07:00
|
|
|
WARN_ON(desc.engines_used == 0);
|
|
|
|
|
2015-08-12 21:43:41 +07:00
|
|
|
/*
|
2016-04-19 22:08:36 +07:00
|
|
|
* The doorbell, process descriptor, and workqueue are all parts
|
|
|
|
* of the client object, which the GuC will reference via the GGTT
|
2015-08-12 21:43:41 +07:00
|
|
|
*/
|
2016-08-15 16:49:07 +07:00
|
|
|
gfx_addr = i915_ggtt_offset(client->vma);
|
2016-08-15 16:48:51 +07:00
|
|
|
desc.db_trigger_phy = sg_dma_address(client->vma->pages->sgl) +
|
2016-04-19 22:08:36 +07:00
|
|
|
client->doorbell_offset;
|
|
|
|
desc.db_trigger_cpu = (uintptr_t)client->client_base +
|
|
|
|
client->doorbell_offset;
|
|
|
|
desc.db_trigger_uk = gfx_addr + client->doorbell_offset;
|
|
|
|
desc.process_desc = gfx_addr + client->proc_desc_offset;
|
|
|
|
desc.wq_addr = gfx_addr + client->wq_offset;
|
2015-08-12 21:43:41 +07:00
|
|
|
desc.wq_size = client->wq_size;
|
|
|
|
|
|
|
|
/*
|
2016-05-24 20:53:34 +07:00
|
|
|
* XXX: Take LRCs from an existing context if this is not an
|
2015-08-12 21:43:41 +07:00
|
|
|
* IsKMDCreatedContext client
|
|
|
|
*/
|
|
|
|
desc.desc_private = (uintptr_t)client;
|
|
|
|
|
|
|
|
/* Pool context is pinned already */
|
2016-08-15 16:48:51 +07:00
|
|
|
sg = guc->ctx_pool_vma->pages;
|
2015-08-12 21:43:41 +07:00
|
|
|
sg_pcopy_from_buffer(sg->sgl, sg->nents, &desc, sizeof(desc),
|
|
|
|
sizeof(desc) * client->ctx_index);
|
|
|
|
}
|
|
|
|
|
2016-09-13 03:19:37 +07:00
|
|
|
static void guc_ctx_desc_fini(struct intel_guc *guc,
|
2015-08-12 21:43:41 +07:00
|
|
|
struct i915_guc_client *client)
|
|
|
|
{
|
|
|
|
struct guc_context_desc desc;
|
|
|
|
struct sg_table *sg;
|
|
|
|
|
|
|
|
memset(&desc, 0, sizeof(desc));
|
|
|
|
|
2016-08-15 16:48:51 +07:00
|
|
|
sg = guc->ctx_pool_vma->pages;
|
2015-08-12 21:43:41 +07:00
|
|
|
sg_pcopy_from_buffer(sg->sgl, sg->nents, &desc, sizeof(desc),
|
|
|
|
sizeof(desc) * client->ctx_index);
|
|
|
|
}
|
|
|
|
|
2016-05-13 21:36:32 +07:00
|
|
|
/**
|
2016-09-13 03:19:37 +07:00
|
|
|
* i915_guc_wq_reserve() - reserve space in the GuC's workqueue
|
2016-05-13 21:36:32 +07:00
|
|
|
* @request: request associated with the commands
|
|
|
|
*
|
|
|
|
* Return: 0 if space is available
|
|
|
|
* -EAGAIN if space is not currently available
|
|
|
|
*
|
|
|
|
* This function must be called (and must return 0) before a request
|
|
|
|
* is submitted to the GuC via i915_guc_submit() below. Once a result
|
2016-09-13 03:19:37 +07:00
|
|
|
* of 0 has been returned, it must be balanced by a corresponding
|
|
|
|
* call to submit().
|
2016-05-13 21:36:32 +07:00
|
|
|
*
|
2016-09-13 03:19:37 +07:00
|
|
|
* Reservation allows the caller to determine in advance that space
|
2016-05-13 21:36:32 +07:00
|
|
|
* will be available for the next submission before committing resources
|
|
|
|
* to it, and helps avoid late failures with complicated recovery paths.
|
|
|
|
*/
|
2016-09-13 03:19:37 +07:00
|
|
|
int i915_guc_wq_reserve(struct drm_i915_gem_request *request)
|
2015-08-12 21:43:41 +07:00
|
|
|
{
|
2016-05-13 21:36:33 +07:00
|
|
|
const size_t wqi_size = sizeof(struct guc_wq_item);
|
2016-05-13 21:36:32 +07:00
|
|
|
struct i915_guc_client *gc = request->i915->guc.execbuf_client;
|
2016-09-09 20:11:57 +07:00
|
|
|
struct guc_process_desc *desc = gc->client_base + gc->proc_desc_offset;
|
2016-05-13 21:36:33 +07:00
|
|
|
u32 freespace;
|
2016-09-09 20:11:57 +07:00
|
|
|
int ret;
|
2015-08-12 21:43:41 +07:00
|
|
|
|
2016-09-09 20:11:57 +07:00
|
|
|
spin_lock(&gc->wq_lock);
|
2016-05-13 21:36:33 +07:00
|
|
|
freespace = CIRC_SPACE(gc->wq_tail, desc->head, gc->wq_size);
|
2016-09-09 20:11:57 +07:00
|
|
|
freespace -= gc->wq_rsvd;
|
|
|
|
if (likely(freespace >= wqi_size)) {
|
|
|
|
gc->wq_rsvd += wqi_size;
|
|
|
|
ret = 0;
|
|
|
|
} else {
|
|
|
|
gc->no_wq_space++;
|
|
|
|
ret = -EAGAIN;
|
|
|
|
}
|
|
|
|
spin_unlock(&gc->wq_lock);
|
2015-08-12 21:43:41 +07:00
|
|
|
|
2016-09-09 20:11:57 +07:00
|
|
|
return ret;
|
2015-08-12 21:43:41 +07:00
|
|
|
}
|
|
|
|
|
2016-10-07 13:53:27 +07:00
|
|
|
void i915_guc_wq_unreserve(struct drm_i915_gem_request *request)
|
|
|
|
{
|
|
|
|
const size_t wqi_size = sizeof(struct guc_wq_item);
|
|
|
|
struct i915_guc_client *gc = request->i915->guc.execbuf_client;
|
|
|
|
|
|
|
|
GEM_BUG_ON(READ_ONCE(gc->wq_rsvd) < wqi_size);
|
|
|
|
|
|
|
|
spin_lock(&gc->wq_lock);
|
|
|
|
gc->wq_rsvd -= wqi_size;
|
|
|
|
spin_unlock(&gc->wq_lock);
|
|
|
|
}
|
|
|
|
|
2016-09-13 03:19:37 +07:00
|
|
|
/* Construct a Work Item and append it to the GuC's Work Queue */
|
|
|
|
static void guc_wq_item_append(struct i915_guc_client *gc,
|
|
|
|
struct drm_i915_gem_request *rq)
|
2015-08-12 21:43:41 +07:00
|
|
|
{
|
2016-05-13 21:36:34 +07:00
|
|
|
/* wqi_len is in DWords, and does not include the one-word header */
|
|
|
|
const size_t wqi_size = sizeof(struct guc_wq_item);
|
|
|
|
const u32 wqi_len = wqi_size/sizeof(u32) - 1;
|
2016-08-09 21:19:22 +07:00
|
|
|
struct intel_engine_cs *engine = rq->engine;
|
2016-04-19 22:08:35 +07:00
|
|
|
struct guc_process_desc *desc;
|
2015-08-12 21:43:41 +07:00
|
|
|
struct guc_wq_item *wqi;
|
|
|
|
void *base;
|
2016-05-13 21:36:34 +07:00
|
|
|
u32 freespace, tail, wq_off, wq_page;
|
2015-12-17 02:45:55 +07:00
|
|
|
|
2016-04-19 22:08:35 +07:00
|
|
|
desc = gc->client_base + gc->proc_desc_offset;
|
2015-08-12 21:43:41 +07:00
|
|
|
|
2016-09-13 03:19:37 +07:00
|
|
|
/* Free space is guaranteed, see i915_guc_wq_reserve() above */
|
2016-05-13 21:36:34 +07:00
|
|
|
freespace = CIRC_SPACE(gc->wq_tail, desc->head, gc->wq_size);
|
|
|
|
GEM_BUG_ON(freespace < wqi_size);
|
|
|
|
|
|
|
|
/* The GuC firmware wants the tail index in QWords, not bytes */
|
|
|
|
tail = rq->tail;
|
|
|
|
GEM_BUG_ON(tail & 7);
|
|
|
|
tail >>= 3;
|
|
|
|
GEM_BUG_ON(tail > WQ_RING_TAIL_MAX);
|
2015-08-12 21:43:41 +07:00
|
|
|
|
|
|
|
/* For now workqueue item is 4 DWs; workqueue buffer is 2 pages. So we
|
|
|
|
* should not have the case where structure wqi is across page, neither
|
|
|
|
* wrapped to the beginning. This simplifies the implementation below.
|
|
|
|
*
|
|
|
|
* XXX: if not the case, we need save data to a temp wqi and copy it to
|
|
|
|
* workqueue buffer dw by dw.
|
|
|
|
*/
|
2016-05-13 21:36:34 +07:00
|
|
|
BUILD_BUG_ON(wqi_size != 16);
|
2016-09-09 20:11:57 +07:00
|
|
|
GEM_BUG_ON(gc->wq_rsvd < wqi_size);
|
2015-08-12 21:43:41 +07:00
|
|
|
|
2016-05-13 21:36:34 +07:00
|
|
|
/* postincrement WQ tail for next time */
|
|
|
|
wq_off = gc->wq_tail;
|
2016-09-09 20:11:57 +07:00
|
|
|
GEM_BUG_ON(wq_off & (wqi_size - 1));
|
2016-05-13 21:36:34 +07:00
|
|
|
gc->wq_tail += wqi_size;
|
|
|
|
gc->wq_tail &= gc->wq_size - 1;
|
2016-09-09 20:11:57 +07:00
|
|
|
gc->wq_rsvd -= wqi_size;
|
2016-05-13 21:36:34 +07:00
|
|
|
|
|
|
|
/* WQ starts from the page after doorbell / process_desc */
|
|
|
|
wq_page = (wq_off + GUC_DB_SIZE) >> PAGE_SHIFT;
|
2015-08-12 21:43:41 +07:00
|
|
|
wq_off &= PAGE_SIZE - 1;
|
2016-08-15 16:48:51 +07:00
|
|
|
base = kmap_atomic(i915_gem_object_get_page(gc->vma->obj, wq_page));
|
2015-08-12 21:43:41 +07:00
|
|
|
wqi = (struct guc_wq_item *)((char *)base + wq_off);
|
|
|
|
|
2016-05-13 21:36:34 +07:00
|
|
|
/* Now fill in the 4-word work queue item */
|
2015-08-12 21:43:41 +07:00
|
|
|
wqi->header = WQ_TYPE_INORDER |
|
2016-05-13 21:36:34 +07:00
|
|
|
(wqi_len << WQ_LEN_SHIFT) |
|
2016-08-09 21:19:22 +07:00
|
|
|
(engine->guc_id << WQ_TARGET_SHIFT) |
|
2015-08-12 21:43:41 +07:00
|
|
|
WQ_NO_WCFLUSH_WAIT;
|
|
|
|
|
|
|
|
/* The GuC wants only the low-order word of the context descriptor */
|
2016-08-09 21:19:22 +07:00
|
|
|
wqi->context_desc = (u32)intel_lr_context_descriptor(rq->ctx, engine);
|
2015-08-12 21:43:41 +07:00
|
|
|
|
|
|
|
wqi->ring_tail = tail << WQ_RING_TAIL_SHIFT;
|
2016-07-20 15:21:11 +07:00
|
|
|
wqi->fence_id = rq->fence.seqno;
|
2015-08-12 21:43:41 +07:00
|
|
|
|
|
|
|
kunmap_atomic(base);
|
|
|
|
}
|
|
|
|
|
2016-06-13 23:57:31 +07:00
|
|
|
static int guc_ring_doorbell(struct i915_guc_client *gc)
|
|
|
|
{
|
|
|
|
struct guc_process_desc *desc;
|
|
|
|
union guc_doorbell_qw db_cmp, db_exc, db_ret;
|
|
|
|
union guc_doorbell_qw *db;
|
|
|
|
int attempt = 2, ret = -EAGAIN;
|
|
|
|
|
|
|
|
desc = gc->client_base + gc->proc_desc_offset;
|
|
|
|
|
|
|
|
/* Update the tail so it is visible to GuC */
|
|
|
|
desc->tail = gc->wq_tail;
|
|
|
|
|
|
|
|
/* current cookie */
|
|
|
|
db_cmp.db_status = GUC_DOORBELL_ENABLED;
|
|
|
|
db_cmp.cookie = gc->cookie;
|
|
|
|
|
|
|
|
/* cookie to be updated */
|
|
|
|
db_exc.db_status = GUC_DOORBELL_ENABLED;
|
|
|
|
db_exc.cookie = gc->cookie + 1;
|
|
|
|
if (db_exc.cookie == 0)
|
|
|
|
db_exc.cookie = 1;
|
|
|
|
|
|
|
|
/* pointer of current doorbell cacheline */
|
|
|
|
db = gc->client_base + gc->doorbell_offset;
|
|
|
|
|
|
|
|
while (attempt--) {
|
|
|
|
/* lets ring the doorbell */
|
|
|
|
db_ret.value_qw = atomic64_cmpxchg((atomic64_t *)db,
|
|
|
|
db_cmp.value_qw, db_exc.value_qw);
|
|
|
|
|
|
|
|
/* if the exchange was successfully executed */
|
|
|
|
if (db_ret.value_qw == db_cmp.value_qw) {
|
|
|
|
/* db was successfully rung */
|
|
|
|
gc->cookie = db_exc.cookie;
|
|
|
|
ret = 0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* XXX: doorbell was lost and need to acquire it again */
|
|
|
|
if (db_ret.db_status == GUC_DOORBELL_DISABLED)
|
|
|
|
break;
|
|
|
|
|
2016-08-19 00:17:23 +07:00
|
|
|
DRM_WARN("Cookie mismatch. Expected %d, found %d\n",
|
|
|
|
db_cmp.cookie, db_ret.cookie);
|
2016-06-13 23:57:31 +07:00
|
|
|
|
|
|
|
/* update the cookie to newly read cookie from GuC */
|
|
|
|
db_cmp.cookie = db_ret.cookie;
|
|
|
|
db_exc.cookie = db_ret.cookie + 1;
|
|
|
|
if (db_exc.cookie == 0)
|
|
|
|
db_exc.cookie = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2015-08-12 21:43:41 +07:00
|
|
|
/**
|
|
|
|
* i915_guc_submit() - Submit commands through GuC
|
2015-10-20 06:10:54 +07:00
|
|
|
* @rq: request associated with the commands
|
2015-08-12 21:43:41 +07:00
|
|
|
*
|
2016-05-13 21:36:32 +07:00
|
|
|
* Return: 0 on success, otherwise an errno.
|
|
|
|
* (Note: nonzero really shouldn't happen!)
|
|
|
|
*
|
2016-09-13 03:19:37 +07:00
|
|
|
* The caller must have already called i915_guc_wq_reserve() above with
|
|
|
|
* a result of 0 (success), guaranteeing that there is space in the work
|
|
|
|
* queue for the new request, so enqueuing the item cannot fail.
|
2016-05-13 21:36:32 +07:00
|
|
|
*
|
|
|
|
* Bad Things Will Happen if the caller violates this protocol e.g. calls
|
2016-09-13 03:19:37 +07:00
|
|
|
* submit() when _reserve() says there's no space, or calls _submit()
|
|
|
|
* a different number of times from (successful) calls to _reserve().
|
2016-05-13 21:36:32 +07:00
|
|
|
*
|
|
|
|
* The only error here arises if the doorbell hardware isn't functioning
|
|
|
|
* as expected, which really shouln't happen.
|
2015-08-12 21:43:41 +07:00
|
|
|
*/
|
2016-08-03 04:50:31 +07:00
|
|
|
static void i915_guc_submit(struct drm_i915_gem_request *rq)
|
2015-08-12 21:43:41 +07:00
|
|
|
{
|
2016-06-20 21:18:07 +07:00
|
|
|
unsigned int engine_id = rq->engine->id;
|
2016-05-13 21:36:32 +07:00
|
|
|
struct intel_guc *guc = &rq->i915->guc;
|
|
|
|
struct i915_guc_client *client = guc->execbuf_client;
|
2016-05-13 21:36:34 +07:00
|
|
|
int b_ret;
|
2015-08-12 21:43:41 +07:00
|
|
|
|
2016-09-09 20:11:57 +07:00
|
|
|
spin_lock(&client->wq_lock);
|
2016-09-13 03:19:37 +07:00
|
|
|
guc_wq_item_append(client, rq);
|
2016-05-13 21:36:34 +07:00
|
|
|
b_ret = guc_ring_doorbell(client);
|
2015-08-12 21:43:41 +07:00
|
|
|
|
2016-01-24 02:58:14 +07:00
|
|
|
client->submissions[engine_id] += 1;
|
2016-05-13 21:36:34 +07:00
|
|
|
client->retcode = b_ret;
|
|
|
|
if (b_ret)
|
2015-08-12 21:43:41 +07:00
|
|
|
client->b_fail += 1;
|
2016-05-13 21:36:34 +07:00
|
|
|
|
2016-01-24 02:58:14 +07:00
|
|
|
guc->submissions[engine_id] += 1;
|
2016-07-20 15:21:11 +07:00
|
|
|
guc->last_seqno[engine_id] = rq->fence.seqno;
|
2016-09-09 20:11:57 +07:00
|
|
|
spin_unlock(&client->wq_lock);
|
2015-08-12 21:43:41 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Everything below here is concerned with setup & teardown, and is
|
|
|
|
* therefore not part of the somewhat time-critical batch-submission
|
|
|
|
* path of i915_guc_submit() above.
|
|
|
|
*/
|
|
|
|
|
2015-08-12 21:43:39 +07:00
|
|
|
/**
|
2016-08-15 16:48:51 +07:00
|
|
|
* guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
|
|
|
|
* @guc: the guc
|
|
|
|
* @size: size of area to allocate (both virtual space and memory)
|
2015-08-12 21:43:39 +07:00
|
|
|
*
|
2016-08-15 16:48:51 +07:00
|
|
|
* This is a wrapper to create an object for use with the GuC. In order to
|
|
|
|
* use it inside the GuC, an object needs to be pinned lifetime, so we allocate
|
|
|
|
* both some backing storage and a range inside the Global GTT. We must pin
|
|
|
|
* it in the GGTT somewhere other than than [0, GUC_WOPCM_TOP) because that
|
|
|
|
* range is reserved inside GuC.
|
2015-08-12 21:43:39 +07:00
|
|
|
*
|
2016-08-15 16:48:51 +07:00
|
|
|
* Return: A i915_vma if successful, otherwise an ERR_PTR.
|
2015-08-12 21:43:39 +07:00
|
|
|
*/
|
2016-08-15 16:48:51 +07:00
|
|
|
static struct i915_vma *guc_allocate_vma(struct intel_guc *guc, u32 size)
|
2015-08-12 21:43:39 +07:00
|
|
|
{
|
2016-08-15 16:48:51 +07:00
|
|
|
struct drm_i915_private *dev_priv = guc_to_i915(guc);
|
2015-08-12 21:43:39 +07:00
|
|
|
struct drm_i915_gem_object *obj;
|
2016-08-15 16:48:51 +07:00
|
|
|
struct i915_vma *vma;
|
|
|
|
int ret;
|
2015-08-12 21:43:39 +07:00
|
|
|
|
2016-07-05 16:40:23 +07:00
|
|
|
obj = i915_gem_object_create(&dev_priv->drm, size);
|
2016-04-25 19:32:13 +07:00
|
|
|
if (IS_ERR(obj))
|
2016-08-15 16:48:51 +07:00
|
|
|
return ERR_CAST(obj);
|
2015-08-12 21:43:39 +07:00
|
|
|
|
2016-08-15 16:48:51 +07:00
|
|
|
vma = i915_vma_create(obj, &dev_priv->ggtt.base, NULL);
|
|
|
|
if (IS_ERR(vma))
|
|
|
|
goto err;
|
2015-08-12 21:43:39 +07:00
|
|
|
|
2016-08-15 16:48:51 +07:00
|
|
|
ret = i915_vma_pin(vma, 0, PAGE_SIZE,
|
|
|
|
PIN_GLOBAL | PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
|
|
|
|
if (ret) {
|
|
|
|
vma = ERR_PTR(ret);
|
|
|
|
goto err;
|
2015-08-12 21:43:39 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Invalidate GuC TLB to let GuC take the latest updates to GTT. */
|
|
|
|
I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
|
|
|
|
|
2016-08-15 16:48:51 +07:00
|
|
|
return vma;
|
|
|
|
|
|
|
|
err:
|
|
|
|
i915_gem_object_put(obj);
|
|
|
|
return vma;
|
2015-08-12 21:43:39 +07:00
|
|
|
}
|
|
|
|
|
2016-06-11 00:29:25 +07:00
|
|
|
static void
|
|
|
|
guc_client_free(struct drm_i915_private *dev_priv,
|
|
|
|
struct i915_guc_client *client)
|
2015-08-12 21:43:41 +07:00
|
|
|
{
|
|
|
|
struct intel_guc *guc = &dev_priv->guc;
|
|
|
|
|
|
|
|
if (!client)
|
|
|
|
return;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* XXX: wait for any outstanding submissions before freeing memory.
|
|
|
|
* Be sure to drop any locks
|
|
|
|
*/
|
|
|
|
|
2016-04-19 22:08:34 +07:00
|
|
|
if (client->client_base) {
|
|
|
|
/*
|
2016-06-13 23:57:32 +07:00
|
|
|
* If we got as far as setting up a doorbell, make sure we
|
|
|
|
* shut it down before unmapping & deallocating the memory.
|
2016-04-19 22:08:34 +07:00
|
|
|
*/
|
2016-06-13 23:57:32 +07:00
|
|
|
guc_disable_doorbell(guc, client);
|
2016-04-19 22:08:34 +07:00
|
|
|
|
|
|
|
kunmap(kmap_to_page(client->client_base));
|
|
|
|
}
|
|
|
|
|
2016-08-15 16:49:05 +07:00
|
|
|
i915_vma_unpin_and_release(&client->vma);
|
2015-08-12 21:43:41 +07:00
|
|
|
|
|
|
|
if (client->ctx_index != GUC_INVALID_CTX_ID) {
|
2016-09-13 03:19:37 +07:00
|
|
|
guc_ctx_desc_fini(guc, client);
|
2015-08-12 21:43:41 +07:00
|
|
|
ida_simple_remove(&guc->ctx_ids, client->ctx_index);
|
|
|
|
}
|
|
|
|
|
|
|
|
kfree(client);
|
|
|
|
}
|
|
|
|
|
2016-08-09 21:19:20 +07:00
|
|
|
/* Check that a doorbell register is in the expected state */
|
|
|
|
static bool guc_doorbell_check(struct intel_guc *guc, uint16_t db_id)
|
|
|
|
{
|
|
|
|
struct drm_i915_private *dev_priv = guc_to_i915(guc);
|
|
|
|
i915_reg_t drbreg = GEN8_DRBREGL(db_id);
|
|
|
|
uint32_t value = I915_READ(drbreg);
|
|
|
|
bool enabled = (value & GUC_DOORBELL_ENABLED) != 0;
|
|
|
|
bool expected = test_bit(db_id, guc->doorbell_bitmap);
|
|
|
|
|
|
|
|
if (enabled == expected)
|
|
|
|
return true;
|
|
|
|
|
|
|
|
DRM_DEBUG_DRIVER("Doorbell %d (reg 0x%x) 0x%x, should be %s\n",
|
|
|
|
db_id, drbreg.reg, value,
|
|
|
|
expected ? "active" : "inactive");
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
drm/i915/guc: (re)initialise doorbell h/w when enabling GuC submission
During a hibernate/resume cycle, the whole system is reset, including
the GuC and the doorbell hardware. Then the system is booted up, drivers
are loaded, etc -- the GuC firmware may be loaded and set running at
this point. But then, the booted kernel is replaced by the hibernated
image, and this resumed kernel will also try to reload the GuC firmware
(which will fail). To recover, we reset the GuC and try again (which
should work). But this GuC reset doesn't also reset the doorbell
hardware, so it can be left in a state inconsistent with that assumed
by the driver and/or the newly-loaded GuC firmware.
It would be better if the GuC reset also cleared all doorbell state,
but that's not how the hardware currently works; also, the driver cannot
directly reprogram the doorbell hardware (only the GuC can do that).
So this patch cycles through all doorbells, assigning and releasing each
in turn, so that all the doorbell hardware is left in a consistent
state, no matter how it was programmed by the previously-running kernel
and/or GuC firmware.
v2: don't use kmap_atomic() now that client page 0 is kept mapped.
Signed-off-by: Dave Gordon <david.s.gordon@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: http://patchwork.freedesktop.org/patch/msgid/1465837054-16245-2-git-send-email-david.s.gordon@intel.com
2016-06-13 23:57:34 +07:00
|
|
|
/*
|
2016-08-09 21:19:19 +07:00
|
|
|
* Borrow the first client to set up & tear down each unused doorbell
|
drm/i915/guc: (re)initialise doorbell h/w when enabling GuC submission
During a hibernate/resume cycle, the whole system is reset, including
the GuC and the doorbell hardware. Then the system is booted up, drivers
are loaded, etc -- the GuC firmware may be loaded and set running at
this point. But then, the booted kernel is replaced by the hibernated
image, and this resumed kernel will also try to reload the GuC firmware
(which will fail). To recover, we reset the GuC and try again (which
should work). But this GuC reset doesn't also reset the doorbell
hardware, so it can be left in a state inconsistent with that assumed
by the driver and/or the newly-loaded GuC firmware.
It would be better if the GuC reset also cleared all doorbell state,
but that's not how the hardware currently works; also, the driver cannot
directly reprogram the doorbell hardware (only the GuC can do that).
So this patch cycles through all doorbells, assigning and releasing each
in turn, so that all the doorbell hardware is left in a consistent
state, no matter how it was programmed by the previously-running kernel
and/or GuC firmware.
v2: don't use kmap_atomic() now that client page 0 is kept mapped.
Signed-off-by: Dave Gordon <david.s.gordon@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: http://patchwork.freedesktop.org/patch/msgid/1465837054-16245-2-git-send-email-david.s.gordon@intel.com
2016-06-13 23:57:34 +07:00
|
|
|
* in turn, to ensure that all doorbell h/w is (re)initialised.
|
|
|
|
*/
|
|
|
|
static void guc_init_doorbell_hw(struct intel_guc *guc)
|
|
|
|
{
|
|
|
|
struct i915_guc_client *client = guc->execbuf_client;
|
2016-08-09 21:19:20 +07:00
|
|
|
uint16_t db_id;
|
|
|
|
int i, err;
|
drm/i915/guc: (re)initialise doorbell h/w when enabling GuC submission
During a hibernate/resume cycle, the whole system is reset, including
the GuC and the doorbell hardware. Then the system is booted up, drivers
are loaded, etc -- the GuC firmware may be loaded and set running at
this point. But then, the booted kernel is replaced by the hibernated
image, and this resumed kernel will also try to reload the GuC firmware
(which will fail). To recover, we reset the GuC and try again (which
should work). But this GuC reset doesn't also reset the doorbell
hardware, so it can be left in a state inconsistent with that assumed
by the driver and/or the newly-loaded GuC firmware.
It would be better if the GuC reset also cleared all doorbell state,
but that's not how the hardware currently works; also, the driver cannot
directly reprogram the doorbell hardware (only the GuC can do that).
So this patch cycles through all doorbells, assigning and releasing each
in turn, so that all the doorbell hardware is left in a consistent
state, no matter how it was programmed by the previously-running kernel
and/or GuC firmware.
v2: don't use kmap_atomic() now that client page 0 is kept mapped.
Signed-off-by: Dave Gordon <david.s.gordon@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: http://patchwork.freedesktop.org/patch/msgid/1465837054-16245-2-git-send-email-david.s.gordon@intel.com
2016-06-13 23:57:34 +07:00
|
|
|
|
2016-08-09 21:19:20 +07:00
|
|
|
/* Save client's original doorbell selection */
|
drm/i915/guc: (re)initialise doorbell h/w when enabling GuC submission
During a hibernate/resume cycle, the whole system is reset, including
the GuC and the doorbell hardware. Then the system is booted up, drivers
are loaded, etc -- the GuC firmware may be loaded and set running at
this point. But then, the booted kernel is replaced by the hibernated
image, and this resumed kernel will also try to reload the GuC firmware
(which will fail). To recover, we reset the GuC and try again (which
should work). But this GuC reset doesn't also reset the doorbell
hardware, so it can be left in a state inconsistent with that assumed
by the driver and/or the newly-loaded GuC firmware.
It would be better if the GuC reset also cleared all doorbell state,
but that's not how the hardware currently works; also, the driver cannot
directly reprogram the doorbell hardware (only the GuC can do that).
So this patch cycles through all doorbells, assigning and releasing each
in turn, so that all the doorbell hardware is left in a consistent
state, no matter how it was programmed by the previously-running kernel
and/or GuC firmware.
v2: don't use kmap_atomic() now that client page 0 is kept mapped.
Signed-off-by: Dave Gordon <david.s.gordon@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: http://patchwork.freedesktop.org/patch/msgid/1465837054-16245-2-git-send-email-david.s.gordon@intel.com
2016-06-13 23:57:34 +07:00
|
|
|
db_id = client->doorbell_id;
|
|
|
|
|
|
|
|
for (i = 0; i < GUC_MAX_DOORBELLS; ++i) {
|
2016-08-09 21:19:20 +07:00
|
|
|
/* Skip if doorbell is OK */
|
|
|
|
if (guc_doorbell_check(guc, i))
|
2016-08-09 21:19:19 +07:00
|
|
|
continue;
|
|
|
|
|
drm/i915/guc: (re)initialise doorbell h/w when enabling GuC submission
During a hibernate/resume cycle, the whole system is reset, including
the GuC and the doorbell hardware. Then the system is booted up, drivers
are loaded, etc -- the GuC firmware may be loaded and set running at
this point. But then, the booted kernel is replaced by the hibernated
image, and this resumed kernel will also try to reload the GuC firmware
(which will fail). To recover, we reset the GuC and try again (which
should work). But this GuC reset doesn't also reset the doorbell
hardware, so it can be left in a state inconsistent with that assumed
by the driver and/or the newly-loaded GuC firmware.
It would be better if the GuC reset also cleared all doorbell state,
but that's not how the hardware currently works; also, the driver cannot
directly reprogram the doorbell hardware (only the GuC can do that).
So this patch cycles through all doorbells, assigning and releasing each
in turn, so that all the doorbell hardware is left in a consistent
state, no matter how it was programmed by the previously-running kernel
and/or GuC firmware.
v2: don't use kmap_atomic() now that client page 0 is kept mapped.
Signed-off-by: Dave Gordon <david.s.gordon@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: http://patchwork.freedesktop.org/patch/msgid/1465837054-16245-2-git-send-email-david.s.gordon@intel.com
2016-06-13 23:57:34 +07:00
|
|
|
err = guc_update_doorbell_id(guc, client, i);
|
2016-08-09 21:19:20 +07:00
|
|
|
if (err)
|
|
|
|
DRM_DEBUG_DRIVER("Doorbell %d update failed, err %d\n",
|
|
|
|
i, err);
|
drm/i915/guc: (re)initialise doorbell h/w when enabling GuC submission
During a hibernate/resume cycle, the whole system is reset, including
the GuC and the doorbell hardware. Then the system is booted up, drivers
are loaded, etc -- the GuC firmware may be loaded and set running at
this point. But then, the booted kernel is replaced by the hibernated
image, and this resumed kernel will also try to reload the GuC firmware
(which will fail). To recover, we reset the GuC and try again (which
should work). But this GuC reset doesn't also reset the doorbell
hardware, so it can be left in a state inconsistent with that assumed
by the driver and/or the newly-loaded GuC firmware.
It would be better if the GuC reset also cleared all doorbell state,
but that's not how the hardware currently works; also, the driver cannot
directly reprogram the doorbell hardware (only the GuC can do that).
So this patch cycles through all doorbells, assigning and releasing each
in turn, so that all the doorbell hardware is left in a consistent
state, no matter how it was programmed by the previously-running kernel
and/or GuC firmware.
v2: don't use kmap_atomic() now that client page 0 is kept mapped.
Signed-off-by: Dave Gordon <david.s.gordon@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: http://patchwork.freedesktop.org/patch/msgid/1465837054-16245-2-git-send-email-david.s.gordon@intel.com
2016-06-13 23:57:34 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Restore to original value */
|
|
|
|
err = guc_update_doorbell_id(guc, client, db_id);
|
|
|
|
if (err)
|
2016-08-19 00:17:23 +07:00
|
|
|
DRM_WARN("Failed to restore doorbell to %d, err %d\n",
|
|
|
|
db_id, err);
|
drm/i915/guc: (re)initialise doorbell h/w when enabling GuC submission
During a hibernate/resume cycle, the whole system is reset, including
the GuC and the doorbell hardware. Then the system is booted up, drivers
are loaded, etc -- the GuC firmware may be loaded and set running at
this point. But then, the booted kernel is replaced by the hibernated
image, and this resumed kernel will also try to reload the GuC firmware
(which will fail). To recover, we reset the GuC and try again (which
should work). But this GuC reset doesn't also reset the doorbell
hardware, so it can be left in a state inconsistent with that assumed
by the driver and/or the newly-loaded GuC firmware.
It would be better if the GuC reset also cleared all doorbell state,
but that's not how the hardware currently works; also, the driver cannot
directly reprogram the doorbell hardware (only the GuC can do that).
So this patch cycles through all doorbells, assigning and releasing each
in turn, so that all the doorbell hardware is left in a consistent
state, no matter how it was programmed by the previously-running kernel
and/or GuC firmware.
v2: don't use kmap_atomic() now that client page 0 is kept mapped.
Signed-off-by: Dave Gordon <david.s.gordon@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: http://patchwork.freedesktop.org/patch/msgid/1465837054-16245-2-git-send-email-david.s.gordon@intel.com
2016-06-13 23:57:34 +07:00
|
|
|
|
2016-08-09 21:19:20 +07:00
|
|
|
/* Read back & verify all doorbell registers */
|
|
|
|
for (i = 0; i < GUC_MAX_DOORBELLS; ++i)
|
|
|
|
(void)guc_doorbell_check(guc, i);
|
drm/i915/guc: (re)initialise doorbell h/w when enabling GuC submission
During a hibernate/resume cycle, the whole system is reset, including
the GuC and the doorbell hardware. Then the system is booted up, drivers
are loaded, etc -- the GuC firmware may be loaded and set running at
this point. But then, the booted kernel is replaced by the hibernated
image, and this resumed kernel will also try to reload the GuC firmware
(which will fail). To recover, we reset the GuC and try again (which
should work). But this GuC reset doesn't also reset the doorbell
hardware, so it can be left in a state inconsistent with that assumed
by the driver and/or the newly-loaded GuC firmware.
It would be better if the GuC reset also cleared all doorbell state,
but that's not how the hardware currently works; also, the driver cannot
directly reprogram the doorbell hardware (only the GuC can do that).
So this patch cycles through all doorbells, assigning and releasing each
in turn, so that all the doorbell hardware is left in a consistent
state, no matter how it was programmed by the previously-running kernel
and/or GuC firmware.
v2: don't use kmap_atomic() now that client page 0 is kept mapped.
Signed-off-by: Dave Gordon <david.s.gordon@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: http://patchwork.freedesktop.org/patch/msgid/1465837054-16245-2-git-send-email-david.s.gordon@intel.com
2016-06-13 23:57:34 +07:00
|
|
|
}
|
|
|
|
|
2015-08-12 21:43:41 +07:00
|
|
|
/**
|
|
|
|
* guc_client_alloc() - Allocate an i915_guc_client
|
2016-06-11 00:29:25 +07:00
|
|
|
* @dev_priv: driver private data structure
|
2016-08-17 19:42:42 +07:00
|
|
|
* @engines: The set of engines to enable for this client
|
2015-08-12 21:43:41 +07:00
|
|
|
* @priority: four levels priority _CRITICAL, _HIGH, _NORMAL and _LOW
|
|
|
|
* The kernel client to replace ExecList submission is created with
|
|
|
|
* NORMAL priority. Priority of a client for scheduler can be HIGH,
|
|
|
|
* while a preemption context can use CRITICAL.
|
2015-10-20 06:10:54 +07:00
|
|
|
* @ctx: the context that owns the client (we use the default render
|
|
|
|
* context)
|
2015-08-12 21:43:41 +07:00
|
|
|
*
|
2016-04-19 22:08:34 +07:00
|
|
|
* Return: An i915_guc_client object if success, else NULL.
|
2015-08-12 21:43:41 +07:00
|
|
|
*/
|
2016-06-11 00:29:25 +07:00
|
|
|
static struct i915_guc_client *
|
|
|
|
guc_client_alloc(struct drm_i915_private *dev_priv,
|
2016-08-09 21:19:21 +07:00
|
|
|
uint32_t engines,
|
2016-06-11 00:29:25 +07:00
|
|
|
uint32_t priority,
|
|
|
|
struct i915_gem_context *ctx)
|
2015-08-12 21:43:41 +07:00
|
|
|
{
|
|
|
|
struct i915_guc_client *client;
|
|
|
|
struct intel_guc *guc = &dev_priv->guc;
|
2016-08-15 16:48:51 +07:00
|
|
|
struct i915_vma *vma;
|
2016-06-13 23:57:32 +07:00
|
|
|
uint16_t db_id;
|
2015-08-12 21:43:41 +07:00
|
|
|
|
|
|
|
client = kzalloc(sizeof(*client), GFP_KERNEL);
|
|
|
|
if (!client)
|
|
|
|
return NULL;
|
|
|
|
|
drm/i915: Integrate GuC-based command submission
GuC-based submission is mostly the same as execlist mode, up to
intel_logical_ring_advance_and_submit(), where the context being
dispatched would be added to the execlist queue; at this point
we submit the context to the GuC backend instead.
There are, however, a few other changes also required, notably:
1. Contexts must be pinned at GGTT addresses accessible by the GuC
i.e. NOT in the range [0..WOPCM_SIZE), so we have to add the
PIN_OFFSET_BIAS flag to the relevant GGTT-pinning calls.
2. The GuC's TLB must be invalidated after a context is pinned at
a new GGTT address.
3. GuC firmware uses the one page before Ring Context as shared data.
Therefore, whenever driver wants to get base address of LRC, we
will offset one page for it. LRC_PPHWSP_PN is defined as the page
number of LRCA.
4. In the work queue used to pass requests to the GuC, the GuC
firmware requires the ring-tail-offset to be represented as an
11-bit value, expressed in QWords. Therefore, the ringbuffer
size must be reduced to the representable range (4 pages).
v2:
Defer adding #defines until needed [Chris Wilson]
Rationalise type declarations [Chris Wilson]
v4:
Squashed kerneldoc patch into here [Daniel Vetter]
v5:
Update request->tail in code common to both GuC and execlist modes.
Add a private version of lr_context_update(), as sharing the
execlist version leads to race conditions when the CPU and
the GuC both update TAIL in the context image.
Conversion of error-captured HWS page to string must account
for offset from start of object to actual HWS (LRC_PPHWSP_PN).
Issue: VIZ-4884
Signed-off-by: Alex Dai <yu.dai@intel.com>
Signed-off-by: Dave Gordon <david.s.gordon@intel.com>
Reviewed-by: Tom O'Rourke <Tom.O'Rourke@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-08-12 21:43:43 +07:00
|
|
|
client->owner = ctx;
|
2015-08-12 21:43:41 +07:00
|
|
|
client->guc = guc;
|
2016-08-09 21:19:21 +07:00
|
|
|
client->engines = engines;
|
|
|
|
client->priority = priority;
|
|
|
|
client->doorbell_id = GUC_INVALID_DOORBELL_ID;
|
2015-08-12 21:43:41 +07:00
|
|
|
|
|
|
|
client->ctx_index = (uint32_t)ida_simple_get(&guc->ctx_ids, 0,
|
|
|
|
GUC_MAX_GPU_CONTEXTS, GFP_KERNEL);
|
|
|
|
if (client->ctx_index >= GUC_MAX_GPU_CONTEXTS) {
|
|
|
|
client->ctx_index = GUC_INVALID_CTX_ID;
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* The first page is doorbell/proc_desc. Two followed pages are wq. */
|
2016-08-15 16:48:51 +07:00
|
|
|
vma = guc_allocate_vma(guc, GUC_DB_SIZE + GUC_WQ_SIZE);
|
|
|
|
if (IS_ERR(vma))
|
2015-08-12 21:43:41 +07:00
|
|
|
goto err;
|
|
|
|
|
2016-04-19 22:08:34 +07:00
|
|
|
/* We'll keep just the first (doorbell/proc) page permanently kmap'd. */
|
2016-08-15 16:48:51 +07:00
|
|
|
client->vma = vma;
|
|
|
|
client->client_base = kmap(i915_vma_first_page(vma));
|
2016-09-09 20:11:57 +07:00
|
|
|
|
|
|
|
spin_lock_init(&client->wq_lock);
|
2015-08-12 21:43:41 +07:00
|
|
|
client->wq_offset = GUC_DB_SIZE;
|
|
|
|
client->wq_size = GUC_WQ_SIZE;
|
|
|
|
|
2016-06-13 23:57:33 +07:00
|
|
|
db_id = select_doorbell_register(guc, client->priority);
|
|
|
|
if (db_id == GUC_INVALID_DOORBELL_ID)
|
|
|
|
/* XXX: evict a doorbell instead? */
|
|
|
|
goto err;
|
|
|
|
|
2015-08-12 21:43:41 +07:00
|
|
|
client->doorbell_offset = select_doorbell_cacheline(guc);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Since the doorbell only requires a single cacheline, we can save
|
|
|
|
* space by putting the application process descriptor in the same
|
|
|
|
* page. Use the half of the page that doesn't include the doorbell.
|
|
|
|
*/
|
|
|
|
if (client->doorbell_offset >= (GUC_DB_SIZE / 2))
|
|
|
|
client->proc_desc_offset = 0;
|
|
|
|
else
|
|
|
|
client->proc_desc_offset = (GUC_DB_SIZE / 2);
|
|
|
|
|
2016-09-13 03:19:37 +07:00
|
|
|
guc_proc_desc_init(guc, client);
|
|
|
|
guc_ctx_desc_init(guc, client);
|
2016-06-13 23:57:32 +07:00
|
|
|
if (guc_init_doorbell(guc, client, db_id))
|
2015-08-12 21:43:41 +07:00
|
|
|
goto err;
|
|
|
|
|
2016-08-09 21:19:21 +07:00
|
|
|
DRM_DEBUG_DRIVER("new priority %u client %p for engine(s) 0x%x: ctx_index %u\n",
|
|
|
|
priority, client, client->engines, client->ctx_index);
|
2016-06-13 23:57:32 +07:00
|
|
|
DRM_DEBUG_DRIVER("doorbell id %u, cacheline offset 0x%x\n",
|
|
|
|
client->doorbell_id, client->doorbell_offset);
|
2015-08-12 21:43:41 +07:00
|
|
|
|
|
|
|
return client;
|
|
|
|
|
|
|
|
err:
|
2016-06-11 00:29:25 +07:00
|
|
|
guc_client_free(dev_priv, client);
|
2015-08-12 21:43:41 +07:00
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
2016-09-13 03:19:37 +07:00
|
|
|
static void guc_log_create(struct intel_guc *guc)
|
2015-08-12 21:43:40 +07:00
|
|
|
{
|
2016-08-15 16:48:51 +07:00
|
|
|
struct i915_vma *vma;
|
2015-08-12 21:43:40 +07:00
|
|
|
unsigned long offset;
|
|
|
|
uint32_t size, flags;
|
|
|
|
|
|
|
|
if (i915.guc_log_level < GUC_LOG_VERBOSITY_MIN)
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (i915.guc_log_level > GUC_LOG_VERBOSITY_MAX)
|
|
|
|
i915.guc_log_level = GUC_LOG_VERBOSITY_MAX;
|
|
|
|
|
|
|
|
/* The first page is to save log buffer state. Allocate one
|
|
|
|
* extra page for others in case for overlap */
|
|
|
|
size = (1 + GUC_LOG_DPC_PAGES + 1 +
|
|
|
|
GUC_LOG_ISR_PAGES + 1 +
|
|
|
|
GUC_LOG_CRASH_PAGES + 1) << PAGE_SHIFT;
|
|
|
|
|
2016-08-15 16:48:51 +07:00
|
|
|
vma = guc->log_vma;
|
|
|
|
if (!vma) {
|
|
|
|
vma = guc_allocate_vma(guc, size);
|
|
|
|
if (IS_ERR(vma)) {
|
2015-08-12 21:43:40 +07:00
|
|
|
/* logging will be off */
|
|
|
|
i915.guc_log_level = -1;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2016-08-15 16:48:51 +07:00
|
|
|
guc->log_vma = vma;
|
2015-08-12 21:43:40 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
/* each allocated unit is a page */
|
|
|
|
flags = GUC_LOG_VALID | GUC_LOG_NOTIFY_ON_HALF_FULL |
|
|
|
|
(GUC_LOG_DPC_PAGES << GUC_LOG_DPC_SHIFT) |
|
|
|
|
(GUC_LOG_ISR_PAGES << GUC_LOG_ISR_SHIFT) |
|
|
|
|
(GUC_LOG_CRASH_PAGES << GUC_LOG_CRASH_SHIFT);
|
|
|
|
|
2016-08-15 16:49:07 +07:00
|
|
|
offset = i915_ggtt_offset(vma) >> PAGE_SHIFT; /* in pages */
|
2015-08-12 21:43:40 +07:00
|
|
|
guc->log_flags = (offset << GUC_LOG_BUF_ADDR_SHIFT) | flags;
|
|
|
|
}
|
|
|
|
|
2016-09-13 03:19:37 +07:00
|
|
|
static void guc_policies_init(struct guc_policies *policies)
|
2015-12-19 03:00:10 +07:00
|
|
|
{
|
|
|
|
struct guc_policy *policy;
|
|
|
|
u32 p, i;
|
|
|
|
|
|
|
|
policies->dpc_promote_time = 500000;
|
|
|
|
policies->max_num_work_items = POLICY_MAX_NUM_WI;
|
|
|
|
|
|
|
|
for (p = 0; p < GUC_CTX_PRIORITY_NUM; p++) {
|
2016-01-24 02:58:14 +07:00
|
|
|
for (i = GUC_RENDER_ENGINE; i < GUC_MAX_ENGINES_NUM; i++) {
|
2015-12-19 03:00:10 +07:00
|
|
|
policy = &policies->policy[p][i];
|
|
|
|
|
|
|
|
policy->execution_quantum = 1000000;
|
|
|
|
policy->preemption_time = 500000;
|
|
|
|
policy->fault_time = 250000;
|
|
|
|
policy->policy_flags = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
policies->is_valid = 1;
|
|
|
|
}
|
|
|
|
|
2016-09-13 03:19:37 +07:00
|
|
|
static void guc_addon_create(struct intel_guc *guc)
|
2015-12-19 03:00:09 +07:00
|
|
|
{
|
|
|
|
struct drm_i915_private *dev_priv = guc_to_i915(guc);
|
2016-08-15 16:48:51 +07:00
|
|
|
struct i915_vma *vma;
|
2015-12-19 03:00:09 +07:00
|
|
|
struct guc_ads *ads;
|
2015-12-19 03:00:10 +07:00
|
|
|
struct guc_policies *policies;
|
2015-12-19 03:00:11 +07:00
|
|
|
struct guc_mmio_reg_state *reg_state;
|
2016-03-16 18:00:36 +07:00
|
|
|
struct intel_engine_cs *engine;
|
drm/i915: Allocate intel_engine_cs structure only for the enabled engines
With the possibility of addition of many more number of rings in future,
the drm_i915_private structure could bloat as an array, of type
intel_engine_cs, is embedded inside it.
struct intel_engine_cs engine[I915_NUM_ENGINES];
Though this is still fine as generally there is only a single instance of
drm_i915_private structure used, but not all of the possible rings would be
enabled or active on most of the platforms. Some memory can be saved by
allocating intel_engine_cs structure only for the enabled/active engines.
Currently the engine/ring ID is kept static and dev_priv->engine[] is simply
indexed using the enums defined in intel_engine_id.
To save memory and continue using the static engine/ring IDs, 'engine' is
defined as an array of pointers.
struct intel_engine_cs *engine[I915_NUM_ENGINES];
dev_priv->engine[engine_ID] will be NULL for disabled engine instances.
There is a text size reduction of 928 bytes, from 1028200 to 1027272, for
i915.o file (but for i915.ko file text size remain same as 1193131 bytes).
v2:
- Remove the engine iterator field added in drm_i915_private structure,
instead pass a local iterator variable to the for_each_engine**
macros. (Chris)
- Do away with intel_engine_initialized() and instead directly use the
NULL pointer check on engine pointer. (Chris)
v3:
- Remove for_each_engine_id() macro, as the updated macro for_each_engine()
can be used in place of it. (Chris)
- Protect the access to Render engine Fault register with a NULL check, as
engine specific init is done later in Driver load sequence.
v4:
- Use !!dev_priv->engine[VCS] style for the engine check in getparam. (Chris)
- Kill the superfluous init_engine_lists().
v5:
- Cleanup the intel_engines_init() & intel_engines_setup(), with respect to
allocation of intel_engine_cs structure. (Chris)
v6:
- Rebase.
v7:
- Optimize the for_each_engine_masked() macro. (Chris)
- Change the type of 'iter' local variable to enum intel_engine_id. (Chris)
- Rebase.
v8: Rebase.
v9: Rebase.
v10:
- For index calculation use engine ID instead of pointer based arithmetic in
intel_engine_sync_index() as engine pointers are not contiguous now (Chris)
- For appropriateness, rename local enum variable 'iter' to 'id'. (Joonas)
- Use for_each_engine macro for cleanup in intel_engines_init() and remove
check for NULL engine pointer in cleanup() routines. (Joonas)
v11: Rebase.
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Akash Goel <akash.goel@intel.com>
Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: http://patchwork.freedesktop.org/patch/msgid/1476378888-7372-1-git-send-email-akash.goel@intel.com
2016-10-14 00:14:48 +07:00
|
|
|
enum intel_engine_id id;
|
2015-12-19 03:00:09 +07:00
|
|
|
struct page *page;
|
2016-03-24 18:20:38 +07:00
|
|
|
u32 size;
|
2015-12-19 03:00:09 +07:00
|
|
|
|
|
|
|
/* The ads obj includes the struct itself and buffers passed to GuC */
|
2015-12-19 03:00:11 +07:00
|
|
|
size = sizeof(struct guc_ads) + sizeof(struct guc_policies) +
|
|
|
|
sizeof(struct guc_mmio_reg_state) +
|
|
|
|
GUC_S3_SAVE_SPACE_PAGES * PAGE_SIZE;
|
2015-12-19 03:00:09 +07:00
|
|
|
|
2016-08-15 16:48:51 +07:00
|
|
|
vma = guc->ads_vma;
|
|
|
|
if (!vma) {
|
|
|
|
vma = guc_allocate_vma(guc, PAGE_ALIGN(size));
|
|
|
|
if (IS_ERR(vma))
|
2015-12-19 03:00:09 +07:00
|
|
|
return;
|
|
|
|
|
2016-08-15 16:48:51 +07:00
|
|
|
guc->ads_vma = vma;
|
2015-12-19 03:00:09 +07:00
|
|
|
}
|
|
|
|
|
2016-08-15 16:48:51 +07:00
|
|
|
page = i915_vma_first_page(vma);
|
2015-12-19 03:00:09 +07:00
|
|
|
ads = kmap(page);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The GuC requires a "Golden Context" when it reinitialises
|
|
|
|
* engines after a reset. Here we use the Render ring default
|
|
|
|
* context, which must already exist and be pinned in the GGTT,
|
|
|
|
* so its address won't change after we've told the GuC where
|
|
|
|
* to find it.
|
|
|
|
*/
|
drm/i915: Allocate intel_engine_cs structure only for the enabled engines
With the possibility of addition of many more number of rings in future,
the drm_i915_private structure could bloat as an array, of type
intel_engine_cs, is embedded inside it.
struct intel_engine_cs engine[I915_NUM_ENGINES];
Though this is still fine as generally there is only a single instance of
drm_i915_private structure used, but not all of the possible rings would be
enabled or active on most of the platforms. Some memory can be saved by
allocating intel_engine_cs structure only for the enabled/active engines.
Currently the engine/ring ID is kept static and dev_priv->engine[] is simply
indexed using the enums defined in intel_engine_id.
To save memory and continue using the static engine/ring IDs, 'engine' is
defined as an array of pointers.
struct intel_engine_cs *engine[I915_NUM_ENGINES];
dev_priv->engine[engine_ID] will be NULL for disabled engine instances.
There is a text size reduction of 928 bytes, from 1028200 to 1027272, for
i915.o file (but for i915.ko file text size remain same as 1193131 bytes).
v2:
- Remove the engine iterator field added in drm_i915_private structure,
instead pass a local iterator variable to the for_each_engine**
macros. (Chris)
- Do away with intel_engine_initialized() and instead directly use the
NULL pointer check on engine pointer. (Chris)
v3:
- Remove for_each_engine_id() macro, as the updated macro for_each_engine()
can be used in place of it. (Chris)
- Protect the access to Render engine Fault register with a NULL check, as
engine specific init is done later in Driver load sequence.
v4:
- Use !!dev_priv->engine[VCS] style for the engine check in getparam. (Chris)
- Kill the superfluous init_engine_lists().
v5:
- Cleanup the intel_engines_init() & intel_engines_setup(), with respect to
allocation of intel_engine_cs structure. (Chris)
v6:
- Rebase.
v7:
- Optimize the for_each_engine_masked() macro. (Chris)
- Change the type of 'iter' local variable to enum intel_engine_id. (Chris)
- Rebase.
v8: Rebase.
v9: Rebase.
v10:
- For index calculation use engine ID instead of pointer based arithmetic in
intel_engine_sync_index() as engine pointers are not contiguous now (Chris)
- For appropriateness, rename local enum variable 'iter' to 'id'. (Joonas)
- Use for_each_engine macro for cleanup in intel_engines_init() and remove
check for NULL engine pointer in cleanup() routines. (Joonas)
v11: Rebase.
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Akash Goel <akash.goel@intel.com>
Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: http://patchwork.freedesktop.org/patch/msgid/1476378888-7372-1-git-send-email-akash.goel@intel.com
2016-10-14 00:14:48 +07:00
|
|
|
engine = dev_priv->engine[RCS];
|
2016-08-15 16:48:57 +07:00
|
|
|
ads->golden_context_lrca = engine->status_page.ggtt_offset;
|
2015-12-19 03:00:09 +07:00
|
|
|
|
drm/i915: Allocate intel_engine_cs structure only for the enabled engines
With the possibility of addition of many more number of rings in future,
the drm_i915_private structure could bloat as an array, of type
intel_engine_cs, is embedded inside it.
struct intel_engine_cs engine[I915_NUM_ENGINES];
Though this is still fine as generally there is only a single instance of
drm_i915_private structure used, but not all of the possible rings would be
enabled or active on most of the platforms. Some memory can be saved by
allocating intel_engine_cs structure only for the enabled/active engines.
Currently the engine/ring ID is kept static and dev_priv->engine[] is simply
indexed using the enums defined in intel_engine_id.
To save memory and continue using the static engine/ring IDs, 'engine' is
defined as an array of pointers.
struct intel_engine_cs *engine[I915_NUM_ENGINES];
dev_priv->engine[engine_ID] will be NULL for disabled engine instances.
There is a text size reduction of 928 bytes, from 1028200 to 1027272, for
i915.o file (but for i915.ko file text size remain same as 1193131 bytes).
v2:
- Remove the engine iterator field added in drm_i915_private structure,
instead pass a local iterator variable to the for_each_engine**
macros. (Chris)
- Do away with intel_engine_initialized() and instead directly use the
NULL pointer check on engine pointer. (Chris)
v3:
- Remove for_each_engine_id() macro, as the updated macro for_each_engine()
can be used in place of it. (Chris)
- Protect the access to Render engine Fault register with a NULL check, as
engine specific init is done later in Driver load sequence.
v4:
- Use !!dev_priv->engine[VCS] style for the engine check in getparam. (Chris)
- Kill the superfluous init_engine_lists().
v5:
- Cleanup the intel_engines_init() & intel_engines_setup(), with respect to
allocation of intel_engine_cs structure. (Chris)
v6:
- Rebase.
v7:
- Optimize the for_each_engine_masked() macro. (Chris)
- Change the type of 'iter' local variable to enum intel_engine_id. (Chris)
- Rebase.
v8: Rebase.
v9: Rebase.
v10:
- For index calculation use engine ID instead of pointer based arithmetic in
intel_engine_sync_index() as engine pointers are not contiguous now (Chris)
- For appropriateness, rename local enum variable 'iter' to 'id'. (Joonas)
- Use for_each_engine macro for cleanup in intel_engines_init() and remove
check for NULL engine pointer in cleanup() routines. (Joonas)
v11: Rebase.
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Akash Goel <akash.goel@intel.com>
Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: http://patchwork.freedesktop.org/patch/msgid/1476378888-7372-1-git-send-email-akash.goel@intel.com
2016-10-14 00:14:48 +07:00
|
|
|
for_each_engine(engine, dev_priv, id)
|
2016-03-16 18:00:36 +07:00
|
|
|
ads->eng_state_size[engine->guc_id] = intel_lr_context_size(engine);
|
2015-12-19 03:00:09 +07:00
|
|
|
|
2015-12-19 03:00:10 +07:00
|
|
|
/* GuC scheduling policies */
|
|
|
|
policies = (void *)ads + sizeof(struct guc_ads);
|
2016-09-13 03:19:37 +07:00
|
|
|
guc_policies_init(policies);
|
2015-12-19 03:00:10 +07:00
|
|
|
|
2016-08-15 16:49:07 +07:00
|
|
|
ads->scheduler_policies =
|
|
|
|
i915_ggtt_offset(vma) + sizeof(struct guc_ads);
|
2015-12-19 03:00:10 +07:00
|
|
|
|
2015-12-19 03:00:11 +07:00
|
|
|
/* MMIO reg state */
|
|
|
|
reg_state = (void *)policies + sizeof(struct guc_policies);
|
|
|
|
|
drm/i915: Allocate intel_engine_cs structure only for the enabled engines
With the possibility of addition of many more number of rings in future,
the drm_i915_private structure could bloat as an array, of type
intel_engine_cs, is embedded inside it.
struct intel_engine_cs engine[I915_NUM_ENGINES];
Though this is still fine as generally there is only a single instance of
drm_i915_private structure used, but not all of the possible rings would be
enabled or active on most of the platforms. Some memory can be saved by
allocating intel_engine_cs structure only for the enabled/active engines.
Currently the engine/ring ID is kept static and dev_priv->engine[] is simply
indexed using the enums defined in intel_engine_id.
To save memory and continue using the static engine/ring IDs, 'engine' is
defined as an array of pointers.
struct intel_engine_cs *engine[I915_NUM_ENGINES];
dev_priv->engine[engine_ID] will be NULL for disabled engine instances.
There is a text size reduction of 928 bytes, from 1028200 to 1027272, for
i915.o file (but for i915.ko file text size remain same as 1193131 bytes).
v2:
- Remove the engine iterator field added in drm_i915_private structure,
instead pass a local iterator variable to the for_each_engine**
macros. (Chris)
- Do away with intel_engine_initialized() and instead directly use the
NULL pointer check on engine pointer. (Chris)
v3:
- Remove for_each_engine_id() macro, as the updated macro for_each_engine()
can be used in place of it. (Chris)
- Protect the access to Render engine Fault register with a NULL check, as
engine specific init is done later in Driver load sequence.
v4:
- Use !!dev_priv->engine[VCS] style for the engine check in getparam. (Chris)
- Kill the superfluous init_engine_lists().
v5:
- Cleanup the intel_engines_init() & intel_engines_setup(), with respect to
allocation of intel_engine_cs structure. (Chris)
v6:
- Rebase.
v7:
- Optimize the for_each_engine_masked() macro. (Chris)
- Change the type of 'iter' local variable to enum intel_engine_id. (Chris)
- Rebase.
v8: Rebase.
v9: Rebase.
v10:
- For index calculation use engine ID instead of pointer based arithmetic in
intel_engine_sync_index() as engine pointers are not contiguous now (Chris)
- For appropriateness, rename local enum variable 'iter' to 'id'. (Joonas)
- Use for_each_engine macro for cleanup in intel_engines_init() and remove
check for NULL engine pointer in cleanup() routines. (Joonas)
v11: Rebase.
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Akash Goel <akash.goel@intel.com>
Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: http://patchwork.freedesktop.org/patch/msgid/1476378888-7372-1-git-send-email-akash.goel@intel.com
2016-10-14 00:14:48 +07:00
|
|
|
for_each_engine(engine, dev_priv, id) {
|
2016-03-16 18:00:36 +07:00
|
|
|
reg_state->mmio_white_list[engine->guc_id].mmio_start =
|
|
|
|
engine->mmio_base + GUC_MMIO_WHITE_LIST_START;
|
2015-12-19 03:00:11 +07:00
|
|
|
|
|
|
|
/* Nothing to be saved or restored for now. */
|
2016-03-16 18:00:36 +07:00
|
|
|
reg_state->mmio_white_list[engine->guc_id].count = 0;
|
2015-12-19 03:00:11 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
ads->reg_state_addr = ads->scheduler_policies +
|
|
|
|
sizeof(struct guc_policies);
|
|
|
|
|
|
|
|
ads->reg_state_buffer = ads->reg_state_addr +
|
|
|
|
sizeof(struct guc_mmio_reg_state);
|
|
|
|
|
2015-12-19 03:00:09 +07:00
|
|
|
kunmap(page);
|
|
|
|
}
|
|
|
|
|
2015-08-12 21:43:39 +07:00
|
|
|
/*
|
|
|
|
* Set up the memory resources to be shared with the GuC. At this point,
|
|
|
|
* we require just one object that can be mapped through the GGTT.
|
|
|
|
*/
|
2016-06-11 00:29:26 +07:00
|
|
|
int i915_guc_submission_init(struct drm_i915_private *dev_priv)
|
2015-08-12 21:43:39 +07:00
|
|
|
{
|
2016-09-13 03:19:37 +07:00
|
|
|
const size_t ctxsize = sizeof(struct guc_context_desc);
|
|
|
|
const size_t poolsize = GUC_MAX_GPU_CONTEXTS * ctxsize;
|
|
|
|
const size_t gemsize = round_up(poolsize, PAGE_SIZE);
|
2015-08-12 21:43:39 +07:00
|
|
|
struct intel_guc *guc = &dev_priv->guc;
|
2016-08-15 16:48:51 +07:00
|
|
|
struct i915_vma *vma;
|
2015-08-12 21:43:39 +07:00
|
|
|
|
drm/i915/guc: disable GuC submission earlier during GuC (re)load
When resetting and reloading the GuC, the GuC submission management code
also needs to destroy and recreate the GuC client(s). Currently this is
done by a separate call from the GuC loader, but really, it's just an
internal detail of the submission code. So here we remove the call from
the loader (which is too late, really, because the GuC has already been
reloaded at this point) and put it into guc_submission_init() instead.
This means that any preexisting client is destroyed *before* the GuC
(re)load and then recreated after, iff the firmware was successfully
loaded. If the GuC reload fails, we don't recreate the client, so
fallback to execlists mode (if active) won't leak the client object
(previously, the now-unusable client would have been left allocated,
and leaked if the driver were unloaded).
Signed-off-by: Dave Gordon <david.s.gordon@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
2016-06-07 15:14:50 +07:00
|
|
|
/* Wipe bitmap & delete client in case of reinitialisation */
|
|
|
|
bitmap_clear(guc->doorbell_bitmap, 0, GUC_MAX_DOORBELLS);
|
2016-06-11 00:29:26 +07:00
|
|
|
i915_guc_submission_disable(dev_priv);
|
drm/i915/guc: disable GuC submission earlier during GuC (re)load
When resetting and reloading the GuC, the GuC submission management code
also needs to destroy and recreate the GuC client(s). Currently this is
done by a separate call from the GuC loader, but really, it's just an
internal detail of the submission code. So here we remove the call from
the loader (which is too late, really, because the GuC has already been
reloaded at this point) and put it into guc_submission_init() instead.
This means that any preexisting client is destroyed *before* the GuC
(re)load and then recreated after, iff the firmware was successfully
loaded. If the GuC reload fails, we don't recreate the client, so
fallback to execlists mode (if active) won't leak the client object
(previously, the now-unusable client would have been left allocated,
and leaked if the driver were unloaded).
Signed-off-by: Dave Gordon <david.s.gordon@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
2016-06-07 15:14:50 +07:00
|
|
|
|
2015-08-12 21:43:39 +07:00
|
|
|
if (!i915.enable_guc_submission)
|
|
|
|
return 0; /* not enabled */
|
|
|
|
|
2016-08-15 16:48:51 +07:00
|
|
|
if (guc->ctx_pool_vma)
|
2015-08-12 21:43:39 +07:00
|
|
|
return 0; /* already allocated */
|
|
|
|
|
2016-09-13 03:19:37 +07:00
|
|
|
vma = guc_allocate_vma(guc, gemsize);
|
2016-08-15 16:48:51 +07:00
|
|
|
if (IS_ERR(vma))
|
|
|
|
return PTR_ERR(vma);
|
2015-08-12 21:43:39 +07:00
|
|
|
|
2016-08-15 16:48:51 +07:00
|
|
|
guc->ctx_pool_vma = vma;
|
2015-08-12 21:43:39 +07:00
|
|
|
ida_init(&guc->ctx_ids);
|
2016-09-13 03:19:37 +07:00
|
|
|
guc_log_create(guc);
|
|
|
|
guc_addon_create(guc);
|
2015-12-19 03:00:09 +07:00
|
|
|
|
2015-08-12 21:43:39 +07:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2016-06-11 00:29:26 +07:00
|
|
|
int i915_guc_submission_enable(struct drm_i915_private *dev_priv)
|
2015-08-12 21:43:41 +07:00
|
|
|
{
|
|
|
|
struct intel_guc *guc = &dev_priv->guc;
|
drm/i915: Allocate intel_engine_cs structure only for the enabled engines
With the possibility of addition of many more number of rings in future,
the drm_i915_private structure could bloat as an array, of type
intel_engine_cs, is embedded inside it.
struct intel_engine_cs engine[I915_NUM_ENGINES];
Though this is still fine as generally there is only a single instance of
drm_i915_private structure used, but not all of the possible rings would be
enabled or active on most of the platforms. Some memory can be saved by
allocating intel_engine_cs structure only for the enabled/active engines.
Currently the engine/ring ID is kept static and dev_priv->engine[] is simply
indexed using the enums defined in intel_engine_id.
To save memory and continue using the static engine/ring IDs, 'engine' is
defined as an array of pointers.
struct intel_engine_cs *engine[I915_NUM_ENGINES];
dev_priv->engine[engine_ID] will be NULL for disabled engine instances.
There is a text size reduction of 928 bytes, from 1028200 to 1027272, for
i915.o file (but for i915.ko file text size remain same as 1193131 bytes).
v2:
- Remove the engine iterator field added in drm_i915_private structure,
instead pass a local iterator variable to the for_each_engine**
macros. (Chris)
- Do away with intel_engine_initialized() and instead directly use the
NULL pointer check on engine pointer. (Chris)
v3:
- Remove for_each_engine_id() macro, as the updated macro for_each_engine()
can be used in place of it. (Chris)
- Protect the access to Render engine Fault register with a NULL check, as
engine specific init is done later in Driver load sequence.
v4:
- Use !!dev_priv->engine[VCS] style for the engine check in getparam. (Chris)
- Kill the superfluous init_engine_lists().
v5:
- Cleanup the intel_engines_init() & intel_engines_setup(), with respect to
allocation of intel_engine_cs structure. (Chris)
v6:
- Rebase.
v7:
- Optimize the for_each_engine_masked() macro. (Chris)
- Change the type of 'iter' local variable to enum intel_engine_id. (Chris)
- Rebase.
v8: Rebase.
v9: Rebase.
v10:
- For index calculation use engine ID instead of pointer based arithmetic in
intel_engine_sync_index() as engine pointers are not contiguous now (Chris)
- For appropriateness, rename local enum variable 'iter' to 'id'. (Joonas)
- Use for_each_engine macro for cleanup in intel_engines_init() and remove
check for NULL engine pointer in cleanup() routines. (Joonas)
v11: Rebase.
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Akash Goel <akash.goel@intel.com>
Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: http://patchwork.freedesktop.org/patch/msgid/1476378888-7372-1-git-send-email-akash.goel@intel.com
2016-10-14 00:14:48 +07:00
|
|
|
struct drm_i915_gem_request *request;
|
2015-08-12 21:43:41 +07:00
|
|
|
struct i915_guc_client *client;
|
2016-08-03 04:50:31 +07:00
|
|
|
struct intel_engine_cs *engine;
|
drm/i915: Allocate intel_engine_cs structure only for the enabled engines
With the possibility of addition of many more number of rings in future,
the drm_i915_private structure could bloat as an array, of type
intel_engine_cs, is embedded inside it.
struct intel_engine_cs engine[I915_NUM_ENGINES];
Though this is still fine as generally there is only a single instance of
drm_i915_private structure used, but not all of the possible rings would be
enabled or active on most of the platforms. Some memory can be saved by
allocating intel_engine_cs structure only for the enabled/active engines.
Currently the engine/ring ID is kept static and dev_priv->engine[] is simply
indexed using the enums defined in intel_engine_id.
To save memory and continue using the static engine/ring IDs, 'engine' is
defined as an array of pointers.
struct intel_engine_cs *engine[I915_NUM_ENGINES];
dev_priv->engine[engine_ID] will be NULL for disabled engine instances.
There is a text size reduction of 928 bytes, from 1028200 to 1027272, for
i915.o file (but for i915.ko file text size remain same as 1193131 bytes).
v2:
- Remove the engine iterator field added in drm_i915_private structure,
instead pass a local iterator variable to the for_each_engine**
macros. (Chris)
- Do away with intel_engine_initialized() and instead directly use the
NULL pointer check on engine pointer. (Chris)
v3:
- Remove for_each_engine_id() macro, as the updated macro for_each_engine()
can be used in place of it. (Chris)
- Protect the access to Render engine Fault register with a NULL check, as
engine specific init is done later in Driver load sequence.
v4:
- Use !!dev_priv->engine[VCS] style for the engine check in getparam. (Chris)
- Kill the superfluous init_engine_lists().
v5:
- Cleanup the intel_engines_init() & intel_engines_setup(), with respect to
allocation of intel_engine_cs structure. (Chris)
v6:
- Rebase.
v7:
- Optimize the for_each_engine_masked() macro. (Chris)
- Change the type of 'iter' local variable to enum intel_engine_id. (Chris)
- Rebase.
v8: Rebase.
v9: Rebase.
v10:
- For index calculation use engine ID instead of pointer based arithmetic in
intel_engine_sync_index() as engine pointers are not contiguous now (Chris)
- For appropriateness, rename local enum variable 'iter' to 'id'. (Joonas)
- Use for_each_engine macro for cleanup in intel_engines_init() and remove
check for NULL engine pointer in cleanup() routines. (Joonas)
v11: Rebase.
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Akash Goel <akash.goel@intel.com>
Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: http://patchwork.freedesktop.org/patch/msgid/1476378888-7372-1-git-send-email-akash.goel@intel.com
2016-10-14 00:14:48 +07:00
|
|
|
enum intel_engine_id id;
|
2015-08-12 21:43:41 +07:00
|
|
|
|
|
|
|
/* client for execbuf submission */
|
2016-06-11 00:29:25 +07:00
|
|
|
client = guc_client_alloc(dev_priv,
|
2016-08-09 21:19:21 +07:00
|
|
|
INTEL_INFO(dev_priv)->ring_mask,
|
2016-05-24 20:53:40 +07:00
|
|
|
GUC_CTX_PRIORITY_KMD_NORMAL,
|
|
|
|
dev_priv->kernel_context);
|
2015-08-12 21:43:41 +07:00
|
|
|
if (!client) {
|
2016-08-19 00:17:23 +07:00
|
|
|
DRM_ERROR("Failed to create normal GuC client!\n");
|
2015-08-12 21:43:41 +07:00
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
guc->execbuf_client = client;
|
2015-08-19 04:34:47 +07:00
|
|
|
host2guc_sample_forcewake(guc, client);
|
drm/i915/guc: (re)initialise doorbell h/w when enabling GuC submission
During a hibernate/resume cycle, the whole system is reset, including
the GuC and the doorbell hardware. Then the system is booted up, drivers
are loaded, etc -- the GuC firmware may be loaded and set running at
this point. But then, the booted kernel is replaced by the hibernated
image, and this resumed kernel will also try to reload the GuC firmware
(which will fail). To recover, we reset the GuC and try again (which
should work). But this GuC reset doesn't also reset the doorbell
hardware, so it can be left in a state inconsistent with that assumed
by the driver and/or the newly-loaded GuC firmware.
It would be better if the GuC reset also cleared all doorbell state,
but that's not how the hardware currently works; also, the driver cannot
directly reprogram the doorbell hardware (only the GuC can do that).
So this patch cycles through all doorbells, assigning and releasing each
in turn, so that all the doorbell hardware is left in a consistent
state, no matter how it was programmed by the previously-running kernel
and/or GuC firmware.
v2: don't use kmap_atomic() now that client page 0 is kept mapped.
Signed-off-by: Dave Gordon <david.s.gordon@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: http://patchwork.freedesktop.org/patch/msgid/1465837054-16245-2-git-send-email-david.s.gordon@intel.com
2016-06-13 23:57:34 +07:00
|
|
|
guc_init_doorbell_hw(guc);
|
2015-08-19 04:34:47 +07:00
|
|
|
|
2016-08-03 04:50:31 +07:00
|
|
|
/* Take over from manual control of ELSP (execlists) */
|
drm/i915: Allocate intel_engine_cs structure only for the enabled engines
With the possibility of addition of many more number of rings in future,
the drm_i915_private structure could bloat as an array, of type
intel_engine_cs, is embedded inside it.
struct intel_engine_cs engine[I915_NUM_ENGINES];
Though this is still fine as generally there is only a single instance of
drm_i915_private structure used, but not all of the possible rings would be
enabled or active on most of the platforms. Some memory can be saved by
allocating intel_engine_cs structure only for the enabled/active engines.
Currently the engine/ring ID is kept static and dev_priv->engine[] is simply
indexed using the enums defined in intel_engine_id.
To save memory and continue using the static engine/ring IDs, 'engine' is
defined as an array of pointers.
struct intel_engine_cs *engine[I915_NUM_ENGINES];
dev_priv->engine[engine_ID] will be NULL for disabled engine instances.
There is a text size reduction of 928 bytes, from 1028200 to 1027272, for
i915.o file (but for i915.ko file text size remain same as 1193131 bytes).
v2:
- Remove the engine iterator field added in drm_i915_private structure,
instead pass a local iterator variable to the for_each_engine**
macros. (Chris)
- Do away with intel_engine_initialized() and instead directly use the
NULL pointer check on engine pointer. (Chris)
v3:
- Remove for_each_engine_id() macro, as the updated macro for_each_engine()
can be used in place of it. (Chris)
- Protect the access to Render engine Fault register with a NULL check, as
engine specific init is done later in Driver load sequence.
v4:
- Use !!dev_priv->engine[VCS] style for the engine check in getparam. (Chris)
- Kill the superfluous init_engine_lists().
v5:
- Cleanup the intel_engines_init() & intel_engines_setup(), with respect to
allocation of intel_engine_cs structure. (Chris)
v6:
- Rebase.
v7:
- Optimize the for_each_engine_masked() macro. (Chris)
- Change the type of 'iter' local variable to enum intel_engine_id. (Chris)
- Rebase.
v8: Rebase.
v9: Rebase.
v10:
- For index calculation use engine ID instead of pointer based arithmetic in
intel_engine_sync_index() as engine pointers are not contiguous now (Chris)
- For appropriateness, rename local enum variable 'iter' to 'id'. (Joonas)
- Use for_each_engine macro for cleanup in intel_engines_init() and remove
check for NULL engine pointer in cleanup() routines. (Joonas)
v11: Rebase.
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Akash Goel <akash.goel@intel.com>
Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: http://patchwork.freedesktop.org/patch/msgid/1476378888-7372-1-git-send-email-akash.goel@intel.com
2016-10-14 00:14:48 +07:00
|
|
|
for_each_engine(engine, dev_priv, id) {
|
2016-08-03 04:50:31 +07:00
|
|
|
engine->submit_request = i915_guc_submit;
|
|
|
|
|
2016-09-09 20:11:53 +07:00
|
|
|
/* Replay the current set of previously submitted requests */
|
2016-09-09 20:11:57 +07:00
|
|
|
list_for_each_entry(request, &engine->request_list, link) {
|
|
|
|
client->wq_rsvd += sizeof(struct guc_wq_item);
|
2016-09-09 20:11:54 +07:00
|
|
|
if (i915_sw_fence_done(&request->submit))
|
|
|
|
i915_guc_submit(request);
|
2016-09-09 20:11:57 +07:00
|
|
|
}
|
2016-09-09 20:11:53 +07:00
|
|
|
}
|
|
|
|
|
2015-08-12 21:43:41 +07:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2016-06-11 00:29:26 +07:00
|
|
|
void i915_guc_submission_disable(struct drm_i915_private *dev_priv)
|
2015-08-12 21:43:41 +07:00
|
|
|
{
|
|
|
|
struct intel_guc *guc = &dev_priv->guc;
|
|
|
|
|
2016-08-03 04:50:31 +07:00
|
|
|
if (!guc->execbuf_client)
|
|
|
|
return;
|
|
|
|
|
|
|
|
/* Revert back to manual ELSP submission */
|
|
|
|
intel_execlists_enable_submission(dev_priv);
|
2016-08-03 04:50:32 +07:00
|
|
|
|
|
|
|
guc_client_free(dev_priv, guc->execbuf_client);
|
|
|
|
guc->execbuf_client = NULL;
|
2015-08-12 21:43:41 +07:00
|
|
|
}
|
|
|
|
|
2016-06-11 00:29:26 +07:00
|
|
|
void i915_guc_submission_fini(struct drm_i915_private *dev_priv)
|
2015-08-12 21:43:39 +07:00
|
|
|
{
|
|
|
|
struct intel_guc *guc = &dev_priv->guc;
|
|
|
|
|
2016-08-15 16:49:05 +07:00
|
|
|
i915_vma_unpin_and_release(&guc->ads_vma);
|
|
|
|
i915_vma_unpin_and_release(&guc->log_vma);
|
2015-08-12 21:43:40 +07:00
|
|
|
|
2016-08-15 16:48:51 +07:00
|
|
|
if (guc->ctx_pool_vma)
|
2015-08-12 21:43:39 +07:00
|
|
|
ida_destroy(&guc->ctx_ids);
|
2016-08-15 16:49:05 +07:00
|
|
|
i915_vma_unpin_and_release(&guc->ctx_pool_vma);
|
2015-08-12 21:43:39 +07:00
|
|
|
}
|
2015-09-30 23:46:37 +07:00
|
|
|
|
|
|
|
/**
|
|
|
|
* intel_guc_suspend() - notify GuC entering suspend state
|
|
|
|
* @dev: drm device
|
|
|
|
*/
|
|
|
|
int intel_guc_suspend(struct drm_device *dev)
|
|
|
|
{
|
2016-07-04 17:34:36 +07:00
|
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
2015-09-30 23:46:37 +07:00
|
|
|
struct intel_guc *guc = &dev_priv->guc;
|
2016-05-24 20:53:34 +07:00
|
|
|
struct i915_gem_context *ctx;
|
2015-09-30 23:46:37 +07:00
|
|
|
u32 data[3];
|
|
|
|
|
2016-05-20 17:42:42 +07:00
|
|
|
if (guc->guc_fw.guc_fw_load_status != GUC_FIRMWARE_SUCCESS)
|
2015-09-30 23:46:37 +07:00
|
|
|
return 0;
|
|
|
|
|
2016-01-20 02:02:54 +07:00
|
|
|
ctx = dev_priv->kernel_context;
|
2015-09-30 23:46:37 +07:00
|
|
|
|
|
|
|
data[0] = HOST2GUC_ACTION_ENTER_S_STATE;
|
|
|
|
/* any value greater than GUC_POWER_D0 */
|
|
|
|
data[1] = GUC_POWER_D1;
|
|
|
|
/* first page is shared data with GuC */
|
2016-08-15 16:49:07 +07:00
|
|
|
data[2] = i915_ggtt_offset(ctx->engine[RCS].state);
|
2015-09-30 23:46:37 +07:00
|
|
|
|
|
|
|
return host2guc_action(guc, data, ARRAY_SIZE(data));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* intel_guc_resume() - notify GuC resuming from suspend state
|
|
|
|
* @dev: drm device
|
|
|
|
*/
|
|
|
|
int intel_guc_resume(struct drm_device *dev)
|
|
|
|
{
|
2016-07-04 17:34:36 +07:00
|
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
2015-09-30 23:46:37 +07:00
|
|
|
struct intel_guc *guc = &dev_priv->guc;
|
2016-05-24 20:53:34 +07:00
|
|
|
struct i915_gem_context *ctx;
|
2015-09-30 23:46:37 +07:00
|
|
|
u32 data[3];
|
|
|
|
|
2016-05-20 17:42:42 +07:00
|
|
|
if (guc->guc_fw.guc_fw_load_status != GUC_FIRMWARE_SUCCESS)
|
2015-09-30 23:46:37 +07:00
|
|
|
return 0;
|
|
|
|
|
2016-01-20 02:02:54 +07:00
|
|
|
ctx = dev_priv->kernel_context;
|
2015-09-30 23:46:37 +07:00
|
|
|
|
|
|
|
data[0] = HOST2GUC_ACTION_EXIT_S_STATE;
|
|
|
|
data[1] = GUC_POWER_D0;
|
|
|
|
/* first page is shared data with GuC */
|
2016-08-15 16:49:07 +07:00
|
|
|
data[2] = i915_ggtt_offset(ctx->engine[RCS].state);
|
2015-09-30 23:46:37 +07:00
|
|
|
|
|
|
|
return host2guc_action(guc, data, ARRAY_SIZE(data));
|
|
|
|
}
|