linux_dsm_epyc7002/arch/sparc/kernel/signal_32.c

568 lines
15 KiB
C
Raw Normal View History

/* linux/arch/sparc/kernel/signal.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
* Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
* Copyright (C) 1996 Miguel de Icaza (miguel@nuclecu.unam.mx)
* Copyright (C) 1997 Eddie C. Dost (ecd@skynet.be)
*/
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/signal.h>
#include <linux/errno.h>
#include <linux/wait.h>
#include <linux/ptrace.h>
#include <linux/unistd.h>
#include <linux/mm.h>
#include <linux/tty.h>
#include <linux/smp.h>
#include <linux/binfmts.h> /* do_coredum */
#include <linux/bitops.h>
#include <linux/tracehook.h>
#include <linux/uaccess.h>
#include <asm/ptrace.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
#include <asm/cacheflush.h> /* flush_sig_insns */
#include <asm/switch_to.h>
#include "sigutil.h"
sparc32: fix sparse warnings in signal_32.c Fix following warnings: signal_32.c:62:17: warning: symbol 'do_sigreturn' was not declared. Should it be static? signal_32.c:126:17: warning: symbol 'do_rt_sigreturn' was not declared. Should it be static? signal_32.c:344:39: warning: incorrect type in initializer (different address spaces) signal_32.c:344:39: expected struct __siginfo_fpu_t [usertype] *fp signal_32.c:344:39: got void [noderef] <asn:1>*[assigned] tail signal_32.c:346:45: warning: incorrect type in argument 2 (different address spaces) signal_32.c:346:45: expected struct __siginfo_fpu_t [noderef] [usertype] <asn:1>*fpu signal_32.c:346:45: got struct __siginfo_fpu_t [usertype] *fp signal_32.c:352:41: warning: incorrect type in initializer (different address spaces) signal_32.c:352:41: expected struct __siginfo_rwin_t [usertype] *rwp signal_32.c:352:41: got void [noderef] <asn:1>*[assigned] tail signal_32.c:354:48: warning: incorrect type in argument 2 (different address spaces) signal_32.c:354:48: expected struct __siginfo_rwin_t [noderef] [usertype] <asn:1>*rwin signal_32.c:354:48: got struct __siginfo_rwin_t [usertype] *rwp signal_32.c:509:6: warning: symbol 'do_notify_resume' was not declared. Should it be static? signal_32.c:520:16: warning: symbol 'do_sys_sigstack' was not declared. Should it be static? Add missing prototypes and annotate two variables with __user. Signed-off-by: Sam Ravnborg <sam@ravnborg.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-04-22 02:39:26 +07:00
#include "kernel.h"
extern void fpsave(unsigned long *fpregs, unsigned long *fsr,
void *fpqueue, unsigned long *fpqdepth);
extern void fpload(unsigned long *fpregs, unsigned long *fsr);
struct signal_frame {
struct sparc_stackf ss;
__siginfo32_t info;
__siginfo_fpu_t __user *fpu_save;
unsigned long insns[2] __attribute__ ((aligned (8)));
unsigned int extramask[_NSIG_WORDS - 1];
unsigned int extra_size; /* Should be 0 */
__siginfo_rwin_t __user *rwin_save;
} __attribute__((aligned(8)));
struct rt_signal_frame {
struct sparc_stackf ss;
siginfo_t info;
struct pt_regs regs;
sigset_t mask;
__siginfo_fpu_t __user *fpu_save;
unsigned int insns[2];
stack_t stack;
unsigned int extra_size; /* Should be 0 */
__siginfo_rwin_t __user *rwin_save;
} __attribute__((aligned(8)));
/* Align macros */
#define SF_ALIGNEDSZ (((sizeof(struct signal_frame) + 7) & (~7)))
#define RT_ALIGNEDSZ (((sizeof(struct rt_signal_frame) + 7) & (~7)))
/* Checks if the fp is valid. We always build signal frames which are
* 16-byte aligned, therefore we can always enforce that the restore
* frame has that property as well.
*/
static inline bool invalid_frame_pointer(void __user *fp, int fplen)
{
if ((((unsigned long) fp) & 15) || !__access_ok((unsigned long)fp, fplen))
return true;
return false;
}
asmlinkage void do_sigreturn(struct pt_regs *regs)
{
unsigned long up_psr, pc, npc, ufp;
struct signal_frame __user *sf;
sigset_t set;
__siginfo_fpu_t __user *fpu_save;
__siginfo_rwin_t __user *rwin_save;
int err;
/* Always make any pending restarted system calls return -EINTR */
all arches, signal: move restart_block to struct task_struct If an attacker can cause a controlled kernel stack overflow, overwriting the restart block is a very juicy exploit target. This is because the restart_block is held in the same memory allocation as the kernel stack. Moving the restart block to struct task_struct prevents this exploit by making the restart_block harder to locate. Note that there are other fields in thread_info that are also easy targets, at least on some architectures. It's also a decent simplification, since the restart code is more or less identical on all architectures. [james.hogan@imgtec.com: metag: align thread_info::supervisor_stack] Signed-off-by: Andy Lutomirski <luto@amacapital.net> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Kees Cook <keescook@chromium.org> Cc: David Miller <davem@davemloft.net> Acked-by: Richard Weinberger <richard@nod.at> Cc: Richard Henderson <rth@twiddle.net> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Matt Turner <mattst88@gmail.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Hans-Christian Egtvedt <egtvedt@samfundet.no> Cc: Steven Miao <realmz6@gmail.com> Cc: Mark Salter <msalter@redhat.com> Cc: Aurelien Jacquiot <a-jacquiot@ti.com> Cc: Mikael Starvik <starvik@axis.com> Cc: Jesper Nilsson <jesper.nilsson@axis.com> Cc: David Howells <dhowells@redhat.com> Cc: Richard Kuo <rkuo@codeaurora.org> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Michal Simek <monstr@monstr.eu> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Jonas Bonn <jonas@southpole.se> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: Helge Deller <deller@gmx.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc) Tested-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc) Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Chen Liqin <liqin.linux@gmail.com> Cc: Lennox Wu <lennox.wu@gmail.com> Cc: Chris Metcalf <cmetcalf@ezchip.com> Cc: Guan Xuetao <gxt@mprc.pku.edu.cn> Cc: Chris Zankel <chris@zankel.net> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Guenter Roeck <linux@roeck-us.net> Signed-off-by: James Hogan <james.hogan@imgtec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 06:01:14 +07:00
current->restart_block.fn = do_no_restart_syscall;
synchronize_user_stack();
sf = (struct signal_frame __user *) regs->u_regs[UREG_FP];
/* 1. Make sure we are not getting garbage from the user */
if (invalid_frame_pointer(sf, sizeof(*sf)))
goto segv_and_exit;
if (get_user(ufp, &sf->info.si_regs.u_regs[UREG_FP]))
goto segv_and_exit;
if (ufp & 0x7)
goto segv_and_exit;
err = __get_user(pc, &sf->info.si_regs.pc);
err |= __get_user(npc, &sf->info.si_regs.npc);
if ((pc | npc) & 3)
goto segv_and_exit;
/* 2. Restore the state */
up_psr = regs->psr;
err |= __copy_from_user(regs, &sf->info.si_regs, sizeof(struct pt_regs));
/* User can only change condition codes and FPU enabling in %psr. */
regs->psr = (up_psr & ~(PSR_ICC | PSR_EF))
| (regs->psr & (PSR_ICC | PSR_EF));
sparc: Fix debugger syscall restart interactions. So, forever, we've had this ptrace_signal_deliver implementation which tries to handle all of the nasties that can occur when the debugger looks at a process about to take a signal. It's meant to address all of these issues inside of the kernel so that the debugger need not be mindful of such things. Problem is, this doesn't work. The idea was that we should do the syscall restart business first, so that the debugger captures that state. Otherwise, if the debugger for example saves the child's state, makes the child execute something else, then restores the saved state, we won't handle the syscall restart properly because we lose the "we're in a syscall" state. The code here worked for most cases, but if the debugger actually passes the signal through to the child unaltered, it's possible that we would do a syscall restart when we shouldn't have. In particular this breaks the case of debugging a process under a gdb which is being debugged by yet another gdb. gdb uses sigsuspend to wait for SIGCHLD of the inferior, but if gdb itself is being debugged by a top-level gdb we get a ptrace_stop(). The top-level gdb does a PTRACE_CONT with SIGCHLD to let the inferior gdb see the signal. But ptrace_signal_deliver() assumed the debugger would cancel out the signal and therefore did a syscall restart, because the return error was ERESTARTNOHAND. Fix this by simply making ptrace_signal_deliver() a nop, and providing a way for the debugger to control system call restarting properly: 1) Report a "in syscall" software bit in regs->{tstate,psr}. It is set early on in trap entry to a system call and is fully visible to the debugger via ptrace() and regsets. 2) Test this bit right before doing a syscall restart. We have to do a final recheck right after get_signal_to_deliver() in case the debugger cleared the bit during ptrace_stop(). 3) Clear the bit in trap return so we don't accidently try to set that bit in the real register. As a result we also get a ptrace_{is,clear}_syscall() for sparc32 just like sparc64 has. M68K has this same exact bug, and is now the only other user of the ptrace_signal_deliver hook. It needs to be fixed in the same exact way as sparc. Signed-off-by: David S. Miller <davem@davemloft.net>
2008-05-11 16:07:19 +07:00
/* Prevent syscall restart. */
pt_regs_clear_syscall(regs);
err |= __get_user(fpu_save, &sf->fpu_save);
if (fpu_save)
err |= restore_fpu_state(regs, fpu_save);
err |= __get_user(rwin_save, &sf->rwin_save);
if (rwin_save)
err |= restore_rwin_state(rwin_save);
/* This is pretty much atomic, no amount locking would prevent
* the races which exist anyways.
*/
err |= __get_user(set.sig[0], &sf->info.si_mask);
err |= __copy_from_user(&set.sig[1], &sf->extramask,
(_NSIG_WORDS-1) * sizeof(unsigned int));
if (err)
goto segv_and_exit;
set_current_blocked(&set);
return;
segv_and_exit:
force_sig(SIGSEGV, current);
}
asmlinkage void do_rt_sigreturn(struct pt_regs *regs)
{
struct rt_signal_frame __user *sf;
unsigned int psr, pc, npc, ufp;
__siginfo_fpu_t __user *fpu_save;
__siginfo_rwin_t __user *rwin_save;
sigset_t set;
int err;
synchronize_user_stack();
sf = (struct rt_signal_frame __user *) regs->u_regs[UREG_FP];
if (invalid_frame_pointer(sf, sizeof(*sf)))
goto segv;
if (get_user(ufp, &sf->regs.u_regs[UREG_FP]))
goto segv;
if (ufp & 0x7)
goto segv;
err = __get_user(pc, &sf->regs.pc);
err |= __get_user(npc, &sf->regs.npc);
err |= ((pc | npc) & 0x03);
err |= __get_user(regs->y, &sf->regs.y);
err |= __get_user(psr, &sf->regs.psr);
err |= __copy_from_user(&regs->u_regs[UREG_G1],
&sf->regs.u_regs[UREG_G1], 15 * sizeof(u32));
regs->psr = (regs->psr & ~PSR_ICC) | (psr & PSR_ICC);
sparc: Fix debugger syscall restart interactions. So, forever, we've had this ptrace_signal_deliver implementation which tries to handle all of the nasties that can occur when the debugger looks at a process about to take a signal. It's meant to address all of these issues inside of the kernel so that the debugger need not be mindful of such things. Problem is, this doesn't work. The idea was that we should do the syscall restart business first, so that the debugger captures that state. Otherwise, if the debugger for example saves the child's state, makes the child execute something else, then restores the saved state, we won't handle the syscall restart properly because we lose the "we're in a syscall" state. The code here worked for most cases, but if the debugger actually passes the signal through to the child unaltered, it's possible that we would do a syscall restart when we shouldn't have. In particular this breaks the case of debugging a process under a gdb which is being debugged by yet another gdb. gdb uses sigsuspend to wait for SIGCHLD of the inferior, but if gdb itself is being debugged by a top-level gdb we get a ptrace_stop(). The top-level gdb does a PTRACE_CONT with SIGCHLD to let the inferior gdb see the signal. But ptrace_signal_deliver() assumed the debugger would cancel out the signal and therefore did a syscall restart, because the return error was ERESTARTNOHAND. Fix this by simply making ptrace_signal_deliver() a nop, and providing a way for the debugger to control system call restarting properly: 1) Report a "in syscall" software bit in regs->{tstate,psr}. It is set early on in trap entry to a system call and is fully visible to the debugger via ptrace() and regsets. 2) Test this bit right before doing a syscall restart. We have to do a final recheck right after get_signal_to_deliver() in case the debugger cleared the bit during ptrace_stop(). 3) Clear the bit in trap return so we don't accidently try to set that bit in the real register. As a result we also get a ptrace_{is,clear}_syscall() for sparc32 just like sparc64 has. M68K has this same exact bug, and is now the only other user of the ptrace_signal_deliver hook. It needs to be fixed in the same exact way as sparc. Signed-off-by: David S. Miller <davem@davemloft.net>
2008-05-11 16:07:19 +07:00
/* Prevent syscall restart. */
pt_regs_clear_syscall(regs);
err |= __get_user(fpu_save, &sf->fpu_save);
if (!err && fpu_save)
err |= restore_fpu_state(regs, fpu_save);
err |= __copy_from_user(&set, &sf->mask, sizeof(sigset_t));
err |= restore_altstack(&sf->stack);
if (err)
goto segv;
regs->pc = pc;
regs->npc = npc;
err |= __get_user(rwin_save, &sf->rwin_save);
if (!err && rwin_save) {
if (restore_rwin_state(rwin_save))
goto segv;
}
set_current_blocked(&set);
return;
segv:
force_sig(SIGSEGV, current);
}
static inline void __user *get_sigframe(struct ksignal *ksig, struct pt_regs *regs, unsigned long framesize)
{
unsigned long sp = regs->u_regs[UREG_FP];
/*
* If we are on the alternate signal stack and would overflow it, don't.
* Return an always-bogus address instead so we will die with SIGSEGV.
*/
if (on_sig_stack(sp) && !likely(on_sig_stack(sp - framesize)))
return (void __user *) -1L;
/* This is the X/Open sanctioned signal stack switching. */
sp = sigsp(sp, ksig) - framesize;
/* Always align the stack frame. This handles two cases. First,
* sigaltstack need not be mindful of platform specific stack
* alignment. Second, if we took this signal because the stack
* is not aligned properly, we'd like to take the signal cleanly
* and report that.
*/
sp &= ~15UL;
return (void __user *) sp;
}
static int setup_frame(struct ksignal *ksig, struct pt_regs *regs,
sigset_t *oldset)
{
struct signal_frame __user *sf;
int sigframe_size, err, wsaved;
void __user *tail;
/* 1. Make sure everything is clean */
synchronize_user_stack();
wsaved = current_thread_info()->w_saved;
sigframe_size = sizeof(*sf);
if (used_math())
sigframe_size += sizeof(__siginfo_fpu_t);
if (wsaved)
sigframe_size += sizeof(__siginfo_rwin_t);
sf = (struct signal_frame __user *)
get_sigframe(ksig, regs, sigframe_size);
if (invalid_frame_pointer(sf, sigframe_size)) {
do_exit(SIGILL);
return -EINVAL;
}
tail = sf + 1;
/* 2. Save the current process state */
err = __copy_to_user(&sf->info.si_regs, regs, sizeof(struct pt_regs));
err |= __put_user(0, &sf->extra_size);
if (used_math()) {
__siginfo_fpu_t __user *fp = tail;
tail += sizeof(*fp);
err |= save_fpu_state(regs, fp);
err |= __put_user(fp, &sf->fpu_save);
} else {
err |= __put_user(0, &sf->fpu_save);
}
if (wsaved) {
__siginfo_rwin_t __user *rwp = tail;
tail += sizeof(*rwp);
err |= save_rwin_state(wsaved, rwp);
err |= __put_user(rwp, &sf->rwin_save);
} else {
err |= __put_user(0, &sf->rwin_save);
}
err |= __put_user(oldset->sig[0], &sf->info.si_mask);
err |= __copy_to_user(sf->extramask, &oldset->sig[1],
(_NSIG_WORDS - 1) * sizeof(unsigned int));
if (!wsaved) {
err |= __copy_to_user(sf, (char *) regs->u_regs[UREG_FP],
sizeof(struct reg_window32));
} else {
struct reg_window32 *rp;
rp = &current_thread_info()->reg_window[wsaved - 1];
err |= __copy_to_user(sf, rp, sizeof(struct reg_window32));
}
if (err)
return err;
/* 3. signal handler back-trampoline and parameters */
regs->u_regs[UREG_FP] = (unsigned long) sf;
regs->u_regs[UREG_I0] = ksig->sig;
regs->u_regs[UREG_I1] = (unsigned long) &sf->info;
regs->u_regs[UREG_I2] = (unsigned long) &sf->info;
/* 4. signal handler */
regs->pc = (unsigned long) ksig->ka.sa.sa_handler;
regs->npc = (regs->pc + 4);
/* 5. return to kernel instructions */
if (ksig->ka.ka_restorer)
regs->u_regs[UREG_I7] = (unsigned long)ksig->ka.ka_restorer;
else {
regs->u_regs[UREG_I7] = (unsigned long)(&(sf->insns[0]) - 2);
/* mov __NR_sigreturn, %g1 */
err |= __put_user(0x821020d8, &sf->insns[0]);
/* t 0x10 */
err |= __put_user(0x91d02010, &sf->insns[1]);
if (err)
return err;
/* Flush instruction space. */
flush_sig_insns(current->mm, (unsigned long) &(sf->insns[0]));
}
return 0;
}
static int setup_rt_frame(struct ksignal *ksig, struct pt_regs *regs,
sigset_t *oldset)
{
struct rt_signal_frame __user *sf;
int sigframe_size, wsaved;
void __user *tail;
unsigned int psr;
int err;
synchronize_user_stack();
wsaved = current_thread_info()->w_saved;
sigframe_size = sizeof(*sf);
if (used_math())
sigframe_size += sizeof(__siginfo_fpu_t);
if (wsaved)
sigframe_size += sizeof(__siginfo_rwin_t);
sf = (struct rt_signal_frame __user *)
get_sigframe(ksig, regs, sigframe_size);
if (invalid_frame_pointer(sf, sigframe_size)) {
do_exit(SIGILL);
return -EINVAL;
}
tail = sf + 1;
err = __put_user(regs->pc, &sf->regs.pc);
err |= __put_user(regs->npc, &sf->regs.npc);
err |= __put_user(regs->y, &sf->regs.y);
psr = regs->psr;
if (used_math())
psr |= PSR_EF;
err |= __put_user(psr, &sf->regs.psr);
err |= __copy_to_user(&sf->regs.u_regs, regs->u_regs, sizeof(regs->u_regs));
err |= __put_user(0, &sf->extra_size);
if (psr & PSR_EF) {
sparc32: fix sparse warnings in signal_32.c Fix following warnings: signal_32.c:62:17: warning: symbol 'do_sigreturn' was not declared. Should it be static? signal_32.c:126:17: warning: symbol 'do_rt_sigreturn' was not declared. Should it be static? signal_32.c:344:39: warning: incorrect type in initializer (different address spaces) signal_32.c:344:39: expected struct __siginfo_fpu_t [usertype] *fp signal_32.c:344:39: got void [noderef] <asn:1>*[assigned] tail signal_32.c:346:45: warning: incorrect type in argument 2 (different address spaces) signal_32.c:346:45: expected struct __siginfo_fpu_t [noderef] [usertype] <asn:1>*fpu signal_32.c:346:45: got struct __siginfo_fpu_t [usertype] *fp signal_32.c:352:41: warning: incorrect type in initializer (different address spaces) signal_32.c:352:41: expected struct __siginfo_rwin_t [usertype] *rwp signal_32.c:352:41: got void [noderef] <asn:1>*[assigned] tail signal_32.c:354:48: warning: incorrect type in argument 2 (different address spaces) signal_32.c:354:48: expected struct __siginfo_rwin_t [noderef] [usertype] <asn:1>*rwin signal_32.c:354:48: got struct __siginfo_rwin_t [usertype] *rwp signal_32.c:509:6: warning: symbol 'do_notify_resume' was not declared. Should it be static? signal_32.c:520:16: warning: symbol 'do_sys_sigstack' was not declared. Should it be static? Add missing prototypes and annotate two variables with __user. Signed-off-by: Sam Ravnborg <sam@ravnborg.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-04-22 02:39:26 +07:00
__siginfo_fpu_t __user *fp = tail;
tail += sizeof(*fp);
err |= save_fpu_state(regs, fp);
err |= __put_user(fp, &sf->fpu_save);
} else {
err |= __put_user(0, &sf->fpu_save);
}
if (wsaved) {
sparc32: fix sparse warnings in signal_32.c Fix following warnings: signal_32.c:62:17: warning: symbol 'do_sigreturn' was not declared. Should it be static? signal_32.c:126:17: warning: symbol 'do_rt_sigreturn' was not declared. Should it be static? signal_32.c:344:39: warning: incorrect type in initializer (different address spaces) signal_32.c:344:39: expected struct __siginfo_fpu_t [usertype] *fp signal_32.c:344:39: got void [noderef] <asn:1>*[assigned] tail signal_32.c:346:45: warning: incorrect type in argument 2 (different address spaces) signal_32.c:346:45: expected struct __siginfo_fpu_t [noderef] [usertype] <asn:1>*fpu signal_32.c:346:45: got struct __siginfo_fpu_t [usertype] *fp signal_32.c:352:41: warning: incorrect type in initializer (different address spaces) signal_32.c:352:41: expected struct __siginfo_rwin_t [usertype] *rwp signal_32.c:352:41: got void [noderef] <asn:1>*[assigned] tail signal_32.c:354:48: warning: incorrect type in argument 2 (different address spaces) signal_32.c:354:48: expected struct __siginfo_rwin_t [noderef] [usertype] <asn:1>*rwin signal_32.c:354:48: got struct __siginfo_rwin_t [usertype] *rwp signal_32.c:509:6: warning: symbol 'do_notify_resume' was not declared. Should it be static? signal_32.c:520:16: warning: symbol 'do_sys_sigstack' was not declared. Should it be static? Add missing prototypes and annotate two variables with __user. Signed-off-by: Sam Ravnborg <sam@ravnborg.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-04-22 02:39:26 +07:00
__siginfo_rwin_t __user *rwp = tail;
tail += sizeof(*rwp);
err |= save_rwin_state(wsaved, rwp);
err |= __put_user(rwp, &sf->rwin_save);
} else {
err |= __put_user(0, &sf->rwin_save);
}
err |= __copy_to_user(&sf->mask, &oldset->sig[0], sizeof(sigset_t));
/* Setup sigaltstack */
err |= __save_altstack(&sf->stack, regs->u_regs[UREG_FP]);
if (!wsaved) {
err |= __copy_to_user(sf, (char *) regs->u_regs[UREG_FP],
sizeof(struct reg_window32));
} else {
struct reg_window32 *rp;
rp = &current_thread_info()->reg_window[wsaved - 1];
err |= __copy_to_user(sf, rp, sizeof(struct reg_window32));
}
err |= copy_siginfo_to_user(&sf->info, &ksig->info);
if (err)
return err;
regs->u_regs[UREG_FP] = (unsigned long) sf;
regs->u_regs[UREG_I0] = ksig->sig;
regs->u_regs[UREG_I1] = (unsigned long) &sf->info;
regs->u_regs[UREG_I2] = (unsigned long) &sf->regs;
regs->pc = (unsigned long) ksig->ka.sa.sa_handler;
regs->npc = (regs->pc + 4);
if (ksig->ka.ka_restorer)
regs->u_regs[UREG_I7] = (unsigned long)ksig->ka.ka_restorer;
else {
regs->u_regs[UREG_I7] = (unsigned long)(&(sf->insns[0]) - 2);
/* mov __NR_sigreturn, %g1 */
err |= __put_user(0x821020d8, &sf->insns[0]);
/* t 0x10 */
err |= __put_user(0x91d02010, &sf->insns[1]);
if (err)
return err;
/* Flush instruction space. */
flush_sig_insns(current->mm, (unsigned long) &(sf->insns[0]));
}
return 0;
}
static inline void
handle_signal(struct ksignal *ksig, struct pt_regs *regs)
{
sigset_t *oldset = sigmask_to_save();
int err;
if (ksig->ka.sa.sa_flags & SA_SIGINFO)
err = setup_rt_frame(ksig, regs, oldset);
else
err = setup_frame(ksig, regs, oldset);
signal_setup_done(err, ksig, 0);
}
static inline void syscall_restart(unsigned long orig_i0, struct pt_regs *regs,
struct sigaction *sa)
{
switch(regs->u_regs[UREG_I0]) {
case ERESTART_RESTARTBLOCK:
case ERESTARTNOHAND:
no_system_call_restart:
regs->u_regs[UREG_I0] = EINTR;
regs->psr |= PSR_C;
break;
case ERESTARTSYS:
if (!(sa->sa_flags & SA_RESTART))
goto no_system_call_restart;
/* fallthrough */
case ERESTARTNOINTR:
regs->u_regs[UREG_I0] = orig_i0;
regs->pc -= 4;
regs->npc -= 4;
}
}
/* Note that 'init' is a special process: it doesn't get signals it doesn't
* want to handle. Thus you cannot kill init even with a SIGKILL even by
* mistake.
*/
static void do_signal(struct pt_regs *regs, unsigned long orig_i0)
{
struct ksignal ksig;
sparc: Fix debugger syscall restart interactions. So, forever, we've had this ptrace_signal_deliver implementation which tries to handle all of the nasties that can occur when the debugger looks at a process about to take a signal. It's meant to address all of these issues inside of the kernel so that the debugger need not be mindful of such things. Problem is, this doesn't work. The idea was that we should do the syscall restart business first, so that the debugger captures that state. Otherwise, if the debugger for example saves the child's state, makes the child execute something else, then restores the saved state, we won't handle the syscall restart properly because we lose the "we're in a syscall" state. The code here worked for most cases, but if the debugger actually passes the signal through to the child unaltered, it's possible that we would do a syscall restart when we shouldn't have. In particular this breaks the case of debugging a process under a gdb which is being debugged by yet another gdb. gdb uses sigsuspend to wait for SIGCHLD of the inferior, but if gdb itself is being debugged by a top-level gdb we get a ptrace_stop(). The top-level gdb does a PTRACE_CONT with SIGCHLD to let the inferior gdb see the signal. But ptrace_signal_deliver() assumed the debugger would cancel out the signal and therefore did a syscall restart, because the return error was ERESTARTNOHAND. Fix this by simply making ptrace_signal_deliver() a nop, and providing a way for the debugger to control system call restarting properly: 1) Report a "in syscall" software bit in regs->{tstate,psr}. It is set early on in trap entry to a system call and is fully visible to the debugger via ptrace() and regsets. 2) Test this bit right before doing a syscall restart. We have to do a final recheck right after get_signal_to_deliver() in case the debugger cleared the bit during ptrace_stop(). 3) Clear the bit in trap return so we don't accidently try to set that bit in the real register. As a result we also get a ptrace_{is,clear}_syscall() for sparc32 just like sparc64 has. M68K has this same exact bug, and is now the only other user of the ptrace_signal_deliver hook. It needs to be fixed in the same exact way as sparc. Signed-off-by: David S. Miller <davem@davemloft.net>
2008-05-11 16:07:19 +07:00
int restart_syscall;
bool has_handler;
/* It's a lot of work and synchronization to add a new ptrace
* register for GDB to save and restore in order to get
* orig_i0 correct for syscall restarts when debugging.
*
* Although it should be the case that most of the global
* registers are volatile across a system call, glibc already
* depends upon that fact that we preserve them. So we can't
* just use any global register to save away the orig_i0 value.
*
* In particular %g2, %g3, %g4, and %g5 are all assumed to be
* preserved across a system call trap by various pieces of
* code in glibc.
*
* %g7 is used as the "thread register". %g6 is not used in
* any fixed manner. %g6 is used as a scratch register and
* a compiler temporary, but it's value is never used across
* a system call. Therefore %g6 is usable for orig_i0 storage.
*/
sparc: Fix debugger syscall restart interactions. So, forever, we've had this ptrace_signal_deliver implementation which tries to handle all of the nasties that can occur when the debugger looks at a process about to take a signal. It's meant to address all of these issues inside of the kernel so that the debugger need not be mindful of such things. Problem is, this doesn't work. The idea was that we should do the syscall restart business first, so that the debugger captures that state. Otherwise, if the debugger for example saves the child's state, makes the child execute something else, then restores the saved state, we won't handle the syscall restart properly because we lose the "we're in a syscall" state. The code here worked for most cases, but if the debugger actually passes the signal through to the child unaltered, it's possible that we would do a syscall restart when we shouldn't have. In particular this breaks the case of debugging a process under a gdb which is being debugged by yet another gdb. gdb uses sigsuspend to wait for SIGCHLD of the inferior, but if gdb itself is being debugged by a top-level gdb we get a ptrace_stop(). The top-level gdb does a PTRACE_CONT with SIGCHLD to let the inferior gdb see the signal. But ptrace_signal_deliver() assumed the debugger would cancel out the signal and therefore did a syscall restart, because the return error was ERESTARTNOHAND. Fix this by simply making ptrace_signal_deliver() a nop, and providing a way for the debugger to control system call restarting properly: 1) Report a "in syscall" software bit in regs->{tstate,psr}. It is set early on in trap entry to a system call and is fully visible to the debugger via ptrace() and regsets. 2) Test this bit right before doing a syscall restart. We have to do a final recheck right after get_signal_to_deliver() in case the debugger cleared the bit during ptrace_stop(). 3) Clear the bit in trap return so we don't accidently try to set that bit in the real register. As a result we also get a ptrace_{is,clear}_syscall() for sparc32 just like sparc64 has. M68K has this same exact bug, and is now the only other user of the ptrace_signal_deliver hook. It needs to be fixed in the same exact way as sparc. Signed-off-by: David S. Miller <davem@davemloft.net>
2008-05-11 16:07:19 +07:00
if (pt_regs_is_syscall(regs) && (regs->psr & PSR_C))
regs->u_regs[UREG_G6] = orig_i0;
has_handler = get_signal(&ksig);
sparc: Fix debugger syscall restart interactions. So, forever, we've had this ptrace_signal_deliver implementation which tries to handle all of the nasties that can occur when the debugger looks at a process about to take a signal. It's meant to address all of these issues inside of the kernel so that the debugger need not be mindful of such things. Problem is, this doesn't work. The idea was that we should do the syscall restart business first, so that the debugger captures that state. Otherwise, if the debugger for example saves the child's state, makes the child execute something else, then restores the saved state, we won't handle the syscall restart properly because we lose the "we're in a syscall" state. The code here worked for most cases, but if the debugger actually passes the signal through to the child unaltered, it's possible that we would do a syscall restart when we shouldn't have. In particular this breaks the case of debugging a process under a gdb which is being debugged by yet another gdb. gdb uses sigsuspend to wait for SIGCHLD of the inferior, but if gdb itself is being debugged by a top-level gdb we get a ptrace_stop(). The top-level gdb does a PTRACE_CONT with SIGCHLD to let the inferior gdb see the signal. But ptrace_signal_deliver() assumed the debugger would cancel out the signal and therefore did a syscall restart, because the return error was ERESTARTNOHAND. Fix this by simply making ptrace_signal_deliver() a nop, and providing a way for the debugger to control system call restarting properly: 1) Report a "in syscall" software bit in regs->{tstate,psr}. It is set early on in trap entry to a system call and is fully visible to the debugger via ptrace() and regsets. 2) Test this bit right before doing a syscall restart. We have to do a final recheck right after get_signal_to_deliver() in case the debugger cleared the bit during ptrace_stop(). 3) Clear the bit in trap return so we don't accidently try to set that bit in the real register. As a result we also get a ptrace_{is,clear}_syscall() for sparc32 just like sparc64 has. M68K has this same exact bug, and is now the only other user of the ptrace_signal_deliver hook. It needs to be fixed in the same exact way as sparc. Signed-off-by: David S. Miller <davem@davemloft.net>
2008-05-11 16:07:19 +07:00
/* If the debugger messes with the program counter, it clears
* the software "in syscall" bit, directing us to not perform
* a syscall restart.
*/
restart_syscall = 0;
if (pt_regs_is_syscall(regs) && (regs->psr & PSR_C)) {
restart_syscall = 1;
orig_i0 = regs->u_regs[UREG_G6];
}
if (has_handler) {
sparc: Fix debugger syscall restart interactions. So, forever, we've had this ptrace_signal_deliver implementation which tries to handle all of the nasties that can occur when the debugger looks at a process about to take a signal. It's meant to address all of these issues inside of the kernel so that the debugger need not be mindful of such things. Problem is, this doesn't work. The idea was that we should do the syscall restart business first, so that the debugger captures that state. Otherwise, if the debugger for example saves the child's state, makes the child execute something else, then restores the saved state, we won't handle the syscall restart properly because we lose the "we're in a syscall" state. The code here worked for most cases, but if the debugger actually passes the signal through to the child unaltered, it's possible that we would do a syscall restart when we shouldn't have. In particular this breaks the case of debugging a process under a gdb which is being debugged by yet another gdb. gdb uses sigsuspend to wait for SIGCHLD of the inferior, but if gdb itself is being debugged by a top-level gdb we get a ptrace_stop(). The top-level gdb does a PTRACE_CONT with SIGCHLD to let the inferior gdb see the signal. But ptrace_signal_deliver() assumed the debugger would cancel out the signal and therefore did a syscall restart, because the return error was ERESTARTNOHAND. Fix this by simply making ptrace_signal_deliver() a nop, and providing a way for the debugger to control system call restarting properly: 1) Report a "in syscall" software bit in regs->{tstate,psr}. It is set early on in trap entry to a system call and is fully visible to the debugger via ptrace() and regsets. 2) Test this bit right before doing a syscall restart. We have to do a final recheck right after get_signal_to_deliver() in case the debugger cleared the bit during ptrace_stop(). 3) Clear the bit in trap return so we don't accidently try to set that bit in the real register. As a result we also get a ptrace_{is,clear}_syscall() for sparc32 just like sparc64 has. M68K has this same exact bug, and is now the only other user of the ptrace_signal_deliver hook. It needs to be fixed in the same exact way as sparc. Signed-off-by: David S. Miller <davem@davemloft.net>
2008-05-11 16:07:19 +07:00
if (restart_syscall)
syscall_restart(orig_i0, regs, &ksig.ka.sa);
handle_signal(&ksig, regs);
} else {
if (restart_syscall) {
switch (regs->u_regs[UREG_I0]) {
case ERESTARTNOHAND:
case ERESTARTSYS:
case ERESTARTNOINTR:
/* replay the system call when we are done */
regs->u_regs[UREG_I0] = orig_i0;
regs->pc -= 4;
regs->npc -= 4;
pt_regs_clear_syscall(regs);
case ERESTART_RESTARTBLOCK:
regs->u_regs[UREG_G1] = __NR_restart_syscall;
regs->pc -= 4;
regs->npc -= 4;
pt_regs_clear_syscall(regs);
}
}
restore_saved_sigmask();
}
}
void do_notify_resume(struct pt_regs *regs, unsigned long orig_i0,
unsigned long thread_info_flags)
{
if (thread_info_flags & _TIF_SIGPENDING)
do_signal(regs, orig_i0);
if (thread_info_flags & _TIF_NOTIFY_RESUME) {
clear_thread_flag(TIF_NOTIFY_RESUME);
tracehook_notify_resume(regs);
}
}
sparc32: fix sparse warnings in signal_32.c Fix following warnings: signal_32.c:62:17: warning: symbol 'do_sigreturn' was not declared. Should it be static? signal_32.c:126:17: warning: symbol 'do_rt_sigreturn' was not declared. Should it be static? signal_32.c:344:39: warning: incorrect type in initializer (different address spaces) signal_32.c:344:39: expected struct __siginfo_fpu_t [usertype] *fp signal_32.c:344:39: got void [noderef] <asn:1>*[assigned] tail signal_32.c:346:45: warning: incorrect type in argument 2 (different address spaces) signal_32.c:346:45: expected struct __siginfo_fpu_t [noderef] [usertype] <asn:1>*fpu signal_32.c:346:45: got struct __siginfo_fpu_t [usertype] *fp signal_32.c:352:41: warning: incorrect type in initializer (different address spaces) signal_32.c:352:41: expected struct __siginfo_rwin_t [usertype] *rwp signal_32.c:352:41: got void [noderef] <asn:1>*[assigned] tail signal_32.c:354:48: warning: incorrect type in argument 2 (different address spaces) signal_32.c:354:48: expected struct __siginfo_rwin_t [noderef] [usertype] <asn:1>*rwin signal_32.c:354:48: got struct __siginfo_rwin_t [usertype] *rwp signal_32.c:509:6: warning: symbol 'do_notify_resume' was not declared. Should it be static? signal_32.c:520:16: warning: symbol 'do_sys_sigstack' was not declared. Should it be static? Add missing prototypes and annotate two variables with __user. Signed-off-by: Sam Ravnborg <sam@ravnborg.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-04-22 02:39:26 +07:00
asmlinkage int do_sys_sigstack(struct sigstack __user *ssptr,
struct sigstack __user *ossptr,
unsigned long sp)
{
int ret = -EFAULT;
/* First see if old state is wanted. */
if (ossptr) {
if (put_user(current->sas_ss_sp + current->sas_ss_size,
&ossptr->the_stack) ||
__put_user(on_sig_stack(sp), &ossptr->cur_status))
goto out;
}
/* Now see if we want to update the new state. */
if (ssptr) {
char *ss_sp;
if (get_user(ss_sp, &ssptr->the_stack))
goto out;
/* If the current stack was set with sigaltstack, don't
swap stacks while we are on it. */
ret = -EPERM;
if (current->sas_ss_sp && on_sig_stack(sp))
goto out;
/* Since we don't know the extent of the stack, and we don't
track onstack-ness, but rather calculate it, we must
presume a size. Ho hum this interface is lossy. */
current->sas_ss_sp = (unsigned long)ss_sp - SIGSTKSZ;
current->sas_ss_size = SIGSTKSZ;
}
ret = 0;
out:
return ret;
}