linux_dsm_epyc7002/fs/afs/rxrpc.c

841 lines
20 KiB
C
Raw Normal View History

/* Maintain an RxRPC server socket to do AFS communications through
*
* Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 15:04:11 +07:00
#include <linux/slab.h>
#include <linux/sched/signal.h>
#include <net/sock.h>
#include <net/af_rxrpc.h>
#include <rxrpc/packet.h>
#include "internal.h"
#include "afs_cm.h"
struct socket *afs_socket; /* my RxRPC socket */
static struct workqueue_struct *afs_async_calls;
rxrpc: Preallocate peers, conns and calls for incoming service requests Make it possible for the data_ready handler called from the UDP transport socket to completely instantiate an rxrpc_call structure and make it immediately live by preallocating all the memory it might need. The idea is to cut out the background thread usage as much as possible. [Note that the preallocated structs are not actually used in this patch - that will be done in a future patch.] If insufficient resources are available in the preallocation buffers, it will be possible to discard the DATA packet in the data_ready handler or schedule a BUSY packet without the need to schedule an attempt at allocation in a background thread. To this end: (1) Preallocate rxrpc_peer, rxrpc_connection and rxrpc_call structs to a maximum number each of the listen backlog size. The backlog size is limited to a maxmimum of 32. Only this many of each can be in the preallocation buffer. (2) For userspace sockets, the preallocation is charged initially by listen() and will be recharged by accepting or rejecting pending new incoming calls. (3) For kernel services {,re,dis}charging of the preallocation buffers is handled manually. Two notifier callbacks have to be provided before kernel_listen() is invoked: (a) An indication that a new call has been instantiated. This can be used to trigger background recharging. (b) An indication that a call is being discarded. This is used when the socket is being released. A function, rxrpc_kernel_charge_accept() is called by the kernel service to preallocate a single call. It should be passed the user ID to be used for that call and a callback to associate the rxrpc call with the kernel service's side of the ID. (4) Discard the preallocation when the socket is closed. (5) Temporarily bump the refcount on the call allocated in rxrpc_incoming_call() so that rxrpc_release_call() can ditch the preallocation ref on service calls unconditionally. This will no longer be necessary once the preallocation is used. Note that this does not yet control the number of active service calls on a client - that will come in a later patch. A future development would be to provide a setsockopt() call that allows a userspace server to manually charge the preallocation buffer. This would allow user call IDs to be provided in advance and the awkward manual accept stage to be bypassed. Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 17:10:12 +07:00
static struct afs_call *afs_spare_incoming_call;
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 17:38:36 +07:00
atomic_t afs_outstanding_calls;
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long);
static int afs_wait_for_call_to_complete(struct afs_call *);
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long);
static void afs_process_async_call(struct work_struct *);
rxrpc: Preallocate peers, conns and calls for incoming service requests Make it possible for the data_ready handler called from the UDP transport socket to completely instantiate an rxrpc_call structure and make it immediately live by preallocating all the memory it might need. The idea is to cut out the background thread usage as much as possible. [Note that the preallocated structs are not actually used in this patch - that will be done in a future patch.] If insufficient resources are available in the preallocation buffers, it will be possible to discard the DATA packet in the data_ready handler or schedule a BUSY packet without the need to schedule an attempt at allocation in a background thread. To this end: (1) Preallocate rxrpc_peer, rxrpc_connection and rxrpc_call structs to a maximum number each of the listen backlog size. The backlog size is limited to a maxmimum of 32. Only this many of each can be in the preallocation buffer. (2) For userspace sockets, the preallocation is charged initially by listen() and will be recharged by accepting or rejecting pending new incoming calls. (3) For kernel services {,re,dis}charging of the preallocation buffers is handled manually. Two notifier callbacks have to be provided before kernel_listen() is invoked: (a) An indication that a new call has been instantiated. This can be used to trigger background recharging. (b) An indication that a call is being discarded. This is used when the socket is being released. A function, rxrpc_kernel_charge_accept() is called by the kernel service to preallocate a single call. It should be passed the user ID to be used for that call and a callback to associate the rxrpc call with the kernel service's side of the ID. (4) Discard the preallocation when the socket is closed. (5) Temporarily bump the refcount on the call allocated in rxrpc_incoming_call() so that rxrpc_release_call() can ditch the preallocation ref on service calls unconditionally. This will no longer be necessary once the preallocation is used. Note that this does not yet control the number of active service calls on a client - that will come in a later patch. A future development would be to provide a setsockopt() call that allows a userspace server to manually charge the preallocation buffer. This would allow user call IDs to be provided in advance and the awkward manual accept stage to be bypassed. Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 17:10:12 +07:00
static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long);
static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long);
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
static int afs_deliver_cm_op_id(struct afs_call *);
/* asynchronous incoming call initial processing */
static const struct afs_call_type afs_RXCMxxxx = {
.name = "CB.xxxx",
.deliver = afs_deliver_cm_op_id,
.abort_to_error = afs_abort_to_error,
};
rxrpc: Preallocate peers, conns and calls for incoming service requests Make it possible for the data_ready handler called from the UDP transport socket to completely instantiate an rxrpc_call structure and make it immediately live by preallocating all the memory it might need. The idea is to cut out the background thread usage as much as possible. [Note that the preallocated structs are not actually used in this patch - that will be done in a future patch.] If insufficient resources are available in the preallocation buffers, it will be possible to discard the DATA packet in the data_ready handler or schedule a BUSY packet without the need to schedule an attempt at allocation in a background thread. To this end: (1) Preallocate rxrpc_peer, rxrpc_connection and rxrpc_call structs to a maximum number each of the listen backlog size. The backlog size is limited to a maxmimum of 32. Only this many of each can be in the preallocation buffer. (2) For userspace sockets, the preallocation is charged initially by listen() and will be recharged by accepting or rejecting pending new incoming calls. (3) For kernel services {,re,dis}charging of the preallocation buffers is handled manually. Two notifier callbacks have to be provided before kernel_listen() is invoked: (a) An indication that a new call has been instantiated. This can be used to trigger background recharging. (b) An indication that a call is being discarded. This is used when the socket is being released. A function, rxrpc_kernel_charge_accept() is called by the kernel service to preallocate a single call. It should be passed the user ID to be used for that call and a callback to associate the rxrpc call with the kernel service's side of the ID. (4) Discard the preallocation when the socket is closed. (5) Temporarily bump the refcount on the call allocated in rxrpc_incoming_call() so that rxrpc_release_call() can ditch the preallocation ref on service calls unconditionally. This will no longer be necessary once the preallocation is used. Note that this does not yet control the number of active service calls on a client - that will come in a later patch. A future development would be to provide a setsockopt() call that allows a userspace server to manually charge the preallocation buffer. This would allow user call IDs to be provided in advance and the awkward manual accept stage to be bypassed. Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 17:10:12 +07:00
static void afs_charge_preallocation(struct work_struct *);
rxrpc: Preallocate peers, conns and calls for incoming service requests Make it possible for the data_ready handler called from the UDP transport socket to completely instantiate an rxrpc_call structure and make it immediately live by preallocating all the memory it might need. The idea is to cut out the background thread usage as much as possible. [Note that the preallocated structs are not actually used in this patch - that will be done in a future patch.] If insufficient resources are available in the preallocation buffers, it will be possible to discard the DATA packet in the data_ready handler or schedule a BUSY packet without the need to schedule an attempt at allocation in a background thread. To this end: (1) Preallocate rxrpc_peer, rxrpc_connection and rxrpc_call structs to a maximum number each of the listen backlog size. The backlog size is limited to a maxmimum of 32. Only this many of each can be in the preallocation buffer. (2) For userspace sockets, the preallocation is charged initially by listen() and will be recharged by accepting or rejecting pending new incoming calls. (3) For kernel services {,re,dis}charging of the preallocation buffers is handled manually. Two notifier callbacks have to be provided before kernel_listen() is invoked: (a) An indication that a new call has been instantiated. This can be used to trigger background recharging. (b) An indication that a call is being discarded. This is used when the socket is being released. A function, rxrpc_kernel_charge_accept() is called by the kernel service to preallocate a single call. It should be passed the user ID to be used for that call and a callback to associate the rxrpc call with the kernel service's side of the ID. (4) Discard the preallocation when the socket is closed. (5) Temporarily bump the refcount on the call allocated in rxrpc_incoming_call() so that rxrpc_release_call() can ditch the preallocation ref on service calls unconditionally. This will no longer be necessary once the preallocation is used. Note that this does not yet control the number of active service calls on a client - that will come in a later patch. A future development would be to provide a setsockopt() call that allows a userspace server to manually charge the preallocation buffer. This would allow user call IDs to be provided in advance and the awkward manual accept stage to be bypassed. Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 17:10:12 +07:00
static DECLARE_WORK(afs_charge_preallocation_work, afs_charge_preallocation);
static int afs_wait_atomic_t(atomic_t *p)
{
schedule();
return 0;
}
/*
* open an RxRPC socket and bind it to be a server for callback notifications
* - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
*/
int afs_open_socket(void)
{
struct sockaddr_rxrpc srx;
struct socket *socket;
int ret;
_enter("");
rxrpc: Limit the listening backlog Limit the socket incoming call backlog queue size so that a remote client can't pump in sufficient new calls that the server runs out of memory. Note that this is partially theoretical at the moment since whilst the number of calls is limited, the number of packets trying to set up new calls is not. This will be addressed in a later patch. If the caller of listen() specifies a backlog INT_MAX, then they get the current maximum; anything else greater than max_backlog or anything negative incurs EINVAL. The limit on the maximum queue size can be set by: echo N >/proc/sys/net/rxrpc/max_backlog where 4<=N<=32. Further, set the default backlog to 0, requiring listen() to be called before we start actually queueing new calls. Whilst this kind of is a change in the UAPI, the caller can't actually *accept* new calls anyway unless they've first called listen() to put the socket into the LISTENING state - thus the aforementioned new calls would otherwise just sit there, eating up kernel memory. (Note that sockets that don't have a non-zero service ID bound don't get incoming calls anyway.) Given that the default backlog is now 0, make the AFS filesystem call kernel_listen() to set the maximum backlog for itself. Possible improvements include: (1) Trimming a too-large backlog to max_backlog when listen is called. (2) Trimming the backlog value whenever the value is used so that changes to max_backlog are applied to an open socket automatically. Note that the AFS filesystem opens one socket and keeps it open for extended periods, so would miss out on changes to max_backlog. (3) Having a separate setting for the AFS filesystem. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-06-11 04:30:37 +07:00
ret = -ENOMEM;
afs_async_calls = alloc_workqueue("kafsd", WQ_MEM_RECLAIM, 0);
rxrpc: Limit the listening backlog Limit the socket incoming call backlog queue size so that a remote client can't pump in sufficient new calls that the server runs out of memory. Note that this is partially theoretical at the moment since whilst the number of calls is limited, the number of packets trying to set up new calls is not. This will be addressed in a later patch. If the caller of listen() specifies a backlog INT_MAX, then they get the current maximum; anything else greater than max_backlog or anything negative incurs EINVAL. The limit on the maximum queue size can be set by: echo N >/proc/sys/net/rxrpc/max_backlog where 4<=N<=32. Further, set the default backlog to 0, requiring listen() to be called before we start actually queueing new calls. Whilst this kind of is a change in the UAPI, the caller can't actually *accept* new calls anyway unless they've first called listen() to put the socket into the LISTENING state - thus the aforementioned new calls would otherwise just sit there, eating up kernel memory. (Note that sockets that don't have a non-zero service ID bound don't get incoming calls anyway.) Given that the default backlog is now 0, make the AFS filesystem call kernel_listen() to set the maximum backlog for itself. Possible improvements include: (1) Trimming a too-large backlog to max_backlog when listen is called. (2) Trimming the backlog value whenever the value is used so that changes to max_backlog are applied to an open socket automatically. Note that the AFS filesystem opens one socket and keeps it open for extended periods, so would miss out on changes to max_backlog. (3) Having a separate setting for the AFS filesystem. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-06-11 04:30:37 +07:00
if (!afs_async_calls)
goto error_0;
ret = sock_create_kern(&init_net, AF_RXRPC, SOCK_DGRAM, PF_INET, &socket);
rxrpc: Limit the listening backlog Limit the socket incoming call backlog queue size so that a remote client can't pump in sufficient new calls that the server runs out of memory. Note that this is partially theoretical at the moment since whilst the number of calls is limited, the number of packets trying to set up new calls is not. This will be addressed in a later patch. If the caller of listen() specifies a backlog INT_MAX, then they get the current maximum; anything else greater than max_backlog or anything negative incurs EINVAL. The limit on the maximum queue size can be set by: echo N >/proc/sys/net/rxrpc/max_backlog where 4<=N<=32. Further, set the default backlog to 0, requiring listen() to be called before we start actually queueing new calls. Whilst this kind of is a change in the UAPI, the caller can't actually *accept* new calls anyway unless they've first called listen() to put the socket into the LISTENING state - thus the aforementioned new calls would otherwise just sit there, eating up kernel memory. (Note that sockets that don't have a non-zero service ID bound don't get incoming calls anyway.) Given that the default backlog is now 0, make the AFS filesystem call kernel_listen() to set the maximum backlog for itself. Possible improvements include: (1) Trimming a too-large backlog to max_backlog when listen is called. (2) Trimming the backlog value whenever the value is used so that changes to max_backlog are applied to an open socket automatically. Note that the AFS filesystem opens one socket and keeps it open for extended periods, so would miss out on changes to max_backlog. (3) Having a separate setting for the AFS filesystem. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-06-11 04:30:37 +07:00
if (ret < 0)
goto error_1;
socket->sk->sk_allocation = GFP_NOFS;
/* bind the callback manager's address to make this a server socket */
srx.srx_family = AF_RXRPC;
srx.srx_service = CM_SERVICE;
srx.transport_type = SOCK_DGRAM;
srx.transport_len = sizeof(srx.transport.sin);
srx.transport.sin.sin_family = AF_INET;
srx.transport.sin.sin_port = htons(AFS_CM_PORT);
memset(&srx.transport.sin.sin_addr, 0,
sizeof(srx.transport.sin.sin_addr));
ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
rxrpc: Limit the listening backlog Limit the socket incoming call backlog queue size so that a remote client can't pump in sufficient new calls that the server runs out of memory. Note that this is partially theoretical at the moment since whilst the number of calls is limited, the number of packets trying to set up new calls is not. This will be addressed in a later patch. If the caller of listen() specifies a backlog INT_MAX, then they get the current maximum; anything else greater than max_backlog or anything negative incurs EINVAL. The limit on the maximum queue size can be set by: echo N >/proc/sys/net/rxrpc/max_backlog where 4<=N<=32. Further, set the default backlog to 0, requiring listen() to be called before we start actually queueing new calls. Whilst this kind of is a change in the UAPI, the caller can't actually *accept* new calls anyway unless they've first called listen() to put the socket into the LISTENING state - thus the aforementioned new calls would otherwise just sit there, eating up kernel memory. (Note that sockets that don't have a non-zero service ID bound don't get incoming calls anyway.) Given that the default backlog is now 0, make the AFS filesystem call kernel_listen() to set the maximum backlog for itself. Possible improvements include: (1) Trimming a too-large backlog to max_backlog when listen is called. (2) Trimming the backlog value whenever the value is used so that changes to max_backlog are applied to an open socket automatically. Note that the AFS filesystem opens one socket and keeps it open for extended periods, so would miss out on changes to max_backlog. (3) Having a separate setting for the AFS filesystem. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-06-11 04:30:37 +07:00
if (ret < 0)
goto error_2;
rxrpc: Preallocate peers, conns and calls for incoming service requests Make it possible for the data_ready handler called from the UDP transport socket to completely instantiate an rxrpc_call structure and make it immediately live by preallocating all the memory it might need. The idea is to cut out the background thread usage as much as possible. [Note that the preallocated structs are not actually used in this patch - that will be done in a future patch.] If insufficient resources are available in the preallocation buffers, it will be possible to discard the DATA packet in the data_ready handler or schedule a BUSY packet without the need to schedule an attempt at allocation in a background thread. To this end: (1) Preallocate rxrpc_peer, rxrpc_connection and rxrpc_call structs to a maximum number each of the listen backlog size. The backlog size is limited to a maxmimum of 32. Only this many of each can be in the preallocation buffer. (2) For userspace sockets, the preallocation is charged initially by listen() and will be recharged by accepting or rejecting pending new incoming calls. (3) For kernel services {,re,dis}charging of the preallocation buffers is handled manually. Two notifier callbacks have to be provided before kernel_listen() is invoked: (a) An indication that a new call has been instantiated. This can be used to trigger background recharging. (b) An indication that a call is being discarded. This is used when the socket is being released. A function, rxrpc_kernel_charge_accept() is called by the kernel service to preallocate a single call. It should be passed the user ID to be used for that call and a callback to associate the rxrpc call with the kernel service's side of the ID. (4) Discard the preallocation when the socket is closed. (5) Temporarily bump the refcount on the call allocated in rxrpc_incoming_call() so that rxrpc_release_call() can ditch the preallocation ref on service calls unconditionally. This will no longer be necessary once the preallocation is used. Note that this does not yet control the number of active service calls on a client - that will come in a later patch. A future development would be to provide a setsockopt() call that allows a userspace server to manually charge the preallocation buffer. This would allow user call IDs to be provided in advance and the awkward manual accept stage to be bypassed. Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 17:10:12 +07:00
rxrpc_kernel_new_call_notification(socket, afs_rx_new_call,
afs_rx_discard_new_call);
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
rxrpc: Limit the listening backlog Limit the socket incoming call backlog queue size so that a remote client can't pump in sufficient new calls that the server runs out of memory. Note that this is partially theoretical at the moment since whilst the number of calls is limited, the number of packets trying to set up new calls is not. This will be addressed in a later patch. If the caller of listen() specifies a backlog INT_MAX, then they get the current maximum; anything else greater than max_backlog or anything negative incurs EINVAL. The limit on the maximum queue size can be set by: echo N >/proc/sys/net/rxrpc/max_backlog where 4<=N<=32. Further, set the default backlog to 0, requiring listen() to be called before we start actually queueing new calls. Whilst this kind of is a change in the UAPI, the caller can't actually *accept* new calls anyway unless they've first called listen() to put the socket into the LISTENING state - thus the aforementioned new calls would otherwise just sit there, eating up kernel memory. (Note that sockets that don't have a non-zero service ID bound don't get incoming calls anyway.) Given that the default backlog is now 0, make the AFS filesystem call kernel_listen() to set the maximum backlog for itself. Possible improvements include: (1) Trimming a too-large backlog to max_backlog when listen is called. (2) Trimming the backlog value whenever the value is used so that changes to max_backlog are applied to an open socket automatically. Note that the AFS filesystem opens one socket and keeps it open for extended periods, so would miss out on changes to max_backlog. (3) Having a separate setting for the AFS filesystem. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-06-11 04:30:37 +07:00
ret = kernel_listen(socket, INT_MAX);
if (ret < 0)
goto error_2;
afs_socket = socket;
rxrpc: Preallocate peers, conns and calls for incoming service requests Make it possible for the data_ready handler called from the UDP transport socket to completely instantiate an rxrpc_call structure and make it immediately live by preallocating all the memory it might need. The idea is to cut out the background thread usage as much as possible. [Note that the preallocated structs are not actually used in this patch - that will be done in a future patch.] If insufficient resources are available in the preallocation buffers, it will be possible to discard the DATA packet in the data_ready handler or schedule a BUSY packet without the need to schedule an attempt at allocation in a background thread. To this end: (1) Preallocate rxrpc_peer, rxrpc_connection and rxrpc_call structs to a maximum number each of the listen backlog size. The backlog size is limited to a maxmimum of 32. Only this many of each can be in the preallocation buffer. (2) For userspace sockets, the preallocation is charged initially by listen() and will be recharged by accepting or rejecting pending new incoming calls. (3) For kernel services {,re,dis}charging of the preallocation buffers is handled manually. Two notifier callbacks have to be provided before kernel_listen() is invoked: (a) An indication that a new call has been instantiated. This can be used to trigger background recharging. (b) An indication that a call is being discarded. This is used when the socket is being released. A function, rxrpc_kernel_charge_accept() is called by the kernel service to preallocate a single call. It should be passed the user ID to be used for that call and a callback to associate the rxrpc call with the kernel service's side of the ID. (4) Discard the preallocation when the socket is closed. (5) Temporarily bump the refcount on the call allocated in rxrpc_incoming_call() so that rxrpc_release_call() can ditch the preallocation ref on service calls unconditionally. This will no longer be necessary once the preallocation is used. Note that this does not yet control the number of active service calls on a client - that will come in a later patch. A future development would be to provide a setsockopt() call that allows a userspace server to manually charge the preallocation buffer. This would allow user call IDs to be provided in advance and the awkward manual accept stage to be bypassed. Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 17:10:12 +07:00
afs_charge_preallocation(NULL);
_leave(" = 0");
return 0;
rxrpc: Limit the listening backlog Limit the socket incoming call backlog queue size so that a remote client can't pump in sufficient new calls that the server runs out of memory. Note that this is partially theoretical at the moment since whilst the number of calls is limited, the number of packets trying to set up new calls is not. This will be addressed in a later patch. If the caller of listen() specifies a backlog INT_MAX, then they get the current maximum; anything else greater than max_backlog or anything negative incurs EINVAL. The limit on the maximum queue size can be set by: echo N >/proc/sys/net/rxrpc/max_backlog where 4<=N<=32. Further, set the default backlog to 0, requiring listen() to be called before we start actually queueing new calls. Whilst this kind of is a change in the UAPI, the caller can't actually *accept* new calls anyway unless they've first called listen() to put the socket into the LISTENING state - thus the aforementioned new calls would otherwise just sit there, eating up kernel memory. (Note that sockets that don't have a non-zero service ID bound don't get incoming calls anyway.) Given that the default backlog is now 0, make the AFS filesystem call kernel_listen() to set the maximum backlog for itself. Possible improvements include: (1) Trimming a too-large backlog to max_backlog when listen is called. (2) Trimming the backlog value whenever the value is used so that changes to max_backlog are applied to an open socket automatically. Note that the AFS filesystem opens one socket and keeps it open for extended periods, so would miss out on changes to max_backlog. (3) Having a separate setting for the AFS filesystem. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-06-11 04:30:37 +07:00
error_2:
sock_release(socket);
error_1:
destroy_workqueue(afs_async_calls);
error_0:
_leave(" = %d", ret);
return ret;
}
/*
* close the RxRPC socket AFS was using
*/
void afs_close_socket(void)
{
_enter("");
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 17:38:36 +07:00
kernel_listen(afs_socket, 0);
flush_workqueue(afs_async_calls);
rxrpc: Preallocate peers, conns and calls for incoming service requests Make it possible for the data_ready handler called from the UDP transport socket to completely instantiate an rxrpc_call structure and make it immediately live by preallocating all the memory it might need. The idea is to cut out the background thread usage as much as possible. [Note that the preallocated structs are not actually used in this patch - that will be done in a future patch.] If insufficient resources are available in the preallocation buffers, it will be possible to discard the DATA packet in the data_ready handler or schedule a BUSY packet without the need to schedule an attempt at allocation in a background thread. To this end: (1) Preallocate rxrpc_peer, rxrpc_connection and rxrpc_call structs to a maximum number each of the listen backlog size. The backlog size is limited to a maxmimum of 32. Only this many of each can be in the preallocation buffer. (2) For userspace sockets, the preallocation is charged initially by listen() and will be recharged by accepting or rejecting pending new incoming calls. (3) For kernel services {,re,dis}charging of the preallocation buffers is handled manually. Two notifier callbacks have to be provided before kernel_listen() is invoked: (a) An indication that a new call has been instantiated. This can be used to trigger background recharging. (b) An indication that a call is being discarded. This is used when the socket is being released. A function, rxrpc_kernel_charge_accept() is called by the kernel service to preallocate a single call. It should be passed the user ID to be used for that call and a callback to associate the rxrpc call with the kernel service's side of the ID. (4) Discard the preallocation when the socket is closed. (5) Temporarily bump the refcount on the call allocated in rxrpc_incoming_call() so that rxrpc_release_call() can ditch the preallocation ref on service calls unconditionally. This will no longer be necessary once the preallocation is used. Note that this does not yet control the number of active service calls on a client - that will come in a later patch. A future development would be to provide a setsockopt() call that allows a userspace server to manually charge the preallocation buffer. This would allow user call IDs to be provided in advance and the awkward manual accept stage to be bypassed. Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 17:10:12 +07:00
if (afs_spare_incoming_call) {
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 17:38:36 +07:00
afs_put_call(afs_spare_incoming_call);
rxrpc: Preallocate peers, conns and calls for incoming service requests Make it possible for the data_ready handler called from the UDP transport socket to completely instantiate an rxrpc_call structure and make it immediately live by preallocating all the memory it might need. The idea is to cut out the background thread usage as much as possible. [Note that the preallocated structs are not actually used in this patch - that will be done in a future patch.] If insufficient resources are available in the preallocation buffers, it will be possible to discard the DATA packet in the data_ready handler or schedule a BUSY packet without the need to schedule an attempt at allocation in a background thread. To this end: (1) Preallocate rxrpc_peer, rxrpc_connection and rxrpc_call structs to a maximum number each of the listen backlog size. The backlog size is limited to a maxmimum of 32. Only this many of each can be in the preallocation buffer. (2) For userspace sockets, the preallocation is charged initially by listen() and will be recharged by accepting or rejecting pending new incoming calls. (3) For kernel services {,re,dis}charging of the preallocation buffers is handled manually. Two notifier callbacks have to be provided before kernel_listen() is invoked: (a) An indication that a new call has been instantiated. This can be used to trigger background recharging. (b) An indication that a call is being discarded. This is used when the socket is being released. A function, rxrpc_kernel_charge_accept() is called by the kernel service to preallocate a single call. It should be passed the user ID to be used for that call and a callback to associate the rxrpc call with the kernel service's side of the ID. (4) Discard the preallocation when the socket is closed. (5) Temporarily bump the refcount on the call allocated in rxrpc_incoming_call() so that rxrpc_release_call() can ditch the preallocation ref on service calls unconditionally. This will no longer be necessary once the preallocation is used. Note that this does not yet control the number of active service calls on a client - that will come in a later patch. A future development would be to provide a setsockopt() call that allows a userspace server to manually charge the preallocation buffer. This would allow user call IDs to be provided in advance and the awkward manual accept stage to be bypassed. Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 17:10:12 +07:00
afs_spare_incoming_call = NULL;
}
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
_debug("outstanding %u", atomic_read(&afs_outstanding_calls));
wait_on_atomic_t(&afs_outstanding_calls, afs_wait_atomic_t,
TASK_UNINTERRUPTIBLE);
_debug("no outstanding calls");
rxrpc: Rewrite the data and ack handling code Rewrite the data and ack handling code such that: (1) Parsing of received ACK and ABORT packets and the distribution and the filing of DATA packets happens entirely within the data_ready context called from the UDP socket. This allows us to process and discard ACK and ABORT packets much more quickly (they're no longer stashed on a queue for a background thread to process). (2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead keep track of the offset and length of the content of each packet in the sk_buff metadata. This means we don't do any allocation in the receive path. (3) Jumbo DATA packet parsing is now done in data_ready context. Rather than cloning the packet once for each subpacket and pulling/trimming it, we file the packet multiple times with an annotation for each indicating which subpacket is there. From that we can directly calculate the offset and length. (4) A call's receive queue can be accessed without taking locks (memory barriers do have to be used, though). (5) Incoming calls are set up from preallocated resources and immediately made live. They can than have packets queued upon them and ACKs generated. If insufficient resources exist, DATA packet #1 is given a BUSY reply and other DATA packets are discarded). (6) sk_buffs no longer take a ref on their parent call. To make this work, the following changes are made: (1) Each call's receive buffer is now a circular buffer of sk_buff pointers (rxtx_buffer) rather than a number of sk_buff_heads spread between the call and the socket. This permits each sk_buff to be in the buffer multiple times. The receive buffer is reused for the transmit buffer. (2) A circular buffer of annotations (rxtx_annotations) is kept parallel to the data buffer. Transmission phase annotations indicate whether a buffered packet has been ACK'd or not and whether it needs retransmission. Receive phase annotations indicate whether a slot holds a whole packet or a jumbo subpacket and, if the latter, which subpacket. They also note whether the packet has been decrypted in place. (3) DATA packet window tracking is much simplified. Each phase has just two numbers representing the window (rx_hard_ack/rx_top and tx_hard_ack/tx_top). The hard_ack number is the sequence number before base of the window, representing the last packet the other side says it has consumed. hard_ack starts from 0 and the first packet is sequence number 1. The top number is the sequence number of the highest-numbered packet residing in the buffer. Packets between hard_ack+1 and top are soft-ACK'd to indicate they've been received, but not yet consumed. Four macros, before(), before_eq(), after() and after_eq() are added to compare sequence numbers within the window. This allows for the top of the window to wrap when the hard-ack sequence number gets close to the limit. Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also to indicate when rx_top and tx_top point at the packets with the LAST_PACKET bit set, indicating the end of the phase. (4) Calls are queued on the socket 'receive queue' rather than packets. This means that we don't need have to invent dummy packets to queue to indicate abnormal/terminal states and we don't have to keep metadata packets (such as ABORTs) around (5) The offset and length of a (sub)packet's content are now passed to the verify_packet security op. This is currently expected to decrypt the packet in place and validate it. However, there's now nowhere to store the revised offset and length of the actual data within the decrypted blob (there may be a header and padding to skip) because an sk_buff may represent multiple packets, so a locate_data security op is added to retrieve these details from the sk_buff content when needed. (6) recvmsg() now has to handle jumbo subpackets, where each subpacket is individually secured and needs to be individually decrypted. The code to do this is broken out into rxrpc_recvmsg_data() and shared with the kernel API. It now iterates over the call's receive buffer rather than walking the socket receive queue. Additional changes: (1) The timers are condensed to a single timer that is set for the soonest of three timeouts (delayed ACK generation, DATA retransmission and call lifespan). (2) Transmission of ACK and ABORT packets is effected immediately from process-context socket ops/kernel API calls that cause them instead of them being punted off to a background work item. The data_ready handler still has to defer to the background, though. (3) A shutdown op is added to the AF_RXRPC socket so that the AFS filesystem can shut down the socket and flush its own work items before closing the socket to deal with any in-progress service calls. Future additional changes that will need to be considered: (1) Make sure that a call doesn't hog the front of the queue by receiving data from the network as fast as userspace is consuming it to the exclusion of other calls. (2) Transmit delayed ACKs from within recvmsg() when we've consumed sufficiently more packets to avoid the background work item needing to run. Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 17:10:12 +07:00
kernel_sock_shutdown(afs_socket, SHUT_RDWR);
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
flush_workqueue(afs_async_calls);
sock_release(afs_socket);
_debug("dework");
destroy_workqueue(afs_async_calls);
_leave("");
}
/*
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 17:38:36 +07:00
* Allocate a call.
*/
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 17:38:36 +07:00
static struct afs_call *afs_alloc_call(const struct afs_call_type *type,
gfp_t gfp)
{
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 17:38:36 +07:00
struct afs_call *call;
int o;
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 17:38:36 +07:00
call = kzalloc(sizeof(*call), gfp);
if (!call)
return NULL;
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 17:38:36 +07:00
call->type = type;
atomic_set(&call->usage, 1);
INIT_WORK(&call->async_work, afs_process_async_call);
init_waitqueue_head(&call->waitq);
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 17:38:36 +07:00
o = atomic_inc_return(&afs_outstanding_calls);
trace_afs_call(call, afs_call_trace_alloc, 1, o,
__builtin_return_address(0));
return call;
}
/*
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 17:38:36 +07:00
* Dispose of a reference on a call.
*/
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 17:38:36 +07:00
void afs_put_call(struct afs_call *call)
{
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 17:38:36 +07:00
int n = atomic_dec_return(&call->usage);
int o = atomic_read(&afs_outstanding_calls);
trace_afs_call(call, afs_call_trace_put, n + 1, o,
__builtin_return_address(0));
ASSERTCMP(n, >=, 0);
if (n == 0) {
ASSERT(!work_pending(&call->async_work));
ASSERT(call->type->name != NULL);
if (call->rxcall) {
rxrpc_kernel_end_call(afs_socket, call->rxcall);
call->rxcall = NULL;
}
if (call->type->destructor)
call->type->destructor(call);
kfree(call->request);
kfree(call);
o = atomic_dec_return(&afs_outstanding_calls);
trace_afs_call(call, afs_call_trace_free, 0, o,
__builtin_return_address(0));
if (o == 0)
wake_up_atomic_t(&afs_outstanding_calls);
}
}
/*
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 17:38:36 +07:00
* Queue the call for actual work. Returns 0 unconditionally for convenience.
*/
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 17:38:36 +07:00
int afs_queue_call_work(struct afs_call *call)
{
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 17:38:36 +07:00
int u = atomic_inc_return(&call->usage);
trace_afs_call(call, afs_call_trace_work, u,
atomic_read(&afs_outstanding_calls),
__builtin_return_address(0));
INIT_WORK(&call->work, call->type->work);
if (!queue_work(afs_wq, &call->work))
afs_put_call(call);
return 0;
}
/*
* allocate a call with flat request and reply buffers
*/
struct afs_call *afs_alloc_flat_call(const struct afs_call_type *type,
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
size_t request_size, size_t reply_max)
{
struct afs_call *call;
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 17:38:36 +07:00
call = afs_alloc_call(type, GFP_NOFS);
if (!call)
goto nomem_call;
if (request_size) {
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 17:38:36 +07:00
call->request_size = request_size;
call->request = kmalloc(request_size, GFP_NOFS);
if (!call->request)
goto nomem_free;
}
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
if (reply_max) {
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 17:38:36 +07:00
call->reply_max = reply_max;
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
call->buffer = kmalloc(reply_max, GFP_NOFS);
if (!call->buffer)
goto nomem_free;
}
init_waitqueue_head(&call->waitq);
return call;
nomem_free:
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 17:38:36 +07:00
afs_put_call(call);
nomem_call:
return NULL;
}
/*
* clean up a call with flat buffer
*/
void afs_flat_call_destructor(struct afs_call *call)
{
_enter("");
kfree(call->request);
call->request = NULL;
kfree(call->buffer);
call->buffer = NULL;
}
#define AFS_BVEC_MAX 8
/*
* Load the given bvec with the next few pages.
*/
static void afs_load_bvec(struct afs_call *call, struct msghdr *msg,
struct bio_vec *bv, pgoff_t first, pgoff_t last,
unsigned offset)
{
struct page *pages[AFS_BVEC_MAX];
unsigned int nr, n, i, to, bytes = 0;
nr = min_t(pgoff_t, last - first + 1, AFS_BVEC_MAX);
n = find_get_pages_contig(call->mapping, first, nr, pages);
ASSERTCMP(n, ==, nr);
msg->msg_flags |= MSG_MORE;
for (i = 0; i < nr; i++) {
to = PAGE_SIZE;
if (first + i >= last) {
to = call->last_to;
msg->msg_flags &= ~MSG_MORE;
}
bv[i].bv_page = pages[i];
bv[i].bv_len = to - offset;
bv[i].bv_offset = offset;
bytes += to - offset;
offset = 0;
}
iov_iter_bvec(&msg->msg_iter, WRITE | ITER_BVEC, bv, nr, bytes);
}
/*
* attach the data from a bunch of pages on an inode to a call
*/
static int afs_send_pages(struct afs_call *call, struct msghdr *msg)
{
struct bio_vec bv[AFS_BVEC_MAX];
unsigned int bytes, nr, loop, offset;
pgoff_t first = call->first, last = call->last;
int ret;
offset = call->first_offset;
call->first_offset = 0;
do {
afs_load_bvec(call, msg, bv, first, last, offset);
offset = 0;
bytes = msg->msg_iter.count;
nr = msg->msg_iter.nr_segs;
/* Have to change the state *before* sending the last
* packet as RxRPC might give us the reply before it
* returns from sending the request.
*/
if (first + nr - 1 >= last)
call->state = AFS_CALL_AWAIT_REPLY;
ret = rxrpc_kernel_send_data(afs_socket, call->rxcall,
msg, bytes);
for (loop = 0; loop < nr; loop++)
put_page(bv[loop].bv_page);
if (ret < 0)
break;
first += nr;
} while (first <= last);
return ret;
}
/*
* initiate a call
*/
int afs_make_call(struct in_addr *addr, struct afs_call *call, gfp_t gfp,
bool async)
{
struct sockaddr_rxrpc srx;
struct rxrpc_call *rxcall;
struct msghdr msg;
struct kvec iov[1];
size_t offset;
u32 abort_code;
int ret;
_enter("%x,{%d},", addr->s_addr, ntohs(call->port));
ASSERT(call->type != NULL);
ASSERT(call->type->name != NULL);
_debug("____MAKE %p{%s,%x} [%d]____",
call, call->type->name, key_serial(call->key),
atomic_read(&afs_outstanding_calls));
call->async = async;
memset(&srx, 0, sizeof(srx));
srx.srx_family = AF_RXRPC;
srx.srx_service = call->service_id;
srx.transport_type = SOCK_DGRAM;
srx.transport_len = sizeof(srx.transport.sin);
srx.transport.sin.sin_family = AF_INET;
srx.transport.sin.sin_port = call->port;
memcpy(&srx.transport.sin.sin_addr, addr, 4);
/* create a call */
rxcall = rxrpc_kernel_begin_call(afs_socket, &srx, call->key,
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
(unsigned long) call, gfp,
(async ?
afs_wake_up_async_call :
afs_wake_up_call_waiter));
call->key = NULL;
if (IS_ERR(rxcall)) {
ret = PTR_ERR(rxcall);
goto error_kill_call;
}
call->rxcall = rxcall;
/* send the request */
iov[0].iov_base = call->request;
iov[0].iov_len = call->request_size;
msg.msg_name = NULL;
msg.msg_namelen = 0;
iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1,
call->request_size);
msg.msg_control = NULL;
msg.msg_controllen = 0;
msg.msg_flags = (call->send_pages ? MSG_MORE : 0);
/* We have to change the state *before* sending the last packet as
* rxrpc might give us the reply before it returns from sending the
* request. Further, if the send fails, we may already have been given
* a notification and may have collected it.
*/
if (!call->send_pages)
call->state = AFS_CALL_AWAIT_REPLY;
ret = rxrpc_kernel_send_data(afs_socket, rxcall,
&msg, call->request_size);
if (ret < 0)
goto error_do_abort;
if (call->send_pages) {
ret = afs_send_pages(call, &msg);
if (ret < 0)
goto error_do_abort;
}
/* at this point, an async call may no longer exist as it may have
* already completed */
if (call->async)
return -EINPROGRESS;
return afs_wait_for_call_to_complete(call);
error_do_abort:
call->state = AFS_CALL_COMPLETE;
if (ret != -ECONNABORTED) {
rxrpc_kernel_abort_call(afs_socket, rxcall, RX_USER_ABORT,
-ret, "KSD");
} else {
abort_code = 0;
offset = 0;
rxrpc_kernel_recv_data(afs_socket, rxcall, NULL, 0, &offset,
false, &abort_code);
ret = call->type->abort_to_error(abort_code);
}
error_kill_call:
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 17:38:36 +07:00
afs_put_call(call);
_leave(" = %d", ret);
return ret;
}
/*
* deliver messages to a call
*/
static void afs_deliver_to_call(struct afs_call *call)
{
u32 abort_code;
int ret;
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
_enter("%s", call->type->name);
while (call->state == AFS_CALL_AWAIT_REPLY ||
call->state == AFS_CALL_AWAIT_OP_ID ||
call->state == AFS_CALL_AWAIT_REQUEST ||
call->state == AFS_CALL_AWAIT_ACK
) {
if (call->state == AFS_CALL_AWAIT_ACK) {
size_t offset = 0;
ret = rxrpc_kernel_recv_data(afs_socket, call->rxcall,
NULL, 0, &offset, false,
&call->abort_code);
trace_afs_recv_data(call, 0, offset, false, ret);
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
if (ret == -EINPROGRESS || ret == -EAGAIN)
return;
if (ret == 1 || ret < 0) {
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
call->state = AFS_CALL_COMPLETE;
goto done;
}
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
return;
}
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
ret = call->type->deliver(call);
switch (ret) {
case 0:
if (call->state == AFS_CALL_AWAIT_REPLY)
call->state = AFS_CALL_COMPLETE;
goto done;
case -EINPROGRESS:
case -EAGAIN:
goto out;
case -ECONNABORTED:
goto call_complete;
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
case -ENOTCONN:
abort_code = RX_CALL_DEAD;
rxrpc_kernel_abort_call(afs_socket, call->rxcall,
abort_code, -ret, "KNC");
goto save_error;
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
case -ENOTSUPP:
abort_code = RXGEN_OPCODE;
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
rxrpc_kernel_abort_call(afs_socket, call->rxcall,
abort_code, -ret, "KIV");
goto save_error;
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
case -ENODATA:
case -EBADMSG:
case -EMSGSIZE:
default:
abort_code = RXGEN_CC_UNMARSHAL;
if (call->state != AFS_CALL_AWAIT_REPLY)
abort_code = RXGEN_SS_UNMARSHAL;
rxrpc_kernel_abort_call(afs_socket, call->rxcall,
abort_code, EBADMSG, "KUM");
goto save_error;
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
}
}
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
done:
if (call->state == AFS_CALL_COMPLETE && call->incoming)
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 17:38:36 +07:00
afs_put_call(call);
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
out:
_leave("");
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
return;
save_error:
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
call->error = ret;
call_complete:
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
call->state = AFS_CALL_COMPLETE;
goto done;
}
/*
* wait synchronously for a call to complete
*/
static int afs_wait_for_call_to_complete(struct afs_call *call)
{
int ret;
DECLARE_WAITQUEUE(myself, current);
_enter("");
add_wait_queue(&call->waitq, &myself);
for (;;) {
set_current_state(TASK_INTERRUPTIBLE);
/* deliver any messages that are in the queue */
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
call->need_attention = false;
__set_current_state(TASK_RUNNING);
afs_deliver_to_call(call);
continue;
}
if (call->state == AFS_CALL_COMPLETE ||
signal_pending(current))
break;
schedule();
}
remove_wait_queue(&call->waitq, &myself);
__set_current_state(TASK_RUNNING);
/* Kill off the call if it's still live. */
if (call->state < AFS_CALL_COMPLETE) {
_debug("call interrupted");
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
rxrpc_kernel_abort_call(afs_socket, call->rxcall,
RX_USER_ABORT, -EINTR, "KWI");
}
ret = call->error;
_debug("call complete");
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 17:38:36 +07:00
afs_put_call(call);
_leave(" = %d", ret);
return ret;
}
/*
* wake up a waiting call
*/
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall,
unsigned long call_user_ID)
{
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
struct afs_call *call = (struct afs_call *)call_user_ID;
call->need_attention = true;
wake_up(&call->waitq);
}
/*
* wake up an asynchronous call
*/
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall,
unsigned long call_user_ID)
{
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
struct afs_call *call = (struct afs_call *)call_user_ID;
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 17:38:36 +07:00
int u;
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
trace_afs_notify_call(rxcall, call);
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
call->need_attention = true;
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 17:38:36 +07:00
u = __atomic_add_unless(&call->usage, 1, 0);
if (u != 0) {
trace_afs_call(call, afs_call_trace_wake, u,
atomic_read(&afs_outstanding_calls),
__builtin_return_address(0));
if (!queue_work(afs_async_calls, &call->async_work))
afs_put_call(call);
}
}
/*
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 17:38:36 +07:00
* Delete an asynchronous call. The work item carries a ref to the call struct
* that we need to release.
*/
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
static void afs_delete_async_call(struct work_struct *work)
{
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
struct afs_call *call = container_of(work, struct afs_call, async_work);
_enter("");
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 17:38:36 +07:00
afs_put_call(call);
_leave("");
}
/*
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 17:38:36 +07:00
* Perform I/O processing on an asynchronous call. The work item carries a ref
* to the call struct that we either need to release or to pass on.
*/
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
static void afs_process_async_call(struct work_struct *work)
{
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
struct afs_call *call = container_of(work, struct afs_call, async_work);
_enter("");
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
call->need_attention = false;
afs_deliver_to_call(call);
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
}
if (call->state == AFS_CALL_COMPLETE) {
call->reply = NULL;
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 17:38:36 +07:00
/* We have two refs to release - one from the alloc and one
* queued with the work item - and we can't just deallocate the
* call because the work item may be queued again.
*/
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
call->async_work.func = afs_delete_async_call;
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 17:38:36 +07:00
if (!queue_work(afs_async_calls, &call->async_work))
afs_put_call(call);
}
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 17:38:36 +07:00
afs_put_call(call);
_leave("");
}
rxrpc: Preallocate peers, conns and calls for incoming service requests Make it possible for the data_ready handler called from the UDP transport socket to completely instantiate an rxrpc_call structure and make it immediately live by preallocating all the memory it might need. The idea is to cut out the background thread usage as much as possible. [Note that the preallocated structs are not actually used in this patch - that will be done in a future patch.] If insufficient resources are available in the preallocation buffers, it will be possible to discard the DATA packet in the data_ready handler or schedule a BUSY packet without the need to schedule an attempt at allocation in a background thread. To this end: (1) Preallocate rxrpc_peer, rxrpc_connection and rxrpc_call structs to a maximum number each of the listen backlog size. The backlog size is limited to a maxmimum of 32. Only this many of each can be in the preallocation buffer. (2) For userspace sockets, the preallocation is charged initially by listen() and will be recharged by accepting or rejecting pending new incoming calls. (3) For kernel services {,re,dis}charging of the preallocation buffers is handled manually. Two notifier callbacks have to be provided before kernel_listen() is invoked: (a) An indication that a new call has been instantiated. This can be used to trigger background recharging. (b) An indication that a call is being discarded. This is used when the socket is being released. A function, rxrpc_kernel_charge_accept() is called by the kernel service to preallocate a single call. It should be passed the user ID to be used for that call and a callback to associate the rxrpc call with the kernel service's side of the ID. (4) Discard the preallocation when the socket is closed. (5) Temporarily bump the refcount on the call allocated in rxrpc_incoming_call() so that rxrpc_release_call() can ditch the preallocation ref on service calls unconditionally. This will no longer be necessary once the preallocation is used. Note that this does not yet control the number of active service calls on a client - that will come in a later patch. A future development would be to provide a setsockopt() call that allows a userspace server to manually charge the preallocation buffer. This would allow user call IDs to be provided in advance and the awkward manual accept stage to be bypassed. Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 17:10:12 +07:00
static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID)
{
struct afs_call *call = (struct afs_call *)user_call_ID;
call->rxcall = rxcall;
}
/*
* Charge the incoming call preallocation.
*/
static void afs_charge_preallocation(struct work_struct *work)
{
struct afs_call *call = afs_spare_incoming_call;
for (;;) {
if (!call) {
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 17:38:36 +07:00
call = afs_alloc_call(&afs_RXCMxxxx, GFP_KERNEL);
rxrpc: Preallocate peers, conns and calls for incoming service requests Make it possible for the data_ready handler called from the UDP transport socket to completely instantiate an rxrpc_call structure and make it immediately live by preallocating all the memory it might need. The idea is to cut out the background thread usage as much as possible. [Note that the preallocated structs are not actually used in this patch - that will be done in a future patch.] If insufficient resources are available in the preallocation buffers, it will be possible to discard the DATA packet in the data_ready handler or schedule a BUSY packet without the need to schedule an attempt at allocation in a background thread. To this end: (1) Preallocate rxrpc_peer, rxrpc_connection and rxrpc_call structs to a maximum number each of the listen backlog size. The backlog size is limited to a maxmimum of 32. Only this many of each can be in the preallocation buffer. (2) For userspace sockets, the preallocation is charged initially by listen() and will be recharged by accepting or rejecting pending new incoming calls. (3) For kernel services {,re,dis}charging of the preallocation buffers is handled manually. Two notifier callbacks have to be provided before kernel_listen() is invoked: (a) An indication that a new call has been instantiated. This can be used to trigger background recharging. (b) An indication that a call is being discarded. This is used when the socket is being released. A function, rxrpc_kernel_charge_accept() is called by the kernel service to preallocate a single call. It should be passed the user ID to be used for that call and a callback to associate the rxrpc call with the kernel service's side of the ID. (4) Discard the preallocation when the socket is closed. (5) Temporarily bump the refcount on the call allocated in rxrpc_incoming_call() so that rxrpc_release_call() can ditch the preallocation ref on service calls unconditionally. This will no longer be necessary once the preallocation is used. Note that this does not yet control the number of active service calls on a client - that will come in a later patch. A future development would be to provide a setsockopt() call that allows a userspace server to manually charge the preallocation buffer. This would allow user call IDs to be provided in advance and the awkward manual accept stage to be bypassed. Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 17:10:12 +07:00
if (!call)
break;
call->async = true;
rxrpc: Preallocate peers, conns and calls for incoming service requests Make it possible for the data_ready handler called from the UDP transport socket to completely instantiate an rxrpc_call structure and make it immediately live by preallocating all the memory it might need. The idea is to cut out the background thread usage as much as possible. [Note that the preallocated structs are not actually used in this patch - that will be done in a future patch.] If insufficient resources are available in the preallocation buffers, it will be possible to discard the DATA packet in the data_ready handler or schedule a BUSY packet without the need to schedule an attempt at allocation in a background thread. To this end: (1) Preallocate rxrpc_peer, rxrpc_connection and rxrpc_call structs to a maximum number each of the listen backlog size. The backlog size is limited to a maxmimum of 32. Only this many of each can be in the preallocation buffer. (2) For userspace sockets, the preallocation is charged initially by listen() and will be recharged by accepting or rejecting pending new incoming calls. (3) For kernel services {,re,dis}charging of the preallocation buffers is handled manually. Two notifier callbacks have to be provided before kernel_listen() is invoked: (a) An indication that a new call has been instantiated. This can be used to trigger background recharging. (b) An indication that a call is being discarded. This is used when the socket is being released. A function, rxrpc_kernel_charge_accept() is called by the kernel service to preallocate a single call. It should be passed the user ID to be used for that call and a callback to associate the rxrpc call with the kernel service's side of the ID. (4) Discard the preallocation when the socket is closed. (5) Temporarily bump the refcount on the call allocated in rxrpc_incoming_call() so that rxrpc_release_call() can ditch the preallocation ref on service calls unconditionally. This will no longer be necessary once the preallocation is used. Note that this does not yet control the number of active service calls on a client - that will come in a later patch. A future development would be to provide a setsockopt() call that allows a userspace server to manually charge the preallocation buffer. This would allow user call IDs to be provided in advance and the awkward manual accept stage to be bypassed. Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 17:10:12 +07:00
call->state = AFS_CALL_AWAIT_OP_ID;
init_waitqueue_head(&call->waitq);
rxrpc: Preallocate peers, conns and calls for incoming service requests Make it possible for the data_ready handler called from the UDP transport socket to completely instantiate an rxrpc_call structure and make it immediately live by preallocating all the memory it might need. The idea is to cut out the background thread usage as much as possible. [Note that the preallocated structs are not actually used in this patch - that will be done in a future patch.] If insufficient resources are available in the preallocation buffers, it will be possible to discard the DATA packet in the data_ready handler or schedule a BUSY packet without the need to schedule an attempt at allocation in a background thread. To this end: (1) Preallocate rxrpc_peer, rxrpc_connection and rxrpc_call structs to a maximum number each of the listen backlog size. The backlog size is limited to a maxmimum of 32. Only this many of each can be in the preallocation buffer. (2) For userspace sockets, the preallocation is charged initially by listen() and will be recharged by accepting or rejecting pending new incoming calls. (3) For kernel services {,re,dis}charging of the preallocation buffers is handled manually. Two notifier callbacks have to be provided before kernel_listen() is invoked: (a) An indication that a new call has been instantiated. This can be used to trigger background recharging. (b) An indication that a call is being discarded. This is used when the socket is being released. A function, rxrpc_kernel_charge_accept() is called by the kernel service to preallocate a single call. It should be passed the user ID to be used for that call and a callback to associate the rxrpc call with the kernel service's side of the ID. (4) Discard the preallocation when the socket is closed. (5) Temporarily bump the refcount on the call allocated in rxrpc_incoming_call() so that rxrpc_release_call() can ditch the preallocation ref on service calls unconditionally. This will no longer be necessary once the preallocation is used. Note that this does not yet control the number of active service calls on a client - that will come in a later patch. A future development would be to provide a setsockopt() call that allows a userspace server to manually charge the preallocation buffer. This would allow user call IDs to be provided in advance and the awkward manual accept stage to be bypassed. Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 17:10:12 +07:00
}
if (rxrpc_kernel_charge_accept(afs_socket,
afs_wake_up_async_call,
afs_rx_attach,
(unsigned long)call,
GFP_KERNEL) < 0)
break;
call = NULL;
}
afs_spare_incoming_call = call;
}
/*
* Discard a preallocated call when a socket is shut down.
*/
static void afs_rx_discard_new_call(struct rxrpc_call *rxcall,
unsigned long user_call_ID)
{
struct afs_call *call = (struct afs_call *)user_call_ID;
call->rxcall = NULL;
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 17:38:36 +07:00
afs_put_call(call);
rxrpc: Preallocate peers, conns and calls for incoming service requests Make it possible for the data_ready handler called from the UDP transport socket to completely instantiate an rxrpc_call structure and make it immediately live by preallocating all the memory it might need. The idea is to cut out the background thread usage as much as possible. [Note that the preallocated structs are not actually used in this patch - that will be done in a future patch.] If insufficient resources are available in the preallocation buffers, it will be possible to discard the DATA packet in the data_ready handler or schedule a BUSY packet without the need to schedule an attempt at allocation in a background thread. To this end: (1) Preallocate rxrpc_peer, rxrpc_connection and rxrpc_call structs to a maximum number each of the listen backlog size. The backlog size is limited to a maxmimum of 32. Only this many of each can be in the preallocation buffer. (2) For userspace sockets, the preallocation is charged initially by listen() and will be recharged by accepting or rejecting pending new incoming calls. (3) For kernel services {,re,dis}charging of the preallocation buffers is handled manually. Two notifier callbacks have to be provided before kernel_listen() is invoked: (a) An indication that a new call has been instantiated. This can be used to trigger background recharging. (b) An indication that a call is being discarded. This is used when the socket is being released. A function, rxrpc_kernel_charge_accept() is called by the kernel service to preallocate a single call. It should be passed the user ID to be used for that call and a callback to associate the rxrpc call with the kernel service's side of the ID. (4) Discard the preallocation when the socket is closed. (5) Temporarily bump the refcount on the call allocated in rxrpc_incoming_call() so that rxrpc_release_call() can ditch the preallocation ref on service calls unconditionally. This will no longer be necessary once the preallocation is used. Note that this does not yet control the number of active service calls on a client - that will come in a later patch. A future development would be to provide a setsockopt() call that allows a userspace server to manually charge the preallocation buffer. This would allow user call IDs to be provided in advance and the awkward manual accept stage to be bypassed. Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 17:10:12 +07:00
}
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
/*
* Notification of an incoming call.
*/
rxrpc: Preallocate peers, conns and calls for incoming service requests Make it possible for the data_ready handler called from the UDP transport socket to completely instantiate an rxrpc_call structure and make it immediately live by preallocating all the memory it might need. The idea is to cut out the background thread usage as much as possible. [Note that the preallocated structs are not actually used in this patch - that will be done in a future patch.] If insufficient resources are available in the preallocation buffers, it will be possible to discard the DATA packet in the data_ready handler or schedule a BUSY packet without the need to schedule an attempt at allocation in a background thread. To this end: (1) Preallocate rxrpc_peer, rxrpc_connection and rxrpc_call structs to a maximum number each of the listen backlog size. The backlog size is limited to a maxmimum of 32. Only this many of each can be in the preallocation buffer. (2) For userspace sockets, the preallocation is charged initially by listen() and will be recharged by accepting or rejecting pending new incoming calls. (3) For kernel services {,re,dis}charging of the preallocation buffers is handled manually. Two notifier callbacks have to be provided before kernel_listen() is invoked: (a) An indication that a new call has been instantiated. This can be used to trigger background recharging. (b) An indication that a call is being discarded. This is used when the socket is being released. A function, rxrpc_kernel_charge_accept() is called by the kernel service to preallocate a single call. It should be passed the user ID to be used for that call and a callback to associate the rxrpc call with the kernel service's side of the ID. (4) Discard the preallocation when the socket is closed. (5) Temporarily bump the refcount on the call allocated in rxrpc_incoming_call() so that rxrpc_release_call() can ditch the preallocation ref on service calls unconditionally. This will no longer be necessary once the preallocation is used. Note that this does not yet control the number of active service calls on a client - that will come in a later patch. A future development would be to provide a setsockopt() call that allows a userspace server to manually charge the preallocation buffer. This would allow user call IDs to be provided in advance and the awkward manual accept stage to be bypassed. Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 17:10:12 +07:00
static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall,
unsigned long user_call_ID)
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
{
rxrpc: Preallocate peers, conns and calls for incoming service requests Make it possible for the data_ready handler called from the UDP transport socket to completely instantiate an rxrpc_call structure and make it immediately live by preallocating all the memory it might need. The idea is to cut out the background thread usage as much as possible. [Note that the preallocated structs are not actually used in this patch - that will be done in a future patch.] If insufficient resources are available in the preallocation buffers, it will be possible to discard the DATA packet in the data_ready handler or schedule a BUSY packet without the need to schedule an attempt at allocation in a background thread. To this end: (1) Preallocate rxrpc_peer, rxrpc_connection and rxrpc_call structs to a maximum number each of the listen backlog size. The backlog size is limited to a maxmimum of 32. Only this many of each can be in the preallocation buffer. (2) For userspace sockets, the preallocation is charged initially by listen() and will be recharged by accepting or rejecting pending new incoming calls. (3) For kernel services {,re,dis}charging of the preallocation buffers is handled manually. Two notifier callbacks have to be provided before kernel_listen() is invoked: (a) An indication that a new call has been instantiated. This can be used to trigger background recharging. (b) An indication that a call is being discarded. This is used when the socket is being released. A function, rxrpc_kernel_charge_accept() is called by the kernel service to preallocate a single call. It should be passed the user ID to be used for that call and a callback to associate the rxrpc call with the kernel service's side of the ID. (4) Discard the preallocation when the socket is closed. (5) Temporarily bump the refcount on the call allocated in rxrpc_incoming_call() so that rxrpc_release_call() can ditch the preallocation ref on service calls unconditionally. This will no longer be necessary once the preallocation is used. Note that this does not yet control the number of active service calls on a client - that will come in a later patch. A future development would be to provide a setsockopt() call that allows a userspace server to manually charge the preallocation buffer. This would allow user call IDs to be provided in advance and the awkward manual accept stage to be bypassed. Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 17:10:12 +07:00
queue_work(afs_wq, &afs_charge_preallocation_work);
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
}
/*
rxrpc: Fix races between skb free, ACK generation and replying Inside the kafs filesystem it is possible to occasionally have a call processed and terminated before we've had a chance to check whether we need to clean up the rx queue for that call because afs_send_simple_reply() ends the call when it is done, but this is done in a workqueue item that might happen to run to completion before afs_deliver_to_call() completes. Further, it is possible for rxrpc_kernel_send_data() to be called to send a reply before the last request-phase data skb is released. The rxrpc skb destructor is where the ACK processing is done and the call state is advanced upon release of the last skb. ACK generation is also deferred to a work item because it's possible that the skb destructor is not called in a context where kernel_sendmsg() can be invoked. To this end, the following changes are made: (1) kernel_rxrpc_data_consumed() is added. This should be called whenever an skb is emptied so as to crank the ACK and call states. This does not release the skb, however. kernel_rxrpc_free_skb() must now be called to achieve that. These together replace rxrpc_kernel_data_delivered(). (2) kernel_rxrpc_data_consumed() is wrapped by afs_data_consumed(). This makes afs_deliver_to_call() easier to work as the skb can simply be discarded unconditionally here without trying to work out what the return value of the ->deliver() function means. The ->deliver() functions can, via afs_data_complete(), afs_transfer_reply() and afs_extract_data() mark that an skb has been consumed (thereby cranking the state) without the need to conditionally free the skb to make sure the state is correct on an incoming call for when the call processor tries to send the reply. (3) rxrpc_recvmsg() now has to call kernel_rxrpc_data_consumed() when it has finished with a packet and MSG_PEEK isn't set. (4) rxrpc_packet_destructor() no longer calls rxrpc_hard_ACK_data(). Because of this, we no longer need to clear the destructor and put the call before we free the skb in cases where we don't want the ACK/call state to be cranked. (5) The ->deliver() call-type callbacks are made to return -EAGAIN rather than 0 if they expect more data (afs_extract_data() returns -EAGAIN to the delivery function already), and the caller is now responsible for producing an abort if that was the last packet. (6) There are many bits of unmarshalling code where: ret = afs_extract_data(call, skb, last, ...); switch (ret) { case 0: break; case -EAGAIN: return 0; default: return ret; } is to be found. As -EAGAIN can now be passed back to the caller, we now just return if ret < 0: ret = afs_extract_data(call, skb, last, ...); if (ret < 0) return ret; (7) Checks for trailing data and empty final data packets has been consolidated as afs_data_complete(). So: if (skb->len > 0) return -EBADMSG; if (!last) return 0; becomes: ret = afs_data_complete(call, skb, last); if (ret < 0) return ret; (8) afs_transfer_reply() now checks the amount of data it has against the amount of data desired and the amount of data in the skb and returns an error to induce an abort if we don't get exactly what we want. Without these changes, the following oops can occasionally be observed, particularly if some printks are inserted into the delivery path: general protection fault: 0000 [#1] SMP Modules linked in: kafs(E) af_rxrpc(E) [last unloaded: af_rxrpc] CPU: 0 PID: 1305 Comm: kworker/u8:3 Tainted: G E 4.7.0-fsdevel+ #1303 Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014 Workqueue: kafsd afs_async_workfn [kafs] task: ffff88040be041c0 ti: ffff88040c070000 task.ti: ffff88040c070000 RIP: 0010:[<ffffffff8108fd3c>] [<ffffffff8108fd3c>] __lock_acquire+0xcf/0x15a1 RSP: 0018:ffff88040c073bc0 EFLAGS: 00010002 RAX: 6b6b6b6b6b6b6b6b RBX: 0000000000000000 RCX: ffff88040d29a710 RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88040d29a710 RBP: ffff88040c073c70 R08: 0000000000000001 R09: 0000000000000001 R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000 R13: 0000000000000000 R14: ffff88040be041c0 R15: ffffffff814c928f FS: 0000000000000000(0000) GS:ffff88041fa00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fa4595f4750 CR3: 0000000001c14000 CR4: 00000000001406f0 Stack: 0000000000000006 000000000be04930 0000000000000000 ffff880400000000 ffff880400000000 ffffffff8108f847 ffff88040be041c0 ffffffff81050446 ffff8803fc08a920 ffff8803fc08a958 ffff88040be041c0 ffff88040c073c38 Call Trace: [<ffffffff8108f847>] ? mark_held_locks+0x5e/0x74 [<ffffffff81050446>] ? __local_bh_enable_ip+0x9b/0xa1 [<ffffffff8108f9ca>] ? trace_hardirqs_on_caller+0x16d/0x189 [<ffffffff810915f4>] lock_acquire+0x122/0x1b6 [<ffffffff810915f4>] ? lock_acquire+0x122/0x1b6 [<ffffffff814c928f>] ? skb_dequeue+0x18/0x61 [<ffffffff81609dbf>] _raw_spin_lock_irqsave+0x35/0x49 [<ffffffff814c928f>] ? skb_dequeue+0x18/0x61 [<ffffffff814c928f>] skb_dequeue+0x18/0x61 [<ffffffffa009aa92>] afs_deliver_to_call+0x344/0x39d [kafs] [<ffffffffa009ab37>] afs_process_async_call+0x4c/0xd5 [kafs] [<ffffffffa0099e9c>] afs_async_workfn+0xe/0x10 [kafs] [<ffffffff81063a3a>] process_one_work+0x29d/0x57c [<ffffffff81064ac2>] worker_thread+0x24a/0x385 [<ffffffff81064878>] ? rescuer_thread+0x2d0/0x2d0 [<ffffffff810696f5>] kthread+0xf3/0xfb [<ffffffff8160a6ff>] ret_from_fork+0x1f/0x40 [<ffffffff81069602>] ? kthread_create_on_node+0x1cf/0x1cf Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-03 20:11:40 +07:00
* Grab the operation ID from an incoming cache manager call. The socket
* buffer is discarded on error or if we don't yet have sufficient data.
*/
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
static int afs_deliver_cm_op_id(struct afs_call *call)
{
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
int ret;
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
_enter("{%zu}", call->offset);
ASSERTCMP(call->offset, <, 4);
/* the operation ID forms the first four bytes of the request data */
ret = afs_extract_data(call, &call->tmp, 4, true);
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
if (ret < 0)
return ret;
call->operation_ID = ntohl(call->tmp);
call->state = AFS_CALL_AWAIT_REQUEST;
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
call->offset = 0;
/* ask the cache manager to route the call (it'll change the call type
* if successful) */
if (!afs_cm_incoming_call(call))
return -ENOTSUPP;
trace_afs_cb_call(call);
/* pass responsibility for the remainer of this message off to the
* cache manager op */
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
return call->type->deliver(call);
}
/*
* send an empty reply
*/
void afs_send_empty_reply(struct afs_call *call)
{
struct msghdr msg;
_enter("");
msg.msg_name = NULL;
msg.msg_namelen = 0;
iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, NULL, 0, 0);
msg.msg_control = NULL;
msg.msg_controllen = 0;
msg.msg_flags = 0;
call->state = AFS_CALL_AWAIT_ACK;
switch (rxrpc_kernel_send_data(afs_socket, call->rxcall, &msg, 0)) {
case 0:
_leave(" [replied]");
return;
case -ENOMEM:
_debug("oom");
rxrpc_kernel_abort_call(afs_socket, call->rxcall,
RX_USER_ABORT, ENOMEM, "KOO");
default:
_leave(" [error]");
return;
}
}
/*
* send a simple reply
*/
void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len)
{
struct msghdr msg;
struct kvec iov[1];
int n;
_enter("");
iov[0].iov_base = (void *) buf;
iov[0].iov_len = len;
msg.msg_name = NULL;
msg.msg_namelen = 0;
iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1, len);
msg.msg_control = NULL;
msg.msg_controllen = 0;
msg.msg_flags = 0;
call->state = AFS_CALL_AWAIT_ACK;
n = rxrpc_kernel_send_data(afs_socket, call->rxcall, &msg, len);
if (n >= 0) {
/* Success */
_leave(" [replied]");
return;
}
if (n == -ENOMEM) {
_debug("oom");
rxrpc_kernel_abort_call(afs_socket, call->rxcall,
RX_USER_ABORT, ENOMEM, "KOO");
}
_leave(" [error]");
}
/*
rxrpc: Fix races between skb free, ACK generation and replying Inside the kafs filesystem it is possible to occasionally have a call processed and terminated before we've had a chance to check whether we need to clean up the rx queue for that call because afs_send_simple_reply() ends the call when it is done, but this is done in a workqueue item that might happen to run to completion before afs_deliver_to_call() completes. Further, it is possible for rxrpc_kernel_send_data() to be called to send a reply before the last request-phase data skb is released. The rxrpc skb destructor is where the ACK processing is done and the call state is advanced upon release of the last skb. ACK generation is also deferred to a work item because it's possible that the skb destructor is not called in a context where kernel_sendmsg() can be invoked. To this end, the following changes are made: (1) kernel_rxrpc_data_consumed() is added. This should be called whenever an skb is emptied so as to crank the ACK and call states. This does not release the skb, however. kernel_rxrpc_free_skb() must now be called to achieve that. These together replace rxrpc_kernel_data_delivered(). (2) kernel_rxrpc_data_consumed() is wrapped by afs_data_consumed(). This makes afs_deliver_to_call() easier to work as the skb can simply be discarded unconditionally here without trying to work out what the return value of the ->deliver() function means. The ->deliver() functions can, via afs_data_complete(), afs_transfer_reply() and afs_extract_data() mark that an skb has been consumed (thereby cranking the state) without the need to conditionally free the skb to make sure the state is correct on an incoming call for when the call processor tries to send the reply. (3) rxrpc_recvmsg() now has to call kernel_rxrpc_data_consumed() when it has finished with a packet and MSG_PEEK isn't set. (4) rxrpc_packet_destructor() no longer calls rxrpc_hard_ACK_data(). Because of this, we no longer need to clear the destructor and put the call before we free the skb in cases where we don't want the ACK/call state to be cranked. (5) The ->deliver() call-type callbacks are made to return -EAGAIN rather than 0 if they expect more data (afs_extract_data() returns -EAGAIN to the delivery function already), and the caller is now responsible for producing an abort if that was the last packet. (6) There are many bits of unmarshalling code where: ret = afs_extract_data(call, skb, last, ...); switch (ret) { case 0: break; case -EAGAIN: return 0; default: return ret; } is to be found. As -EAGAIN can now be passed back to the caller, we now just return if ret < 0: ret = afs_extract_data(call, skb, last, ...); if (ret < 0) return ret; (7) Checks for trailing data and empty final data packets has been consolidated as afs_data_complete(). So: if (skb->len > 0) return -EBADMSG; if (!last) return 0; becomes: ret = afs_data_complete(call, skb, last); if (ret < 0) return ret; (8) afs_transfer_reply() now checks the amount of data it has against the amount of data desired and the amount of data in the skb and returns an error to induce an abort if we don't get exactly what we want. Without these changes, the following oops can occasionally be observed, particularly if some printks are inserted into the delivery path: general protection fault: 0000 [#1] SMP Modules linked in: kafs(E) af_rxrpc(E) [last unloaded: af_rxrpc] CPU: 0 PID: 1305 Comm: kworker/u8:3 Tainted: G E 4.7.0-fsdevel+ #1303 Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014 Workqueue: kafsd afs_async_workfn [kafs] task: ffff88040be041c0 ti: ffff88040c070000 task.ti: ffff88040c070000 RIP: 0010:[<ffffffff8108fd3c>] [<ffffffff8108fd3c>] __lock_acquire+0xcf/0x15a1 RSP: 0018:ffff88040c073bc0 EFLAGS: 00010002 RAX: 6b6b6b6b6b6b6b6b RBX: 0000000000000000 RCX: ffff88040d29a710 RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88040d29a710 RBP: ffff88040c073c70 R08: 0000000000000001 R09: 0000000000000001 R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000 R13: 0000000000000000 R14: ffff88040be041c0 R15: ffffffff814c928f FS: 0000000000000000(0000) GS:ffff88041fa00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fa4595f4750 CR3: 0000000001c14000 CR4: 00000000001406f0 Stack: 0000000000000006 000000000be04930 0000000000000000 ffff880400000000 ffff880400000000 ffffffff8108f847 ffff88040be041c0 ffffffff81050446 ffff8803fc08a920 ffff8803fc08a958 ffff88040be041c0 ffff88040c073c38 Call Trace: [<ffffffff8108f847>] ? mark_held_locks+0x5e/0x74 [<ffffffff81050446>] ? __local_bh_enable_ip+0x9b/0xa1 [<ffffffff8108f9ca>] ? trace_hardirqs_on_caller+0x16d/0x189 [<ffffffff810915f4>] lock_acquire+0x122/0x1b6 [<ffffffff810915f4>] ? lock_acquire+0x122/0x1b6 [<ffffffff814c928f>] ? skb_dequeue+0x18/0x61 [<ffffffff81609dbf>] _raw_spin_lock_irqsave+0x35/0x49 [<ffffffff814c928f>] ? skb_dequeue+0x18/0x61 [<ffffffff814c928f>] skb_dequeue+0x18/0x61 [<ffffffffa009aa92>] afs_deliver_to_call+0x344/0x39d [kafs] [<ffffffffa009ab37>] afs_process_async_call+0x4c/0xd5 [kafs] [<ffffffffa0099e9c>] afs_async_workfn+0xe/0x10 [kafs] [<ffffffff81063a3a>] process_one_work+0x29d/0x57c [<ffffffff81064ac2>] worker_thread+0x24a/0x385 [<ffffffff81064878>] ? rescuer_thread+0x2d0/0x2d0 [<ffffffff810696f5>] kthread+0xf3/0xfb [<ffffffff8160a6ff>] ret_from_fork+0x1f/0x40 [<ffffffff81069602>] ? kthread_create_on_node+0x1cf/0x1cf Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-03 20:11:40 +07:00
* Extract a piece of data from the received data socket buffers.
*/
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
int afs_extract_data(struct afs_call *call, void *buf, size_t count,
bool want_more)
{
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
int ret;
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
_enter("{%s,%zu},,%zu,%d",
call->type->name, call->offset, count, want_more);
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
ASSERTCMP(call->offset, <=, count);
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
ret = rxrpc_kernel_recv_data(afs_socket, call->rxcall,
buf, count, &call->offset,
want_more, &call->abort_code);
trace_afs_recv_data(call, count, call->offset, want_more, ret);
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
if (ret == 0 || ret == -EAGAIN)
return ret;
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
if (ret == 1) {
switch (call->state) {
case AFS_CALL_AWAIT_REPLY:
call->state = AFS_CALL_COMPLETE;
break;
case AFS_CALL_AWAIT_REQUEST:
call->state = AFS_CALL_REPLYING;
break;
default:
break;
}
return 0;
}
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 02:42:14 +07:00
if (ret == -ECONNABORTED)
call->error = call->type->abort_to_error(call->abort_code);
else
call->error = ret;
call->state = AFS_CALL_COMPLETE;
return ret;
}