linux_dsm_epyc7002/drivers/tty/ipwireless/hardware.c

1771 lines
46 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 21:07:57 +07:00
// SPDX-License-Identifier: GPL-2.0
/*
* IPWireless 3G PCMCIA Network Driver
*
* Original code
* by Stephen Blackheath <stephen@blacksapphire.com>,
* Ben Martel <benm@symmetric.co.nz>
*
* Copyrighted as follows:
* Copyright (C) 2004 by Symmetric Systems Ltd (NZ)
*
* Various driver changes and rewrites, port to new kernels
* Copyright (C) 2006-2007 Jiri Kosina
*
* Misc code cleanups and updates
* Copyright (C) 2007 David Sterba
*/
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/slab.h>
#include "hardware.h"
#include "setup_protocol.h"
#include "network.h"
#include "main.h"
static void ipw_send_setup_packet(struct ipw_hardware *hw);
static void handle_received_SETUP_packet(struct ipw_hardware *ipw,
unsigned int address,
const unsigned char *data, int len,
int is_last);
treewide: setup_timer() -> timer_setup() This converts all remaining cases of the old setup_timer() API into using timer_setup(), where the callback argument is the structure already holding the struct timer_list. These should have no behavioral changes, since they just change which pointer is passed into the callback with the same available pointers after conversion. It handles the following examples, in addition to some other variations. Casting from unsigned long: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... setup_timer(&ptr->my_timer, my_callback, ptr); and forced object casts: void my_callback(struct something *ptr) { ... } ... setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr); become: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... timer_setup(&ptr->my_timer, my_callback, 0); Direct function assignments: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... ptr->my_timer.function = my_callback; have a temporary cast added, along with converting the args: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback; And finally, callbacks without a data assignment: void my_callback(unsigned long data) { ... } ... setup_timer(&ptr->my_timer, my_callback, 0); have their argument renamed to verify they're unused during conversion: void my_callback(struct timer_list *unused) { ... } ... timer_setup(&ptr->my_timer, my_callback, 0); The conversion is done with the following Coccinelle script: spatch --very-quiet --all-includes --include-headers \ -I ./arch/x86/include -I ./arch/x86/include/generated \ -I ./include -I ./arch/x86/include/uapi \ -I ./arch/x86/include/generated/uapi -I ./include/uapi \ -I ./include/generated/uapi --include ./include/linux/kconfig.h \ --dir . \ --cocci-file ~/src/data/timer_setup.cocci @fix_address_of@ expression e; @@ setup_timer( -&(e) +&e , ...) // Update any raw setup_timer() usages that have a NULL callback, but // would otherwise match change_timer_function_usage, since the latter // will update all function assignments done in the face of a NULL // function initialization in setup_timer(). @change_timer_function_usage_NULL@ expression _E; identifier _timer; type _cast_data; @@ ( -setup_timer(&_E->_timer, NULL, _E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E->_timer, NULL, (_cast_data)_E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E._timer, NULL, &_E); +timer_setup(&_E._timer, NULL, 0); | -setup_timer(&_E._timer, NULL, (_cast_data)&_E); +timer_setup(&_E._timer, NULL, 0); ) @change_timer_function_usage@ expression _E; identifier _timer; struct timer_list _stl; identifier _callback; type _cast_func, _cast_data; @@ ( -setup_timer(&_E->_timer, _callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | _E->_timer@_stl.function = _callback; | _E->_timer@_stl.function = &_callback; | _E->_timer@_stl.function = (_cast_func)_callback; | _E->_timer@_stl.function = (_cast_func)&_callback; | _E._timer@_stl.function = _callback; | _E._timer@_stl.function = &_callback; | _E._timer@_stl.function = (_cast_func)_callback; | _E._timer@_stl.function = (_cast_func)&_callback; ) // callback(unsigned long arg) @change_callback_handle_cast depends on change_timer_function_usage@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; identifier _handle; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { ( ... when != _origarg _handletype *_handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg ) } // callback(unsigned long arg) without existing variable @change_callback_handle_cast_no_arg depends on change_timer_function_usage && !change_callback_handle_cast@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { + _handletype *_origarg = from_timer(_origarg, t, _timer); + ... when != _origarg - (_handletype *)_origarg + _origarg ... when != _origarg } // Avoid already converted callbacks. @match_callback_converted depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier t; @@ void _callback(struct timer_list *t) { ... } // callback(struct something *handle) @change_callback_handle_arg depends on change_timer_function_usage && !match_callback_converted && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; @@ void _callback( -_handletype *_handle +struct timer_list *t ) { + _handletype *_handle = from_timer(_handle, t, _timer); ... } // If change_callback_handle_arg ran on an empty function, remove // the added handler. @unchange_callback_handle_arg depends on change_timer_function_usage && change_callback_handle_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; identifier t; @@ void _callback(struct timer_list *t) { - _handletype *_handle = from_timer(_handle, t, _timer); } // We only want to refactor the setup_timer() data argument if we've found // the matching callback. This undoes changes in change_timer_function_usage. @unchange_timer_function_usage depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg && !change_callback_handle_arg@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type change_timer_function_usage._cast_data; @@ ( -timer_setup(&_E->_timer, _callback, 0); +setup_timer(&_E->_timer, _callback, (_cast_data)_E); | -timer_setup(&_E._timer, _callback, 0); +setup_timer(&_E._timer, _callback, (_cast_data)&_E); ) // If we fixed a callback from a .function assignment, fix the // assignment cast now. @change_timer_function_assignment depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_func; typedef TIMER_FUNC_TYPE; @@ ( _E->_timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -&_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)_callback; +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -&_callback; +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; ) // Sometimes timer functions are called directly. Replace matched args. @change_timer_function_calls depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression _E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_data; @@ _callback( ( -(_cast_data)_E +&_E->_timer | -(_cast_data)&_E +&_E._timer | -_E +&_E->_timer ) ) // If a timer has been configured without a data argument, it can be // converted without regard to the callback argument, since it is unused. @match_timer_function_unused_data@ expression _E; identifier _timer; identifier _callback; @@ ( -setup_timer(&_E->_timer, _callback, 0); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0L); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0UL); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0L); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0UL); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_timer, _callback, 0); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0L); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0UL); +timer_setup(&_timer, _callback, 0); | -setup_timer(_timer, _callback, 0); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0L); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0UL); +timer_setup(_timer, _callback, 0); ) @change_callback_unused_data depends on match_timer_function_unused_data@ identifier match_timer_function_unused_data._callback; type _origtype; identifier _origarg; @@ void _callback( -_origtype _origarg +struct timer_list *unused ) { ... when != _origarg } Signed-off-by: Kees Cook <keescook@chromium.org>
2017-10-17 04:43:17 +07:00
static void ipwireless_setup_timer(struct timer_list *t);
static void handle_received_CTRL_packet(struct ipw_hardware *hw,
unsigned int channel_idx, const unsigned char *data, int len);
/*#define TIMING_DIAGNOSTICS*/
#ifdef TIMING_DIAGNOSTICS
static struct timing_stats {
unsigned long last_report_time;
unsigned long read_time;
unsigned long write_time;
unsigned long read_bytes;
unsigned long write_bytes;
unsigned long start_time;
};
static void start_timing(void)
{
timing_stats.start_time = jiffies;
}
static void end_read_timing(unsigned length)
{
timing_stats.read_time += (jiffies - start_time);
timing_stats.read_bytes += length + 2;
report_timing();
}
static void end_write_timing(unsigned length)
{
timing_stats.write_time += (jiffies - start_time);
timing_stats.write_bytes += length + 2;
report_timing();
}
static void report_timing(void)
{
unsigned long since = jiffies - timing_stats.last_report_time;
/* If it's been more than one second... */
if (since >= HZ) {
int first = (timing_stats.last_report_time == 0);
timing_stats.last_report_time = jiffies;
if (!first)
printk(KERN_INFO IPWIRELESS_PCCARD_NAME
": %u us elapsed - read %lu bytes in %u us, wrote %lu bytes in %u us\n",
jiffies_to_usecs(since),
timing_stats.read_bytes,
jiffies_to_usecs(timing_stats.read_time),
timing_stats.write_bytes,
jiffies_to_usecs(timing_stats.write_time));
timing_stats.read_time = 0;
timing_stats.write_time = 0;
timing_stats.read_bytes = 0;
timing_stats.write_bytes = 0;
}
}
#else
static void start_timing(void) { }
static void end_read_timing(unsigned length) { }
static void end_write_timing(unsigned length) { }
#endif
/* Imported IPW definitions */
#define LL_MTU_V1 318
#define LL_MTU_V2 250
#define LL_MTU_MAX (LL_MTU_V1 > LL_MTU_V2 ? LL_MTU_V1 : LL_MTU_V2)
#define PRIO_DATA 2
#define PRIO_CTRL 1
#define PRIO_SETUP 0
/* Addresses */
#define ADDR_SETUP_PROT 0
/* Protocol ids */
enum {
/* Identifier for the Com Data protocol */
TL_PROTOCOLID_COM_DATA = 0,
/* Identifier for the Com Control protocol */
TL_PROTOCOLID_COM_CTRL = 1,
/* Identifier for the Setup protocol */
TL_PROTOCOLID_SETUP = 2
};
/* Number of bytes in NL packet header (cannot do
* sizeof(nl_packet_header) since it's a bitfield) */
#define NL_FIRST_PACKET_HEADER_SIZE 3
/* Number of bytes in NL packet header (cannot do
* sizeof(nl_packet_header) since it's a bitfield) */
#define NL_FOLLOWING_PACKET_HEADER_SIZE 1
struct nl_first_packet_header {
unsigned char protocol:3;
unsigned char address:3;
unsigned char packet_rank:2;
unsigned char length_lsb;
unsigned char length_msb;
};
struct nl_packet_header {
unsigned char protocol:3;
unsigned char address:3;
unsigned char packet_rank:2;
};
/* Value of 'packet_rank' above */
#define NL_INTERMEDIATE_PACKET 0x0
#define NL_LAST_PACKET 0x1
#define NL_FIRST_PACKET 0x2
union nl_packet {
/* Network packet header of the first packet (a special case) */
struct nl_first_packet_header hdr_first;
/* Network packet header of the following packets (if any) */
struct nl_packet_header hdr;
/* Complete network packet (header + data) */
unsigned char rawpkt[LL_MTU_MAX];
} __attribute__ ((__packed__));
#define HW_VERSION_UNKNOWN -1
#define HW_VERSION_1 1
#define HW_VERSION_2 2
/* IPW I/O ports */
#define IOIER 0x00 /* Interrupt Enable Register */
#define IOIR 0x02 /* Interrupt Source/ACK register */
#define IODCR 0x04 /* Data Control Register */
#define IODRR 0x06 /* Data Read Register */
#define IODWR 0x08 /* Data Write Register */
#define IOESR 0x0A /* Embedded Driver Status Register */
#define IORXR 0x0C /* Rx Fifo Register (Host to Embedded) */
#define IOTXR 0x0E /* Tx Fifo Register (Embedded to Host) */
/* I/O ports and bit definitions for version 1 of the hardware */
/* IER bits*/
#define IER_RXENABLED 0x1
#define IER_TXENABLED 0x2
/* ISR bits */
#define IR_RXINTR 0x1
#define IR_TXINTR 0x2
/* DCR bits */
#define DCR_RXDONE 0x1
#define DCR_TXDONE 0x2
#define DCR_RXRESET 0x4
#define DCR_TXRESET 0x8
/* I/O ports and bit definitions for version 2 of the hardware */
struct MEMCCR {
unsigned short reg_config_option; /* PCCOR: Configuration Option Register */
unsigned short reg_config_and_status; /* PCCSR: Configuration and Status Register */
unsigned short reg_pin_replacement; /* PCPRR: Pin Replacemant Register */
unsigned short reg_socket_and_copy; /* PCSCR: Socket and Copy Register */
unsigned short reg_ext_status; /* PCESR: Extendend Status Register */
unsigned short reg_io_base; /* PCIOB: I/O Base Register */
};
struct MEMINFREG {
unsigned short memreg_tx_old; /* TX Register (R/W) */
unsigned short pad1;
unsigned short memreg_rx_done; /* RXDone Register (R/W) */
unsigned short pad2;
unsigned short memreg_rx; /* RX Register (R/W) */
unsigned short pad3;
unsigned short memreg_pc_interrupt_ack; /* PC intr Ack Register (W) */
unsigned short pad4;
unsigned long memreg_card_present;/* Mask for Host to check (R) for
* CARD_PRESENT_VALUE */
unsigned short memreg_tx_new; /* TX2 (new) Register (R/W) */
};
#define CARD_PRESENT_VALUE (0xBEEFCAFEUL)
#define MEMTX_TX 0x0001
#define MEMRX_RX 0x0001
#define MEMRX_RX_DONE 0x0001
#define MEMRX_PCINTACKK 0x0001
#define NL_NUM_OF_PRIORITIES 3
#define NL_NUM_OF_PROTOCOLS 3
#define NL_NUM_OF_ADDRESSES NO_OF_IPW_CHANNELS
struct ipw_hardware {
unsigned int base_port;
short hw_version;
unsigned short ll_mtu;
spinlock_t lock;
int initializing;
int init_loops;
struct timer_list setup_timer;
/* Flag if hw is ready to send next packet */
int tx_ready;
/* Count of pending packets to be sent */
int tx_queued;
struct list_head tx_queue[NL_NUM_OF_PRIORITIES];
int rx_bytes_queued;
struct list_head rx_queue;
/* Pool of rx_packet structures that are not currently used. */
struct list_head rx_pool;
int rx_pool_size;
/* True if reception of data is blocked while userspace processes it. */
int blocking_rx;
/* True if there is RX data ready on the hardware. */
int rx_ready;
unsigned short last_memtx_serial;
/*
* Newer versions of the V2 card firmware send serial numbers in the
* MemTX register. 'serial_number_detected' is set true when we detect
* a non-zero serial number (indicating the new firmware). Thereafter,
* the driver can safely ignore the Timer Recovery re-sends to avoid
* out-of-sync problems.
*/
int serial_number_detected;
struct work_struct work_rx;
/* True if we are to send the set-up data to the hardware. */
int to_setup;
/* Card has been removed */
int removed;
/* Saved irq value when we disable the interrupt. */
int irq;
/* True if this driver is shutting down. */
int shutting_down;
/* Modem control lines */
unsigned int control_lines[NL_NUM_OF_ADDRESSES];
struct ipw_rx_packet *packet_assembler[NL_NUM_OF_ADDRESSES];
struct tasklet_struct tasklet;
/* The handle for the network layer, for the sending of events to it. */
struct ipw_network *network;
struct MEMINFREG __iomem *memory_info_regs;
struct MEMCCR __iomem *memregs_CCR;
void (*reboot_callback) (void *data);
void *reboot_callback_data;
unsigned short __iomem *memreg_tx;
};
/*
* Packet info structure for tx packets.
* Note: not all the fields defined here are required for all protocols
*/
struct ipw_tx_packet {
struct list_head queue;
/* channel idx + 1 */
unsigned char dest_addr;
/* SETUP, CTRL or DATA */
unsigned char protocol;
/* Length of data block, which starts at the end of this structure */
unsigned short length;
/* Sending state */
/* Offset of where we've sent up to so far */
unsigned long offset;
/* Count of packet fragments, starting at 0 */
int fragment_count;
/* Called after packet is sent and before is freed */
void (*packet_callback) (void *cb_data, unsigned int packet_length);
void *callback_data;
};
/* Signals from DTE */
#define COMCTRL_RTS 0
#define COMCTRL_DTR 1
/* Signals from DCE */
#define COMCTRL_CTS 2
#define COMCTRL_DCD 3
#define COMCTRL_DSR 4
#define COMCTRL_RI 5
struct ipw_control_packet_body {
/* DTE signal or DCE signal */
unsigned char sig_no;
/* 0: set signal, 1: clear signal */
unsigned char value;
} __attribute__ ((__packed__));
struct ipw_control_packet {
struct ipw_tx_packet header;
struct ipw_control_packet_body body;
};
struct ipw_rx_packet {
struct list_head queue;
unsigned int capacity;
unsigned int length;
unsigned int protocol;
unsigned int channel_idx;
};
static char *data_type(const unsigned char *buf, unsigned length)
{
struct nl_packet_header *hdr = (struct nl_packet_header *) buf;
if (length == 0)
return " ";
if (hdr->packet_rank & NL_FIRST_PACKET) {
switch (hdr->protocol) {
case TL_PROTOCOLID_COM_DATA: return "DATA ";
case TL_PROTOCOLID_COM_CTRL: return "CTRL ";
case TL_PROTOCOLID_SETUP: return "SETUP";
default: return "???? ";
}
} else
return " ";
}
#define DUMP_MAX_BYTES 64
static void dump_data_bytes(const char *type, const unsigned char *data,
unsigned length)
{
char prefix[56];
sprintf(prefix, IPWIRELESS_PCCARD_NAME ": %s %s ",
type, data_type(data, length));
print_hex_dump_bytes(prefix, 0, (void *)data,
length < DUMP_MAX_BYTES ? length : DUMP_MAX_BYTES);
}
static void swap_packet_bitfield_to_le(unsigned char *data)
{
#ifdef __BIG_ENDIAN_BITFIELD
unsigned char tmp = *data, ret = 0;
/*
* transform bits from aa.bbb.ccc to ccc.bbb.aa
*/
ret |= (tmp & 0xc0) >> 6;
ret |= (tmp & 0x38) >> 1;
ret |= (tmp & 0x07) << 5;
*data = ret & 0xff;
#endif
}
static void swap_packet_bitfield_from_le(unsigned char *data)
{
#ifdef __BIG_ENDIAN_BITFIELD
unsigned char tmp = *data, ret = 0;
/*
* transform bits from ccc.bbb.aa to aa.bbb.ccc
*/
ret |= (tmp & 0xe0) >> 5;
ret |= (tmp & 0x1c) << 1;
ret |= (tmp & 0x03) << 6;
*data = ret & 0xff;
#endif
}
static void do_send_fragment(struct ipw_hardware *hw, unsigned char *data,
unsigned length)
{
unsigned i;
unsigned long flags;
start_timing();
BUG_ON(length > hw->ll_mtu);
if (ipwireless_debug)
dump_data_bytes("send", data, length);
spin_lock_irqsave(&hw->lock, flags);
hw->tx_ready = 0;
swap_packet_bitfield_to_le(data);
if (hw->hw_version == HW_VERSION_1) {
outw((unsigned short) length, hw->base_port + IODWR);
for (i = 0; i < length; i += 2) {
unsigned short d = data[i];
__le16 raw_data;
if (i + 1 < length)
d |= data[i + 1] << 8;
raw_data = cpu_to_le16(d);
outw(raw_data, hw->base_port + IODWR);
}
outw(DCR_TXDONE, hw->base_port + IODCR);
} else if (hw->hw_version == HW_VERSION_2) {
outw((unsigned short) length, hw->base_port);
for (i = 0; i < length; i += 2) {
unsigned short d = data[i];
__le16 raw_data;
if (i + 1 < length)
d |= data[i + 1] << 8;
raw_data = cpu_to_le16(d);
outw(raw_data, hw->base_port);
}
while ((i & 3) != 2) {
outw((unsigned short) 0xDEAD, hw->base_port);
i += 2;
}
writew(MEMRX_RX, &hw->memory_info_regs->memreg_rx);
}
spin_unlock_irqrestore(&hw->lock, flags);
end_write_timing(length);
}
static void do_send_packet(struct ipw_hardware *hw, struct ipw_tx_packet *packet)
{
unsigned short fragment_data_len;
unsigned short data_left = packet->length - packet->offset;
unsigned short header_size;
union nl_packet pkt;
header_size =
(packet->fragment_count == 0)
? NL_FIRST_PACKET_HEADER_SIZE
: NL_FOLLOWING_PACKET_HEADER_SIZE;
fragment_data_len = hw->ll_mtu - header_size;
if (data_left < fragment_data_len)
fragment_data_len = data_left;
/*
* hdr_first is now in machine bitfield order, which will be swapped
* to le just before it goes to hw
*/
pkt.hdr_first.protocol = packet->protocol;
pkt.hdr_first.address = packet->dest_addr;
pkt.hdr_first.packet_rank = 0;
/* First packet? */
if (packet->fragment_count == 0) {
pkt.hdr_first.packet_rank |= NL_FIRST_PACKET;
pkt.hdr_first.length_lsb = (unsigned char) packet->length;
pkt.hdr_first.length_msb =
(unsigned char) (packet->length >> 8);
}
memcpy(pkt.rawpkt + header_size,
((unsigned char *) packet) + sizeof(struct ipw_tx_packet) +
packet->offset, fragment_data_len);
packet->offset += fragment_data_len;
packet->fragment_count++;
/* Last packet? (May also be first packet.) */
if (packet->offset == packet->length)
pkt.hdr_first.packet_rank |= NL_LAST_PACKET;
do_send_fragment(hw, pkt.rawpkt, header_size + fragment_data_len);
/* If this packet has unsent data, then re-queue it. */
if (packet->offset < packet->length) {
/*
* Re-queue it at the head of the highest priority queue so
* it goes before all other packets
*/
unsigned long flags;
spin_lock_irqsave(&hw->lock, flags);
list_add(&packet->queue, &hw->tx_queue[0]);
hw->tx_queued++;
spin_unlock_irqrestore(&hw->lock, flags);
} else {
if (packet->packet_callback)
packet->packet_callback(packet->callback_data,
packet->length);
kfree(packet);
}
}
static void ipw_setup_hardware(struct ipw_hardware *hw)
{
unsigned long flags;
spin_lock_irqsave(&hw->lock, flags);
if (hw->hw_version == HW_VERSION_1) {
/* Reset RX FIFO */
outw(DCR_RXRESET, hw->base_port + IODCR);
/* SB: Reset TX FIFO */
outw(DCR_TXRESET, hw->base_port + IODCR);
/* Enable TX and RX interrupts. */
outw(IER_TXENABLED | IER_RXENABLED, hw->base_port + IOIER);
} else {
/*
* Set INTRACK bit (bit 0), which means we must explicitly
* acknowledge interrupts by clearing bit 2 of reg_config_and_status.
*/
unsigned short csr = readw(&hw->memregs_CCR->reg_config_and_status);
csr |= 1;
writew(csr, &hw->memregs_CCR->reg_config_and_status);
}
spin_unlock_irqrestore(&hw->lock, flags);
}
/*
* If 'packet' is NULL, then this function allocates a new packet, setting its
* length to 0 and ensuring it has the specified minimum amount of free space.
*
* If 'packet' is not NULL, then this function enlarges it if it doesn't
* have the specified minimum amount of free space.
*
*/
static struct ipw_rx_packet *pool_allocate(struct ipw_hardware *hw,
struct ipw_rx_packet *packet,
int minimum_free_space)
{
if (!packet) {
unsigned long flags;
spin_lock_irqsave(&hw->lock, flags);
if (!list_empty(&hw->rx_pool)) {
packet = list_first_entry(&hw->rx_pool,
struct ipw_rx_packet, queue);
hw->rx_pool_size--;
spin_unlock_irqrestore(&hw->lock, flags);
list_del(&packet->queue);
} else {
const int min_capacity =
ipwireless_ppp_mru(hw->network) + 2;
int new_capacity;
spin_unlock_irqrestore(&hw->lock, flags);
new_capacity =
(minimum_free_space > min_capacity
? minimum_free_space
: min_capacity);
packet = kmalloc(sizeof(struct ipw_rx_packet)
+ new_capacity, GFP_ATOMIC);
if (!packet)
return NULL;
packet->capacity = new_capacity;
}
packet->length = 0;
}
if (packet->length + minimum_free_space > packet->capacity) {
struct ipw_rx_packet *old_packet = packet;
packet = kmalloc(sizeof(struct ipw_rx_packet) +
old_packet->length + minimum_free_space,
GFP_ATOMIC);
if (!packet) {
kfree(old_packet);
return NULL;
}
memcpy(packet, old_packet,
sizeof(struct ipw_rx_packet)
+ old_packet->length);
packet->capacity = old_packet->length + minimum_free_space;
kfree(old_packet);
}
return packet;
}
static void pool_free(struct ipw_hardware *hw, struct ipw_rx_packet *packet)
{
if (hw->rx_pool_size > 6)
kfree(packet);
else {
hw->rx_pool_size++;
list_add(&packet->queue, &hw->rx_pool);
}
}
static void queue_received_packet(struct ipw_hardware *hw,
unsigned int protocol,
unsigned int address,
const unsigned char *data, int length,
int is_last)
{
unsigned int channel_idx = address - 1;
struct ipw_rx_packet *packet = NULL;
unsigned long flags;
/* Discard packet if channel index is out of range. */
if (channel_idx >= NL_NUM_OF_ADDRESSES) {
printk(KERN_INFO IPWIRELESS_PCCARD_NAME
": data packet has bad address %u\n", address);
return;
}
/*
* ->packet_assembler is safe to touch unlocked, this is the only place
*/
if (protocol == TL_PROTOCOLID_COM_DATA) {
struct ipw_rx_packet **assem =
&hw->packet_assembler[channel_idx];
/*
* Create a new packet, or assembler already contains one
* enlarge it by 'length' bytes.
*/
(*assem) = pool_allocate(hw, *assem, length);
if (!(*assem)) {
printk(KERN_ERR IPWIRELESS_PCCARD_NAME
": no memory for incoming data packet, dropped!\n");
return;
}
(*assem)->protocol = protocol;
(*assem)->channel_idx = channel_idx;
/* Append this packet data onto existing data. */
memcpy((unsigned char *)(*assem) +
sizeof(struct ipw_rx_packet)
+ (*assem)->length, data, length);
(*assem)->length += length;
if (is_last) {
packet = *assem;
*assem = NULL;
/* Count queued DATA bytes only */
spin_lock_irqsave(&hw->lock, flags);
hw->rx_bytes_queued += packet->length;
spin_unlock_irqrestore(&hw->lock, flags);
}
} else {
/* If it's a CTRL packet, don't assemble, just queue it. */
packet = pool_allocate(hw, NULL, length);
if (!packet) {
printk(KERN_ERR IPWIRELESS_PCCARD_NAME
": no memory for incoming ctrl packet, dropped!\n");
return;
}
packet->protocol = protocol;
packet->channel_idx = channel_idx;
memcpy((unsigned char *)packet + sizeof(struct ipw_rx_packet),
data, length);
packet->length = length;
}
/*
* If this is the last packet, then send the assembled packet on to the
* network layer.
*/
if (packet) {
spin_lock_irqsave(&hw->lock, flags);
list_add_tail(&packet->queue, &hw->rx_queue);
/* Block reception of incoming packets if queue is full. */
hw->blocking_rx =
(hw->rx_bytes_queued >= IPWIRELESS_RX_QUEUE_SIZE);
spin_unlock_irqrestore(&hw->lock, flags);
schedule_work(&hw->work_rx);
}
}
/*
* Workqueue callback
*/
static void ipw_receive_data_work(struct work_struct *work_rx)
{
struct ipw_hardware *hw =
container_of(work_rx, struct ipw_hardware, work_rx);
unsigned long flags;
spin_lock_irqsave(&hw->lock, flags);
while (!list_empty(&hw->rx_queue)) {
struct ipw_rx_packet *packet =
list_first_entry(&hw->rx_queue,
struct ipw_rx_packet, queue);
if (hw->shutting_down)
break;
list_del(&packet->queue);
/*
* Note: ipwireless_network_packet_received must be called in a
* process context (i.e. via schedule_work) because the tty
* output code can sleep in the tty_flip_buffer_push call.
*/
if (packet->protocol == TL_PROTOCOLID_COM_DATA) {
if (hw->network != NULL) {
/* If the network hasn't been disconnected. */
spin_unlock_irqrestore(&hw->lock, flags);
/*
* This must run unlocked due to tty processing
* and mutex locking
*/
ipwireless_network_packet_received(
hw->network,
packet->channel_idx,
(unsigned char *)packet
+ sizeof(struct ipw_rx_packet),
packet->length);
spin_lock_irqsave(&hw->lock, flags);
}
/* Count queued DATA bytes only */
hw->rx_bytes_queued -= packet->length;
} else {
/*
* This is safe to be called locked, callchain does
* not block
*/
handle_received_CTRL_packet(hw, packet->channel_idx,
(unsigned char *)packet
+ sizeof(struct ipw_rx_packet),
packet->length);
}
pool_free(hw, packet);
/*
* Unblock reception of incoming packets if queue is no longer
* full.
*/
hw->blocking_rx =
hw->rx_bytes_queued >= IPWIRELESS_RX_QUEUE_SIZE;
if (hw->shutting_down)
break;
}
spin_unlock_irqrestore(&hw->lock, flags);
}
static void handle_received_CTRL_packet(struct ipw_hardware *hw,
unsigned int channel_idx,
const unsigned char *data, int len)
{
const struct ipw_control_packet_body *body =
(const struct ipw_control_packet_body *) data;
unsigned int changed_mask;
if (len != sizeof(struct ipw_control_packet_body)) {
printk(KERN_INFO IPWIRELESS_PCCARD_NAME
": control packet was %d bytes - wrong size!\n",
len);
return;
}
switch (body->sig_no) {
case COMCTRL_CTS:
changed_mask = IPW_CONTROL_LINE_CTS;
break;
case COMCTRL_DCD:
changed_mask = IPW_CONTROL_LINE_DCD;
break;
case COMCTRL_DSR:
changed_mask = IPW_CONTROL_LINE_DSR;
break;
case COMCTRL_RI:
changed_mask = IPW_CONTROL_LINE_RI;
break;
default:
changed_mask = 0;
}
if (changed_mask != 0) {
if (body->value)
hw->control_lines[channel_idx] |= changed_mask;
else
hw->control_lines[channel_idx] &= ~changed_mask;
if (hw->network)
ipwireless_network_notify_control_line_change(
hw->network,
channel_idx,
hw->control_lines[channel_idx],
changed_mask);
}
}
static void handle_received_packet(struct ipw_hardware *hw,
const union nl_packet *packet,
unsigned short len)
{
unsigned int protocol = packet->hdr.protocol;
unsigned int address = packet->hdr.address;
unsigned int header_length;
const unsigned char *data;
unsigned int data_len;
int is_last = packet->hdr.packet_rank & NL_LAST_PACKET;
if (packet->hdr.packet_rank & NL_FIRST_PACKET)
header_length = NL_FIRST_PACKET_HEADER_SIZE;
else
header_length = NL_FOLLOWING_PACKET_HEADER_SIZE;
data = packet->rawpkt + header_length;
data_len = len - header_length;
switch (protocol) {
case TL_PROTOCOLID_COM_DATA:
case TL_PROTOCOLID_COM_CTRL:
queue_received_packet(hw, protocol, address, data, data_len,
is_last);
break;
case TL_PROTOCOLID_SETUP:
handle_received_SETUP_packet(hw, address, data, data_len,
is_last);
break;
}
}
static void acknowledge_data_read(struct ipw_hardware *hw)
{
if (hw->hw_version == HW_VERSION_1)
outw(DCR_RXDONE, hw->base_port + IODCR);
else
writew(MEMRX_PCINTACKK,
&hw->memory_info_regs->memreg_pc_interrupt_ack);
}
/*
* Retrieve a packet from the IPW hardware.
*/
static void do_receive_packet(struct ipw_hardware *hw)
{
unsigned len;
unsigned i;
unsigned char pkt[LL_MTU_MAX];
start_timing();
if (hw->hw_version == HW_VERSION_1) {
len = inw(hw->base_port + IODRR);
if (len > hw->ll_mtu) {
printk(KERN_INFO IPWIRELESS_PCCARD_NAME
": received a packet of %u bytes - longer than the MTU!\n", len);
outw(DCR_RXDONE | DCR_RXRESET, hw->base_port + IODCR);
return;
}
for (i = 0; i < len; i += 2) {
__le16 raw_data = inw(hw->base_port + IODRR);
unsigned short data = le16_to_cpu(raw_data);
pkt[i] = (unsigned char) data;
pkt[i + 1] = (unsigned char) (data >> 8);
}
} else {
len = inw(hw->base_port);
if (len > hw->ll_mtu) {
printk(KERN_INFO IPWIRELESS_PCCARD_NAME
": received a packet of %u bytes - longer than the MTU!\n", len);
writew(MEMRX_PCINTACKK,
&hw->memory_info_regs->memreg_pc_interrupt_ack);
return;
}
for (i = 0; i < len; i += 2) {
__le16 raw_data = inw(hw->base_port);
unsigned short data = le16_to_cpu(raw_data);
pkt[i] = (unsigned char) data;
pkt[i + 1] = (unsigned char) (data >> 8);
}
while ((i & 3) != 2) {
inw(hw->base_port);
i += 2;
}
}
acknowledge_data_read(hw);
swap_packet_bitfield_from_le(pkt);
if (ipwireless_debug)
dump_data_bytes("recv", pkt, len);
handle_received_packet(hw, (union nl_packet *) pkt, len);
end_read_timing(len);
}
static int get_current_packet_priority(struct ipw_hardware *hw)
{
/*
* If we're initializing, don't send anything of higher priority than
* PRIO_SETUP. The network layer therefore need not care about
* hardware initialization - any of its stuff will simply be queued
* until setup is complete.
*/
return (hw->to_setup || hw->initializing
? PRIO_SETUP + 1 : NL_NUM_OF_PRIORITIES);
}
/*
* return 1 if something has been received from hw
*/
static int get_packets_from_hw(struct ipw_hardware *hw)
{
int received = 0;
unsigned long flags;
spin_lock_irqsave(&hw->lock, flags);
while (hw->rx_ready && !hw->blocking_rx) {
received = 1;
hw->rx_ready--;
spin_unlock_irqrestore(&hw->lock, flags);
do_receive_packet(hw);
spin_lock_irqsave(&hw->lock, flags);
}
spin_unlock_irqrestore(&hw->lock, flags);
return received;
}
/*
* Send pending packet up to given priority, prioritize SETUP data until
* hardware is fully setup.
*
* return 1 if more packets can be sent
*/
static int send_pending_packet(struct ipw_hardware *hw, int priority_limit)
{
int more_to_send = 0;
unsigned long flags;
spin_lock_irqsave(&hw->lock, flags);
if (hw->tx_queued && hw->tx_ready) {
int priority;
struct ipw_tx_packet *packet = NULL;
/* Pick a packet */
for (priority = 0; priority < priority_limit; priority++) {
if (!list_empty(&hw->tx_queue[priority])) {
packet = list_first_entry(
&hw->tx_queue[priority],
struct ipw_tx_packet,
queue);
hw->tx_queued--;
list_del(&packet->queue);
break;
}
}
if (!packet) {
hw->tx_queued = 0;
spin_unlock_irqrestore(&hw->lock, flags);
return 0;
}
spin_unlock_irqrestore(&hw->lock, flags);
/* Send */
do_send_packet(hw, packet);
/* Check if more to send */
spin_lock_irqsave(&hw->lock, flags);
for (priority = 0; priority < priority_limit; priority++)
if (!list_empty(&hw->tx_queue[priority])) {
more_to_send = 1;
break;
}
if (!more_to_send)
hw->tx_queued = 0;
}
spin_unlock_irqrestore(&hw->lock, flags);
return more_to_send;
}
/*
* Send and receive all queued packets.
*/
static void ipwireless_do_tasklet(struct tasklet_struct *t)
{
struct ipw_hardware *hw = from_tasklet(hw, t, tasklet);
unsigned long flags;
spin_lock_irqsave(&hw->lock, flags);
if (hw->shutting_down) {
spin_unlock_irqrestore(&hw->lock, flags);
return;
}
if (hw->to_setup == 1) {
/*
* Initial setup data sent to hardware
*/
hw->to_setup = 2;
spin_unlock_irqrestore(&hw->lock, flags);
ipw_setup_hardware(hw);
ipw_send_setup_packet(hw);
send_pending_packet(hw, PRIO_SETUP + 1);
get_packets_from_hw(hw);
} else {
int priority_limit = get_current_packet_priority(hw);
int again;
spin_unlock_irqrestore(&hw->lock, flags);
do {
again = send_pending_packet(hw, priority_limit);
again |= get_packets_from_hw(hw);
} while (again);
}
}
/*
* return true if the card is physically present.
*/
static int is_card_present(struct ipw_hardware *hw)
{
if (hw->hw_version == HW_VERSION_1)
return inw(hw->base_port + IOIR) != 0xFFFF;
else
return readl(&hw->memory_info_regs->memreg_card_present) ==
CARD_PRESENT_VALUE;
}
static irqreturn_t ipwireless_handle_v1_interrupt(int irq,
struct ipw_hardware *hw)
{
unsigned short irqn;
irqn = inw(hw->base_port + IOIR);
/* Check if card is present */
if (irqn == 0xFFFF)
return IRQ_NONE;
else if (irqn != 0) {
unsigned short ack = 0;
unsigned long flags;
/* Transmit complete. */
if (irqn & IR_TXINTR) {
ack |= IR_TXINTR;
spin_lock_irqsave(&hw->lock, flags);
hw->tx_ready = 1;
spin_unlock_irqrestore(&hw->lock, flags);
}
/* Received data */
if (irqn & IR_RXINTR) {
ack |= IR_RXINTR;
spin_lock_irqsave(&hw->lock, flags);
hw->rx_ready++;
spin_unlock_irqrestore(&hw->lock, flags);
}
if (ack != 0) {
outw(ack, hw->base_port + IOIR);
tasklet_schedule(&hw->tasklet);
}
return IRQ_HANDLED;
}
return IRQ_NONE;
}
static void acknowledge_pcmcia_interrupt(struct ipw_hardware *hw)
{
unsigned short csr = readw(&hw->memregs_CCR->reg_config_and_status);
csr &= 0xfffd;
writew(csr, &hw->memregs_CCR->reg_config_and_status);
}
static irqreturn_t ipwireless_handle_v2_v3_interrupt(int irq,
struct ipw_hardware *hw)
{
int tx = 0;
int rx = 0;
int rx_repeat = 0;
int try_mem_tx_old;
unsigned long flags;
do {
unsigned short memtx = readw(hw->memreg_tx);
unsigned short memtx_serial;
unsigned short memrxdone =
readw(&hw->memory_info_regs->memreg_rx_done);
try_mem_tx_old = 0;
/* check whether the interrupt was generated by ipwireless card */
if (!(memtx & MEMTX_TX) && !(memrxdone & MEMRX_RX_DONE)) {
/* check if the card uses memreg_tx_old register */
if (hw->memreg_tx == &hw->memory_info_regs->memreg_tx_new) {
memtx = readw(&hw->memory_info_regs->memreg_tx_old);
if (memtx & MEMTX_TX) {
printk(KERN_INFO IPWIRELESS_PCCARD_NAME
": Using memreg_tx_old\n");
hw->memreg_tx =
&hw->memory_info_regs->memreg_tx_old;
} else {
return IRQ_NONE;
}
} else
return IRQ_NONE;
}
/*
* See if the card is physically present. Note that while it is
* powering up, it appears not to be present.
*/
if (!is_card_present(hw)) {
acknowledge_pcmcia_interrupt(hw);
return IRQ_HANDLED;
}
memtx_serial = memtx & (unsigned short) 0xff00;
if (memtx & MEMTX_TX) {
writew(memtx_serial, hw->memreg_tx);
if (hw->serial_number_detected) {
if (memtx_serial != hw->last_memtx_serial) {
hw->last_memtx_serial = memtx_serial;
spin_lock_irqsave(&hw->lock, flags);
hw->rx_ready++;
spin_unlock_irqrestore(&hw->lock, flags);
rx = 1;
} else
/* Ignore 'Timer Recovery' duplicates. */
rx_repeat = 1;
} else {
/*
* If a non-zero serial number is seen, then enable
* serial number checking.
*/
if (memtx_serial != 0) {
hw->serial_number_detected = 1;
printk(KERN_DEBUG IPWIRELESS_PCCARD_NAME
": memreg_tx serial num detected\n");
spin_lock_irqsave(&hw->lock, flags);
hw->rx_ready++;
spin_unlock_irqrestore(&hw->lock, flags);
}
rx = 1;
}
}
if (memrxdone & MEMRX_RX_DONE) {
writew(0, &hw->memory_info_regs->memreg_rx_done);
spin_lock_irqsave(&hw->lock, flags);
hw->tx_ready = 1;
spin_unlock_irqrestore(&hw->lock, flags);
tx = 1;
}
if (tx)
writew(MEMRX_PCINTACKK,
&hw->memory_info_regs->memreg_pc_interrupt_ack);
acknowledge_pcmcia_interrupt(hw);
if (tx || rx)
tasklet_schedule(&hw->tasklet);
else if (!rx_repeat) {
if (hw->memreg_tx == &hw->memory_info_regs->memreg_tx_new) {
if (hw->serial_number_detected)
printk(KERN_WARNING IPWIRELESS_PCCARD_NAME
": spurious interrupt - new_tx mode\n");
else {
printk(KERN_WARNING IPWIRELESS_PCCARD_NAME
": no valid memreg_tx value - switching to the old memreg_tx\n");
hw->memreg_tx =
&hw->memory_info_regs->memreg_tx_old;
try_mem_tx_old = 1;
}
} else
printk(KERN_WARNING IPWIRELESS_PCCARD_NAME
": spurious interrupt - old_tx mode\n");
}
} while (try_mem_tx_old == 1);
return IRQ_HANDLED;
}
irqreturn_t ipwireless_interrupt(int irq, void *dev_id)
{
struct ipw_dev *ipw = dev_id;
if (ipw->hardware->hw_version == HW_VERSION_1)
return ipwireless_handle_v1_interrupt(irq, ipw->hardware);
else
return ipwireless_handle_v2_v3_interrupt(irq, ipw->hardware);
}
static void flush_packets_to_hw(struct ipw_hardware *hw)
{
int priority_limit;
unsigned long flags;
spin_lock_irqsave(&hw->lock, flags);
priority_limit = get_current_packet_priority(hw);
spin_unlock_irqrestore(&hw->lock, flags);
while (send_pending_packet(hw, priority_limit));
}
static void send_packet(struct ipw_hardware *hw, int priority,
struct ipw_tx_packet *packet)
{
unsigned long flags;
spin_lock_irqsave(&hw->lock, flags);
list_add_tail(&packet->queue, &hw->tx_queue[priority]);
hw->tx_queued++;
spin_unlock_irqrestore(&hw->lock, flags);
flush_packets_to_hw(hw);
}
/* Create data packet, non-atomic allocation */
static void *alloc_data_packet(int data_size,
unsigned char dest_addr,
unsigned char protocol)
{
struct ipw_tx_packet *packet = kzalloc(
sizeof(struct ipw_tx_packet) + data_size,
GFP_ATOMIC);
if (!packet)
return NULL;
INIT_LIST_HEAD(&packet->queue);
packet->dest_addr = dest_addr;
packet->protocol = protocol;
packet->length = data_size;
return packet;
}
static void *alloc_ctrl_packet(int header_size,
unsigned char dest_addr,
unsigned char protocol,
unsigned char sig_no)
{
/*
* sig_no is located right after ipw_tx_packet struct in every
* CTRL or SETUP packets, we can use ipw_control_packet as a
* common struct
*/
struct ipw_control_packet *packet = kzalloc(header_size, GFP_ATOMIC);
if (!packet)
return NULL;
INIT_LIST_HEAD(&packet->header.queue);
packet->header.dest_addr = dest_addr;
packet->header.protocol = protocol;
packet->header.length = header_size - sizeof(struct ipw_tx_packet);
packet->body.sig_no = sig_no;
return packet;
}
int ipwireless_send_packet(struct ipw_hardware *hw, unsigned int channel_idx,
const unsigned char *data, unsigned int length,
void (*callback) (void *cb, unsigned int length),
void *callback_data)
{
struct ipw_tx_packet *packet;
packet = alloc_data_packet(length, (channel_idx + 1),
TL_PROTOCOLID_COM_DATA);
if (!packet)
return -ENOMEM;
packet->packet_callback = callback;
packet->callback_data = callback_data;
memcpy((unsigned char *) packet + sizeof(struct ipw_tx_packet), data,
length);
send_packet(hw, PRIO_DATA, packet);
return 0;
}
static int set_control_line(struct ipw_hardware *hw, int prio,
unsigned int channel_idx, int line, int state)
{
struct ipw_control_packet *packet;
int protocolid = TL_PROTOCOLID_COM_CTRL;
if (prio == PRIO_SETUP)
protocolid = TL_PROTOCOLID_SETUP;
packet = alloc_ctrl_packet(sizeof(struct ipw_control_packet),
(channel_idx + 1), protocolid, line);
if (!packet)
return -ENOMEM;
packet->header.length = sizeof(struct ipw_control_packet_body);
packet->body.value = (state == 0 ? 0 : 1);
send_packet(hw, prio, &packet->header);
return 0;
}
static int set_DTR(struct ipw_hardware *hw, int priority,
unsigned int channel_idx, int state)
{
if (state != 0)
hw->control_lines[channel_idx] |= IPW_CONTROL_LINE_DTR;
else
hw->control_lines[channel_idx] &= ~IPW_CONTROL_LINE_DTR;
return set_control_line(hw, priority, channel_idx, COMCTRL_DTR, state);
}
static int set_RTS(struct ipw_hardware *hw, int priority,
unsigned int channel_idx, int state)
{
if (state != 0)
hw->control_lines[channel_idx] |= IPW_CONTROL_LINE_RTS;
else
hw->control_lines[channel_idx] &= ~IPW_CONTROL_LINE_RTS;
return set_control_line(hw, priority, channel_idx, COMCTRL_RTS, state);
}
int ipwireless_set_DTR(struct ipw_hardware *hw, unsigned int channel_idx,
int state)
{
return set_DTR(hw, PRIO_CTRL, channel_idx, state);
}
int ipwireless_set_RTS(struct ipw_hardware *hw, unsigned int channel_idx,
int state)
{
return set_RTS(hw, PRIO_CTRL, channel_idx, state);
}
struct ipw_setup_get_version_query_packet {
struct ipw_tx_packet header;
struct tl_setup_get_version_qry body;
};
struct ipw_setup_config_packet {
struct ipw_tx_packet header;
struct tl_setup_config_msg body;
};
struct ipw_setup_config_done_packet {
struct ipw_tx_packet header;
struct tl_setup_config_done_msg body;
};
struct ipw_setup_open_packet {
struct ipw_tx_packet header;
struct tl_setup_open_msg body;
};
struct ipw_setup_info_packet {
struct ipw_tx_packet header;
struct tl_setup_info_msg body;
};
struct ipw_setup_reboot_msg_ack {
struct ipw_tx_packet header;
struct TlSetupRebootMsgAck body;
};
/* This handles the actual initialization of the card */
static void __handle_setup_get_version_rsp(struct ipw_hardware *hw)
{
struct ipw_setup_config_packet *config_packet;
struct ipw_setup_config_done_packet *config_done_packet;
struct ipw_setup_open_packet *open_packet;
struct ipw_setup_info_packet *info_packet;
int port;
unsigned int channel_idx;
/* generate config packet */
for (port = 1; port <= NL_NUM_OF_ADDRESSES; port++) {
config_packet = alloc_ctrl_packet(
sizeof(struct ipw_setup_config_packet),
ADDR_SETUP_PROT,
TL_PROTOCOLID_SETUP,
TL_SETUP_SIGNO_CONFIG_MSG);
if (!config_packet)
goto exit_nomem;
config_packet->header.length = sizeof(struct tl_setup_config_msg);
config_packet->body.port_no = port;
config_packet->body.prio_data = PRIO_DATA;
config_packet->body.prio_ctrl = PRIO_CTRL;
send_packet(hw, PRIO_SETUP, &config_packet->header);
}
config_done_packet = alloc_ctrl_packet(
sizeof(struct ipw_setup_config_done_packet),
ADDR_SETUP_PROT,
TL_PROTOCOLID_SETUP,
TL_SETUP_SIGNO_CONFIG_DONE_MSG);
if (!config_done_packet)
goto exit_nomem;
config_done_packet->header.length = sizeof(struct tl_setup_config_done_msg);
send_packet(hw, PRIO_SETUP, &config_done_packet->header);
/* generate open packet */
for (port = 1; port <= NL_NUM_OF_ADDRESSES; port++) {
open_packet = alloc_ctrl_packet(
sizeof(struct ipw_setup_open_packet),
ADDR_SETUP_PROT,
TL_PROTOCOLID_SETUP,
TL_SETUP_SIGNO_OPEN_MSG);
if (!open_packet)
goto exit_nomem;
open_packet->header.length = sizeof(struct tl_setup_open_msg);
open_packet->body.port_no = port;
send_packet(hw, PRIO_SETUP, &open_packet->header);
}
for (channel_idx = 0;
channel_idx < NL_NUM_OF_ADDRESSES; channel_idx++) {
int ret;
ret = set_DTR(hw, PRIO_SETUP, channel_idx,
(hw->control_lines[channel_idx] &
IPW_CONTROL_LINE_DTR) != 0);
if (ret) {
printk(KERN_ERR IPWIRELESS_PCCARD_NAME
": error setting DTR (%d)\n", ret);
return;
}
ret = set_RTS(hw, PRIO_SETUP, channel_idx,
(hw->control_lines [channel_idx] &
IPW_CONTROL_LINE_RTS) != 0);
if (ret) {
printk(KERN_ERR IPWIRELESS_PCCARD_NAME
": error setting RTS (%d)\n", ret);
return;
}
}
/*
* For NDIS we assume that we are using sync PPP frames, for COM async.
* This driver uses NDIS mode too. We don't bother with translation
* from async -> sync PPP.
*/
info_packet = alloc_ctrl_packet(sizeof(struct ipw_setup_info_packet),
ADDR_SETUP_PROT,
TL_PROTOCOLID_SETUP,
TL_SETUP_SIGNO_INFO_MSG);
if (!info_packet)
goto exit_nomem;
info_packet->header.length = sizeof(struct tl_setup_info_msg);
info_packet->body.driver_type = NDISWAN_DRIVER;
info_packet->body.major_version = NDISWAN_DRIVER_MAJOR_VERSION;
info_packet->body.minor_version = NDISWAN_DRIVER_MINOR_VERSION;
send_packet(hw, PRIO_SETUP, &info_packet->header);
/* Initialization is now complete, so we clear the 'to_setup' flag */
hw->to_setup = 0;
return;
exit_nomem:
printk(KERN_ERR IPWIRELESS_PCCARD_NAME
": not enough memory to alloc control packet\n");
hw->to_setup = -1;
}
static void handle_setup_get_version_rsp(struct ipw_hardware *hw,
unsigned char vers_no)
{
del_timer(&hw->setup_timer);
hw->initializing = 0;
printk(KERN_INFO IPWIRELESS_PCCARD_NAME ": card is ready.\n");
if (vers_no == TL_SETUP_VERSION)
__handle_setup_get_version_rsp(hw);
else
printk(KERN_ERR IPWIRELESS_PCCARD_NAME
": invalid hardware version no %u\n",
(unsigned int) vers_no);
}
static void ipw_send_setup_packet(struct ipw_hardware *hw)
{
struct ipw_setup_get_version_query_packet *ver_packet;
ver_packet = alloc_ctrl_packet(
sizeof(struct ipw_setup_get_version_query_packet),
ADDR_SETUP_PROT, TL_PROTOCOLID_SETUP,
TL_SETUP_SIGNO_GET_VERSION_QRY);
if (!ver_packet)
return;
ver_packet->header.length = sizeof(struct tl_setup_get_version_qry);
/*
* Response is handled in handle_received_SETUP_packet
*/
send_packet(hw, PRIO_SETUP, &ver_packet->header);
}
static void handle_received_SETUP_packet(struct ipw_hardware *hw,
unsigned int address,
const unsigned char *data, int len,
int is_last)
{
const union ipw_setup_rx_msg *rx_msg = (const union ipw_setup_rx_msg *) data;
if (address != ADDR_SETUP_PROT) {
printk(KERN_INFO IPWIRELESS_PCCARD_NAME
": setup packet has bad address %d\n", address);
return;
}
switch (rx_msg->sig_no) {
case TL_SETUP_SIGNO_GET_VERSION_RSP:
if (hw->to_setup)
handle_setup_get_version_rsp(hw,
rx_msg->version_rsp_msg.version);
break;
case TL_SETUP_SIGNO_OPEN_MSG:
if (ipwireless_debug) {
unsigned int channel_idx = rx_msg->open_msg.port_no - 1;
printk(KERN_INFO IPWIRELESS_PCCARD_NAME
": OPEN_MSG [channel %u] reply received\n",
channel_idx);
}
break;
case TL_SETUP_SIGNO_INFO_MSG_ACK:
if (ipwireless_debug)
printk(KERN_DEBUG IPWIRELESS_PCCARD_NAME
": card successfully configured as NDISWAN\n");
break;
case TL_SETUP_SIGNO_REBOOT_MSG:
if (hw->to_setup)
printk(KERN_DEBUG IPWIRELESS_PCCARD_NAME
": Setup not completed - ignoring reboot msg\n");
else {
struct ipw_setup_reboot_msg_ack *packet;
printk(KERN_DEBUG IPWIRELESS_PCCARD_NAME
": Acknowledging REBOOT message\n");
packet = alloc_ctrl_packet(
sizeof(struct ipw_setup_reboot_msg_ack),
ADDR_SETUP_PROT, TL_PROTOCOLID_SETUP,
TL_SETUP_SIGNO_REBOOT_MSG_ACK);
if (!packet) {
pr_err(IPWIRELESS_PCCARD_NAME
": Not enough memory to send reboot packet");
break;
}
packet->header.length =
sizeof(struct TlSetupRebootMsgAck);
send_packet(hw, PRIO_SETUP, &packet->header);
if (hw->reboot_callback)
hw->reboot_callback(hw->reboot_callback_data);
}
break;
default:
printk(KERN_INFO IPWIRELESS_PCCARD_NAME
": unknown setup message %u received\n",
(unsigned int) rx_msg->sig_no);
}
}
static void do_close_hardware(struct ipw_hardware *hw)
{
unsigned int irqn;
if (hw->hw_version == HW_VERSION_1) {
/* Disable TX and RX interrupts. */
outw(0, hw->base_port + IOIER);
/* Acknowledge any outstanding interrupt requests */
irqn = inw(hw->base_port + IOIR);
if (irqn & IR_TXINTR)
outw(IR_TXINTR, hw->base_port + IOIR);
if (irqn & IR_RXINTR)
outw(IR_RXINTR, hw->base_port + IOIR);
synchronize_irq(hw->irq);
}
}
struct ipw_hardware *ipwireless_hardware_create(void)
{
int i;
struct ipw_hardware *hw =
kzalloc(sizeof(struct ipw_hardware), GFP_KERNEL);
if (!hw)
return NULL;
hw->irq = -1;
hw->initializing = 1;
hw->tx_ready = 1;
hw->rx_bytes_queued = 0;
hw->rx_pool_size = 0;
hw->last_memtx_serial = (unsigned short) 0xffff;
for (i = 0; i < NL_NUM_OF_PRIORITIES; i++)
INIT_LIST_HEAD(&hw->tx_queue[i]);
INIT_LIST_HEAD(&hw->rx_queue);
INIT_LIST_HEAD(&hw->rx_pool);
spin_lock_init(&hw->lock);
tasklet_setup(&hw->tasklet, ipwireless_do_tasklet);
INIT_WORK(&hw->work_rx, ipw_receive_data_work);
treewide: setup_timer() -> timer_setup() This converts all remaining cases of the old setup_timer() API into using timer_setup(), where the callback argument is the structure already holding the struct timer_list. These should have no behavioral changes, since they just change which pointer is passed into the callback with the same available pointers after conversion. It handles the following examples, in addition to some other variations. Casting from unsigned long: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... setup_timer(&ptr->my_timer, my_callback, ptr); and forced object casts: void my_callback(struct something *ptr) { ... } ... setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr); become: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... timer_setup(&ptr->my_timer, my_callback, 0); Direct function assignments: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... ptr->my_timer.function = my_callback; have a temporary cast added, along with converting the args: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback; And finally, callbacks without a data assignment: void my_callback(unsigned long data) { ... } ... setup_timer(&ptr->my_timer, my_callback, 0); have their argument renamed to verify they're unused during conversion: void my_callback(struct timer_list *unused) { ... } ... timer_setup(&ptr->my_timer, my_callback, 0); The conversion is done with the following Coccinelle script: spatch --very-quiet --all-includes --include-headers \ -I ./arch/x86/include -I ./arch/x86/include/generated \ -I ./include -I ./arch/x86/include/uapi \ -I ./arch/x86/include/generated/uapi -I ./include/uapi \ -I ./include/generated/uapi --include ./include/linux/kconfig.h \ --dir . \ --cocci-file ~/src/data/timer_setup.cocci @fix_address_of@ expression e; @@ setup_timer( -&(e) +&e , ...) // Update any raw setup_timer() usages that have a NULL callback, but // would otherwise match change_timer_function_usage, since the latter // will update all function assignments done in the face of a NULL // function initialization in setup_timer(). @change_timer_function_usage_NULL@ expression _E; identifier _timer; type _cast_data; @@ ( -setup_timer(&_E->_timer, NULL, _E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E->_timer, NULL, (_cast_data)_E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E._timer, NULL, &_E); +timer_setup(&_E._timer, NULL, 0); | -setup_timer(&_E._timer, NULL, (_cast_data)&_E); +timer_setup(&_E._timer, NULL, 0); ) @change_timer_function_usage@ expression _E; identifier _timer; struct timer_list _stl; identifier _callback; type _cast_func, _cast_data; @@ ( -setup_timer(&_E->_timer, _callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | _E->_timer@_stl.function = _callback; | _E->_timer@_stl.function = &_callback; | _E->_timer@_stl.function = (_cast_func)_callback; | _E->_timer@_stl.function = (_cast_func)&_callback; | _E._timer@_stl.function = _callback; | _E._timer@_stl.function = &_callback; | _E._timer@_stl.function = (_cast_func)_callback; | _E._timer@_stl.function = (_cast_func)&_callback; ) // callback(unsigned long arg) @change_callback_handle_cast depends on change_timer_function_usage@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; identifier _handle; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { ( ... when != _origarg _handletype *_handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg ) } // callback(unsigned long arg) without existing variable @change_callback_handle_cast_no_arg depends on change_timer_function_usage && !change_callback_handle_cast@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { + _handletype *_origarg = from_timer(_origarg, t, _timer); + ... when != _origarg - (_handletype *)_origarg + _origarg ... when != _origarg } // Avoid already converted callbacks. @match_callback_converted depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier t; @@ void _callback(struct timer_list *t) { ... } // callback(struct something *handle) @change_callback_handle_arg depends on change_timer_function_usage && !match_callback_converted && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; @@ void _callback( -_handletype *_handle +struct timer_list *t ) { + _handletype *_handle = from_timer(_handle, t, _timer); ... } // If change_callback_handle_arg ran on an empty function, remove // the added handler. @unchange_callback_handle_arg depends on change_timer_function_usage && change_callback_handle_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; identifier t; @@ void _callback(struct timer_list *t) { - _handletype *_handle = from_timer(_handle, t, _timer); } // We only want to refactor the setup_timer() data argument if we've found // the matching callback. This undoes changes in change_timer_function_usage. @unchange_timer_function_usage depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg && !change_callback_handle_arg@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type change_timer_function_usage._cast_data; @@ ( -timer_setup(&_E->_timer, _callback, 0); +setup_timer(&_E->_timer, _callback, (_cast_data)_E); | -timer_setup(&_E._timer, _callback, 0); +setup_timer(&_E._timer, _callback, (_cast_data)&_E); ) // If we fixed a callback from a .function assignment, fix the // assignment cast now. @change_timer_function_assignment depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_func; typedef TIMER_FUNC_TYPE; @@ ( _E->_timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -&_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)_callback; +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -&_callback; +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; ) // Sometimes timer functions are called directly. Replace matched args. @change_timer_function_calls depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression _E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_data; @@ _callback( ( -(_cast_data)_E +&_E->_timer | -(_cast_data)&_E +&_E._timer | -_E +&_E->_timer ) ) // If a timer has been configured without a data argument, it can be // converted without regard to the callback argument, since it is unused. @match_timer_function_unused_data@ expression _E; identifier _timer; identifier _callback; @@ ( -setup_timer(&_E->_timer, _callback, 0); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0L); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0UL); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0L); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0UL); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_timer, _callback, 0); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0L); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0UL); +timer_setup(&_timer, _callback, 0); | -setup_timer(_timer, _callback, 0); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0L); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0UL); +timer_setup(_timer, _callback, 0); ) @change_callback_unused_data depends on match_timer_function_unused_data@ identifier match_timer_function_unused_data._callback; type _origtype; identifier _origarg; @@ void _callback( -_origtype _origarg +struct timer_list *unused ) { ... when != _origarg } Signed-off-by: Kees Cook <keescook@chromium.org>
2017-10-17 04:43:17 +07:00
timer_setup(&hw->setup_timer, ipwireless_setup_timer, 0);
return hw;
}
void ipwireless_init_hardware_v1(struct ipw_hardware *hw,
unsigned int base_port,
void __iomem *attr_memory,
void __iomem *common_memory,
int is_v2_card,
void (*reboot_callback) (void *data),
void *reboot_callback_data)
{
if (hw->removed) {
hw->removed = 0;
enable_irq(hw->irq);
}
hw->base_port = base_port;
hw->hw_version = (is_v2_card ? HW_VERSION_2 : HW_VERSION_1);
hw->ll_mtu = (hw->hw_version == HW_VERSION_1 ? LL_MTU_V1 : LL_MTU_V2);
hw->memregs_CCR = (struct MEMCCR __iomem *)
((unsigned short __iomem *) attr_memory + 0x200);
hw->memory_info_regs = (struct MEMINFREG __iomem *) common_memory;
hw->memreg_tx = &hw->memory_info_regs->memreg_tx_new;
hw->reboot_callback = reboot_callback;
hw->reboot_callback_data = reboot_callback_data;
}
void ipwireless_init_hardware_v2_v3(struct ipw_hardware *hw)
{
hw->initializing = 1;
hw->init_loops = 0;
printk(KERN_INFO IPWIRELESS_PCCARD_NAME
": waiting for card to start up...\n");
treewide: setup_timer() -> timer_setup() This converts all remaining cases of the old setup_timer() API into using timer_setup(), where the callback argument is the structure already holding the struct timer_list. These should have no behavioral changes, since they just change which pointer is passed into the callback with the same available pointers after conversion. It handles the following examples, in addition to some other variations. Casting from unsigned long: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... setup_timer(&ptr->my_timer, my_callback, ptr); and forced object casts: void my_callback(struct something *ptr) { ... } ... setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr); become: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... timer_setup(&ptr->my_timer, my_callback, 0); Direct function assignments: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... ptr->my_timer.function = my_callback; have a temporary cast added, along with converting the args: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback; And finally, callbacks without a data assignment: void my_callback(unsigned long data) { ... } ... setup_timer(&ptr->my_timer, my_callback, 0); have their argument renamed to verify they're unused during conversion: void my_callback(struct timer_list *unused) { ... } ... timer_setup(&ptr->my_timer, my_callback, 0); The conversion is done with the following Coccinelle script: spatch --very-quiet --all-includes --include-headers \ -I ./arch/x86/include -I ./arch/x86/include/generated \ -I ./include -I ./arch/x86/include/uapi \ -I ./arch/x86/include/generated/uapi -I ./include/uapi \ -I ./include/generated/uapi --include ./include/linux/kconfig.h \ --dir . \ --cocci-file ~/src/data/timer_setup.cocci @fix_address_of@ expression e; @@ setup_timer( -&(e) +&e , ...) // Update any raw setup_timer() usages that have a NULL callback, but // would otherwise match change_timer_function_usage, since the latter // will update all function assignments done in the face of a NULL // function initialization in setup_timer(). @change_timer_function_usage_NULL@ expression _E; identifier _timer; type _cast_data; @@ ( -setup_timer(&_E->_timer, NULL, _E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E->_timer, NULL, (_cast_data)_E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E._timer, NULL, &_E); +timer_setup(&_E._timer, NULL, 0); | -setup_timer(&_E._timer, NULL, (_cast_data)&_E); +timer_setup(&_E._timer, NULL, 0); ) @change_timer_function_usage@ expression _E; identifier _timer; struct timer_list _stl; identifier _callback; type _cast_func, _cast_data; @@ ( -setup_timer(&_E->_timer, _callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | _E->_timer@_stl.function = _callback; | _E->_timer@_stl.function = &_callback; | _E->_timer@_stl.function = (_cast_func)_callback; | _E->_timer@_stl.function = (_cast_func)&_callback; | _E._timer@_stl.function = _callback; | _E._timer@_stl.function = &_callback; | _E._timer@_stl.function = (_cast_func)_callback; | _E._timer@_stl.function = (_cast_func)&_callback; ) // callback(unsigned long arg) @change_callback_handle_cast depends on change_timer_function_usage@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; identifier _handle; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { ( ... when != _origarg _handletype *_handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg ) } // callback(unsigned long arg) without existing variable @change_callback_handle_cast_no_arg depends on change_timer_function_usage && !change_callback_handle_cast@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { + _handletype *_origarg = from_timer(_origarg, t, _timer); + ... when != _origarg - (_handletype *)_origarg + _origarg ... when != _origarg } // Avoid already converted callbacks. @match_callback_converted depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier t; @@ void _callback(struct timer_list *t) { ... } // callback(struct something *handle) @change_callback_handle_arg depends on change_timer_function_usage && !match_callback_converted && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; @@ void _callback( -_handletype *_handle +struct timer_list *t ) { + _handletype *_handle = from_timer(_handle, t, _timer); ... } // If change_callback_handle_arg ran on an empty function, remove // the added handler. @unchange_callback_handle_arg depends on change_timer_function_usage && change_callback_handle_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; identifier t; @@ void _callback(struct timer_list *t) { - _handletype *_handle = from_timer(_handle, t, _timer); } // We only want to refactor the setup_timer() data argument if we've found // the matching callback. This undoes changes in change_timer_function_usage. @unchange_timer_function_usage depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg && !change_callback_handle_arg@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type change_timer_function_usage._cast_data; @@ ( -timer_setup(&_E->_timer, _callback, 0); +setup_timer(&_E->_timer, _callback, (_cast_data)_E); | -timer_setup(&_E._timer, _callback, 0); +setup_timer(&_E._timer, _callback, (_cast_data)&_E); ) // If we fixed a callback from a .function assignment, fix the // assignment cast now. @change_timer_function_assignment depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_func; typedef TIMER_FUNC_TYPE; @@ ( _E->_timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -&_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)_callback; +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -&_callback; +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; ) // Sometimes timer functions are called directly. Replace matched args. @change_timer_function_calls depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression _E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_data; @@ _callback( ( -(_cast_data)_E +&_E->_timer | -(_cast_data)&_E +&_E._timer | -_E +&_E->_timer ) ) // If a timer has been configured without a data argument, it can be // converted without regard to the callback argument, since it is unused. @match_timer_function_unused_data@ expression _E; identifier _timer; identifier _callback; @@ ( -setup_timer(&_E->_timer, _callback, 0); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0L); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0UL); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0L); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0UL); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_timer, _callback, 0); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0L); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0UL); +timer_setup(&_timer, _callback, 0); | -setup_timer(_timer, _callback, 0); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0L); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0UL); +timer_setup(_timer, _callback, 0); ) @change_callback_unused_data depends on match_timer_function_unused_data@ identifier match_timer_function_unused_data._callback; type _origtype; identifier _origarg; @@ void _callback( -_origtype _origarg +struct timer_list *unused ) { ... when != _origarg } Signed-off-by: Kees Cook <keescook@chromium.org>
2017-10-17 04:43:17 +07:00
ipwireless_setup_timer(&hw->setup_timer);
}
treewide: setup_timer() -> timer_setup() This converts all remaining cases of the old setup_timer() API into using timer_setup(), where the callback argument is the structure already holding the struct timer_list. These should have no behavioral changes, since they just change which pointer is passed into the callback with the same available pointers after conversion. It handles the following examples, in addition to some other variations. Casting from unsigned long: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... setup_timer(&ptr->my_timer, my_callback, ptr); and forced object casts: void my_callback(struct something *ptr) { ... } ... setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr); become: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... timer_setup(&ptr->my_timer, my_callback, 0); Direct function assignments: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... ptr->my_timer.function = my_callback; have a temporary cast added, along with converting the args: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback; And finally, callbacks without a data assignment: void my_callback(unsigned long data) { ... } ... setup_timer(&ptr->my_timer, my_callback, 0); have their argument renamed to verify they're unused during conversion: void my_callback(struct timer_list *unused) { ... } ... timer_setup(&ptr->my_timer, my_callback, 0); The conversion is done with the following Coccinelle script: spatch --very-quiet --all-includes --include-headers \ -I ./arch/x86/include -I ./arch/x86/include/generated \ -I ./include -I ./arch/x86/include/uapi \ -I ./arch/x86/include/generated/uapi -I ./include/uapi \ -I ./include/generated/uapi --include ./include/linux/kconfig.h \ --dir . \ --cocci-file ~/src/data/timer_setup.cocci @fix_address_of@ expression e; @@ setup_timer( -&(e) +&e , ...) // Update any raw setup_timer() usages that have a NULL callback, but // would otherwise match change_timer_function_usage, since the latter // will update all function assignments done in the face of a NULL // function initialization in setup_timer(). @change_timer_function_usage_NULL@ expression _E; identifier _timer; type _cast_data; @@ ( -setup_timer(&_E->_timer, NULL, _E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E->_timer, NULL, (_cast_data)_E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E._timer, NULL, &_E); +timer_setup(&_E._timer, NULL, 0); | -setup_timer(&_E._timer, NULL, (_cast_data)&_E); +timer_setup(&_E._timer, NULL, 0); ) @change_timer_function_usage@ expression _E; identifier _timer; struct timer_list _stl; identifier _callback; type _cast_func, _cast_data; @@ ( -setup_timer(&_E->_timer, _callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | _E->_timer@_stl.function = _callback; | _E->_timer@_stl.function = &_callback; | _E->_timer@_stl.function = (_cast_func)_callback; | _E->_timer@_stl.function = (_cast_func)&_callback; | _E._timer@_stl.function = _callback; | _E._timer@_stl.function = &_callback; | _E._timer@_stl.function = (_cast_func)_callback; | _E._timer@_stl.function = (_cast_func)&_callback; ) // callback(unsigned long arg) @change_callback_handle_cast depends on change_timer_function_usage@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; identifier _handle; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { ( ... when != _origarg _handletype *_handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg ) } // callback(unsigned long arg) without existing variable @change_callback_handle_cast_no_arg depends on change_timer_function_usage && !change_callback_handle_cast@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { + _handletype *_origarg = from_timer(_origarg, t, _timer); + ... when != _origarg - (_handletype *)_origarg + _origarg ... when != _origarg } // Avoid already converted callbacks. @match_callback_converted depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier t; @@ void _callback(struct timer_list *t) { ... } // callback(struct something *handle) @change_callback_handle_arg depends on change_timer_function_usage && !match_callback_converted && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; @@ void _callback( -_handletype *_handle +struct timer_list *t ) { + _handletype *_handle = from_timer(_handle, t, _timer); ... } // If change_callback_handle_arg ran on an empty function, remove // the added handler. @unchange_callback_handle_arg depends on change_timer_function_usage && change_callback_handle_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; identifier t; @@ void _callback(struct timer_list *t) { - _handletype *_handle = from_timer(_handle, t, _timer); } // We only want to refactor the setup_timer() data argument if we've found // the matching callback. This undoes changes in change_timer_function_usage. @unchange_timer_function_usage depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg && !change_callback_handle_arg@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type change_timer_function_usage._cast_data; @@ ( -timer_setup(&_E->_timer, _callback, 0); +setup_timer(&_E->_timer, _callback, (_cast_data)_E); | -timer_setup(&_E._timer, _callback, 0); +setup_timer(&_E._timer, _callback, (_cast_data)&_E); ) // If we fixed a callback from a .function assignment, fix the // assignment cast now. @change_timer_function_assignment depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_func; typedef TIMER_FUNC_TYPE; @@ ( _E->_timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -&_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)_callback; +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -&_callback; +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; ) // Sometimes timer functions are called directly. Replace matched args. @change_timer_function_calls depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression _E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_data; @@ _callback( ( -(_cast_data)_E +&_E->_timer | -(_cast_data)&_E +&_E._timer | -_E +&_E->_timer ) ) // If a timer has been configured without a data argument, it can be // converted without regard to the callback argument, since it is unused. @match_timer_function_unused_data@ expression _E; identifier _timer; identifier _callback; @@ ( -setup_timer(&_E->_timer, _callback, 0); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0L); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0UL); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0L); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0UL); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_timer, _callback, 0); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0L); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0UL); +timer_setup(&_timer, _callback, 0); | -setup_timer(_timer, _callback, 0); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0L); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0UL); +timer_setup(_timer, _callback, 0); ) @change_callback_unused_data depends on match_timer_function_unused_data@ identifier match_timer_function_unused_data._callback; type _origtype; identifier _origarg; @@ void _callback( -_origtype _origarg +struct timer_list *unused ) { ... when != _origarg } Signed-off-by: Kees Cook <keescook@chromium.org>
2017-10-17 04:43:17 +07:00
static void ipwireless_setup_timer(struct timer_list *t)
{
treewide: setup_timer() -> timer_setup() This converts all remaining cases of the old setup_timer() API into using timer_setup(), where the callback argument is the structure already holding the struct timer_list. These should have no behavioral changes, since they just change which pointer is passed into the callback with the same available pointers after conversion. It handles the following examples, in addition to some other variations. Casting from unsigned long: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... setup_timer(&ptr->my_timer, my_callback, ptr); and forced object casts: void my_callback(struct something *ptr) { ... } ... setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr); become: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... timer_setup(&ptr->my_timer, my_callback, 0); Direct function assignments: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... ptr->my_timer.function = my_callback; have a temporary cast added, along with converting the args: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback; And finally, callbacks without a data assignment: void my_callback(unsigned long data) { ... } ... setup_timer(&ptr->my_timer, my_callback, 0); have their argument renamed to verify they're unused during conversion: void my_callback(struct timer_list *unused) { ... } ... timer_setup(&ptr->my_timer, my_callback, 0); The conversion is done with the following Coccinelle script: spatch --very-quiet --all-includes --include-headers \ -I ./arch/x86/include -I ./arch/x86/include/generated \ -I ./include -I ./arch/x86/include/uapi \ -I ./arch/x86/include/generated/uapi -I ./include/uapi \ -I ./include/generated/uapi --include ./include/linux/kconfig.h \ --dir . \ --cocci-file ~/src/data/timer_setup.cocci @fix_address_of@ expression e; @@ setup_timer( -&(e) +&e , ...) // Update any raw setup_timer() usages that have a NULL callback, but // would otherwise match change_timer_function_usage, since the latter // will update all function assignments done in the face of a NULL // function initialization in setup_timer(). @change_timer_function_usage_NULL@ expression _E; identifier _timer; type _cast_data; @@ ( -setup_timer(&_E->_timer, NULL, _E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E->_timer, NULL, (_cast_data)_E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E._timer, NULL, &_E); +timer_setup(&_E._timer, NULL, 0); | -setup_timer(&_E._timer, NULL, (_cast_data)&_E); +timer_setup(&_E._timer, NULL, 0); ) @change_timer_function_usage@ expression _E; identifier _timer; struct timer_list _stl; identifier _callback; type _cast_func, _cast_data; @@ ( -setup_timer(&_E->_timer, _callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | _E->_timer@_stl.function = _callback; | _E->_timer@_stl.function = &_callback; | _E->_timer@_stl.function = (_cast_func)_callback; | _E->_timer@_stl.function = (_cast_func)&_callback; | _E._timer@_stl.function = _callback; | _E._timer@_stl.function = &_callback; | _E._timer@_stl.function = (_cast_func)_callback; | _E._timer@_stl.function = (_cast_func)&_callback; ) // callback(unsigned long arg) @change_callback_handle_cast depends on change_timer_function_usage@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; identifier _handle; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { ( ... when != _origarg _handletype *_handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg ) } // callback(unsigned long arg) without existing variable @change_callback_handle_cast_no_arg depends on change_timer_function_usage && !change_callback_handle_cast@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { + _handletype *_origarg = from_timer(_origarg, t, _timer); + ... when != _origarg - (_handletype *)_origarg + _origarg ... when != _origarg } // Avoid already converted callbacks. @match_callback_converted depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier t; @@ void _callback(struct timer_list *t) { ... } // callback(struct something *handle) @change_callback_handle_arg depends on change_timer_function_usage && !match_callback_converted && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; @@ void _callback( -_handletype *_handle +struct timer_list *t ) { + _handletype *_handle = from_timer(_handle, t, _timer); ... } // If change_callback_handle_arg ran on an empty function, remove // the added handler. @unchange_callback_handle_arg depends on change_timer_function_usage && change_callback_handle_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; identifier t; @@ void _callback(struct timer_list *t) { - _handletype *_handle = from_timer(_handle, t, _timer); } // We only want to refactor the setup_timer() data argument if we've found // the matching callback. This undoes changes in change_timer_function_usage. @unchange_timer_function_usage depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg && !change_callback_handle_arg@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type change_timer_function_usage._cast_data; @@ ( -timer_setup(&_E->_timer, _callback, 0); +setup_timer(&_E->_timer, _callback, (_cast_data)_E); | -timer_setup(&_E._timer, _callback, 0); +setup_timer(&_E._timer, _callback, (_cast_data)&_E); ) // If we fixed a callback from a .function assignment, fix the // assignment cast now. @change_timer_function_assignment depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_func; typedef TIMER_FUNC_TYPE; @@ ( _E->_timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -&_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)_callback; +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -&_callback; +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; ) // Sometimes timer functions are called directly. Replace matched args. @change_timer_function_calls depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression _E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_data; @@ _callback( ( -(_cast_data)_E +&_E->_timer | -(_cast_data)&_E +&_E._timer | -_E +&_E->_timer ) ) // If a timer has been configured without a data argument, it can be // converted without regard to the callback argument, since it is unused. @match_timer_function_unused_data@ expression _E; identifier _timer; identifier _callback; @@ ( -setup_timer(&_E->_timer, _callback, 0); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0L); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0UL); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0L); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0UL); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_timer, _callback, 0); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0L); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0UL); +timer_setup(&_timer, _callback, 0); | -setup_timer(_timer, _callback, 0); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0L); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0UL); +timer_setup(_timer, _callback, 0); ) @change_callback_unused_data depends on match_timer_function_unused_data@ identifier match_timer_function_unused_data._callback; type _origtype; identifier _origarg; @@ void _callback( -_origtype _origarg +struct timer_list *unused ) { ... when != _origarg } Signed-off-by: Kees Cook <keescook@chromium.org>
2017-10-17 04:43:17 +07:00
struct ipw_hardware *hw = from_timer(hw, t, setup_timer);
hw->init_loops++;
if (hw->init_loops == TL_SETUP_MAX_VERSION_QRY &&
hw->hw_version == HW_VERSION_2 &&
hw->memreg_tx == &hw->memory_info_regs->memreg_tx_new) {
printk(KERN_INFO IPWIRELESS_PCCARD_NAME
": failed to startup using TX2, trying TX\n");
hw->memreg_tx = &hw->memory_info_regs->memreg_tx_old;
hw->init_loops = 0;
}
/* Give up after a certain number of retries */
if (hw->init_loops == TL_SETUP_MAX_VERSION_QRY) {
printk(KERN_INFO IPWIRELESS_PCCARD_NAME
": card failed to start up!\n");
hw->initializing = 0;
} else {
/* Do not attempt to write to the board if it is not present. */
if (is_card_present(hw)) {
unsigned long flags;
spin_lock_irqsave(&hw->lock, flags);
hw->to_setup = 1;
hw->tx_ready = 1;
spin_unlock_irqrestore(&hw->lock, flags);
tasklet_schedule(&hw->tasklet);
}
mod_timer(&hw->setup_timer,
jiffies + msecs_to_jiffies(TL_SETUP_VERSION_QRY_TMO));
}
}
/*
* Stop any interrupts from executing so that, once this function returns,
* other layers of the driver can be sure they won't get any more callbacks.
* Thus must be called on a proper process context.
*/
void ipwireless_stop_interrupts(struct ipw_hardware *hw)
{
if (!hw->shutting_down) {
/* Tell everyone we are going down. */
hw->shutting_down = 1;
del_timer(&hw->setup_timer);
/* Prevent the hardware from sending any more interrupts */
do_close_hardware(hw);
}
}
void ipwireless_hardware_free(struct ipw_hardware *hw)
{
int i;
struct ipw_rx_packet *rp, *rq;
struct ipw_tx_packet *tp, *tq;
ipwireless_stop_interrupts(hw);
workqueue: deprecate flush[_delayed]_work_sync() flush[_delayed]_work_sync() are now spurious. Mark them deprecated and convert all users to flush[_delayed]_work(). If you're cc'd and wondering what's going on: Now all workqueues are non-reentrant and the regular flushes guarantee that the work item is not pending or running on any CPU on return, so there's no reason to use the sync flushes at all and they're going away. This patch doesn't make any functional difference. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Ian Campbell <ian.campbell@citrix.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Mattia Dongili <malattia@linux.it> Cc: Kent Yoder <key@linux.vnet.ibm.com> Cc: David Airlie <airlied@linux.ie> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Karsten Keil <isdn@linux-pingi.de> Cc: Bryan Wu <bryan.wu@canonical.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Alasdair Kergon <agk@redhat.com> Cc: Mauro Carvalho Chehab <mchehab@infradead.org> Cc: Florian Tobias Schandinat <FlorianSchandinat@gmx.de> Cc: David Woodhouse <dwmw2@infradead.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: linux-wireless@vger.kernel.org Cc: Anton Vorontsov <cbou@mail.ru> Cc: Sangbeom Kim <sbkim73@samsung.com> Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Eric Van Hensbergen <ericvh@gmail.com> Cc: Takashi Iwai <tiwai@suse.de> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Petr Vandrovec <petr@vandrovec.name> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Avi Kivity <avi@redhat.com>
2012-08-21 04:51:24 +07:00
flush_work(&hw->work_rx);
for (i = 0; i < NL_NUM_OF_ADDRESSES; i++)
kfree(hw->packet_assembler[i]);
for (i = 0; i < NL_NUM_OF_PRIORITIES; i++)
list_for_each_entry_safe(tp, tq, &hw->tx_queue[i], queue) {
list_del(&tp->queue);
kfree(tp);
}
list_for_each_entry_safe(rp, rq, &hw->rx_queue, queue) {
list_del(&rp->queue);
kfree(rp);
}
list_for_each_entry_safe(rp, rq, &hw->rx_pool, queue) {
list_del(&rp->queue);
kfree(rp);
}
kfree(hw);
}
/*
* Associate the specified network with this hardware, so it will receive events
* from it.
*/
void ipwireless_associate_network(struct ipw_hardware *hw,
struct ipw_network *network)
{
hw->network = network;
}